JP2022079794A - Fuel droplet injection device - Google Patents

Fuel droplet injection device Download PDF

Info

Publication number
JP2022079794A
JP2022079794A JP2020190586A JP2020190586A JP2022079794A JP 2022079794 A JP2022079794 A JP 2022079794A JP 2020190586 A JP2020190586 A JP 2020190586A JP 2020190586 A JP2020190586 A JP 2020190586A JP 2022079794 A JP2022079794 A JP 2022079794A
Authority
JP
Japan
Prior art keywords
fuel
combustion chamber
droplets
electrodes
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020190586A
Other languages
Japanese (ja)
Inventor
文修 斎藤
Fuminaga Saito
時広 池田
Tokihiro Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020190586A priority Critical patent/JP2022079794A/en
Publication of JP2022079794A publication Critical patent/JP2022079794A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

To provide a fuel droplet injection device for effectively dispersing fuel droplets in a combustion chamber to enhance the thermal efficiency of a combustion engine while reducing the exhaustion of noncombustible hydrogen carbide.SOLUTION: The fuel droplet injection device includes an injection port 5, and a pair of or a plurality of electrodes 6 (A-F) installed in front of the injection port in an injection direction, and is configured to sequentially change potentials of the electrodes, sequentially change a moving direction of furl droplets 10 charged by an electrical field, and disperse the fuel droplets widely in a combustion chamber of an internal combustion engine so that the effective disperse of the fuel droplets in the combustion chamber enhances the thermal efficiency of the internal combustion engine while reducing the exhaustion of noncombustible hydrogen carbide.SELECTED DRAWING: Figure 4

Description

本発明は、燃焼室における燃料液滴を分散して内燃機関の熱効率を高めるとともに非燃焼炭化水素(Unburned Hydro-Carbon,UHC)の排出を低減した燃料液滴噴射装置に関するものである。 The present invention relates to a fuel droplet injection device that disperses fuel droplets in a combustion chamber to increase the thermal efficiency of an internal combustion engine and reduces emissions of unburned Hydro-Carbon (UHC).

液体を微小液滴の状態で被噴射体に噴射する噴射装置として、例えば、燃料の燃焼の最適化により内燃機関(エンジン)の熱効率の向上を図る技術がある。液体が噴射装置あるいは気化器を通過すると流動帯電が起き、噴射装置あるいは気化器と液体は、それぞれ正と負(物質の組み合わせによって、負と正の場合もある)に帯電し、液滴と噴射装置等との間にクーロン引力が働く。液滴の径が小さくなるほど液滴の噴出には大きな圧力が必要になる主たる原因は、この流動帯電によるクーロン引力と考えられる。内燃機関においては、クーロン引力によって生じる燃料液滴の放出の遅れと気化の遅れによる燃料の燃焼割合の低下を克服する必要があり、高い熱効率および大きな出力とトルクを実現するとともに、燃焼割合を向上させることによって排気ガス中の炭化水素の含有割合を低減する。 As an injection device that injects a liquid into an injected object in the form of minute droplets, for example, there is a technique for improving the thermal efficiency of an internal combustion engine (engine) by optimizing the combustion of fuel. When the liquid passes through the injector or vaporizer, flow charging occurs, and the injector or vaporizer and the liquid are charged positively and negatively (may be negative and positive depending on the combination of substances), and the droplet and the jet are ejected. Coulomb attraction works between the device and the like. It is considered that the main reason why a large pressure is required for the ejection of the droplet as the diameter of the droplet becomes smaller is the Coulomb attraction due to this flow charge. In internal combustion engines, it is necessary to overcome the decrease in fuel combustion ratio due to the delay in emission of fuel droplets and the delay in vaporization caused by the Coulomb attraction, achieving high thermal efficiency, high output and torque, and improving the combustion ratio. By doing so, the content ratio of hydrocarbons in the exhaust gas is reduced.

特開2020-110746号公報Japanese Unexamined Patent Publication No. 200-110746 特開2020-112153号公報Japanese Unexamined Patent Publication No. 202-11253 特開2004-301099号公報Japanese Unexamined Patent Publication No. 2004-301099

Bardi,M.,Pilla,G. and Gautot,X.,International Journal of Engine Research, Vol.20, No.1 (2019), pp.128-140Bardi, M., Pilla, G. and Gautot, X., International Journal of Engine Research, Vol.20, No.1 (2019), pp.128-140 Schuck,C.,Samenfink,W., Schunemann,E.,Tafel,S.,Towae,O.,and Koch,T.,International Journal of Engine Research, Vol.19, No.1 (2019), pp.78-85Schuck, C., Samenfink, W., Schunemann, E., Tafel, S., Towae, O., and Koch, T., International Journal of Engine Research, Vol.19, No.1 (2019), pp. 78-85 Koci,C. P.,Fitzgerald,R. P.,Ikonomou,V., and Sun,K.,International Journal of Engine Research, Vol. 20, No.1 (2018), pp.105-127.Koci, C.P., Fitzgerald, R.P., Ikonomou, V., and Sun, K., International Journal of Engine Research, Vol. 20, No.1 (2018), pp.105-127. J.N. イスラエルアチェビリ、分子間力と表面力第2版 1996年 朝倉書店J.N. Israel Acehvili, Intermolecular Force and Surface Force 2nd Edition 1996 Asakura Shoten

内燃機関においては、燃料噴射装置から噴射された燃料液滴を燃焼室内に分散し、燃料液滴の表面積あるいは燃焼室内壁との接触表面積を広くすることによって、液体燃料を燃焼させて動力・推力を得る機関の熱効率の向上と、非燃焼炭化水素(UHC)の排出を抑制する。
ガソリン車の排気ガス中の非燃焼炭化水素(Unburned Hydro-Carbon)の研究において、 燃料噴射口周辺、吸気弁と排気弁およびピストン面に生ずる燃料の濡れがUHC発生の重要な原因であると指摘されている(非特許文献1-3参照)。 内燃機関の燃焼行程における到達温度は~800℃と高温のため循環する冷却水によって冷却されても燃焼室内壁の温度は燃料液体の気化温度よりは十分に高くなり、直噴式燃料噴射器によって燃焼室に噴射されたガソリン、軽油などの液滴はすぐに気化するように思われる。
In an internal combustion engine, the fuel droplets injected from the fuel injection device are dispersed in the combustion chamber, and the surface area of the fuel droplets or the contact surface area with the combustion chamber wall is widened to burn the liquid fuel for power and thrust. It improves the thermal efficiency of the engine and suppresses the emission of non-combustion hydrocarbons (UHC).
In a study of Unburned Hydro-Carbon in the exhaust gas of gasoline-powered vehicles, it was pointed out that the wetness of fuel around the fuel injection port, intake valve and exhaust valve, and piston surface is an important cause of UHC generation. (See Non-Patent Documents 1-3). Since the ultimate temperature in the combustion stroke of the internal combustion engine is as high as ~ 800 ° C, the temperature of the combustion chamber wall is sufficiently higher than the vaporization temperature of the fuel liquid even if it is cooled by the circulating cooling water, and it is burned by the direct injection fuel injector. Droplets of gasoline, light oil, etc. injected into the chamber appear to vaporize immediately.

しかし、燃焼行程の時間が10ms程度と短く、燃料が燃焼室内壁の特定の個所に100MPa~200MPa の高圧で吹き付けられた場合には、内壁部材の比熱が小さいために温度の低下が起きて他の個所からの熱の伝導が間に合わなくなると燃焼室内壁に濡れが生ずると考えられる。発明者らは、噴射装置から噴射される際に送液管や噴射管との摩擦によって、燃料液体が帯電(流動帯電)することを発見した(特許文献1参照)。 帯電した燃料液体では、電荷と誘電分極した分子の間に働くクーロン引力のために帯電していない状態に比較して凝集力が大きくなる(非特許文献4参照)と考えられ、帯電した燃料液体では気化熱が大きくなっている可能性がある。
本発明は、このような事情によりなされたものであり、燃焼室における燃料液滴を有効に分散して内燃機関の熱効率を高めると共に非燃焼炭化水素(Unburned Hydro-Carbon,UHC)の排出を低減する燃料液滴噴射装置を提供する。
However, when the combustion stroke time is as short as about 10 ms and the fuel is sprayed on a specific part of the combustion chamber wall at a high pressure of 100 MPa to 200 MPa, the temperature drops due to the small specific heat of the inner wall member. It is considered that the wall of the combustion chamber becomes wet when the heat conduction from the above-mentioned part is not in time. The inventors have discovered that the fuel liquid is charged (flow-charged) by friction with the liquid feed pipe or the injection pipe when injected from the injection device (see Patent Document 1). It is considered that the cohesive force of the charged fuel liquid is larger than that of the uncharged state due to the Coulomb attraction acting between the charged and the dielectrically polarized molecules (see Non-Patent Document 4), and the charged fuel liquid. Then, the heat of vaporization may be large.
The present invention has been made under such circumstances, and effectively disperses fuel droplets in the combustion chamber to improve the thermal efficiency of the internal combustion engine and reduce the emission of unburned hydrocarbons (UHC). To provide a fuel droplet injection device.

本発明の燃料液滴噴射装置の一態様は、噴射口と、前記噴射口の噴射方向前方に設置した1対もしくは複数の電極とを備え、前記電極の電位を順次変化させ、電場によって帯電した燃料液滴の進行方向を順次変えて前記燃料液滴を燃焼室内に広く分散させることによって、前記燃焼室における前記燃料液滴の気化を促進して前記燃焼機関の熱効率を高くすると共に非燃焼炭化水素(UHC)の排出を低減させることを特徴とする。
電極によって帯電した燃料液滴の進路を変えられることは特許文献2に記載された実験結果によって発明者が明らかにしたところである。
One aspect of the fuel droplet injection device of the present invention includes an injection port and a pair or a plurality of electrodes installed in front of the injection port in the injection direction, and the potential of the electrodes is sequentially changed and charged by an electric field. By sequentially changing the traveling direction of the fuel droplets and widely dispersing the fuel droplets in the combustion chamber, the vaporization of the fuel droplets in the combustion chamber is promoted to increase the thermal efficiency of the combustion engine and non-combustion hydrocarbon. It is characterized by reducing the emission of hydrogen (UHC).
It has been clarified by the inventor from the experimental results described in Patent Document 2 that the course of the fuel droplet charged by the electrode can be changed.

燃焼室における燃料液滴を有効に分散して燃焼機関の熱効率を上げると共に非燃焼炭化水素(UHC)の排出を低減することができる。
燃焼は、燃料と気体(酸素)の界面近傍の燃料気体と反応気体(酸素)の混合状態で起きる化学反応である。したがって、液体燃料を燃焼させて動力・推力を得る場合には燃焼行程の時間が短いため、特に燃料液滴を効率的に気化させる必要がある。燃料液体の気化に必要な熱の大部分は、燃焼室内壁からの伝導熱と考えられる。噴射された燃料液滴を分散させて燃焼室内壁に吸着させた場合には、吸着した個所周辺の熱によって液滴は気化してしまうので濡れは発生しない。しかし、多数の液滴あるいは噴射燃料の大部分が燃料室内壁に集中して吸着した場合には、燃焼室内壁の部材の比熱が小さいために当該箇所の温度が低下するので、十分な気化熱が得られない。このため気化が遅れ、燃焼室内壁に濡れが生ずると考えられる。気体分子との衝突および燃焼室内壁からの輻射熱による気化を考えても、燃料液滴を集中させるよりも分散させて表面積を広げた方が効率的なことは明らかである。
Fuel droplets in the combustion chamber can be effectively dispersed to increase the thermal efficiency of the combustion engine and reduce the emission of non-combustible hydrocarbons (UHC).
Combustion is a chemical reaction that occurs in a mixed state of fuel gas and reaction gas (oxygen) near the interface between fuel and gas (oxygen). Therefore, when the liquid fuel is burned to obtain power and thrust, the combustion stroke time is short, so it is particularly necessary to efficiently vaporize the fuel droplets. Most of the heat required for vaporization of the fuel liquid is considered to be conduction heat from the combustion chamber wall. When the injected fuel droplets are dispersed and adsorbed on the wall of the combustion chamber, the droplets are vaporized by the heat around the adsorbed portion, so that wetting does not occur. However, when a large number of droplets or most of the injected fuel are concentrated and adsorbed on the fuel chamber wall, the specific heat of the members of the combustion chamber wall is small and the temperature of the location drops, so that sufficient heat of vaporization occurs. Cannot be obtained. Therefore, it is considered that vaporization is delayed and the combustion chamber wall becomes wet. Considering the collision with gas molecules and the vaporization by radiant heat from the combustion chamber wall, it is clear that it is more efficient to disperse the fuel droplets to increase the surface area than to concentrate them.

実施例1を説明する噴射口前方に配置した電極及び噴射口の平面図である。It is a top view of the electrode and the injection port arranged in front of the injection port explaining Example 1. FIG. 実施例1を説明する噴射口前方に配置した電極及び噴射口の側面図である。It is a side view of the electrode and the injection port arranged in front of the injection port explaining Example 1. FIG. 実施例1に係る噴射口前方に配置した電極の電位を示す平面図である。It is a top view which shows the potential of the electrode arranged in front of the injection port which concerns on Example 1. FIG. 実施例1に係る噴射口前方に配置した電極の電位と液滴の放出方向を示す側面図である。It is a side view which shows the electric potential of the electrode arranged in front of the injection port which concerns on Example 1, and the emission direction of a droplet. 実施例1を説明する噴射口前方に配置した電極の電位のダイアグラムである。It is a diagram of the potential of the electrode arranged in front of the injection port explaining Example 1. FIG. 実施例1に係る噴射口を示す図である。It is a figure which shows the injection port which concerns on Example 1. FIG.

以下、実施例を参照して発明の実施の形態を説明する。 Hereinafter, embodiments of the invention will be described with reference to Examples.

この実施例の燃料液滴噴射装置は、燃料液滴を噴射する噴射口5と噴射口5の噴射方向前方に設置した1対もしくは複数の電極6(A~F)とを備えている。電極6(A~F)の電位を順次変化させ、電場によって帯電した燃料液滴10の進行方向を順次変えて燃料液滴10を燃焼室内に広く分散させる。燃料液滴10を広く分散させることによって、前記燃焼室の壁面から伝導熱を効率よく得ることができるので燃料液滴10の気化が促進され、燃料の燃焼割合が高くなり燃焼機関の熱効率を高くすることができ、それと共に非燃焼炭化水素(UHC)の排出を低減することが可能になる。 The fuel droplet injection device of this embodiment includes an injection port 5 for injecting fuel droplets and a pair or a plurality of electrodes 6 (A to F) installed in front of the injection port 5 in the injection direction. The potentials of the electrodes 6 (A to F) are sequentially changed, and the traveling direction of the fuel droplets 10 charged by the electric field is sequentially changed to widely disperse the fuel droplets 10 in the combustion chamber. By widely dispersing the fuel droplets 10, conduction heat can be efficiently obtained from the wall surface of the combustion chamber, so that the vaporization of the fuel droplets 10 is promoted, the combustion ratio of the fuel is increased, and the thermal efficiency of the combustion engine is increased. And at the same time it is possible to reduce the emission of non-combustible hydrocarbons (UHC).

このように、液体燃料噴射口の噴射口前方に複数の電極を設置して電場を発生させ、噴射によって負に帯電した燃料液滴の進行方向を変える。時間とともに燃料液滴の進行方向を変化させ、燃料液滴を燃焼室内に偏りなく広く分散させる。噴射燃料の進行方向を一軸方向に時間変化させることは、1個の電極でも電圧を変化させることによって可能となる。しかし、燃料液滴を燃焼室内に偏りなく広く分散させるためには、電極の数は2対以上が望ましい。 In this way, a plurality of electrodes are installed in front of the injection port of the liquid fuel injection port to generate an electric field, and the traveling direction of the fuel droplet negatively charged by the injection is changed. The traveling direction of the fuel droplets is changed over time, and the fuel droplets are evenly and widely dispersed in the combustion chamber. It is possible to change the traveling direction of the injected fuel with time in the uniaxial direction by changing the voltage even with one electrode. However, in order to disperse the fuel droplets evenly and widely in the combustion chamber, it is desirable that the number of electrodes is two or more.

噴射された燃料液滴を燃焼室内に広く分散させる一例を図1~4に示す。 図1は、円状に配置された6個の平板電極6(A~F)からなる装置の平面図であり、図2はそれを側面から見た図である。電位を図3のように設定した時、負に帯電した燃料液滴は、図4のように高電位の電極Aの方向に引力を受け、低電位の電極Dからは斥力を受け、その進行方向をD→A方向に曲げられる。したがって、電極の電位を図5のように時間変化させると、燃料液滴を燃焼室内に分散させることが可能である。この実施例では、電極の数は6個であるが、電極の数を増やすことによって進行方向を細かく変化させることができる。この場合には、電極の電位を順番に変えるのではなく、電圧を加えた電極対から最も離れた位置の電極対を選択して電位変化させることも可能であり、こうすることによって、燃焼室内壁の温度の高い箇所に対し選択的に燃料液滴を吹き付けることができる。
電位を図3のように設定した時、負に帯電した燃料液滴は、図4のように高電位の電極Aと低電位の電極Dの作る電場によって、その進行方向をD→A方向に曲げられる。したがって、電極の電位を図5のように時間変化させると、燃料液滴を燃焼室内の3軸方向に分散させることが可能である。この実施例では、3対の平行電極であるが、電極の数を増やすことによって、燃料液滴の進行方向をさらに細かく変化させることができる。
Figures 1 to 4 show an example of widely dispersing the injected fuel droplets in the combustion chamber. FIG. 1 is a plan view of a device composed of six flat plate electrodes 6 (A to F) arranged in a circle, and FIG. 2 is a side view of the device. When the potential is set as shown in FIG. 3, the negatively charged fuel droplet receives an attractive force in the direction of the high potential electrode A and a repulsive force from the low potential electrode D as shown in FIG. 4, and progress thereof. The direction can be bent from D to A. Therefore, if the potential of the electrode is changed with time as shown in FIG. 5, the fuel droplets can be dispersed in the combustion chamber. In this embodiment, the number of electrodes is 6, but the traveling direction can be finely changed by increasing the number of electrodes. In this case, instead of changing the potentials of the electrodes in order, it is possible to select the electrode pair at the position farthest from the electrode pair to which the voltage is applied and change the potential, thereby changing the potential in the combustion chamber. Fuel droplets can be selectively sprayed on hot parts of the wall.
When the potential is set as shown in FIG. 3, the negatively charged fuel droplet moves in the D → A direction due to the electric field created by the high potential electrode A and the low potential electrode D as shown in FIG. Can be bent. Therefore, if the potential of the electrode is changed with time as shown in FIG. 5, the fuel droplets can be dispersed in the three axial directions in the combustion chamber. In this embodiment, there are three pairs of parallel electrodes, but by increasing the number of electrodes, the traveling direction of the fuel droplets can be changed more finely.

燃料液滴の進行方向の角度変化は、電極に加える電圧および電極の幅(燃料の進行方向の長さ)によって調整することができる。燃料液滴の進行方向は進行方向を軸として放射状に変化するのみならず、軸方向にも変化する。噴射とともに燃料に加わる圧力が低下して燃料液滴の速度が小さくなるので、電場による燃料液滴の進行方向の角度変化が時間とともに大きくなるからである。 The change in the angle of the fuel droplet in the traveling direction can be adjusted by the voltage applied to the electrode and the width of the electrode (the length in the traveling direction of the fuel). The traveling direction of the fuel droplets not only changes radially with respect to the traveling direction, but also changes in the axial direction. This is because the pressure applied to the fuel with the injection decreases and the velocity of the fuel droplets decreases, so that the change in the angle of the fuel droplets in the traveling direction due to the electric field increases with time.

1・・・シリンダヘッド
2・・・シリンダ
3・・・燃焼室
4・・・ピストン
5・・・噴射口
6 ・・・電極(A~F)
7 ・・・絶縁材
10・・・燃料液滴

1 ... Cylinder head 2 ... Cylinder 3 ... Combustion chamber 4 ... Piston 5 ... Injection port 6 ... Electrodes (A to F)
7 ・ ・ ・ Insulation material 10 ・ ・ ・ Fuel droplets

Claims (1)

噴射口と、前記噴射口の噴射方向前方に設置した1対もしくは複数の電極とを備え、前記電極の電位を順次変化させ、電場によって帯電した燃料液滴の進行方向を順次変えて前記燃料液滴を燃焼機関の燃焼室内に広く分散させることによって、前記燃焼室における前記燃料液滴を有効に分散して前記燃焼機関の熱効率を高くすると共に非燃焼炭化水素の排出を低減させることを特徴とする燃料液滴噴射装置。


The fuel liquid is provided with an injection port and a pair or a plurality of electrodes installed in front of the injection port in the injection direction, the potential of the electrodes is sequentially changed, and the traveling direction of the fuel droplet charged by the electric field is sequentially changed. By widely dispersing the droplets in the combustion chamber of the combustion engine, the fuel droplets in the combustion chamber are effectively dispersed to increase the thermal efficiency of the combustion engine and reduce the emission of non-combustible hydrocarbons. Fuel droplet injection device.


JP2020190586A 2020-11-17 2020-11-17 Fuel droplet injection device Pending JP2022079794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190586A JP2022079794A (en) 2020-11-17 2020-11-17 Fuel droplet injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190586A JP2022079794A (en) 2020-11-17 2020-11-17 Fuel droplet injection device

Publications (1)

Publication Number Publication Date
JP2022079794A true JP2022079794A (en) 2022-05-27

Family

ID=81731634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190586A Pending JP2022079794A (en) 2020-11-17 2020-11-17 Fuel droplet injection device

Country Status (1)

Country Link
JP (1) JP2022079794A (en)

Similar Documents

Publication Publication Date Title
Durst et al. A new type of internal combustion engine based on the porous-medium combustion technique
KR101942876B1 (en) Method for starting an internal combustion engine
US4389986A (en) Direct injection type internal combustion engine with a low pressure fuel injector
CN103925119A (en) Gaseous common rail fuel system and high compression ratio engine using same
KR102027498B1 (en) Hydrogen engine for preventing pre-ignition
KR101135527B1 (en) Injection system that is fitted with fuel treatment device
JP2022079794A (en) Fuel droplet injection device
US20040103859A1 (en) Diesel emission and combustion control system
JP3900210B2 (en) Ignition device
CN112127994A (en) Heavy oil rotary engine auxiliary ignition device based on hydrogen flame ignition
US20110203560A1 (en) Fuel conditioning vacuum module
JP2005509779A (en) Spark ignition direct fuel injection internal combustion engine with ultra high pressure ignition system
Bhiogade et al. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode
JPH10252608A (en) Compression ignition type internal combustion engine
KR101209714B1 (en) A common rail type injector of diesel engines
LI et al. Experimental Study on the Characteristics of a Two-Stroke Opposed Engine
WO2022168471A1 (en) Reciprocating internal combustion engine
RU2200869C2 (en) Fuel injection nozzle with prechamber
JPH1054306A (en) Internal combustion steam engine
JPH06241145A (en) Fuel injection method and device for combustor
CN108150302A (en) A kind of novel piston for avoiding cold start ablation
KR100250081B1 (en) Fuel evaporation apparatus use of exhaust gas
JP2008115794A (en) Ignition system of internal combustion engine
KR200190235Y1 (en) Exchange of heat
CN115596548A (en) Natural gas jet ignition ammonia fuel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231214