JP2022078372A - Mobile working robot control device - Google Patents

Mobile working robot control device Download PDF

Info

Publication number
JP2022078372A
JP2022078372A JP2019060091A JP2019060091A JP2022078372A JP 2022078372 A JP2022078372 A JP 2022078372A JP 2019060091 A JP2019060091 A JP 2019060091A JP 2019060091 A JP2019060091 A JP 2019060091A JP 2022078372 A JP2022078372 A JP 2022078372A
Authority
JP
Japan
Prior art keywords
wheel
disturbance
rotation speed
main body
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019060091A
Other languages
Japanese (ja)
Inventor
慎吾 澁沢
Shingo Shibusawa
修司 井上
Shuji Inoue
真弓 小松
Mayumi Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019060091A priority Critical patent/JP2022078372A/en
Priority to PCT/JP2020/012732 priority patent/WO2020196410A1/en
Publication of JP2022078372A publication Critical patent/JP2022078372A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Abstract

To provide a control device allowing a mobile working robot to advance without a main body direction of the robot from being changed due to influence of a carpet with less marks on the carpet without using an expensive member or sensor such as a camera and a gyro sensor.SOLUTION: A mobile working robot control device comprises: rotational speed instructing means for instructing a rotational speed of a wheel calculated from control of the wheel based on a prescribed moving track; disturbance estimating means for estimating a disturbance which occurs in each wheel when a main body moves using an output from current measuring means of a motor and an output from rotational speed measuring means of each wheel; and straight advance controlling means for controlling each wheel by adjusting disturbance information of each wheel from the disturbance estimating means so that the main body straightly advances.SELECTED DRAWING: Figure 1

Description

本発明は、移動作業ロボット制御装置に関する。 The present invention relates to a mobile work robot control device.

近年、作業機器に走行駆動装置・センサ類及び走行制御手段等を備えて、自動的に作業を行う各種の移動作業ロボットが開発または実用されている。移動作業ロボットの一例として自走式掃除機がある。自走式掃除機は、同軸上に置かれた左右2つの駆動輪と本体前方または後方に設置された従動輪を用いる走行操舵手段と、吸引式掃除機とブラシからなる清掃手段と、障害物検出手段を備え、周囲の壁面を認識しながら床面上を図10のように直進往復移動して床面を清掃する。(例えば特許文献1参考) In recent years, various mobile work robots that are equipped with travel drive devices / sensors, travel control means, etc. in work equipment and perform automatic work have been developed or put into practical use. An example of a mobile work robot is a self-propelled vacuum cleaner. The self-propelled vacuum cleaner is a traveling steering means that uses two left and right drive wheels placed coaxially and a driven wheel installed in front of or behind the main body, a cleaning means consisting of a suction type vacuum cleaner and a brush, and obstacles. A detection means is provided, and the floor surface is cleaned by moving straight back and forth on the floor surface as shown in FIG. 10 while recognizing the surrounding wall surface. (For example, refer to Patent Document 1)

特開2001-258806号公報Japanese Unexamined Patent Publication No. 2001-258806 特開2003-180586号公報Japanese Patent Application Laid-Open No. 2003-180586 特開平08-206039号公報Japanese Unexamined Patent Publication No. 08-20039

一般に、移動作業ロボットが平坦な床を走行する場合、特に駆動輪の動きを妨げるものがない場合は、最初に指定した場所に向って指示通りに走行することとなる。しかしながら、絨毯上を走行する際、駆動輪が絨毯の網目や、絨毯の毛の流れの方向に影響を受け、その方向に流されてしまう。 In general, when the mobile work robot travels on a flat floor, particularly when there is nothing that hinders the movement of the drive wheels, the mobile robot travels toward the initially designated place as instructed. However, when traveling on the carpet, the drive wheels are affected by the mesh of the carpet and the direction of the hair flow of the carpet, and are swept in that direction.

たとえば、絨毯の影響を受けない床上を直進走行する場合、移動作業ロボット本体は図4の直線軌道L1に沿って走行する。この直線軌道L1に沿うような走行を図10のように往復して繰り返し行うことで、掃除残しなく効率的に清掃することが可能となる。しかし、絨毯上では絨毯の毛の流れの影響により速度vの横ずれが発生し、直線軌道L1に沿うように直進制御をしても本体は直線軌道L1から横ずれ角θだけ方向が変わった直線軌道L2に沿って走行する。ただし、このとき本体方向d1は変わらず、本体方向d1と直線軌道L2の方向は一致しない。L1からずれた軌道を走行するため、例えば床面上を直進往復移動して一定の幅ずつ床面を清掃するように使用すると、絨毯上では掃除残しができてしまうという問題がある。 For example, when traveling straight on the floor that is not affected by the carpet, the moving work robot main body travels along the straight track L1 in FIG. By reciprocating and repeating the traveling along the straight track L1 as shown in FIG. 10, it is possible to efficiently clean the vehicle without leaving any residue. However, on the carpet, the lateral displacement of the velocity v occurs due to the influence of the hair flow of the carpet, and even if the straight traveling control is performed along the linear trajectory L1, the main body is a linear trajectory whose direction is changed by the lateral displacement angle θ from the linear trajectory L1. Drive along L2. However, at this time, the main body direction d1 does not change, and the main body direction d1 and the direction of the straight track L2 do not match. Since it travels on a track deviated from L1, for example, if it is used to move straight back and forth on the floor surface and clean the floor surface by a certain width, there is a problem that uncleaned residue is left on the carpet.

また、横ずれの結果、従動輪やブラシが絨毯から横向きに力を受けることで、図5に示すように本体が角速度βで旋回し、直線軌道L1に沿うように直進制御をしても本体は直線軌道L1から外れた軌道L3に沿って走行する。横ずれのみが発生する場合、図4に示すように本体方向d1は常に一定であるが、旋回が発生する場合、図5の本体方向d2は走行中常に変化する。 Further, as a result of lateral displacement, the driven wheel and the brush receive a lateral force from the carpet, so that the main body turns at an angular velocity β as shown in FIG. It travels along the track L3 that deviates from the straight track L1. When only lateral displacement occurs, the main body direction d1 is always constant as shown in FIG. 4, but when turning occurs, the main body direction d2 in FIG. 5 always changes during traveling.

特許文献2では横ずれと旋回に対応するため、床面を撮像するカメラを用いて移動距離と旋回速度を検出し、補正を加える方法が考えられているが、カメラを搭載するため装置が高価になるという問題がある。また、床面に模様や絨毯毛の影等の目印がなければ、床面画像の差を検出できず、移動距離と旋回速度を検出できない等の問題がある。 In Patent Document 2, in order to deal with lateral displacement and turning, a method of detecting the moving distance and turning speed by using a camera that images the floor surface and adding correction is considered, but the device is expensive because the camera is mounted. There is a problem of becoming. Further, if there is no mark such as a pattern or a shadow of a carpet hair on the floor surface, there is a problem that the difference in the floor surface image cannot be detected, and the moving distance and the turning speed cannot be detected.

特許文献3では横ずれに対処する方法として、本体方向と独立して方向を変えることのできるローラを用いて本体方向d1と実際の移動方向の角度差(図4ではθと同じ)を検
出し、その差に基づいて本体の目標方向を横ずれと反対側に振ることで補正をする方法が考えられている。
In Patent Document 3, as a method of dealing with lateral displacement, an angular difference between the main body direction d1 and the actual moving direction (same as θ in FIG. 4) is detected by using a roller that can change the direction independently of the main body direction. A method of correcting by swinging the target direction of the main body to the opposite side to the lateral displacement based on the difference is considered.

しかし、本体方向の検出にはジャイロセンサを用いているため、装置が高価になるという問題がある。また、補正のためには本体を旋回させる力に逆らい、本体方向を目標本体方向に向け続ける必要があり、この制御にもジャイロセンサが必要になる。 However, since a gyro sensor is used for detecting the direction of the main body, there is a problem that the device becomes expensive. In addition, for correction, it is necessary to keep the direction of the main body toward the target main body against the force of turning the main body, and a gyro sensor is also required for this control.

ジャイロセンサを用いない場合、本体方向d2と直線軌道L1の角度が分からないため、ローラによって本体1の方向と実際の移動方向の角度差を検出したとしても、直線軌道L1と実際の移動方向の差θを検出することができない。また、ローラよって得られる角度は横ずれの影響と旋回の影響の両方を合わせた値となるため、絨毯によって旋回が生じている場合横ずれによる本体方向と実際の移動方向の角度差を正確に検出することができない。 When the gyro sensor is not used, the angle between the main body direction d2 and the straight track L1 is not known. Therefore, even if the roller detects the angle difference between the main body 1 direction and the actual moving direction, the straight track L1 and the actual moving direction The difference θ cannot be detected. In addition, the angle obtained by the rollers is a value that combines both the effects of lateral slippage and the effects of turning, so when turning is caused by the carpet, the angle difference between the main body direction and the actual moving direction due to lateral slippage is accurately detected. I can't.

ローラと本体方向の角度を用いた横ずれ検出と補正自体は比較的安価に実現可能であるため、ジャイロセンサ等の高価なセンサを用いずに本体方向を維持することができれば、直進制御が可能となる。 Since lateral displacement detection and correction itself using the angle between the roller and the main body can be realized at a relatively low cost, straight-line control is possible if the main body direction can be maintained without using an expensive sensor such as a gyro sensor. Become.

本発明は、カメラやジャイロセンサ等の高価な部材やセンサを用いずに、目印の少ない絨毯上においても移動作業ロボットが絨毯の影響により本体方向を変えられることなく前進する制御装置を提供することを目的とする。 The present invention provides a control device for moving a mobile robot to move forward without changing the direction of the main body due to the influence of the carpet even on a carpet with few marks without using expensive members such as a camera and a gyro sensor. With the goal.

前記従来の課題を解決するために、本発明は目標とする軌道に基づいて車輪の回転速度を指示する回転速度指示手段と、車輪に外乱が印加されても車輪の回転速度と回転速度指示値の差を十分小さく保つ回転速度制御手段と、モータに流れる電流を計測する電流計測手段と、モータ及び車輪の回転速度を計測する回転速度計測手段と、モータに流れる電流と車輪の回転速度から車輪にかかる外乱を推定する外乱推定手段と、推定した外乱から左右の車輪がそれぞれどの程度前後に滑っているかを算出する前後滑り速度推定手段と、推定した各車輪の滑り速度の左右差を打ち消すように回転速度指令値を補正し旋回を打ち消す直進制御手段を備えてなる移動作業ロボット制御装置である。 In order to solve the above-mentioned conventional problems, the present invention has a rotation speed indicating means for instructing the rotation speed of the wheel based on the target trajectory, and the rotation speed and the rotation speed instruction value of the wheel even if a disturbance is applied to the wheel. A rotation speed control means that keeps the difference sufficiently small, a current measurement means that measures the current flowing through the motor, a rotation speed measuring means that measures the rotation speed of the motor and wheels, and a wheel based on the current flowing through the motor and the rotation speed of the wheels. Disturbance estimation means for estimating the disturbance applied to the vehicle, front-rear slip speed estimation means for calculating how much the left and right wheels are slipping back and forth from the estimated disturbance, and left-right difference in the estimated slip speed of each wheel. It is a mobile work robot control device provided with a straight-ahead control means for correcting a rotation speed command value and canceling a turn.

これによって、モータに流れる電流とモータの車輪の回転速度の情報を元に旋回を打ち消すことができるため、回転速度指示手段からの指示に補正がかかり、左右のモータに同じ回転速度を指示すれば左右の車輪の前進速度の差がなくなり、絨毯上においても本体方向を変えない前進を実現することができる。この構成により、カメラやジャイロセンサ等を用いて旋回を検出する必要がなくなる。 As a result, the turning can be canceled based on the information of the current flowing through the motor and the rotation speed of the wheels of the motor, so that the instruction from the rotation speed indicating means is corrected and the same rotation speed is indicated to the left and right motors. There is no difference in the forward speed of the left and right wheels, and it is possible to realize forward movement without changing the direction of the main body even on the rug. This configuration eliminates the need to detect turning using a camera, gyro sensor, or the like.

本発明により、カメラやジャイロセンサ等の高価なセンサを用いることなく移動作業ロボットが絨毯においてその本体方向を変えずに前進することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a mobile work robot can move forward on a carpet without changing its main body direction without using an expensive sensor such as a camera or a gyro sensor.

本発明の実施の形態における制御ブロック図A control block diagram according to an embodiment of the present invention. 移動作業ロボットの平面図Floor plan of mobile work robot 外乱オブザーバのブロック図Block diagram of the disturbance observer 移動作業ロボットの進行方向に対する横ずれを説明する図A diagram illustrating lateral displacement of a mobile work robot with respect to the traveling direction. 移動作業ロボットの進行方向に対する横ずれと旋回を説明する図A diagram illustrating lateral displacement and turning of a mobile work robot with respect to the traveling direction. 車輪に働く外乱と車輪の前後滑り速度の説明図Explanatory drawing of the disturbance acting on the wheel and the front-back slip speed of the wheel 車輪に働く外乱と車輪の前後滑り速度の関係図Relationship between the disturbance acting on the wheel and the front-back slip speed of the wheel 左右の車輪の回転速度差によって生ずる本体旋回の説明図Explanatory drawing of the main body turning caused by the difference in rotation speed between the left and right wheels 車輪の回転速度に補正を加えることによる本体旋回防止説明図Explanatory drawing to prevent turning of the main body by correcting the rotation speed of the wheels 直進往復移動の説明図Explanatory diagram of straight-ahead round-trip movement 本発明を用いない制御ブロック図Control block diagram without the present invention

以下、本発明の実施の形態について、図1、図2を参照しながら説明する。なお、実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. The present invention is not limited to the embodiments.

図2は、移動作業ロボットの概略構成を示す平面図である。1は移動作業ロボットの本体、2Lと2Rはそれぞれ本体1の左右に配置された車輪であり、回転軸は同軸上にある。また、車輪2L、2Rの半径は同じである。この回転軸は本体に対して固定されている。3Lと3Rはそれぞれ車輪2Lと車輪2Rを駆動するモータである。車輪2L及びモータ3Lと車輪2R及びモータ3Rは左右独立して回転させることができ、その回転速度の差によって、本体1の方向を変えることができる。4L、4Rはそれぞれモータ3L、3Rに流れる電流を計測する電流計測手段であり、5L、5Rはそれぞれ車輪2L、2Rの回転速度を計測する回転速度計測手段である。6は従動輪である。7は制御部であり、車輪の回転速度制御、直進制御を制御部7において行う。 FIG. 2 is a plan view showing a schematic configuration of a mobile work robot. Reference numeral 1 is a main body of the mobile work robot, 2L and 2R are wheels arranged on the left and right sides of the main body 1, respectively, and the rotation axes are coaxial. Further, the radii of the wheels 2L and 2R are the same. This rotating shaft is fixed to the main body. The 3L and 3R are motors that drive the wheel 2L and the wheel 2R, respectively. The wheels 2L and the motor 3L and the wheels 2R and the motor 3R can be rotated independently on the left and right, and the direction of the main body 1 can be changed by the difference in the rotation speeds. 4L and 4R are current measuring means for measuring the current flowing through the motors 3L and 3R, respectively, and 5L and 5R are rotational speed measuring means for measuring the rotational speed of the wheels 2L and 2R, respectively. 6 is a driving wheel. Reference numeral 7 is a control unit, and the control unit 7 performs wheel rotation speed control and straight-ahead control.

図11に本発明の方法を用いない従来の一般的な制御ブロック図を示す。 FIG. 11 shows a conventional general control block diagram that does not use the method of the present invention.

回転速度指示手段71は、目標とする前進速度と軌道から車輪2L、2Rの回転速度を決定し回転速度制御手段72L、72Rに回転速度指示値を出力する。例えば右曲がりの軌道であれば、車輪2Lを速く、車輪2Rを遅く回す指示値を出力する。直進走行の場合であれば、車輪2L、2Rの回転速度を同じにするような回転速度指示値を出力する。 The rotation speed indicating means 71 determines the rotation speed of the wheels 2L and 2R from the target forward speed and the track, and outputs the rotation speed instruction value to the rotation speed control means 72L and 72R. For example, in the case of a right-turning track, the instruction value for turning the wheel 2L fast and the wheel 2R slow is output. In the case of straight running, a rotation speed instruction value that makes the rotation speeds of the wheels 2L and 2R the same is output.

回転速度制御手段72L、72Rは、回転速度指示手段71の出力する回転速度指示値を目標値として、2L、2Rの回転速度制御を行う。この場合の回転速度制御では、車輪2L、2Rの回転速度の計測値を回転速度計測手段5L、5Rから受け取り、その計測値が入力された目標回転速度と同じになるようにモータ3L、3Rに出力する駆動電圧を調整する。 The rotation speed control means 72L and 72R perform rotation speed control of 2L and 2R with the rotation speed instruction value output by the rotation speed instruction means 71 as a target value. In the rotation speed control in this case, the measured values of the rotation speeds of the wheels 2L and 2R are received from the rotation speed measuring means 5L and 5R, and the measured values are sent to the motors 3L and 3R so as to be the same as the input target rotation speed. Adjust the output drive voltage.

モータ3L、3Rは回転速度制御手段72L、72Rから出力された駆動電圧によって回転し、ギア等の機構を介して車輪2L、2Rに駆動力を伝える。ここでは簡単のため、モータ3L、3Rの回転速度がそのまま車輪2L、2Rの回転速度になるものとする。 The motors 3L and 3R are rotated by the drive voltage output from the rotation speed control means 72L and 72R, and the driving force is transmitted to the wheels 2L and 2R via a mechanism such as a gear. Here, for the sake of simplicity, it is assumed that the rotation speed of the motors 3L and 3R becomes the rotation speed of the wheels 2L and 2R as it is.

理想的な床面上を走行する場合には、図11の構成において、回転速度指示手段71が回転速度制御手段72L、72Rに同じ回転速度指示値を送ることで、車輪2L、2Rを同じ回転速度で回すことができ、車輪2L、2Rは同じ速度で前進する。その結果、本体1は方向を変えることなく前進する。 When traveling on an ideal floor surface, in the configuration of FIG. 11, the rotation speed indicating means 71 sends the same rotation speed instruction value to the rotation speed control means 72L and 72R, so that the wheels 2L and 2R rotate in the same manner. It can be turned at speed, and the wheels 2L and 2R move forward at the same speed. As a result, the main body 1 moves forward without changing the direction.

しかし絨毯上を走行する場合には、横ずれを原因として本体1に旋回方向の力が働く。このとき車輪2L、2Rは、回転速度指示手段71から指示された回転速度に従う回転速度制御手段72L、72Rの作用により同じ回転速度で回転するものの、本体1は旋回しその進行方向を変えてしまう。 However, when traveling on a carpet, a force in the turning direction acts on the main body 1 due to lateral displacement. At this time, the wheels 2L and 2R rotate at the same rotation speed due to the action of the rotation speed control means 72L and 72R according to the rotation speed instructed by the rotation speed indicating means 71, but the main body 1 turns and changes its traveling direction. ..

この旋回によって、車輪2L、2Rが絨毯上を滑ることで、絨毯から車輪2L、2Rの接地面にそれぞれ異なる大きさの力が加わり、その力の左右差の発生はモータ3L、3Rに流れる電流と車輪2L、2Rの回転速度の変化として現れる。 By this turning, the wheels 2L and 2R slide on the rug, and a force of different magnitude is applied from the rug to the ground plane of the wheels 2L and 2R. And appear as a change in the rotational speed of the wheels 2L and 2R.

図1に本発明における制御ブロック図を示す。 FIG. 1 shows a control block diagram in the present invention.

回転速度指示手段71の出力に、直進制御手段75が回転速度補正値を加える構成となっている。 The straight-ahead control means 75 adds a rotation speed correction value to the output of the rotation speed indicating means 71.

回転速度計測手段5L、5Rは車輪2L、2Rの回転速度を、電流計測手段4L、4Rはモータ3L、3Rに流れる電流を計測し、外乱による電流と回転速度の変化を捉える。計測した電流値と回転速度値を外乱推定手段73L、73Rに出力する。 The rotation speed measuring means 5L and 5R measure the rotation speed of the wheels 2L and 2R, and the current measuring means 4L and 4R measure the current flowing through the motors 3L and 3R, and capture the change in the current and the rotation speed due to the disturbance. The measured current value and rotation speed value are output to the disturbance estimation means 73L and 73R.

外乱推定手段73L、73Rは、それぞれ回転速度計測手段5L、5Rの出力した回転速度と電流計測手段4L、4Rの出力した電流計測値から車輪に働く外乱を推定し、その推定値を前後滑り速度推定手段74L、74Rに出力する。車輪に働く外乱とは、旋回によって生じた、絨毯が車輪の接地面に対して車輪2L、2Rの回転方向に与える力である。 The disturbance estimation means 73L and 73R estimate the disturbance acting on the wheel from the rotation speed output by the rotation speed measuring means 5L and 5R and the current measurement values output by the current measuring means 4L and 4R, respectively, and the estimated values are used as the back-and-forth slip speed. It is output to the estimation means 74L and 74R. The disturbance acting on the wheels is the force generated by the turning of the carpet in the rotational direction of the wheels 2L and 2R with respect to the ground plane of the wheels.

前後滑り速度推定手段74L、74Rは外乱推定手段が出力する外乱から車輪2L、2Rの前後滑り速度を推定し、直進制御手段75に出力する。車輪の前後滑り速度とは、本体1の方向に対する車輪の接地面の速度である。滑りのない床では車輪の前後滑り速度は車輪の回転速度に関わらず0となる。 The front-back slip speed estimation means 74L and 74R estimate the front-back slip speed of the wheels 2L and 2R from the disturbance output by the disturbance estimation means, and output the front-back slip speed estimation means to the straight-ahead control means 75. The front-back slip speed of the wheel is the speed of the ground contact surface of the wheel with respect to the direction of the main body 1. On a non-slip floor, the wheel slip speed is zero regardless of the wheel rotation speed.

直進制御手段75は、車輪2L、2Rの前後滑り速度から本体1の旋回速度を算出し、旋回を打ち消すような車輪2L、2Rの回転速度補正値を算出し、その補正値を回転速度指示手段71の出力した回転速度指示値に加算するように出力する。 The straight-ahead control means 75 calculates the turning speed of the main body 1 from the front-back slip speed of the wheels 2L and 2R, calculates the rotation speed correction value of the wheels 2L and 2R that cancels the turning, and uses the correction value as the rotation speed indicating means. It is output so as to be added to the rotation speed indicated value output by 71.

以上のように構成された移動作業ロボットについて、以下その動作、作用を説明する。 The operation and operation of the mobile work robot configured as described above will be described below.

図8に示すように、車輪2L、2Rの半径をr、車輪2Lと車輪2R間の距離W、車輪2L、2Rの軸が本体1の方向に移動する速度をそれぞれv、vとする。本体1の旋回速度をβとすると、β=(v-v)/Wと表せる。 As shown in FIG. 8, the radius of the wheels 2L and 2R is r, the distance W between the wheels 2L and the wheels 2R, and the speeds at which the axes of the wheels 2L and 2R move in the direction of the main body 1 are v L and v R , respectively. .. Assuming that the turning speed of the main body 1 is β, it can be expressed as β = (v R − v L ) / W.

図5において、L1は目標とする直線軌道である。滑りのない理想的な床面上においては、車輪2L、2Rに同じ半径の車輪を用い、回転速度指示手段71が回転速度制御手段72L、72Rに同じ回転速度指示値として各モータを回転させる回転速度ω*を出力することで、この軌道に沿って本体1を走行させることができる。回転速度指示手段71が回転速度制御手段72L、72Rに同じ回転速度ω*を出力すると、回転速度制御手段72L、72Rは与えられた回転速度指示値が示す回転速度ω*通りに車輪2L、2Rを回転させるような駆動電圧をモータ3L、3Rに出力し、車輪2L、2Rの回転速度ωをω*に収束させる。床面と車輪2L、2Rの間に滑りがないとき、v=v=rω*となり、車輪2L、2Rが本体方向に進む速度は同じとなる。このとき本体1の旋回速度はβ=(rω*-rω*)/W=0となり、本体方向を変えずに前進させることができる。 In FIG. 5, L1 is a target straight line orbit. On an ideal floor surface without slipping, wheels of the same radius are used for the wheels 2L and 2R, and the rotation speed indicating means 71 rotates each motor as the same rotation speed indicating value for the rotation speed controlling means 72L and 72R. By outputting the velocity ω *, the main body 1 can be driven along this trajectory. When the rotation speed indicating means 71 outputs the same rotation speed ω * to the rotation speed control means 72L and 72R, the rotation speed control means 72L and 72R have the wheels 2L and 2R according to the rotation speed ω * indicated by the given rotation speed instruction value. A drive voltage that rotates the wheels 2L and 3R is output to the motors 3L and 3R, and the rotation speeds ω of the wheels 2L and 2R are converged to ω *. When there is no slip between the floor surface and the wheels 2L and 2R, v L = v R = rω *, and the speed at which the wheels 2L and 2R move toward the main body is the same. At this time, the turning speed of the main body 1 becomes β = (rω * −rω *) / W = 0, and the main body 1 can be advanced without changing the direction of the main body.

図5に示すように絨毯の毛の流れがある場合、絨毯上を走行すると速度vの横ずれが発生し、この横ずれによって従動輪6が絨毯から横ずれの方向と逆向きの抵抗力を受けることで、本体1は旋回方向に力を受け、旋回する。この旋回が左旋回の場合は車輪2Lの接地面が後方に、車輪2Rの接地面が前方に動く。右旋回であればその逆である。これにより、車輪2L、2Rの接地面にそれぞれ異なる前後滑り速度vsL、vsRが生じる。車輪の前後滑り速度とは図6に示す車輪の接地面の本体方向の速度v(図6の場合は負の速度)である。滑りがない場合、この前後滑り速度は0となる。 As shown in FIG. 5, when there is a flow of hair on the carpet, a lateral displacement of the speed v occurs when traveling on the carpet, and this lateral displacement causes the driven wheel 6 to receive a resistance force from the carpet in the direction opposite to the lateral displacement direction. , The main body 1 receives a force in the turning direction and turns. When this turn is a left turn, the contact patch of the wheel 2L moves backward and the contact patch of the wheel 2R moves forward. The opposite is true for a right turn. As a result, different front-rear slip speeds v sL and v sR are generated on the ground planes of the wheels 2L and 2R, respectively. The front-back slip speed of the wheel is the speed vs. the speed of the ground contact surface of the wheel in the main body direction (negative speed in the case of FIG. 6) shown in FIG. If there is no slip, this front-back slip speed will be zero.

前後滑り速度vsL、vsRが発生すると、車輪2L、2Rの軸の速度はv=rω*
+vsL、v=rω*+vsRのように、車輪の回転による速度と滑りによる速度を合わせた速度となる。直進制御手段75を用いない場合、前後滑り速度によって生じたこの速度の左右差は旋回速度β=(v-v)/W=(vsR-vsL)/Wを引き起こす。
When the front-back slip speed v sL and v sR are generated, the speed of the shafts of the wheels 2L and 2R is v L = rω *.
As + v sL , v R = rω ** v sR, the speed is the sum of the speed due to the rotation of the wheel and the speed due to slippage. When the straight-ahead control means 75 is not used, the laterality of this speed caused by the back-and-forth sliding speed causes a turning speed β = (v R − v L ) / W = (v sR −v sL ) / W.

本発明では直進制御手段75によって、図9に示すように回転速度指示手段71の指示した車輪の回転速度ω*に補正量ω、ωを加える。補正量を加えることでv=vとなるようにすれば、旋回の角速度βは0となるため、絨毯の影響により旋回方向の力を受けていて車輪2L、2Rに前後滑り速度が生じていたとしても本体1の方向を変えずに前進できる。 In the present invention, the straight-ahead control means 75 adds correction quantities ω L and ω R to the rotation speed ω * of the wheel instructed by the rotation speed indicating means 71 as shown in FIG. If v L = v R is set by adding a correction amount, the angular velocity β of turning becomes 0, so that the wheel 2L and 2R are affected by the force in the turning direction due to the influence of the carpet, and the front-back slip speed is generated. Even if it is, it can move forward without changing the direction of the main body 1.

本発明において直進制御手段75が補正量を決定し本体1の方向を変えずに前進させる方法について説明する。補正量の決定には、前後滑り速度推定手段74Lの出力した前後滑り速度vsL、前後滑り速度推定手段74Rの出力した前後滑り速度vsRの値を用いる。 In the present invention, a method in which the straight-ahead control means 75 determines a correction amount and advances the main body 1 without changing the direction will be described. The values of the front-back slip speed v sL output by the front-back slip speed estimation means 74L and the front-back slip speed vs R output by the front-back slip speed estimation means 74R are used for determining the correction amount.

一例として、補正量ω、ωをそれぞれ(vsR―vsL)/(2r)、(vsL―vsR)/(2r)とし、回転速度指示手段71の回転速度指示値の出力ω*に加えることで、v=r(ω*+ω)+vsL=rω*+(v+v)/2、v=r(ω*+ω)+vsR=rω*+(v+v)/2とすることができ、v=vとなる。その結果本体1の旋回速度はβ=(v-v)/W=0となり、絨毯上においても本体1の方向を変えずに前進できる。 As an example, the correction amounts ω L and ω R are set to (v sR -v sL ) / (2r) and (v sL -v sR ) / (2r), respectively, and the output ω of the rotation speed instruction value of the rotation speed instruction means 71 is set. By adding to *, v L = r (ω * + ω L ) + v sL = rω * + (v L + v R ) / 2, v R = r (ω * + ω R ) + v sR = * + (v L ) It can be + v R ) / 2, and v L = v R. As a result, the turning speed of the main body 1 becomes β = (v R − v L ) / W = 0, and the main body 1 can move forward without changing the direction on the carpet.

次に前後滑り速度推定手段74L、74Rが前後滑り速度vsLとvsRを推定する方法について説明する。前後滑り速度の推定には外乱推定手段73Lの出力した外乱FdL、外乱推定手段73Rの出力した外乱FdRの値を用いる。外乱とは、図6に示すように絨毯が車輪の接地面に対してその回転方向または逆方向に与える力Fである。外乱Fは前後滑り速度vで滑る場合に、その速度と反対方向に発生する。回転速度指示手段71の出力する指令指示値に基づく回転速度ω*が一定のとき、車輪の前後滑り速度vと車輪が絨毯から受ける力Fには、図7に示すような、絨毯固有の関係がある。前後滑り速度推定手段74L、74Rは予め実験によって求めたその関係を用いることで車輪に働く外乱の推定値から車輪の前後滑り速度を推定する。 Next, a method in which the front-back slip speed estimation means 74L and 74R estimate the front-back slip speed v sL and v sR will be described. For the estimation of the back-and-forth slip speed, the values of the disturbance F dL output by the disturbance estimation means 73L and the values of the disturbance F dR output by the disturbance estimation means 73R are used. As shown in FIG. 6, the disturbance is a force Fd applied by the carpet to the ground plane of the wheel in the direction of rotation or in the opposite direction. The disturbance F d is generated in the direction opposite to the forward / backward sliding speed vs. when sliding at that speed. When the rotation speed ω * based on the command instruction value output by the rotation speed indicating means 71 is constant, the front-rear slip speed vs of the wheel and the force F d received by the wheel from the rug are unique to the rug as shown in FIG. There is a relationship. The front-back slip speed estimation means 74L and 74R estimate the front-back slip speed of the wheel from the estimated value of the disturbance acting on the wheel by using the relationship obtained by the experiment in advance.

図7は、ウィルトンカーペットと呼ばれる種類の絨毯上において、移動作業ロボットを等速で走行させたときの、車輪2Lの滑り速度vsLと推定した外乱Fの関係である。図7中の1点は走行中の2秒間の区間をランダムに取り、その区間のvとFそれぞれの平均値を取った値を用いている。滑り速度vはモーションキャプチャーを用いて計測した車輪2Lの軸の前進速度vから車輪が滑らない場合の車輪の軸の前進速度rωを差し引いたものである。推定した外乱Fdは外乱推定手段73Lによって推定したものである。図7からは、推定した外乱が大きくなるほど、滑り速度が小さくなる、すなわちより速く車輪の接地面が後方に滑っていることが分かる。この傾向は右車輪2Rにおいても、ウィルトンカーペット以外の主要なカーペットであるアキスミンスターカーペット、タフテッドカーペットにおいても現れることを確認している。 FIG. 7 shows the relationship of the disturbance Fd estimated to be the slip speed vs L of the wheels 2L when the moving work robot is run at a constant speed on a type of carpet called a Wilton carpet. One point in FIG. 7 randomly takes a section for 2 seconds during running, and uses a value obtained by taking the average value of vs and F d of the section. The slip speed vs is the forward speed vL of the shaft of the wheel 2L measured using motion capture minus the forward speed of the shaft of the wheel when the wheel does not slip. The estimated disturbance Fd is estimated by the disturbance estimation means 73L. From FIG. 7, it can be seen that the larger the estimated disturbance, the smaller the sliding speed, that is, the faster the wheel's tread is sliding backwards. It has been confirmed that this tendency appears both in the right wheel 2R and in the main carpets other than Wilton carpet, such as Axminster carpet and tufted carpet.

次に外乱推定手段73L、73Rの構成と動作を図3に基づいて説明する。外乱の推定には以下に説明する外乱オブザーバの考え方を用いる。モータに流れる電流はモータを回すトルクTを発生させる。しかし、車輪に働く外乱がトルク外乱Tを発生させる。その結果、実際にモータを回すトルクはT=T-Tとなる。これをTについて解くと、T=T-Tであり、外乱オブザーバはこの式に基づいてトルク外乱Tを推定する。 Next, the configuration and operation of the disturbance estimation means 73L and 73R will be described with reference to FIG. The concept of the disturbance observer explained below is used to estimate the disturbance. The current flowing through the motor generates a torque Tr that rotates the motor. However, the disturbance acting on the wheel causes the torque disturbance T d . As a result, the torque that actually rotates the motor is T m = Tr −T d . Solving this for T d , T d = Tr −T m , and the disturbance observer estimates the torque disturbance T d based on this equation.

図3は外乱推定手段73L、73Rの一構成例を示すブロック図である。外乱推定手段73L、73Rは同じ構成であるため、以下外乱推定手段73とする。外乱推定手段73は電流計測手段4Lまたは電流計測手段4Rの計測したモータ3L、3Rからの電流値に各モータのトルク乗数Kを乗じて、電流から発生するトルクTを出力する乗算部731と、モータ3L、3Rの機械的な負荷の慣性モーメントをJ、粘性抵抗をD、ラプラス演算子をsとして(Js+D)を回転速度計測手段5Lまたは5Rの計測した回転速度値に乗じて、モータを回すために実際に加えられたトルクTを出力する乗算部732と、乗算部731の出力Tから乗算部732の出力Tを減算しモータのトルク外乱Tを出力する減算部733と、減算部733の出力を平滑化する遮断周波数ωの一次遅れフィルタ734と、一次遅れフィルタ734の出力に1/rを乗じて、平滑化されたトルク外乱Tを車輪の縁に働く外乱の推定値Fに変換する乗算部735から構成されている。 FIG. 3 is a block diagram showing a configuration example of the disturbance estimation means 73L and 73R. Since the disturbance estimation means 73L and 73R have the same configuration, the disturbance estimation means 73 will be referred to below. The disturbance estimation means 73 is a multiplication unit 731 that outputs the torque Tr generated from the current by multiplying the current values from the motors 3L and 3R measured by the current measuring means 4L or the current measuring means 4R by the torque multiplier K t of each motor. The motor is multiplied by the rotational speed value measured by the rotational speed measuring means 5L or 5R, where J is the inertial moment of the mechanical load of the motors 3L and 3R, D is the viscous resistance, and s is the Laplace operator (Js + D). The multiplying unit 732 that outputs the torque T m actually applied to turn the motor, and the subtracting unit 733 that outputs the torque disturbance T d of the motor by subtracting the output T m of the multiplying unit 732 from the output Tr of the multiplying unit 731. The output of the first-order lag filter 734 with a cutoff frequency ω 0 that smoothes the output of the subtraction unit 733 and the output of the first-order lag filter 734 are multiplied by 1 / r, and the smoothed torque disturbance T d acts on the edge of the wheel. It is composed of a multiplication unit 735 that converts the estimated value of disturbance F d .

図3の制御を実際の本体1が絨毯を走行した場合に生ずる環境を想定して、以下、説明する。 The control of FIG. 3 will be described below assuming an environment that occurs when the main body 1 actually travels on the carpet.

車輪2L、または車輪2Rの回転方向に外乱Fが加わった場合、その外乱はモータの負荷となる機械的な伝達関数1/(Js+D)を経由して、モータの回転速度ωを落とす。もしくはモータの回転速度が落ちた情報を回転速度制御手段72L、72Rが受け取り、モータの回転速度を上げるためにより多くの電流Iを流す。車輪の回転速度が落ちると図3におけるTの値が下がり、電流が増えると図3におけるTの値が上がる。トルク外乱の推定値Tは減算部733によって、T=T-Tと計算されるため、車輪に外乱が加わることにより電流Iが増えるか回転速度ωが下がると、トルク外乱の推定値Tおよび車輪に働く外乱Fは増える結果となる。負の外乱が加わる場合はその逆が起こる。 When a disturbance Fd is applied in the rotation direction of the wheel 2L or the wheel 2R, the disturbance reduces the rotation speed ω of the motor via the mechanical transmission function 1 / (Js + D ) which is a load on the motor. Alternatively, the rotation speed control means 72L and 72R receive the information that the rotation speed of the motor has dropped, and a larger current I is passed in order to increase the rotation speed of the motor. When the rotation speed of the wheel decreases, the value of T m in FIG. 3 decreases, and when the current increases, the value of Tr in FIG. 3 increases. Since the estimated torque disturbance T d is calculated by the subtraction unit 733 as T d = Tr −T m , the torque disturbance is estimated when the current I increases or the rotation speed ω decreases due to the disturbance applied to the wheels. The value T d and the disturbance F d acting on the wheel will result in an increase. The opposite happens when negative disturbances are added.

このように外乱オブザーバを用いてトルク外乱Tを推定し、そのトルク外乱Tに車輪の半径の逆数を乗じることで、回転速度計測手段5L、5Rと電流計測手段4L、4Rから、車輪2L、2Rの回転方向に働く外乱Fを推定することができる。 In this way, the torque disturbance T d is estimated using the disturbance observer, and the torque disturbance T d is multiplied by the reciprocal of the wheel radius. , The disturbance F d acting in the rotation direction of 2R can be estimated.

このように本実施の形態によれば、回転速度計測手段5L、5Rの出力した車輪2L、2Rの回転速度値と電流計測手段4L、4Rの出力したモータ3L、3Rに流れる電流値から、車輪2L、2Rに働く外乱を外乱推定手段73L、73Rによって推定し、その結果をもとに車輪2L、2Rの前後滑り速度を前後滑り速度推定手段74L、74Rによって推定し、推定した前後滑り速度に基づいて直進制御手段75において車輪2L、2Rの回転速度補正値を決定することで、車輪2L、2Rの軸の前進速度が同じになるので、本体1の旋回速度が0になり、本体1の方向を変えずに前進することができる。その結果カメラやジャイロセンサ等の高価なセンサを用いずに、目印の少ない絨毯上においても移動作業ロボットが絨毯の影響により本体方向を変えられることなく前進できるものである。 As described above, according to the present embodiment, the wheels are obtained from the rotation speed values of the wheels 2L and 2R output by the rotation speed measuring means 5L and 5R and the current values flowing through the motors 3L and 3R output by the current measuring means 4L and 4R. The disturbance acting on 2L and 2R is estimated by the disturbance estimation means 73L and 73R, and the front-back slip speed of the wheels 2L and 2R is estimated by the front-back slip speed estimation means 74L and 74R based on the result, and the estimated front-back slip speed is obtained. By determining the rotation speed correction values of the wheels 2L and 2R in the straight-ahead control means 75 based on this, the forward speeds of the axes of the wheels 2L and 2R become the same, so that the turning speed of the main body 1 becomes 0 and the main body 1 You can move forward without changing direction. As a result, the mobile work robot can move forward without changing the direction of the main body due to the influence of the carpet even on a carpet with few marks without using an expensive sensor such as a camera or a gyro sensor.

本発明は、移動作業ロボットの旋回を車輪の電流と回転速度の計測値を用いて抑制するものであるため、絨毯上の自走式掃除機だけではなく、自走式芝刈り機、自動トラクター等にも応用が可能である。 Since the present invention suppresses the turning of the mobile work robot by using the measured values of the current and the rotation speed of the wheels, not only the self-propelled vacuum cleaner on the rug, but also the self-propelled lawn mower and the automatic tractor. It can also be applied to such things as.

1 本体
2L、2R 車輪
3L、3R モータ
4L、4R 電流計測手段
5L、5R 回転速度計測手段
6 従動輪
7 制御部
71 回転速度指示手段
72L、72R 回転速度制御手段
73L、73R 外乱推定手段
74L、74R 前後滑り速度推定手段
75 直進制御手段
731 乗算部
732 乗算部
733 減算部
734 一次遅れフィルタ
735 乗算部
1 Main body 2L, 2R Wheel 3L, 3R Motor 4L, 4R Current measuring means 5L, 5R Rotation speed measuring means 6 Driven wheel 7 Control unit 71 Rotation speed indicating means 72L, 72R Rotation speed controlling means 73L, 73R Disturbance estimation means 74L, 74R Forward / backward slip speed estimation means 75 Straight control means 731 Multiplying part 732 Multiplying part 733 Subtracting part 734 First-order lag filter 735 Multiplying part

Claims (5)

本体と、本体を移動させる少なくとも同軸上にある1対の車輪と、
各々の車輪を駆動するモータと、前記モータの電流を計測する電流計測手段と、
前記各々の車輪の回転速度を計測する回転速度計測手段と、前記本体の移動を制御する制御部を有する移動作業ロボットにおいて、
前記制御部は、所定の移動軌道に基づく車輪の制御から算定される車輪の回転速度を指示する回転速度指示手段と、
前記モータの電流計測手段からの出力と前記各々の車輪の回転速度計測手段からの出力とを用いて前記本体移動時に前記各々の車輪に生ずる外乱を推定する外乱推定手段と、
前記外乱推定手段からの前記各々の車輪の外乱情報を調整して前記本体が直進するよう前記各々の車輪の制御を行う直進制御手段からなる移動作業ロボット制御装置。
The body and at least a pair of wheels on the same axis that move the body,
A motor that drives each wheel, a current measuring means that measures the current of the motor, and
In a mobile work robot having a rotation speed measuring means for measuring the rotation speed of each wheel and a control unit for controlling the movement of the main body.
The control unit includes a rotation speed indicating means for instructing a wheel rotation speed calculated from wheel control based on a predetermined moving track, and a rotation speed indicating means.
Disturbance estimation means for estimating the disturbance generated on each wheel when the main body is moved by using the output from the current measuring means of the motor and the output from the rotation speed measuring means of each wheel.
A mobile work robot control device comprising a straight-ahead control means that adjusts the disturbance information of each of the wheels from the disturbance estimation means and controls each of the wheels so that the main body moves straight.
前記直進制御手段は、各々の車輪に加わる外乱を推定する外乱推定手段からの出力を基に、各々の車輪の前後滑りを推定する前後滑り速度推定手段から算出される本体の旋回速度を算出し、前記旋回を打ち消すような各々の車輪の回転速度補正値を出力して、前記回転速度指示手段から出力される車輪の回転速度に加算する請求項1記載の移動作業ロボット制御装置。 The straight-ahead control means calculates the turning speed of the main body calculated from the front-back slip speed estimation means that estimates the front-back slip of each wheel based on the output from the disturbance estimation means that estimates the disturbance applied to each wheel. The mobile work robot control device according to claim 1, wherein the rotation speed correction value of each wheel that cancels the turning is output and added to the rotation speed of the wheel output from the rotation speed indicating means. 前記外乱推定手段は、
モータに流れる電流から発生するモータを回すトルクTと、実際にモータを回すトルクTから各々の車輪に働くトルク外乱T=T-Tを推定する外乱オブザーバを用いる請求項1または2記載の移動作業ロボット制御装置。
The disturbance estimation means is
Claim 1 or claim 1 using a disturbance observer that estimates the torque disturbance T d = Tr −T m acting on each wheel from the torque Tr that rotates the motor generated from the current flowing through the motor and the torque T m that actually rotates the motor . 2. The mobile work robot control device according to 2.
前記外乱推定手段は、前記外乱オブザーバから推定された前記トルク外乱Tに車輪の半径の逆数を乗じることで、前記各々の車輪の回転速度計測手段と前記モータの電流計測手段から、前記各々の車輪の回転方向に働く外乱Fを推定する請求項1から3いずれか1項記載の移動作業ロボット制御装置。 The disturbance estimation means multiplies the torque disturbance Td estimated from the disturbance observer by the inverse of the wheel radius, so that the rotation speed measuring means of each wheel and the current measuring means of the motor can be used to obtain the respective ones. The mobile work robot control device according to any one of claims 1 to 3, wherein the disturbance F d acting in the rotation direction of the wheel is estimated. 前記前後滑り速度推定手段は、前記回転速度指示手段の出力する指令指示値に基づく回転速度が一定のとき、あらかじめ求められた車輪の前後滑り速度と前記車輪が絨毯から受ける外乱の関係を用いて前記外乱推定手段から求められる各々車輪に働く外乱の推定値に基づいて各々の車輪の前後滑り速度を推定する請求項1から4いずれか1項記載の移動作業ロボット制御装置。 The front-back slip speed estimation means uses the relationship between the front-back slip speed of a wheel obtained in advance and the disturbance that the wheel receives from the carpet when the rotation speed based on the command instruction value output by the rotation speed instruction means is constant. The mobile work robot control device according to any one of claims 1 to 4, wherein the front-rear slip speed of each wheel is estimated based on the estimated value of the disturbance acting on each wheel obtained from the disturbance estimation means.
JP2019060091A 2019-03-27 2019-03-27 Mobile working robot control device Pending JP2022078372A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019060091A JP2022078372A (en) 2019-03-27 2019-03-27 Mobile working robot control device
PCT/JP2020/012732 WO2020196410A1 (en) 2019-03-27 2020-03-23 Moving body control device, moving body, moving body control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060091A JP2022078372A (en) 2019-03-27 2019-03-27 Mobile working robot control device

Publications (1)

Publication Number Publication Date
JP2022078372A true JP2022078372A (en) 2022-05-25

Family

ID=72611012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060091A Pending JP2022078372A (en) 2019-03-27 2019-03-27 Mobile working robot control device

Country Status (2)

Country Link
JP (1) JP2022078372A (en)
WO (1) WO2020196410A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170768B2 (en) * 2006-09-07 2012-05-01 Yokohama National University Slip ratio estimating device and slip ratio control device
JP2008263676A (en) * 2007-04-10 2008-10-30 Toyota Central R&D Labs Inc Free running vehicle, its controller, and controlling method
WO2013084354A1 (en) * 2011-12-09 2013-06-13 株式会社日立製作所 Inverted pendulum type mobile device and control method therefor
EP3910440A1 (en) * 2012-06-08 2021-11-17 iRobot Corporation Carpet drift estimation
CN109597310B (en) * 2019-02-01 2021-09-07 东南大学 Wheeled mobile robot track tracking method based on disturbance observer

Also Published As

Publication number Publication date
WO2020196410A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR0161042B1 (en) Moving control device and method of robot
US9874876B2 (en) Control apparatus for autonomously navigating utility vehicle
EP3439522B1 (en) Autoscrubber convertible between manual and autonomous operation
JP2018149863A5 (en)
CA2920160C (en) Snow removal machine
KR100759060B1 (en) Guiding device for guiding vehicle to target place by controlling the steering angle
US20210022293A1 (en) Lawn mower and control system
JP2006268499A (en) Running device and self-propelled vacuum cleaner
JP2024038433A (en) Self-propelled robot and its control method
JP2022078372A (en) Mobile working robot control device
CN211001601U (en) High-precision straight-line walking deviation correcting system based on double-side distance detection and engineering vehicle
CN107922020B (en) Traveling apparatus and control method thereof
JPH075922A (en) Steering control method for unmanned work vehicle
WO2018097034A1 (en) Work machine
JP6303762B2 (en) Electric power steering control device
JP2004318721A (en) Autonomous travel vehicle
CN113978458A (en) Control device for tracked vehicle and tracked vehicle
JP3191334B2 (en) Mobile work robot
JP3632618B2 (en) Mobile work robot
JP3227710B2 (en) Mobile work robot
JP3713734B2 (en) Mobile robot
JP3922126B2 (en) Carpet eye detection device and mobile robot using the same
JP2020062911A (en) Travel surface state estimation device, driving device and travel body
JP2005170608A (en) Travel control device of crane, travel control system of crane, and self-propelled portal crane
JP3627851B2 (en) Moving shelf