JP2022078429A - Production method of rubber composition - Google Patents

Production method of rubber composition Download PDF

Info

Publication number
JP2022078429A
JP2022078429A JP2020189105A JP2020189105A JP2022078429A JP 2022078429 A JP2022078429 A JP 2022078429A JP 2020189105 A JP2020189105 A JP 2020189105A JP 2020189105 A JP2020189105 A JP 2020189105A JP 2022078429 A JP2022078429 A JP 2022078429A
Authority
JP
Japan
Prior art keywords
rubber
mass
rubber composition
paste
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020189105A
Other languages
Japanese (ja)
Inventor
敬子 藤原
Keiko Fujiwara
勇志 安福
Yuji Yasufuku
貴美 川端
Takami Kawabata
竜雄 片山
Tatsuo Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiyama Manufacturing Corp
Original Assignee
Uchiyama Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiyama Manufacturing Corp filed Critical Uchiyama Manufacturing Corp
Priority to JP2020189105A priority Critical patent/JP2022078429A/en
Priority to CN202111303228.4A priority patent/CN114474814A/en
Priority to DE102021212675.8A priority patent/DE102021212675A1/en
Publication of JP2022078429A publication Critical patent/JP2022078429A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0053Producing sealings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0082Producing articles in the form of closed loops, e.g. rings
    • B29D99/0085Producing articles in the form of closed loops, e.g. rings for sealing purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/205Compounds containing groups, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

To provide a production method of a rubber composition excellent in productivity, and capable of obtaining a rubber molded product remarkably reduced in failures such as bubbles caused by dispersion failures, scratches, and residues of a compounding agent.SOLUTION: A production method of a rubber composition includes: a wet pulverization step of obtaining a pasty mixture by performing wet pulverization treatment of adding a plasticizer to at least one kind of a powder material selected from the group consisting of a vulcanizer and a vulcanization accelerator; and a kneading step of obtaining a rubber composition by kneading at least rubber and the pasty mixture.SELECTED DRAWING: None

Description

本発明は、ゴム組成物の製造方法に関する。また、当該ゴム組成物を加硫して得られるゴム成形品の製造方法に関する。 The present invention relates to a method for producing a rubber composition. The present invention also relates to a method for producing a rubber molded product obtained by vulcanizing the rubber composition.

ゴム組成物に添加される加硫促進剤等の配合剤の中には凝集性の大きなものが知られている。このような凝集性の大きな加硫促進剤をゴムと混練した場合、分散不良となり、成形して得られるゴム成形品に配合剤残り等の不良が発生する問題があった。特許文献1には、このような分散不良を改善する方法として、グアニジン化合物に可塑剤を加え、グアニジンを溶融した後ペースト化する加硫促進剤の調製方法が記載されている。これによれば、混練工程、成形工程などで加硫促進剤の分散不良に起因する不具合を完全に防止できるとされている。 Among the compounding agents such as the vulcanization accelerator added to the rubber composition, those having high cohesiveness are known. When such a highly cohesive vulcanization accelerator is kneaded with rubber, there is a problem that dispersion is poor and defects such as residual compounding agent occur in the rubber molded product obtained by molding. Patent Document 1 describes a method for preparing a vulcanization accelerator in which a plasticizer is added to a guanidine compound to melt guanidine and then to make a paste, as a method for improving such dispersion defects. According to this, it is said that defects caused by poor dispersion of the vulcanization accelerator can be completely prevented in the kneading process, the molding process and the like.

特開2002-309040号公報JP-A-2002-309040

しかしながら、特許文献1では、グアニジン化合物の融点以上の高温で溶融させるため、生産性に課題があり、また溶融が困難な配合剤については適用することができず、かかる課題を解決できるゴム組成物の製造方法が求められていた。 However, in Patent Document 1, since the guanidine compound is melted at a high temperature higher than the melting point, there is a problem in productivity, and it cannot be applied to a compounding agent which is difficult to melt, and a rubber composition that can solve the problem. There was a demand for a manufacturing method for.

本発明は上記課題を解決するためになされたものであり、分散不良に起因する気泡、キズ、配合剤残り等の不良が著しく低減されたゴム成形品を得ることのできる、生産性に優れるゴム組成物の製造方法を提供することを目的とするものである。 The present invention has been made to solve the above problems, and is a rubber having excellent productivity, which can obtain a rubber molded product in which defects such as bubbles, scratches, and residue of compounding agent due to poor dispersion can be remarkably reduced. It is an object of the present invention to provide a method for producing a composition.

上記課題は、ゴム組成物の製造方法であって、加硫剤及び加硫促進剤からなる群から選択される少なくとも1種の粉末材料に可塑剤を加えて湿式粉砕処理することによりペースト状混合物を得る湿式粉砕工程と、少なくともゴムと前記ペースト状混合物とを混練してゴム組成物を得る混練工程とを有することを特徴とするゴム組成物の製造方法を提供することによって解決される。 The above-mentioned problem is a method for producing a rubber composition, which is a paste-like mixture obtained by adding a plasticizer to at least one powder material selected from the group consisting of a vulcanizing agent and a vulcanization accelerator and performing a wet pulverization treatment. It is solved by providing a method for producing a rubber composition, which comprises a wet pulverization step for obtaining a rubber composition and a kneading step for kneading at least the rubber and the paste-like mixture to obtain a rubber composition.

このとき、前記ペースト状混合物における前記粉末材料と前記可塑剤との配合比が1:0.5~1:20であることが好適である。前記ゴム100質量部に対して、前記ペースト状混合物0.1~100質量部を配合することが好適な実施態様である。前記ゴムが、クロロプレンゴム(CR)、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)、エチレンプロピレンゴム(EPDM)、アクリルゴム(ACM)、エチレンアクリルゴム(AEM)及びフッ素ゴム(FKM)からなる群から選択される少なくとも1種であることが好適であり、前記加硫剤が、硫黄及びアミン系加硫剤からなる群から選択される少なくとも1種であることが好適であり、前記加硫促進剤が、チウラム系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバメート系加硫促進剤、チアゾール系加硫促進剤からなる群から選択される少なくとも1種であることが好適である。前記ペースト状混合物に含まれる粒子の最大粒子径が80μm以下であることが好適であり、前記ペースト状混合物に含まれる粒子の平均粒子径が0.1~30μmであることが好適である。 At this time, it is preferable that the mixing ratio of the powder material and the plasticizer in the paste-like mixture is 1: 0.5 to 1:20. It is a preferable embodiment to mix 0.1 to 100 parts by mass of the paste-like mixture with 100 parts by mass of the rubber. The rubber is from chloroprene rubber (CR), nitrile rubber (NBR), vulcanized nitrile rubber (HNBR), ethylene propylene rubber (EPDM), acrylic rubber (ACM), ethylene acrylic rubber (AEM) and sulfur rubber (FKM). It is preferable that the vulcanizing agent is at least one selected from the group consisting of sulfur and amine-based vulcanizing agents, and it is preferable that the vulcanizing agent is at least one selected from the group consisting of sulfur and amine-based vulcanizing agents. It is preferable that the vulcanization accelerator is at least one selected from the group consisting of a thiuram-based vulcanization accelerator, a guanidine-based vulcanization accelerator, a dithiocarbamate-based vulcanization accelerator, and a thiazole-based vulcanization accelerator. .. The maximum particle size of the particles contained in the paste-like mixture is preferably 80 μm or less, and the average particle size of the particles contained in the paste-like mixture is preferably 0.1 to 30 μm.

前記混練工程において、更に第2の可塑剤を加えて混練することが好適な実施態様であり、前記混練工程で得られたゴム組成物を加硫する加硫工程を有するゴム成形品の製造方法が好適な実施態様である。ゴム成形品がシール部材であることも好適な実施態様である。 In the kneading step, it is a preferable embodiment to further add a second plasticizer and knead, and a method for producing a rubber molded product having a vulcanization step of vulcanizing the rubber composition obtained in the kneading step. Is a preferred embodiment. It is also a preferred embodiment that the rubber molded product is a sealing member.

本発明により、分散不良に起因する気泡、キズ、配合剤残り等の不良が著しく低減されたゴム成形品を得ることのできる、生産性に優れるゴム組成物の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a rubber composition having excellent productivity, which can obtain a rubber molded product in which defects such as bubbles, scratches and residue of a compounding agent due to poor dispersion can be remarkably reduced.

本発明は、加硫剤及び加硫促進剤からなる群から選択される少なくとも1種の粉末材料に可塑剤(以下、「第1の可塑剤」と呼ぶことがある)を加えて湿式粉砕処理することによりペースト状混合物を得る湿式粉砕工程(以下、「湿式粉砕工程」と略記することがある)と、少なくともゴムと前記ペースト状混合物とを混練してゴム組成物を得る混練工程(以下、「混練工程」と略記することがある)とを有するゴム組成物の製造方法である。 In the present invention, a plasticizer (hereinafter, may be referred to as "first plasticizer") is added to at least one powder material selected from the group consisting of a vulcanizing agent and a vulcanization accelerator, and a wet pulverization treatment is performed. A wet crushing step of obtaining a paste-like mixture (hereinafter, may be abbreviated as "wet crushing step") and a kneading step of kneading at least rubber and the paste-like mixture to obtain a rubber composition (hereinafter, referred to as "wet crushing step"). It is a method for producing a rubber composition having (sometimes abbreviated as "kneading step").

後述する実施例と比較例との対比から分かるように、ゴムに対して加硫剤又は加硫促進剤の粉末等を用いて混練した比較例では、分散不良に起因する不良率(%)が一定以上となり、得られるゴム成形品に気泡、キズ、配合剤残り等の不良が観察された。これに対し、湿式粉砕工程を採用した実施例では、分散不良に起因する不良率(%)は0%であり、得られるゴム成形品に気泡、キズ、配合剤残り等の不良が観察されなかった。すなわち、加硫剤及び加硫促進剤からなる群から選択される少なくとも1種の粉末材料に可塑剤を加えて湿式粉砕処理してペースト状混合物を得る湿式粉砕工程を採用することにより、ゴムと前記ペースト状混合物とを混練してゴム組成物を得る混練工程において分散性が良好となり、分散不良に起因する気泡、キズ、配合剤残り等の不良が著しく低減されたゴム成形品を提供できることが明らかとなった。このように、湿式粉砕工程の採用により、前記粉末材料の融点が非常に高い場合であっても前記粉末材料を溶融させることなく生産性良くペースト状混合物が得られるため、本発明の意義が大きいことが分かる。なお、本明細書において「気泡、キズ、配合剤残り」は、加硫剤及び加硫促進剤からなる群から選択される少なくとも1種の配合剤に起因するものである。 As can be seen from the comparison between Examples and Comparative Examples described later, in Comparative Examples in which rubber was kneaded with a vulcanizing agent or a powder of a vulcanization accelerator, the defect rate (%) due to poor dispersion was found. It became above a certain level, and defects such as air bubbles, scratches, and residue of the compounding agent were observed in the obtained rubber molded product. On the other hand, in the example in which the wet pulverization step was adopted, the defect rate (%) due to the dispersion defect was 0%, and defects such as bubbles, scratches, and compounding agent residue were not observed in the obtained rubber molded product. rice field. That is, by adopting a wet pulverization step of adding a plasticizer to at least one powder material selected from the group consisting of a vulcanizing agent and a vulcanization accelerator and performing a wet pulverization treatment to obtain a paste-like mixture, the rubber and rubber can be obtained. In the kneading step of kneading the paste-like mixture to obtain a rubber composition, dispersibility is improved, and it is possible to provide a rubber molded product in which defects such as bubbles, scratches, and residue of a compounding agent due to poor dispersion are significantly reduced. It became clear. As described above, by adopting the wet pulverization step, a paste-like mixture can be obtained with good productivity without melting the powder material even when the melting point of the powder material is very high, and thus the significance of the present invention is great. You can see that. In the present specification, "air bubbles, scratches, and residual compounding agent" are caused by at least one compounding agent selected from the group consisting of a vulcanizing agent and a vulcanization accelerator.

本発明で用いられる粉末材料は、加硫剤及び加硫促進剤からなる群から選択される少なくとも1種である。本発明で用いられる加硫剤としては特に限定されないが、硫黄及びヘキサメチレンジアミンカーバメート(HMDC)等のアミン系加硫剤からなる群から選択される少なくとも1種であることが好ましい。本発明で用いられる加硫促進剤としては特に限定されず、テトラメチルチウラムジスルフィド等のチウラム系加硫促進剤;1,3-ジ-o-トリルグアニジン等のグアニジン系加硫促進剤;ジブチルジチオカルバミン酸亜鉛等のジチオカルバメート系加硫促進剤;2-メルカプトベンゾチアゾール等のチアゾール系加硫促進剤;などが挙げられる。加硫促進剤としては、チウラム系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバメート系加硫促進剤及びチアゾール系加硫促進剤からなる群から選択される少なくとも1種であることが好ましい。湿式粉砕処理する際の前記粉末材料としては、加硫剤のみからなることが好適な実施態様であり、中でも、ヘキサメチレンジアミンカーバメート(HMDC)が好適に採用される。 The powder material used in the present invention is at least one selected from the group consisting of vulcanizing agents and vulcanization accelerators. The vulcanizing agent used in the present invention is not particularly limited, but is preferably at least one selected from the group consisting of sulfur and amine-based vulcanizing agents such as hexamethylenediamine carbamate (HMDC). The vulcanization accelerator used in the present invention is not particularly limited, and is a sulfurum-based vulcanization accelerator such as tetramethylthium disulfide; a guanidine-based vulcanization accelerator such as 1,3-di-o-tolylguanidine; dibutyldithiocarbamine. Examples thereof include a dithiocarbamate-based vulcanization accelerator such as zinc acid acid; a thiazole-based vulcanization accelerator such as 2-mercaptobenzothiazole; and the like. The vulcanization accelerator is preferably at least one selected from the group consisting of a sulfur-based vulcanization accelerator, a guanidine-based vulcanization accelerator, a dithiocarbamate-based vulcanization accelerator, and a thiazole-based vulcanization accelerator. .. As the powder material for the wet pulverization treatment, it is a preferable embodiment to consist of only a vulcanizing agent, and among them, hexamethylenediamine carbide (HMDC) is preferably adopted.

本発明で用いられる可塑剤としては、ゴムに配合されるものであれば特に限定されず、ジオクチルフタレート等のフタル酸系;ジオクチルアジペート等のアジピン酸系;ジブチルセバケート等のセバシン酸系;トリメリット酸トリメチル等のトリメリット酸系;アジピン酸系ポリエステル、フタル酸系ポリエステル等のポリエステル系;フタル酸エーテルエステル、アジピン酸エーテルエステル等のポリエーテルエステル系;トリオクチルホスフェート等のリン酸系;石油系炭化水素などが挙げられる。これらの可塑剤は、単独で又は2種以上を併用して用いることができる。中でも、フタル酸系、アジピン酸系、ポリエステル系、ポリエーテルエステル系及びリン酸系からなる群から選択される少なくとも1種の可塑剤が好適に用いられる。 The plasticizer used in the present invention is not particularly limited as long as it is blended in rubber, and is phthalic acid-based such as dioctylphthalate; adipic acid-based such as dioctyl adipate; sebasic acid-based such as dibutyl sebacate; tori. Trimeritic acid-based merit acid such as trimethyl acid; Polyester-based such as adipic acid-based polyester and phthalic acid-based polyester; Polyether ester-based such as phthalic acid ether ester and phthalic acid ether ester; Phosphic acid-based such as trioctyl phosphate; Petroleum Examples include system hydrocarbons. These plasticizers can be used alone or in combination of two or more. Among them, at least one plasticizer selected from the group consisting of phthalic acid type, adipic acid type, polyester type, polyether ester type and phosphoric acid type is preferably used.

本発明における湿式粉砕工程において、前記粉末材料に前記可塑剤を加えて湿式粉砕処理することによりペースト状混合物が得られる。湿式粉砕処理に用いられる装置としては、ボールミル、ビーズミル、ライカイ機、ジェットミルなどの公知の湿式粉砕装置を使用することができる。前記粉末材料と前記可塑剤との配合比(質量比)が1:0.5~1:20であることが好ましい。前記配合比は、1:1~1:18であることがより好ましく、1:1.5~1:15であることが更に好ましい。 In the wet pulverization step of the present invention, a paste-like mixture is obtained by adding the plasticizer to the powder material and performing a wet pulverization treatment. As an apparatus used for the wet pulverization treatment, a known wet pulverizer such as a ball mill, a bead mill, a raikai machine, or a jet mill can be used. The blending ratio (mass ratio) of the powder material and the plasticizer is preferably 1: 0.5 to 1:20. The compounding ratio is more preferably 1: 1 to 1:18, and even more preferably 1: 1.5 to 1:15.

本発明において、前記ペースト状混合物に含まれる粒子の最大粒子径が80μm以下であることが好適な実施態様である。最大粒子径が80μmを超える場合、得られるゴム成形品に分散不良に起因する気泡、キズ、配合剤残り等の不良が発生するおそれがあり、最大粒子径は70μm以下であることがより好ましく、40μm以下であることが更に好ましく、30μm以下であることが特に好ましい。前記ペースト状混合物に含まれる粒子の最大粒子径は、通常、3μm以上である。本明細書における最大粒子径は、体積基準の粒度分布において、最も粒子径の大きい極大を示す値を読み取ったものである。 In the present invention, it is a preferable embodiment that the maximum particle size of the particles contained in the paste-like mixture is 80 μm or less. When the maximum particle size exceeds 80 μm, defects such as bubbles, scratches, and residue of the compounding agent due to poor dispersion may occur in the obtained rubber molded product, and the maximum particle size is more preferably 70 μm or less. It is more preferably 40 μm or less, and particularly preferably 30 μm or less. The maximum particle size of the particles contained in the paste-like mixture is usually 3 μm or more. The maximum particle size in the present specification is a reading of a value indicating the maximum particle size in the volume-based particle size distribution.

本発明において、前記ペースト状混合物に含まれる粒子の平均粒子径が0.1~30μmであることが好適な実施態様である。平均粒子径が0.1μm未満の場合、ペースト状混合物の作製に時間がかかるおそれがあり、平均粒子径は0.5μm以上であることがより好ましく、1μm以上であることが更に好ましく、1.5μm以上であることが特に好ましい。一方、平均粒子径が30μmを超える場合、得られるゴム成形品に分散不良に起因する気泡、キズ、配合剤残り等の不良が発生するおそれがあり、平均粒子径は20μm以下であることがより好ましく、15μm以下であることが更に好ましく、12μm以下であることが特に好ましい。本明細書における平均粒子径は、体積基準の粒度分布に基づいて決定される体積基準積算値が50%となるときの粒子径である。 In the present invention, it is a preferable embodiment that the average particle size of the particles contained in the paste-like mixture is 0.1 to 30 μm. When the average particle size is less than 0.1 μm, it may take time to prepare the paste-like mixture, and the average particle size is more preferably 0.5 μm or more, further preferably 1 μm or more. It is particularly preferably 5 μm or more. On the other hand, when the average particle size exceeds 30 μm, the obtained rubber molded product may have defects such as bubbles, scratches, and compounding agent residue due to poor dispersion, and the average particle size is more preferably 20 μm or less. It is more preferably 15 μm or less, and particularly preferably 12 μm or less. The average particle size in the present specification is the particle size when the volume-based integrated value determined based on the volume-based particle size distribution is 50%.

本発明では、前記湿式粉砕工程の後に、少なくともゴムと前記ペースト状混合物とを混練してゴム組成物を得る混練工程を行う。混練工程で用いられるゴムとしては特に限定されず、クロロプレンゴム(CR);ニトリルゴム(NBR)と水素化ニトリルゴム(HNBR)のニトリルゴム;エチレンプロピレンゴム(EPDM);アクリルゴム(ACM)、エチレンアクリルゴム(AEM)等のアクリルゴム;フッ素ゴム(FKM);等が挙げられる。中でも、クロロプレンゴム(CR)、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)、エチレンプロピレンゴム(EPDM)、アクリルゴム(ACM)、エチレンアクリルゴム(AEM)及びフッ素ゴム(FKM)からなる群から選択される少なくとも1種であることが好ましく、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)、アクリルゴム(ACM)及びエチレンアクリルゴム(AEM)からなる群から選択される少なくとも1種であることがより好ましい。 In the present invention, after the wet pulverization step, at least a kneading step of kneading the rubber and the paste-like mixture to obtain a rubber composition is performed. The rubber used in the kneading step is not particularly limited, and is limited to chloroprene rubber (CR); nitrile rubber of nitrile rubber (NBR) and hydride nitrile rubber (HNBR); ethylene propylene rubber (EPDM); acrylic rubber (ACM), ethylene. Acrylic rubber such as acrylic rubber (AEM); fluororubber (FKM); and the like can be mentioned. Among them, a group consisting of chloroprene rubber (CR), nitrile rubber (NBR), hydrided nitrile rubber (HNBR), ethylene propylene rubber (EPDM), acrylic rubber (ACM), ethylene acrylic rubber (AEM) and fluorine rubber (FKM). At least one selected from the group consisting of nitrile rubber (NBR), hydrided nitrile rubber (HNBR), acrylic rubber (ACM) and ethylene acrylic rubber (AEM). It is more preferable to have.

クロロプレンゴム(CR)としては特に限定されず、2-クロロ-1,3-ブタジエンを主成分とするゴムであればよい。2-クロロ-1,3-ブタジエンは単独で重合しても、2-クロロ-1,3-ブタジエンと他の単量体とが共重合していてもよい。他の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸メトキシエチルなどのアクリル酸エステルが好適に用いられる。 The chloroprene rubber (CR) is not particularly limited, and any rubber containing 2-chloro-1,3-butadiene as a main component may be used. 2-Chloro-1,3-butadiene may be polymerized alone, or 2-chloro-1,3-butadiene may be copolymerized with another monomer. As the other monomer, acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and methoxyethyl acrylate are preferably used.

ニトリルゴムとしては特に限定されず、アクリロニトリルと1,3-ブタジエンの共重合体を用いることができる。重合後の1,3-ブタジエン単位に残存する二重結合への水素添加は任意である。水素添加されていないニトリルゴム(NBR)と水素添加されたニトリルゴム(HNBR)を好適に用いることができる。ニトリルゴム中のアクリロニトリル単位の含有量は、15~50質量%であることが好ましい。本発明の効果を阻害しない範囲であれば、他の共重合可能な単量体由来の構成単位を含んでいても構わないが、通常その含有量は10質量%以下であり、好適には5質量%以下である。 The nitrile rubber is not particularly limited, and a copolymer of acrylonitrile and 1,3-butadiene can be used. Addition of hydrogen to the double bond remaining in the 1,3-butadiene unit after polymerization is optional. Non-hydrogenated nitrile rubber (NBR) and hydrogenated nitrile rubber (HNBR) can be preferably used. The content of the acrylonitrile unit in the nitrile rubber is preferably 15 to 50% by mass. A structural unit derived from another copolymerizable monomer may be contained as long as the effect of the present invention is not impaired, but the content thereof is usually 10% by mass or less, preferably 5. It is less than mass%.

エチレンプロピレンゴム(EPDM)としては特に限定されず、エチレンとプロピレンとジエン化合物との共重合体を用いることができる。EPDMに含まれるジエン化合物としては、エチリデンノルボルネン(ENB)、1,4-ヘキサジエン、ジシクロペンタジエン等が挙げられる。本発明の効果を阻害しない範囲であれば、他の共重合可能な単量体由来の構成単位を含んでいても構わないが、通常その含有量は10質量%以下であり、好適には5質量%以下である。 The ethylene propylene rubber (EPDM) is not particularly limited, and a copolymer of ethylene, propylene and a diene compound can be used. Examples of the diene compound contained in EPDM include ethylidene norbornene (ENB), 1,4-hexadiene, dicyclopentadiene and the like. A structural unit derived from another copolymerizable monomer may be contained as long as the effect of the present invention is not impaired, but the content thereof is usually 10% by mass or less, preferably 5. It is less than mass%.

アクリルゴムとしては特に限定されず、アクリル酸エステルを主成分とするゴムであればよい。アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸メトキシエチルなどが好適に用いられる。アクリル酸エステルと共重合させる単量体としては、アクリロニトリル、エチレンなどが例示される。具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル及びアクリル酸メトキシエチルから選択される2種以上のアクリル酸エステル及び架橋性モノマーを共重合してなるアクリルゴム(ACM)や、アクリル酸メチル、エチレン及び架橋性モノマーを共重合してなるアクリルゴム(AEM)などが好適に用いられる。AEMとしては、デュポン社の「VAMAC」(登録商標)などが入手可能である。本発明の趣旨を阻害しない範囲であれば、他の共重合可能な単量体由来の構成単位を含んでいても構わないが、通常その含有量は10質量%以下であり、好適には5質量%以下である。 The acrylic rubber is not particularly limited, and any rubber containing acrylic acid ester as a main component may be used. As the acrylic acid ester, methyl acrylate, ethyl acrylate, butyl acrylate, methoxyethyl acrylate and the like are preferably used. Examples of the monomer copolymerized with the acrylic acid ester include acrylonitrile and ethylene. Specifically, acrylic rubber (ACM) obtained by copolymerizing two or more kinds of acrylic acid esters selected from methyl acrylate, ethyl acrylate, butyl acrylate and methoxyethyl acrylate and a crosslinkable monomer, and acrylic. Acrylic rubber (AEM) obtained by copolymerizing methyl acrylate, ethylene and a crosslinkable monomer is preferably used. As AEM, "VAMAC" (registered trademark) of DuPont is available. A structural unit derived from another copolymerizable monomer may be contained as long as the gist of the present invention is not impaired, but the content thereof is usually 10% by mass or less, preferably 5. It is less than mass%.

フッ素ゴム(FKM)としては特に限定されず、フッ化ビニリデン(VDF)とヘキサフルオロプロピレン(HFP)との共重合体、VDFとトリクロロフルオロエチレン(CTFE)との共重合体、VDFとHFPとテトラフルオロエチレン(TFE)との共重合体、TFEとプロピレンとの共重合体、TFEと含フッ素ビニルエーテルとの共重合体、炭化水素系ジエン単量体と含フッ素単量体との共重合体などが例示される。中でも、VDFとHFPとテトラフルオロエチレン(TFE)との共重合体である三元系フッ素ゴムが好適に用いられる。本発明の効果を阻害しない範囲であれば、他の共重合可能な単量体由来の構成単位を含んでいても構わないが、通常その含有量は10質量%以下であり、好適には5質量%以下である。 The fluororubber (FKM) is not particularly limited, and is a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP), a polymer of VDF and trichlorofluoroethylene (CTFE), VDF, HFP and tetra. Polymers with fluoroethylene (TFE), copolymers with TFE and propylene, copolymers with TFE and fluorovinyl ether, copolymers with hydrocarbon-based diene monomer and fluorine-containing monomer, etc. Is exemplified. Among them, a ternary fluororubber which is a copolymer of VDF, HFP and tetrafluoroethylene (TFE) is preferably used. A structural unit derived from another copolymerizable monomer may be contained as long as the effect of the present invention is not impaired, but the content thereof is usually 10% by mass or less, preferably 5. It is less than mass%.

前記混練工程においては、前記ゴム100質量部に対して、前記ペースト状混合物0.1~100質量部を配合することが好適な実施態様である。前記配合量が0.1質量部未満の場合、加硫剤又は加硫促進剤の性能が出ないおそれがあり、0.2質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、0.8質量部以上であることが特に好ましい。一方、前記配合量が100質量部を超える場合、加硫の進行が早くなるおそれがあり、80質量部以下であることがより好ましく、60質量部以下であることが更に好ましく、40質量部以下であることが特に好ましい。 In the kneading step, it is a preferable embodiment to mix 0.1 to 100 parts by mass of the paste-like mixture with 100 parts by mass of the rubber. If the blending amount is less than 0.1 parts by mass, the performance of the vulcanizing agent or the vulcanization accelerator may not be obtained, and it is more preferably 0.2 parts by mass or more, and 0.5 parts by mass or more. It is more preferably present, and particularly preferably 0.8 parts by mass or more. On the other hand, when the compounding amount exceeds 100 parts by mass, the progress of vulcanization may be accelerated, and it is more preferably 80 parts by mass or less, further preferably 60 parts by mass or less, and 40 parts by mass or less. Is particularly preferable.

前記混練工程において、前記ゴムと前記ペースト状混合物とを混練する方法は特に限定されないが、ロール、ニーダ、バンバリーミキサ、インターミックス、押出機などを用いて混練することができる。混練時のゴム組成物の温度は20~170℃とすることが好ましい。 In the kneading step, the method of kneading the rubber and the paste-like mixture is not particularly limited, but kneading can be performed using a roll, a kneader, a Banbury mixer, an intermix, an extruder or the like. The temperature of the rubber composition at the time of kneading is preferably 20 to 170 ° C.

前記混練工程において、白色充填剤、カーボンブラック等の充填剤を配合することが好適な実施態様である。本発明で用いられる白色充填剤としては、特に限定されず、シリカ、クレー、炭酸カルシウム、珪藻土、ウォラストナイト等を用いることができる。本発明で用いられるカーボンブラックとしては特に限定されず、FEF、SRF、SAF、ISAF、HAF、MAF、GPF、FT、MT等を用いることができる。白色充填剤又はカーボンブラックの配合量としては、前記ゴム100質量部に対して、1~200質量部であることが好ましく、10~90質量部であることがより好ましい。 In the kneading step, it is a preferable embodiment to add a filler such as a white filler and carbon black. The white filler used in the present invention is not particularly limited, and silica, clay, calcium carbonate, diatomaceous earth, wollastonite and the like can be used. The carbon black used in the present invention is not particularly limited, and FEF, SRF, SAF, ISAF, HAF, MAF, GPF, FT, MT and the like can be used. The blending amount of the white filler or carbon black is preferably 1 to 200 parts by mass, more preferably 10 to 90 parts by mass with respect to 100 parts by mass of the rubber.

前記混練工程において、更に第2の可塑剤を加えて混練することも好適な実施態様である。第1の可塑剤と第2の可塑剤の合計の配合量は、前記ゴム100質量部に対して、1~100質量部であることが好ましい。第2の可塑剤は、前記湿式粉砕工程で使用される第1の可塑剤と同じものであってもよいし、異なるものであってもよい。また、本実施形態では、ゴム100質量部に対する必要量の可塑剤を第1の可塑剤と第2の可塑剤として2回に分けて配合しているが、前記湿式粉砕工程において、粉末材料に必要量の可塑剤を加えて湿式粉砕処理することによりペースト状混合物を得るようにしてもよい。この場合は、前記混練工程において、第2の可塑剤を加えなくてもよい。 In the kneading step, it is also a preferable embodiment to further add a second plasticizer and knead. The total blending amount of the first plasticizer and the second plasticizer is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the rubber. The second plasticizer may be the same as or different from the first plasticizer used in the wet grinding step. Further, in the present embodiment, the required amount of the plasticizer for 100 parts by mass of the rubber is blended in two portions as the first plasticizer and the second plasticizer, but in the wet pulverization step, the powder material is blended. A paste-like mixture may be obtained by adding a required amount of a plasticizer and performing a wet pulverization treatment. In this case, it is not necessary to add the second plasticizer in the kneading step.

前記混練工程において、本発明の効果を阻害しない範囲であれば、ゴム組成物において通常使用される、加硫助剤、老化防止剤、加工助剤、受酸剤、着色剤、フィラーなどの各種配合剤を含むことができる。 In the kneading step, various vulcanization aids, antiaging agents, processing aids, acid receiving agents, coloring agents, fillers and the like, which are usually used in rubber compositions, are used as long as the effects of the present invention are not impaired. Combination agents can be included.

前記混練工程で得られたゴム組成物を加硫する加硫工程を行うことにより、ゴム成形品を好適に得ることができる。加硫工程において、ゴム組成物が所望の形状に成形され、加熱することにより架橋反応(加硫)が進行する。ゴム組成物の成形方法としては、射出成形や圧縮成形などが挙げられる。架橋温度は、通常100~250℃である。架橋時間は、通常0.5分~24時間である。さらに加熱して二次架橋を行ってもよい。 A rubber molded product can be suitably obtained by performing a vulcanization step of vulcanizing the rubber composition obtained in the kneading step. In the vulcanization step, the rubber composition is formed into a desired shape, and the cross-linking reaction (vulcanization) proceeds by heating. Examples of the molding method of the rubber composition include injection molding and compression molding. The crosslinking temperature is usually 100 to 250 ° C. The cross-linking time is usually 0.5 minutes to 24 hours. Further heating may be performed for secondary cross-linking.

本発明で得られるゴム成形品がシール部材であることが好ましい。好適なシール部材としては、パッキン、シール、ガスケット、Oリング、ダイヤフラムである。具体的には、シールとしては、ベアリングシールやオイルシールなどが例示され、ガスケットとしては、インテークマニホールド用ガスケット、ヘッドカバー用ガスケットなどが例示される。 It is preferable that the rubber molded product obtained in the present invention is a sealing member. Suitable sealing members are packings, seals, gaskets, O-rings and diaphragms. Specifically, examples of the seal include a bearing seal and an oil seal, and examples of the gasket include a gasket for an intake manifold and a gasket for a head cover.

以下の実施例1及び比較例1で使用した原料は以下の通りである。
[原料]
・ニトリルゴム(NBR):日本ゼオン株式会社製「Nipol1042」
・カーボンブラック:東海カーボン株式会社製「シースト3(HAF)」
・可塑剤:株式会社ADEKA製「DOP」
・加工助剤:株式会社ジェイ・プラス製「ステアリン酸」
・亜鉛華:堺化学工業株式会社製「ZINCA#20」
・加硫剤:細井化学工業製「微粉硫黄500Mesh」
・加硫促進剤:川口化学工業株式会社製「ACCEL PZ」ジメチルジチオカルバミン酸亜鉛
The raw materials used in Example 1 and Comparative Example 1 below are as follows.
[material]
-Nitrile rubber (NBR): "Nipol 1042" manufactured by Zeon Corporation
-Carbon black: "Seast 3 (HAF)" manufactured by Tokai Carbon Co., Ltd.
-Plasticizer: "DOP" manufactured by ADEKA CORPORATION
・ Processing aid: "Stearic acid" manufactured by J-PLUS Co., Ltd.
・ Zinc oxide: "ZINCA # 20" manufactured by Sakai Chemical Industry Co., Ltd.
-Vulcanizing agent: "Fine powder sulfur 500 Mesh" manufactured by Hosoi Chemical Industry Co., Ltd.
-Vulcanization accelerator: "ACCEL PZ" manufactured by Kawaguchi Chemical Industry Co., Ltd. Zinc dimethyldithiocarbamate

実施例1
湿式粉砕装置に可塑剤を0.5質量部と加硫剤の粉末(平均粒子径:50μm、最大粒子径:175μm)を0.5質量部入れ、室温で1時間湿式粉砕処理を行うことによりペースト状混合物を得た。株式会社堀場製作所製「LA-950」の粒子径分布測定装置を用い、前記ペースト状混合物に含まれる粒子の粒子径を測定したところ、平均粒子径は15μmであり、最大粒子径は70μmであった。ニトリルゴム(NBR)100質量部に対して、前記ペースト状混合物を1質量部、カーボンブラックを65質量部、可塑剤を14.5質量部、加工助剤を1質量部、亜鉛華を5質量部、及び加硫促進剤を0.3質量部とともに70℃でオープンロールを用いて混練し、未加硫ゴム生地を作製した。得られた未加硫ゴム生地を射出成形機を用いて170℃で10分間加硫して成形することにより成形品であるガスケットを得た。得られたガスケットを拡大鏡で観察し、分散不良に起因する不良率(%)を算出した。分散不良に起因する不良率(%)は、成形品の個数に対する不良(気泡、キズ、配合剤残り)が確認された個数の割合を表したものである。結果を表1にまとめて示す。
Example 1
By putting 0.5 parts by mass of plasticizer and 0.5 parts by mass of vulcanizing agent powder (average particle size: 50 μm, maximum particle size: 175 μm) into a wet crusher and performing wet crushing treatment at room temperature for 1 hour. A paste-like mixture was obtained. When the particle size of the particles contained in the paste-like mixture was measured using the particle size distribution measuring device of "LA-950" manufactured by HORIBA, Ltd., the average particle size was 15 μm and the maximum particle size was 70 μm. rice field. 1 part by mass of the paste-like mixture, 65 parts by mass of carbon black, 14.5 parts by mass of a plasticizer, 1 part by mass of a processing aid, and 5 parts by mass of zinc flower with respect to 100 parts by mass of nitrile rubber (NBR). Parts and a vulcanization accelerator were kneaded together with 0.3 parts by mass at 70 ° C. using an open roll to prepare an unvulcanized rubber dough. The obtained unvulcanized rubber dough was vulcanized at 170 ° C. for 10 minutes using an injection molding machine and molded to obtain a gasket as a molded product. The obtained gasket was observed with a magnifying glass, and the defect rate (%) due to poor dispersion was calculated. The defect rate (%) due to poor dispersion represents the ratio of the number of confirmed defects (air bubbles, scratches, residual compounding agent) to the number of molded products. The results are summarized in Table 1.

比較例1
実施例1において、ペースト状混合物を得る代わりに、ニトリルゴム(NBR)100質量部に対して、加硫剤の粉末(平均粒子径:50μm、最大粒子径:175μm)を0.5質量部、カーボンブラックを65質量部、可塑剤を15質量部、加工助剤を1質量部、亜鉛華を5質量部、及び加硫促進剤を0.3質量部とともに70℃でオープンロールを用いて混練した以外は実施例1と同様にして成形品であるガスケットを得た。実施例1と同様に、得られたガスケットを拡大鏡で観察し、分散不良に起因する不良率(%)を算出した。結果を表1にまとめて示す。
Comparative Example 1
In Example 1, instead of obtaining a paste-like mixture, 0.5 parts by mass of vulcanizing agent powder (average particle size: 50 μm, maximum particle size: 175 μm) was added to 100 parts by mass of nitrile rubber (NBR). Knead with 65 parts by mass of carbon black, 15 parts by mass of plasticizer, 1 part by mass of processing aid, 5 parts by mass of zinc flower, and 0.3 parts by mass of vulcanization accelerator at 70 ° C using an open roll. A gasket, which is a molded product, was obtained in the same manner as in Example 1. In the same manner as in Example 1, the obtained gasket was observed with a magnifying glass, and the defect rate (%) due to poor dispersion was calculated. The results are summarized in Table 1.

Figure 2022078429000001
Figure 2022078429000001

以下の実施例2及び比較例2で使用した原料は以下の通りである。
[原料]
・アクリルゴム(ACM):日本ゼオン株式会社製「AR12」
・カーボンブラック:東海カーボン株式会社製「シースト3(HAF)」
・可塑剤:株式会社ADEKA製「アデカサイザーRS1000」
・加工助剤a:日油株式会社製「ステアリン酸」
・加工助剤b:NIケミテック株式会社製「グレッグG8205」
・老化防止剤:白石カルシウム株式会社製「ナウガード445」
・加硫促進剤:大内新興化学工業株式会社製「ノクセラーDT」1,3-ジ-o-トリルグアニジン
・加硫剤:ケマーズ株式会社製「DiakNo.1」ヘキサメチレンジアミンカーバメート(HMDC)
The raw materials used in Example 2 and Comparative Example 2 below are as follows.
[material]
-Acrylic rubber (ACM): "AR12" manufactured by Zeon Corporation
-Carbon black: "Seast 3 (HAF)" manufactured by Tokai Carbon Co., Ltd.
-Plasticizer: "ADEKA SIZER RS1000" manufactured by ADEKA CORPORATION
-Processing aid a: "Stearic acid" manufactured by NOF CORPORATION
-Processing aid b: "Greg G8205" manufactured by NI Chemitec Co., Ltd.
・ Anti-aging agent: "Nowguard 445" manufactured by Shiraishi Calcium Co., Ltd.
・ Vulcanization accelerator: “Noxeller DT” manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. 1,3-di-o-tolylguanidine ・ Vulcanization agent: “Diak No. 1” manufactured by Chemours Co., Ltd. Hexamethylenediamine carbamate (HMDC)

実施例2
湿式粉砕装置に可塑剤を2質量部と加硫剤の粉末(平均粒子径:50μm、最大粒子径:500μm)を0.5質量部入れ、室温で1時間湿式粉砕処理を行うことによりペースト状混合物を得た。株式会社堀場製作所製「LA-950」の粒子径分布測定装置を用い、前記ペースト状混合物に含まれる粒子の粒子径を測定したところ、平均粒子径は3μmであり、最大粒子径は25μmであった。アクリルゴム(ACM)100質量部に対して、前記ペースト状混合物を2.5質量部、カーボンブラックを60質量部、可塑剤を8質量部、加工助剤aとbをそれぞれ1質量部、老化防止剤を1質量部、及び加硫促進剤を2.0質量部とともに70℃でオープンロールを用いて混練し、未加硫ゴム生地を作製した。得られた未加硫ゴム生地を射出成形機を用いて170℃で10分間加硫して成形することにより成形品であるガスケットを得た。実施例1と同様に、得られたガスケットを拡大鏡で観察し、分散不良に起因する不良率(%)を算出した。結果を表2にまとめて示す。
Example 2
Put 2 parts by mass of plasticizer and 0.5 parts by mass of vulcanizing agent powder (average particle size: 50 μm, maximum particle size: 500 μm) into a wet crusher, and perform wet crushing treatment at room temperature for 1 hour to form a paste. A mixture was obtained. When the particle size of the particles contained in the paste-like mixture was measured using the particle size distribution measuring device of "LA-950" manufactured by HORIBA, Ltd., the average particle size was 3 μm and the maximum particle size was 25 μm. rice field. 2.5 parts by mass of the pasty mixture, 60 parts by mass of carbon black, 8 parts by mass of plasticizer, 1 part by mass of processing aids a and b, and aging with respect to 100 parts by mass of acrylic rubber (ACM). An unvulcanized rubber dough was prepared by kneading the inhibitor with 1 part by mass and the vulcanization accelerator with 2.0 parts by mass at 70 ° C. using an open roll. The obtained unvulcanized rubber dough was vulcanized at 170 ° C. for 10 minutes using an injection molding machine and molded to obtain a gasket as a molded product. In the same manner as in Example 1, the obtained gasket was observed with a magnifying glass, and the defect rate (%) due to poor dispersion was calculated. The results are summarized in Table 2.

比較例2
実施例2において、ペースト状混合物を得る代わりに、アクリルゴム(ACM)100質量部に対して、加硫剤の粉末(平均粒子径:50μm、最大粒子径:500μm)を0.5質量部、カーボンブラックを60質量部、可塑剤を10質量部、加工助剤aとbをそれぞれ1質量部、老化防止剤を1質量部、及び加硫促進剤を2.0質量部とともに70℃でオープンロールを用いて混練した以外は実施例2と同様にして成形品であるガスケットを得た。実施例1と同様に、得られたガスケットを拡大鏡で観察し、分散不良に起因する不良率(%)を算出した。結果を表2にまとめて示す。
Comparative Example 2
In Example 2, instead of obtaining the paste-like mixture, 0.5 parts by mass of the vulcanizing agent powder (average particle size: 50 μm, maximum particle size: 500 μm) was added to 100 parts by mass of acrylic rubber (ACM). 60 parts by mass of carbon black, 10 parts by mass of plasticizer, 1 part by mass of processing aids a and b, 1 part by mass of anti-aging agent, and 2.0 parts by mass of vulcanization accelerator open at 70 ° C. A gasket, which is a molded product, was obtained in the same manner as in Example 2 except that the mixture was kneaded using a roll. In the same manner as in Example 1, the obtained gasket was observed with a magnifying glass, and the defect rate (%) due to poor dispersion was calculated. The results are summarized in Table 2.

Figure 2022078429000002
Figure 2022078429000002

以下の実施例3及び比較例3で使用した原料は以下の通りである。
[原料]
・アクリルゴム(ACM):日本ゼオン株式会社製「AR51」
・カーボンブラック:東海カーボン株式会社製「シースト3(HAF)」
・可塑剤:株式会社ADEKA製「アデカサイザーRS1000」
・加工助剤a:日油株式会社製「ステアリン酸」
・加工助剤b:NIケミテック株式会社製「グレッグG8205」
・老化防止剤:白石カルシウム株式会社製「ナウガード445」
・加硫促進剤a:大内新興化学工業株式会社製「ノクセラーPZ」ジメチルジチオカルバミン酸亜鉛
・加硫促進剤b:大内新興化学工業株式会社製「ノクセラーTTFE」ジメチルジチオカルバミン酸第二鉄
・加硫剤:ランクセス社製「ブルカレントE/C」N-フェニル-N-(トリクロロメチルスルフェニル)ベンゼンスルホンアミド
The raw materials used in Example 3 and Comparative Example 3 below are as follows.
[material]
-Acrylic rubber (ACM): "AR51" manufactured by Zeon Corporation
-Carbon black: "Seast 3 (HAF)" manufactured by Tokai Carbon Co., Ltd.
-Plasticizer: "ADEKA SIZER RS1000" manufactured by ADEKA CORPORATION
-Processing aid a: "Stearic acid" manufactured by NOF CORPORATION
-Processing aid b: "Greg G8205" manufactured by NI Chemitec Co., Ltd.
・ Anti-aging agent: "Nowguard 445" manufactured by Shiraishi Calcium Co., Ltd.
-Vulcanization accelerator a: "Noxeller PZ" manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Zinc dimethyldithiocarbamate-Vulcanization accelerator b: "Noxeller TTFE" manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Vulcanizer: "Bull Current E / C" manufactured by Rankses Co., Ltd. N-phenyl-N- (trichloromethylsulphenyl) benzenesulfonamide

実施例3
湿式粉砕装置に可塑剤を2.5質量部と加硫促進剤aの粉末(平均粒子径:40μm、最大粒子径:300μm)を2.5質量部入れ、室温で1時間湿式粉砕処理を行うことによりペースト状混合物を得た。株式会社堀場製作所製「LA-950」の粒子径分布測定装置を用い、前記ペースト状混合物に含まれる粒子の粒子径を測定したところ、平均粒子径は20μmであり、最大粒子径は70μmであった。アクリルゴム(ACM)100質量部に対して、前記ペースト状混合物を5質量部、カーボンブラックを50質量部、可塑剤を12.5質量部、加工助剤aとbをそれぞれ1質量部、老化防止剤を2質量部、加硫促進剤bを0.5質量部、及び加硫剤を0.5質量部とともに70℃でオープンロールを用いて混練し、未加硫ゴム生地を作製した。得られた未加硫ゴム生地を射出成形機を用いて170℃で10分間加硫して成形することにより成形品であるガスケットを得た。実施例1と同様に、得られたガスケットを拡大鏡で観察し、分散不良に起因する不良率(%)を算出した。結果を表3にまとめて示す。
Example 3
2.5 parts by mass of plasticizer and 2.5 parts by mass of powder of vulture accelerator a (average particle size: 40 μm, maximum particle size: 300 μm) are put into a wet crusher, and wet crushing treatment is performed at room temperature for 1 hour. This gave a paste-like mixture. When the particle size of the particles contained in the paste-like mixture was measured using the particle size distribution measuring device of "LA-950" manufactured by HORIBA, Ltd., the average particle size was 20 μm and the maximum particle size was 70 μm. rice field. For 100 parts by mass of acrylic rubber (ACM), 5 parts by mass of the paste-like mixture, 50 parts by mass of carbon black, 12.5 parts by mass of plasticizer, 1 part by mass of processing aids a and b, and aging. An unvulcanized rubber dough was prepared by kneading the inhibitor with 2 parts by mass, the vulcanization accelerator b with 0.5 parts by mass, and the vulcanizing agent with 0.5 parts by mass using an open roll at 70 ° C. The obtained unvulcanized rubber dough was vulcanized at 170 ° C. for 10 minutes using an injection molding machine and molded to obtain a gasket as a molded product. In the same manner as in Example 1, the obtained gasket was observed with a magnifying glass, and the defect rate (%) due to poor dispersion was calculated. The results are summarized in Table 3.

比較例3
実施例3において、ペースト状混合物を得る代わりに、アクリルゴム(ACM)100質量部に対して、加硫促進剤aの粉末(平均粒子径:40μm、最大粒子径:300μm)を2.5質量部、カーボンブラックを50質量部、可塑剤を15質量部、加工助剤aとbをそれぞれ1質量部、老化防止剤を2質量部、加硫促進剤bを0.5質量部、及び加硫剤を0.5質量部とともに70℃でオープンロールを用いて混練した以外は実施例3と同様にして成形品であるガスケットを得た。実施例1と同様に、得られたガスケットを拡大鏡で観察し、分散不良に起因する不良率(%)を算出した。結果を表3にまとめて示す。
Comparative Example 3
In Example 3, instead of obtaining the paste-like mixture, 2.5 mass by mass of the powder of the vulcanization accelerator a (average particle size: 40 μm, maximum particle size: 300 μm) with respect to 100 parts by mass of acrylic rubber (ACM). 50 parts by mass of carbon black, 15 parts by mass of plasticizer, 1 part by mass of processing aids a and b, 2 parts by mass of anti-aging agent, 0.5 part by mass of vulcanization accelerator b, and addition. A gasket, which is a molded product, was obtained in the same manner as in Example 3 except that the vulcanizing agent was kneaded together with 0.5 parts by mass at 70 ° C. using an open roll. In the same manner as in Example 1, the obtained gasket was observed with a magnifying glass, and the defect rate (%) due to poor dispersion was calculated. The results are summarized in Table 3.

Figure 2022078429000003
Figure 2022078429000003

Claims (9)

ゴム組成物の製造方法であって、
加硫剤及び加硫促進剤からなる群から選択される少なくとも1種の粉末材料に可塑剤を加えて湿式粉砕処理することによりペースト状混合物を得る湿式粉砕工程と、
少なくともゴムと前記ペースト状混合物とを混練してゴム組成物を得る混練工程とを有することを特徴とするゴム組成物の製造方法。
A method for producing a rubber composition.
A wet pulverization step of adding a plasticizer to at least one powder material selected from the group consisting of a vulcanizing agent and a vulcanization accelerator and performing a wet pulverization treatment to obtain a paste-like mixture.
A method for producing a rubber composition, which comprises a kneading step of kneading at least rubber and the paste-like mixture to obtain a rubber composition.
前記ペースト状混合物における前記粉末材料と前記可塑剤との配合比が1:0.5~1:20である請求項1に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 1, wherein the blending ratio of the powder material and the plasticizer in the paste-like mixture is 1: 0.5 to 1:20. 前記ゴム100質量部に対して、前記ペースト状混合物0.1~100質量部を配合する請求項1又は2に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 1 or 2, wherein 0.1 to 100 parts by mass of the paste-like mixture is mixed with 100 parts by mass of the rubber. 前記ゴムが、クロロプレンゴム(CR)、ニトリルゴム(NBR)、水素化ニトリルゴム(HNBR)、エチレンプロピレンゴム(EPDM)、アクリルゴム(ACM)、エチレンアクリルゴム(AEM)及びフッ素ゴム(FKM)からなる群から選択される少なくとも1種であり、
前記加硫剤が、硫黄及びアミン系加硫剤からなる群から選択される少なくとも1種であり、
前記加硫促進剤が、チウラム系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバメート系加硫促進剤、チアゾール系加硫促進剤からなる群から選択される少なくとも1種である請求項1~3のいずれかに記載のゴム組成物の製造方法。
The rubber is from chloroprene rubber (CR), nitrile rubber (NBR), hydride nitrile rubber (HNBR), ethylene propylene rubber (EPDM), acrylic rubber (ACM), ethylene acrylic rubber (AEM) and fluororubber (FKM). At least one selected from the group of
The vulcanizing agent is at least one selected from the group consisting of sulfur and amine-based vulcanizing agents.
Claim 1 in which the vulcanization accelerator is at least one selected from the group consisting of a sulfur-based vulcanization accelerator, a guanidine-based vulcanization accelerator, a dithiocarbamate-based vulcanization accelerator, and a thiazole-based vulcanization accelerator. The method for producing a rubber composition according to any one of 3 to 3.
前記ペースト状混合物に含まれる粒子の最大粒子径が80μm以下である請求項1~4のいずれかに記載のゴム組成物の製造方法。 The method for producing a rubber composition according to any one of claims 1 to 4, wherein the maximum particle size of the particles contained in the paste-like mixture is 80 μm or less. 前記ペースト状混合物に含まれる粒子の平均粒子径が0.1~30μmである請求項1~5のいずれかに記載のゴム組成物の製造方法。 The method for producing a rubber composition according to any one of claims 1 to 5, wherein the average particle size of the particles contained in the paste-like mixture is 0.1 to 30 μm. 前記混練工程において、更に第2の可塑剤を加えて混練する請求項1~6のいずれかに記載のゴム組成物の製造方法。 The method for producing a rubber composition according to any one of claims 1 to 6, wherein in the kneading step, a second plasticizer is further added and kneaded. 請求項1~7のいずれかに記載のゴム組成物の製造方法において、前記混練工程で得られたゴム組成物を加硫する加硫工程を有するゴム成形品の製造方法。 The method for producing a rubber molded product according to any one of claims 1 to 7, further comprising a vulcanization step of vulcanizing the rubber composition obtained in the kneading step. ゴム成形品がシール部材である請求項8に記載のゴム成形品の製造方法。 The method for manufacturing a rubber molded product according to claim 8, wherein the rubber molded product is a sealing member.
JP2020189105A 2020-11-13 2020-11-13 Production method of rubber composition Pending JP2022078429A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020189105A JP2022078429A (en) 2020-11-13 2020-11-13 Production method of rubber composition
CN202111303228.4A CN114474814A (en) 2020-11-13 2021-11-04 Process for producing rubber composition
DE102021212675.8A DE102021212675A1 (en) 2020-11-13 2021-11-10 METHOD OF PRODUCING A GUM COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020189105A JP2022078429A (en) 2020-11-13 2020-11-13 Production method of rubber composition

Publications (1)

Publication Number Publication Date
JP2022078429A true JP2022078429A (en) 2022-05-25

Family

ID=81345367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020189105A Pending JP2022078429A (en) 2020-11-13 2020-11-13 Production method of rubber composition

Country Status (3)

Country Link
JP (1) JP2022078429A (en)
CN (1) CN114474814A (en)
DE (1) DE102021212675A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309040A (en) 2001-04-10 2002-10-23 Uchiyama Mfg Corp Method for preparing vulcanization promoter

Also Published As

Publication number Publication date
DE102021212675A1 (en) 2022-05-19
CN114474814A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
JP5652469B2 (en) Fluorine-containing elastomer composition and molded article comprising the composition
US20060142492A1 (en) Dynamic vulcanization of non-nitrile rubbers in fluoroplastic polymers
KR20040023783A (en) Fluoroelastomer composition
JP5435185B1 (en) NBR composition
JP5304645B2 (en) Laminated body comprising fluororubber layer and non-fluororubber layer and method for producing the same
JP5994791B2 (en) Method for producing acrylic rubber / fluororubber composition, crosslinkable composition, laminate and heat-resistant air rubber hose
JP2015206002A (en) Rubber composition and seal member for high pressure hydrogen device
TW201809113A (en) Perfluoroelastomer composition and sealing material
TW201529679A (en) Perfluoroelastomer composition, sealing material and method for producing same
JP2022078429A (en) Production method of rubber composition
JP2005220161A (en) Perfluoroelastomer composition for vulcanization and method for producing perfluoroelastomer molded product
JPWO2007018005A1 (en) Sealing material
JP7155286B2 (en) Elastomer composition and sealing material
CN116806388A (en) Sealing member and battery
JP2010209275A (en) Polymer composition and molded article
JP5347404B2 (en) Crosslinking agent masterbatch, method for producing the same, and method for producing acrylic rubber composition
EP3287490A1 (en) Fluororubber composition
JP2009057463A (en) Fluoro-rubber composition for molding process, and hose for fuel using the same
JP3037119B2 (en) Rubber alloy composition
JP2003226781A (en) Rubber composition showing excellent sealing property
WO2014132840A1 (en) Rubber composition
JP2005344037A (en) Hydrogenated nbr rubber composition
JP5969257B2 (en) Fluoropolymer composition and cured product thereof
WO2023189585A1 (en) Annular sealant and producing method
JP6934751B2 (en) Method for producing polychloroprene-based thermoplastic elastomer and use of polychloroprene-based thermoplastic elastomer and the polychloroprene-based thermoplastic elastomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240906