JP2022075126A - Plasma sterilizer - Google Patents

Plasma sterilizer Download PDF

Info

Publication number
JP2022075126A
JP2022075126A JP2020185712A JP2020185712A JP2022075126A JP 2022075126 A JP2022075126 A JP 2022075126A JP 2020185712 A JP2020185712 A JP 2020185712A JP 2020185712 A JP2020185712 A JP 2020185712A JP 2022075126 A JP2022075126 A JP 2022075126A
Authority
JP
Japan
Prior art keywords
electrode
plasma
gas
hole
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020185712A
Other languages
Japanese (ja)
Inventor
文晴 松尾
Fumiharu Matsuo
秀夫 大槻
Hideo Otsuki
正太 前野
Shota Maeno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco Inc
Original Assignee
Samco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco Inc filed Critical Samco Inc
Priority to JP2020185712A priority Critical patent/JP2022075126A/en
Publication of JP2022075126A publication Critical patent/JP2022075126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

To provide a plasma device capable of performing plasma treatment not only for sterilization, but also for various objects, with less temperature increase of the objects.SOLUTION: A plasma sterilizer 10 according to the present invention includes: a first electrode 13 that is provided so as to face an object to be treated 19 arranged in a treatment chamber 16; a plate-shaped second electrode 14 having through holes 141 that is provided between the object to be treated 19 and the first electrode 13; a gas supply unit 30 that supplies a plasma source gas between both electrodes 13 and 14; and a power supply unit 21 that supplies plasma generating high-frequency power to the second electrode 14 with using the first electrode 13 as a grounding electrode.SELECTED DRAWING: Figure 1

Description

本発明は、医療機器(薬機法に定められた医療行為に使用する器具、例えば剪刀や内視鏡など手術器具や医療行為に用いる診断機器)をプラズマを用いて滅菌或いは殺菌(以下まとめて滅菌と言う。)する装置に関する。 The present invention sterilizes or sterilizes medical devices (instruments used for medical practices specified in the Pharmaceutical Machinery Law, such as surgical instruments such as swords and endoscopes and diagnostic instruments used for medical practices) using plasma (hereinafter collectively referred to as). It is called sterilization.)

新型コロナウイルスを始め、変性しやすく感染力の強いウイルスや、抗生物質やアルコールなどの薬剤に対し耐性を持つ薬剤耐性菌が現れ、社会の脅威となりつつある。医療機関において感染症の発生を未然に防ぐためには、医療機器製造業者の出荷前における滅菌処理や医療機器の再製造業者による再製造過程での滅菌処理が重要である。また、パンデミックの状況に陥った際には、医療機関において特例的に医療機器を再利用する場合がある。その際は、一度使用した医療機器に感染症を引き起こす病原体の付着可能性があるため、滅菌処理を行う必要がある。 Including the new coronavirus, viruses that are easily denatured and have strong infectivity, and drug-resistant bacteria that are resistant to drugs such as antibiotics and alcohol are emerging and are becoming a threat to society. In order to prevent the outbreak of infectious diseases in medical institutions, it is important to sterilize the medical device manufacturer before shipping and in the remanufacturing process by the medical device remanufacturer. In addition, in the event of a pandemic situation, medical equipment may be reused as a special case at medical institutions. In that case, it is necessary to sterilize the medical device once used because there is a possibility that a pathogen that causes an infectious disease may adhere to the medical device.

このような医療機器の滅菌処理には、一般的に高圧水蒸気や高温乾燥空気を用いる。しかし、医療機器の構成材料の中には、高温や高圧に耐性を持たない材料があり、変形や器具表面の腐食や劣化を生じる。また、エチレンオキサイドガスやホルマリン等の殺菌性のガスを用いる方法もあるが、この方法ではその殺菌性のガスが処理後も対象物に残留する恐れがあり、対象物のその後の使用に悪影響を及ぼす可能性があることから、殺菌ガスを除去するための後処理が必要となる。 High-pressure steam or high-temperature dry air is generally used for sterilization of such medical devices. However, some of the constituent materials of medical devices do not have resistance to high temperature and high pressure, which causes deformation and corrosion and deterioration of the surface of the device. There is also a method of using a bactericidal gas such as ethylene oxide gas or formalin, but in this method, the bactericidal gas may remain on the object even after the treatment, which adversely affects the subsequent use of the object. Post-treatment is required to remove the bactericidal gas, as it can have an effect.

そこで、プラズマを用いた滅菌を行う方法が注目されている。これは、減圧下滅菌室内で原料をガス化し、次にガス化した原料をプラズマ化して、そのイオンを滅菌室内の対象物に照射することにより滅菌処理を行うものである。原料ガスのプラズマ化は、滅菌室内に設置された電極に高周波電力を印加することにより行われる。例えば、特許文献1には、ガス化した過酸化水素等の滅菌剤を処理室(チャンバー)に配置した円筒形の網状電極内に通し、該電極に高周波電力を投入することによりプラズマ化して、それにより該電極内に配置した対象物を滅菌している。 Therefore, attention is being paid to a method of sterilizing using plasma. In this method, a raw material is gasified in a sterilization chamber under reduced pressure, then the gasified raw material is turned into plasma, and the ions are irradiated to an object in the sterilization chamber to perform sterilization treatment. Plasma conversion of the raw material gas is performed by applying high frequency power to the electrodes installed in the sterilization chamber. For example, in Patent Document 1, a sterilizing agent such as gasified hydrogen peroxide is passed through a cylindrical reticulated electrode arranged in a processing chamber (chamber), and high-frequency power is applied to the electrode to generate plasma. As a result, the object placed in the electrode is sterilized.

一方、特許文献2や特許文献3では、処理室内の上下に平行に配置した平板電極を用いてプラズマ化するプラズマ滅菌装置を開示している。これらの滅菌装置では安全性の高い水蒸気を原料として使用し、水蒸気をプラズマ化して生成した活性種(主としてOH-イオンなど)を対象物に照射することにより滅菌を行っている。 On the other hand, Patent Document 2 and Patent Document 3 disclose a plasma sterilizer that turns into plasma by using flat plate electrodes arranged vertically in the processing chamber. These sterilizers use highly safe water vapor as a raw material, and sterilize the object by irradiating the object with active species (mainly OH - ions, etc.) generated by plasmaizing the water vapor.

特開2000-308675号公報Japanese Unexamined Patent Publication No. 2000-308675 特開2003-310719号公報Japanese Unexamined Patent Publication No. 2003-310719 特開2008-188032号公報Japanese Unexamined Patent Publication No. 2008-188032

OH-イオンで対象物を滅菌すれば、有害な物質が残留するという問題は無いが、処理中にイオンを照射され続けると、イオンの衝撃により対象物の温度が上昇するという問題がある。このため、耐熱性の低い対象物の滅菌処理には適していない。 If the object is sterilized with OH - ions, there is no problem that harmful substances remain, but if the ion is continuously irradiated during the treatment, there is a problem that the temperature of the object rises due to the impact of the ions. Therefore, it is not suitable for sterilization of objects with low heat resistance.

本発明は従来技術のこのような課題を解決するために成されたものであり、その目的とするところは、滅菌処理に留まらず、様々な対象物に対して行うプラズマ処理において、対象物の温度を上昇させることの少ない処理を行うことのできるプラズマ装置を提供することである。 The present invention has been made to solve such a problem of the prior art, and an object thereof is not only in sterilization treatment but also in plasma treatment performed on various objects. It is an object of the present invention to provide a plasma apparatus capable of performing a process that does not raise the temperature.

上記課題を解決するために成された本発明に係るプラズマ処理装置は、
処理室内に配置される処理対象物に対向するように設けられる第1電極と、
前記処理対象物と前記第1電極の間に設けられる、貫通孔を有する板状の第2電極と、
前記第1電極と前記第2電極の間でプラズマとなるガスを供給するガス供給部と、
前記第1電極を接地極として前記第2電極に前記ガスをプラズマ化するための高周波電力を供給する電力供給部と
を備えることを特徴とする。
The plasma processing apparatus according to the present invention made to solve the above problems is
The first electrode provided so as to face the object to be processed arranged in the processing chamber, and
A plate-shaped second electrode having a through hole provided between the object to be treated and the first electrode, and a plate-shaped second electrode.
A gas supply unit that supplies a gas that becomes plasma between the first electrode and the second electrode,
The first electrode is used as a grounding electrode, and the second electrode is provided with a power supply unit for supplying high-frequency power for turning the gas into plasma.

本発明に係るプラズマ処理装置では、処理室内に処理対象物を配置した後、ガス供給部により第1電極と第2電極の間でプラズマとなるガス(プラズマ源ガス)を供給する。このプラズマ源ガスは、第1電極と第2電極の間に供給してもよく、或いは、第1電極に貫通孔を設け、第1電極の第2電極とは反対の側に供給してもよい。 In the plasma processing apparatus according to the present invention, after arranging an object to be processed in the processing chamber, a gas that becomes plasma (plasma source gas) is supplied between the first electrode and the second electrode by a gas supply unit. This plasma source gas may be supplied between the first electrode and the second electrode, or may be supplied to the side of the first electrode opposite to the second electrode by providing a through hole in the first electrode. good.

そして、第1電極を接地し、電力供給部により第2電極に高周波電力を供給して、プラズマ源ガスをプラズマ化する。全部又は一部がイオン化されたプラズマ源ガス(これをプラズマガスと呼ぶ)は、ガス供給源から供給されるプラズマ源ガスの後方圧力により第2電極に設けられた貫通孔を通じて処理対象物に向けて移動する。その際、この貫通孔において、第2電極に印加されている高周波電力の電位により、プラズマガス中のイオンは、一部が電荷(電子)を奪われ、或いは電荷(電子)を付与され、ラジカルとなる。これにより、処理対象物に照射されるイオンの一部がラジカルとなるため、処理対象物に対する滅菌等の所定の処理は行われる一方、処理対象物の温度上昇が低減或いは抑制される。 Then, the first electrode is grounded, and high-frequency power is supplied to the second electrode by the power supply unit to turn the plasma source gas into plasma. The plasma source gas, which is wholly or partially ionized (this is called plasma gas), is directed toward the object to be processed through the through hole provided in the second electrode by the rear pressure of the plasma source gas supplied from the gas supply source. And move. At that time, in this through hole, due to the potential of the high frequency power applied to the second electrode, some of the ions in the plasma gas are deprived of electric charges (electrons) or are given electric charges (electrons), and are radicals. Will be. As a result, a part of the ions irradiated to the object to be treated becomes radicals, so that a predetermined process such as sterilization of the object to be treated is performed, while the temperature rise of the object to be treated is reduced or suppressed.

ここで、第2電極の貫通孔は、その容積が、前記高周波電力の周波数及びプラズマガスに対応して、該プラズマガス中のイオンが共振する程度の大きさとなるようにすることが望ましい。 Here, it is desirable that the volume of the through hole of the second electrode is large enough to resonate the ions in the plasma gas corresponding to the frequency of the high frequency power and the plasma gas.

こうすることにより、該プラズマガスがその貫通孔を通過する際にその中のイオンが貫通孔内に滞留しやすくなり、前記ラジカル化が促進される。 By doing so, when the plasma gas passes through the through hole, the ions in the plasma gas are likely to stay in the through hole, and the radicalization is promoted.

前記貫通孔は第2電極に複数設けられていることが望ましい。これにより、前記ラジカル化の効率が高まり、より多くのイオンがラジカル化され、処理対象物に照射されるようになる。 It is desirable that a plurality of the through holes are provided in the second electrode. As a result, the efficiency of the radicalization is increased, and more ions are radicalized so that the object to be treated is irradiated.

前記プラズマガスの一例として、水蒸気を挙げることができる。 As an example of the plasma gas, water vapor can be mentioned.

滅菌や洗浄を目的として本発明に係るプラズマ処理装置を用いる場合、このようにすることにより、仮にプラズマガスが処理対象物に残留したとしても、問題が無い。また、滅菌を目的とする場合には、プラズマガスをプラズマ化することにより生成されるOH-イオン及びそれがラジカル化されたOHラジカルが強い滅菌作用を有するため、効果的な滅菌処理を行うことができる。 When the plasma processing apparatus according to the present invention is used for the purpose of sterility or cleaning, there is no problem even if the plasma gas remains on the object to be treated by doing so. In addition, for the purpose of sterility, OH - ions generated by plasma conversion of plasma gas and OH radicals radicalized from the OH-ions have a strong sterility effect, so effective sterility treatment should be performed. Can be done.

本発明に係るプラズマ処理装置では、処理対象物に照射されるイオンの一部がラジカルとなるため、処理対象物に対する所定のプラズマ処理は行われる一方、処理対象物の温度上昇が低減或いは抑制される。このため、耐熱性の低い処理対象物に対しても、プラズマ処理を行うことが可能となる。本発明に係るプラズマ処理装置が対象とする処理は、滅菌処理の他、様々な処理対象物に対する洗浄処理を含み、更には、エッチングや成膜等にも適用可能である。 In the plasma processing apparatus according to the present invention, since a part of the ions irradiated on the object to be processed becomes radicals, the predetermined plasma treatment on the object to be processed is performed, while the temperature rise of the object to be processed is reduced or suppressed. To. Therefore, it is possible to perform plasma treatment even on a treatment target having low heat resistance. The treatment targeted by the plasma processing apparatus according to the present invention includes not only sterilization treatment but also cleaning treatment for various treatment objects, and is further applicable to etching, film formation and the like.

本発明に係るプラズマ処理装置の一実施形態であるプラズマ滅菌装置の本体の断面及びそれに接続される各種周辺装置を模式的に示す図。The figure which shows typically the cross section of the main body of the plasma sterilization apparatus which is one Embodiment of the plasma processing apparatus which concerns on this invention, and various peripheral devices connected to it. 図1の実施形態のプラズマ滅菌装置の上部電極及び下部電極の拡大断面図。FIG. 3 is an enlarged cross-sectional view of an upper electrode and a lower electrode of the plasma sterilizer according to the embodiment of FIG. 本発明に係るプラズマ処理装置の別の実施形態であるプラズマ滅菌装置の本体の断面及びそれに接続される各種周辺装置を模式的に示す図。The figure which shows typically the cross section of the main body of the plasma sterilization apparatus which is another embodiment of the plasma processing apparatus which concerns on this invention, and various peripheral devices connected to it. 図3の実施形態のプラズマ滅菌装置の上部電極及び下部電極の拡大断面図。FIG. 3 is an enlarged cross-sectional view of an upper electrode and a lower electrode of the plasma sterilizer according to the embodiment of FIG. 下部電極の拡大平面図。Enlarged plan view of the lower electrode. ハニカム状の電極(板)を作製するための一方法を示す説明図。Explanatory drawing which shows one method for making a honeycomb-shaped electrode (plate). 処理対象物の滅菌処理を行う際のフローチャート。Flow chart when sterilizing the object to be treated. 下部電極の貫通孔の大きさ、処理空間の圧力を様々に変えた場合のプラズマ生成の良否を調べた結果の表。A table of the results of investigating the quality of plasma generation when the size of the through hole of the lower electrode and the pressure in the processing space are changed in various ways. 様々な態様の下部電極の平面図であって、円貫通孔を稠密に配列したもの(a)、矩形網状にしたもの(b)、三角形貫通孔を稠密に配列したもの(c)、スリット状の貫通孔を配列したもの(d)、スリットの幅が規則的に変わる貫通孔を配列したもの(e)、十字形の貫通孔を規則的に配列したもの(f)。Plan views of lower electrodes of various embodiments, in which circular through holes are densely arranged (a), rectangular nets are arranged (b), triangular through holes are densely arranged (c), and slits are formed. The through holes are arranged (d), the through holes whose slit widths change regularly (e), and the cross-shaped through holes are arranged regularly (f).

本発明に係るプラズマ処理装置の一実施形態であるプラズマ滅菌装置10について、図面を参照しつつ説明する。 The plasma sterilizer 10 which is an embodiment of the plasma processing apparatus according to the present invention will be described with reference to the drawings.

<1.プラズマ滅菌装置の構成>
図1は、本実施形態のプラズマ滅菌装置10の本体の断面及びそれに接続される各種周辺装置を模式的に示すものである。図1から明らかなように、本プラズマ滅菌装置10は平行平板型(容量結合型)プラズマ処理装置であり、密閉可能な筐体11内に設けられた処理台12の上部に、略平行に配置された2枚の電極(上部電極13及び下部電極14)を有する。上部電極13が前記第1電極に、下部電極14が前記第2電極に相当する。このうち、処理台12上に載置される処理対象物19に対向する下部電極14は、周囲が筐体11の周壁に絶縁体を介して接しており、筐体11内の上部空間を仕切っている。そして、下部電極14には多数の貫通孔141が穿孔されている。下部電極14については後に詳しく説明する。下部電極14よりも下の筐体11の側壁には、処理対象物19を装入し、取り出すための扉15が設けられている。筐体11内の下部電極14よりも下の空間を処理空間16と呼ぶ。
<1. Configuration of plasma sterilizer>
FIG. 1 schematically shows a cross section of the main body of the plasma sterilizer 10 of the present embodiment and various peripheral devices connected to the cross section. As is clear from FIG. 1, the plasma sterilizer 10 is a parallel plate type (capacitive coupling type) plasma processing device, and is arranged substantially parallel to the upper part of the processing table 12 provided in the sealable housing 11. It has two electrodes (upper electrode 13 and lower electrode 14). The upper electrode 13 corresponds to the first electrode, and the lower electrode 14 corresponds to the second electrode. Of these, the lower electrode 14 facing the processing object 19 placed on the processing table 12 is in contact with the peripheral wall of the housing 11 via an insulator, and partitions the upper space in the housing 11. ing. A large number of through holes 141 are formed in the lower electrode 14. The lower electrode 14 will be described in detail later. A door 15 for loading and removing the object 19 to be processed is provided on the side wall of the housing 11 below the lower electrode 14. The space below the lower electrode 14 in the housing 11 is called a processing space 16.

筐体11の両電極13、14の間には、プラズマ源ガスを導入するための導入管31が設けられている。導入管31は水タンク32に接続されており、水タンク32と筐体11内の出口の間の導入管31にはヴェーパライザ(気化器)33、マスフローコントローラ34及びバルブ35がこの順に設けられており、これらがプラズマ源ガス供給部30を構成する。 An introduction pipe 31 for introducing a plasma source gas is provided between both electrodes 13 and 14 of the housing 11. The introduction pipe 31 is connected to the water tank 32, and the introduction pipe 31 between the water tank 32 and the outlet in the housing 11 is provided with a vaporizer (vaporizer) 33, a mass flow controller 34, and a valve 35 in this order. These constitute the plasma source gas supply unit 30.

なお、図3及び図4に示すように、導入管31は筐体11と上部電極132の間に設けられてもよい。この場合は、導入管31から導入された水蒸気が拡散しつつ上部電極132と下部電極13の間の空間に均一に供給されるように、多数の貫通孔131を穿孔した上部電極132を用いる。 As shown in FIGS. 3 and 4, the introduction pipe 31 may be provided between the housing 11 and the upper electrode 132. In this case, the upper electrode 132 having a large number of through holes 131 is used so that the water vapor introduced from the introduction pipe 31 is diffused and uniformly supplied to the space between the upper electrode 132 and the lower electrode 13.

筐体11の下方(すなわち、処理空間16の下方)には排気管41が設けられており、排気管41には開閉バルブ42及び排気ポンプ43が設けられている。これらが排気部40を構成する。 An exhaust pipe 41 is provided below the housing 11 (that is, below the processing space 16), and the exhaust pipe 41 is provided with an on-off valve 42 and an exhaust pump 43. These form the exhaust unit 40.

2枚の電極のうち、上部電極13は接地され、下部電極14は高周波電源21に接続される。高周波電源21と下部電極14の間には、インピーダンスマッチングを行うためのマッチング部22が設けられている。 Of the two electrodes, the upper electrode 13 is grounded and the lower electrode 14 is connected to the high frequency power supply 21. A matching unit 22 for performing impedance matching is provided between the high frequency power supply 21 and the lower electrode 14.

筐体11の壁面には、処理空間16内の圧力を測定するための圧力計(P)51が、また、処理台12には、処理対象物19の温度を測定するための温度計(T)52が設けられている。 The wall surface of the housing 11 has a pressure gauge (P) 51 for measuring the pressure in the processing space 16, and the processing table 12 has a thermometer (T) for measuring the temperature of the object 19 to be processed. ) 52 is provided.

プラズマ滅菌装置10にはまた制御部(CTRL)50が設けられており、これら圧力計51や温度計52等のセンサーからの信号を受け、予め与えられたプログラムに従って、上記プラズマ源ガス供給部30、排気部40や高周波電源21等の各部を制御することにより、処理対象物19の滅菌を行う。 The plasma sterilizer 10 is also provided with a control unit (CTRL) 50, which receives signals from sensors such as the pressure gauge 51 and the thermometer 52, and according to a program given in advance, the plasma source gas supply unit 30. By controlling each part such as the exhaust part 40 and the high frequency power supply 21, the object to be processed 19 is sterilized.

<2.下部電極の構成>
前述のとおり、下部電極14には多数の貫通孔141が穿孔されている(図2)。この貫通孔141は、図5に示すように、その平面形状を正六角形状とし、下部電極14内に貫通孔141を稠密に配列して(すなわち、ハニカム状として)、下部電極14全体中の貫通孔141の面積の割合をできるだけ大きくすることが望ましい。これにより、プラズマガスによる処理対象物19の滅菌処理の効率が向上する。
<2. Configuration of lower electrode>
As described above, the lower electrode 14 is perforated with a large number of through holes 141 (FIG. 2). As shown in FIG. 5, the through hole 141 has a regular hexagonal shape, and the through holes 141 are densely arranged in the lower electrode 14 (that is, as a honeycomb shape) in the entire lower electrode 14. It is desirable to make the ratio of the area of the through hole 141 as large as possible. This improves the efficiency of the sterilization treatment of the object 19 to be treated with plasma gas.

このようなハニカム状の電極(板)は、金属製の板材に貫通孔141を穿孔することによって作製してもよいが、図6に示すように、細長い金属製の板を一定間隔で120度ずつ表裏に曲げた部品142を多数重ねることにより作製することができる。電極の金属としては、従来同様、アルミ、銅、銀等を用いることができる。 Such a honeycomb-shaped electrode (plate) may be produced by drilling through holes 141 in a metal plate material, but as shown in FIG. 6, elongated metal plates are formed at regular intervals of 120 degrees. It can be manufactured by stacking a large number of parts 142 bent on the front and back. As the metal of the electrode, aluminum, copper, silver or the like can be used as in the conventional case.

下部電極14としては、このようなハニカム状のものの他、図9に示すような、円貫通孔を稠密に配列したもの(a)、矩形網状にしたもの(b)、三角形貫通孔を稠密に配列したもの(c)、スリット状の貫通孔を配列したもの(d)、スリットの幅が規則的に変わる貫通孔を配列したもの(e)、十字形の貫通孔を規則的に配列したもの(f) 等でもよい。貫通孔の形状をこれらの形状にすることにより、イオンがこの貫通孔に滞留する際の収容周波数帯を広げることができる。 As the lower electrode 14, in addition to the honeycomb-shaped one, as shown in FIG. 9, the circular through holes are densely arranged (a), the rectangular net-like one (b), and the triangular through holes are densely arranged. Arranged (c), slit-shaped through holes arranged (d), through holes with regularly changing slit width (e), cross-shaped through holes arranged regularly (f) etc. may be used. By making the shape of the through hole into these shapes, it is possible to widen the accommodation frequency band when ions stay in the through hole.

<3.プラズマ滅菌装置の動作>
本実施形態のプラズマ滅菌装置10を用いて処理対象物19の滅菌処理を行う際の流れを図7のフローチャートによって説明する。まず、筐体11の扉15を開け、処理対象物19を処理台12上に載置する(ステップS1)。そして扉15を閉め、排気部40により筐体11内を十分に排気する(ステップS2)。
<3. Operation of plasma sterilizer>
The flow of sterilizing the object 19 to be processed using the plasma sterilizer 10 of the present embodiment will be described with reference to the flowchart of FIG. First, the door 15 of the housing 11 is opened, and the object 19 to be processed is placed on the processing table 12 (step S1). Then, the door 15 is closed, and the inside of the housing 11 is sufficiently exhausted by the exhaust unit 40 (step S2).

次にプラズマ源ガス供給部30により上部電極13と下部電極14の間の空間に水蒸気(H2O)を所定の流量で導入しつつ(ステップS3)、下部電極14に該流量の水蒸気をプラズマ化するための高周波電力を投入する(ステップS4)。これにより、上部電極13と下部電極14の間の空間の水蒸気はプラズマ化され、プラズマ化により生成したOH-やH+、H3O+等のイオン及び未だプラズマ化されていないH2O等が混合したプラズマガス18となる。プラズマガス18は導入管31から導入される水蒸気の圧力により順次、下部電極14の貫通孔141を通って処理空間16に送られ(図2)、処理対象物19に照射される。 Next, the plasma source gas supply unit 30 introduces water vapor (H 2 O) into the space between the upper electrode 13 and the lower electrode 14 at a predetermined flow rate (step S3), and plasma the water vapor at that flow rate into the lower electrode 14. High-frequency power is applied to make the plasma (step S4). As a result, the water vapor in the space between the upper electrode 13 and the lower electrode 14 is turned into plasma, and ions such as OH- , H + , and H 3 O + generated by plasma formation and H 2 O, etc. that have not yet been turned into plasma. Becomes the mixed plasma gas 18. The plasma gas 18 is sequentially sent to the processing space 16 through the through hole 141 of the lower electrode 14 by the pressure of the water vapor introduced from the introduction pipe 31 (FIG. 2), and is irradiated to the processing object 19.

ここで、プラズマガス18が貫通孔141を通過する際、下部電極14から再度エネルギーを受け、水蒸気(H2O)のイオン乖離が進む。また、プラズマ化中の水素イオン(H+)は、多くが下部電極14(貫通孔141)の壁面等に衝突して消滅する一方、ヒドロキシイオン(OH-)は、下部電極14(貫通孔141)の壁面等に接触した際、下部電極14に印加されている高周波電圧によりそこに電子(e-)を放出し、中性のヒドロキシラジカル(OH*)となる。このヒドロキシラジカルは強力な滅菌作用を有するため、本実施形態のプラズマ滅菌装置10では処理対象物19に対して強力な滅菌処理を施すことができる。また、処理対象物19に照射されるプラズマガス18中のラジカルの割合が増えるため、イオンのみが照射される場合よりも処理対象物19の温度を上げることが少ない。 Here, when the plasma gas 18 passes through the through hole 141, energy is received again from the lower electrode 14, and the ion dissociation of water vapor (H 2 O) proceeds. In addition, most of the hydrogen ions (H + ) during plasma formation collide with the wall surface of the lower electrode 14 (through hole 141) and disappear, while the hydroxy ions (OH ) are extinguished by the lower electrode 14 (through hole 141). ), When it comes into contact with the wall surface or the like, an electron (e ) is emitted there by a high frequency voltage applied to the lower electrode 14, and it becomes a neutral hydroxy radical (OH * ). Since this hydroxyl radical has a strong sterilizing action, the plasma sterilizing apparatus 10 of the present embodiment can perform a strong sterilizing treatment on the object 19 to be treated. Further, since the ratio of radicals in the plasma gas 18 irradiated to the object 19 to be processed increases, the temperature of the object 19 to be processed is less likely to be raised than when only ions are irradiated.

こうして所定の時間だけ処理対象物19にプラズマガス18を照射した(ステップS5)後、高周波電力の投入及び水蒸気の導入を停止し、滅菌処理を終了する。なお、高周波電力の投入及び水蒸気の導入を停止した後も暫くは排気部40の動作を続け、筐体11内から殺菌性のガスを排出する。排出されるガスに対して適切な無害化処理が行われるのはもちろんである。終了処理が完全に終わった後、処理対象物19を筐体11内から取り出す(ステップS6)。 In this way, after irradiating the treatment object 19 with the plasma gas 18 for a predetermined time (step S5), the input of high-frequency power and the introduction of steam are stopped, and the sterilization treatment is completed. The exhaust unit 40 continues to operate for a while even after the input of high-frequency power and the introduction of water vapor are stopped, and the bactericidal gas is discharged from the inside of the housing 11. It goes without saying that appropriate detoxification treatment is performed for the discharged gas. After the end processing is completely completed, the object 19 to be processed is taken out from the inside of the housing 11 (step S6).

<4.実施例>
処理対象物19を上記のような作用で十分に滅菌するためには、プラズマが安定して形成されなければならない。本プラズマ滅菌装置10では下部電極14に貫通孔141が設けられていることから、安定したプラズマ形成のための条件を探索することとした。
<4. Example>
In order to sufficiently sterilize the object 19 to be treated by the above-mentioned action, plasma must be stably formed. Since the lower electrode 14 is provided with a through hole 141 in the plasma sterilizer 10, it was decided to search for conditions for stable plasma formation.

使用したプラズマ滅菌装置10の下部電極14の大きさは338×648mm、厚さは10mmである。この下部電極14に様々な大きさの円形の貫通孔141を稠密に設けた。具体的には、貫通孔の直径Φを10、15、20、25、30、35、40mmとし、隣接する貫通孔間の距離dは全て2.5mmとした。貫通孔をそれらの大きさとした(そして隣接貫通孔間の距離dを2.5mmとした)場合の、各貫通孔の面積、下部電極の面積に対する貫通孔の面積率(開孔率)及び各貫通孔の容積を図8に示した。下部電極における貫通孔の開孔率は40~90%が好ましく、60~90%がより好ましい。各貫通孔の容積は100~20000mm3とするのが望ましく、100~15000mm3がより望ましい。 The size of the lower electrode 14 of the plasma sterilizer 10 used is 338 × 648 mm, and the thickness is 10 mm. Circular through holes 141 of various sizes were densely provided in the lower electrode 14. Specifically, the diameter Φ of the through holes was set to 10, 15, 20, 25, 30, 35, 40 mm, and the distance d between adjacent through holes was set to 2.5 mm. When the through holes are of their size (and the distance d between adjacent through holes is 2.5 mm), the area of each through hole, the area ratio of the through hole to the area of the lower electrode (opening ratio), and each through hole. The volume of the holes is shown in FIG. The opening rate of the through hole in the lower electrode is preferably 40 to 90%, more preferably 60 to 90%. The volume of each through hole is preferably 100 to 20000 mm 3 , more preferably 100 to 15000 mm 3 .

そして、それぞれの下部電極14について、投入する高周波電力(周波数は13.56MHz)の大きさを300 W(0.136 W/cm2)に、両電極13、14間に導入する水蒸気の流量を20sccmに、それぞれ固定しつつ、排気部40による排気強さを変えることにより処理空間16内の圧力を50、80、90、120Paに変化させ、それぞれの場合のプラズマ生成の良否を目視により調べた。その結果を図8の表に示す。図8の表において、○はプラズマが安定して生成され、貫通孔141の中で高濃度に維持されている状態が継続したことを示す。このような状態が継続することにより、プラズマガスがやや長い時間貫通孔141内に滞留することができるため、プラズマガス中のイオンが比較的多くラジカルに変換されやすくなる。図8の表において、×はプラズマの生成が安定せず、プラズマガスが速やかに処理空間16の方に流出して、貫通孔141にはあまり滞留しない状態であったことを示す。△はプラズマガスが貫通孔141には滞留していたが、貫通孔141内での厚みが減少し、濃度が低い状態となっていたことを示す。 Then, for each lower electrode 14, the magnitude of the high frequency power (frequency is 13.56 MHz) to be input is set to 300 W (0.136 W / cm 2 ), and the flow rate of water vapor introduced between both electrodes 13 and 14 is set to 20 sccm. While fixing each, the pressure in the processing space 16 was changed to 50, 80, 90, 120 Pa by changing the exhaust strength by the exhaust unit 40, and the quality of plasma generation in each case was visually examined. The results are shown in the table of FIG. In the table of FIG. 8, ◯ indicates that the plasma was stably generated and the state in which the high concentration was maintained in the through hole 141 continued. By continuing such a state, the plasma gas can stay in the through hole 141 for a slightly long time, so that a relatively large amount of ions in the plasma gas are easily converted into radicals. In the table of FIG. 8, x indicates that the plasma generation was not stable, the plasma gas rapidly flowed out toward the processing space 16, and the plasma gas did not stay in the through hole 141 very much. Δ indicates that the plasma gas was retained in the through hole 141, but the thickness in the through hole 141 was reduced and the concentration was low.

貫通孔141内でのプラズマガスの滞留は、プラズマガス中のイオンの質量電荷比(m/z)と、下部電極14に印加される高周波電圧の周波数(f)と、貫通孔141の大きさ(径Φ又は容積V)に依存すると考えられる。本実施例の場合、プラズマガス中の主たるイオンはヒドロキシイオン(OH-)であるが、その場合には図8の表中の○となっている範囲の条件が滅菌等のプラズマ処理において有効に作用する条件であることがわかる。 The retention of plasma gas in the through hole 141 is the mass-to-charge ratio of ions in the plasma gas (m / z), the frequency (f) of the high frequency voltage applied to the lower electrode 14, and the size of the through hole 141. It is considered to depend on (diameter Φ or volume V). In the case of this embodiment, the main ion in the plasma gas is hydroxy ion (OH ), but in that case, the conditions in the range of ○ in the table of FIG. 8 are effective in plasma treatment such as sterilization. It turns out that it is a condition that works.

10…プラズマ滅菌装置
11…筐体
12…処理台
13、132…上部電極
14…下部電極
131、141…貫通孔
15…扉
16…処理空間
18…プラズマガス
19…処理対象物
21…高周波電源
22…マッチング部
30…プラズマ源ガス供給部
40…排気部
50…制御部
10 ... Plasma sterilizer 11 ... Housing 12 ... Processing table 13, 132 ... Upper electrode 14 ... Lower electrode 131, 141 ... Through hole 15 ... Door 16 ... Processing space 18 ... Plasma gas 19 ... Processing object 21 ... High frequency power supply 22 ... Matching unit 30 ... Plasma source gas supply unit 40 ... Exhaust unit 50 ... Control unit

Claims (7)

処理室内に配置される処理対象物に対向するように設けられる第1電極と、
前記処理対象物と前記第1電極の間に設けられる、貫通孔を有する板状の第2電極と、
前記第1電極と前記第2電極の間でプラズマとなるガスを供給するガス供給部と、
前記第1電極を接地極として前記第2電極に前記ガスをプラズマ化するための高周波電力を供給する電力供給部と
を備えることを特徴とするプラズマ処理装置。
The first electrode provided so as to face the object to be processed arranged in the processing chamber, and
A plate-shaped second electrode having a through hole provided between the object to be treated and the first electrode, and a plate-shaped second electrode.
A gas supply unit that supplies a gas that becomes plasma between the first electrode and the second electrode,
A plasma processing apparatus comprising the first electrode as a grounding electrode and a power supply unit for supplying high-frequency power for converting the gas into plasma to the second electrode.
前記ガス供給部が、前記ガスを前記第1電極と前記第2電極の間に供給する請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the gas supply unit supplies the gas between the first electrode and the second electrode. 前記第1電極が貫通孔を有し、前記ガス供給部が、前記ガスを前記第1電極の前記第2電極とは反対の側に供給する請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the first electrode has a through hole, and the gas supply unit supplies the gas to the side of the first electrode opposite to the second electrode. 前記第2電極の貫通孔が前記第2電極に複数設けられている請求項1~3のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 3, wherein a plurality of through holes of the second electrode are provided in the second electrode. 前記第2電極の貫通孔の平面形状が正六角形であり、前記第2電極に稠密に設けられている請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein the planar shape of the through hole of the second electrode is a regular hexagon, and the second electrode is densely provided. 前記第2電極の貫通孔の平面形状が円形であり、前記第2電極に稠密に設けられている請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein the through hole of the second electrode has a circular planar shape and is densely provided on the second electrode. 前記ガスが水蒸気(H2O)である請求項1~6のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 6, wherein the gas is steam (H 2 O).
JP2020185712A 2020-11-06 2020-11-06 Plasma sterilizer Pending JP2022075126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020185712A JP2022075126A (en) 2020-11-06 2020-11-06 Plasma sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020185712A JP2022075126A (en) 2020-11-06 2020-11-06 Plasma sterilizer

Publications (1)

Publication Number Publication Date
JP2022075126A true JP2022075126A (en) 2022-05-18

Family

ID=81605444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020185712A Pending JP2022075126A (en) 2020-11-06 2020-11-06 Plasma sterilizer

Country Status (1)

Country Link
JP (1) JP2022075126A (en)

Similar Documents

Publication Publication Date Title
JP2780228B2 (en) Plasma sterilization method and apparatus by pulsed sterilizing agent treatment
RU2413537C2 (en) Nitrogen and hydrogen gas plasma sterilising unit
US20170312376A1 (en) Hydrogen peroxide plasma ionization generator device having a double-jet nozzle
JP2014167913A (en) System and method for treatment of biofilm
JP5403753B2 (en) Plasma sterilization method
JP2000308675A (en) Improved sterilizing method improved in compatibility of material
US20130202496A1 (en) Cold plasma jet hand sanitizer
KR20200079911A (en) Air sterilization deodorizer using high efficiency plasma, uv and catalyst
JP5511289B2 (en) Medical sterilizer
WO2013101673A1 (en) Plasma sterilization systems
KR101320291B1 (en) Handpiece-type plasma apparatus for local sterilization and disinfection
WO2013105659A1 (en) Active species irradiation device, active species irradiation method and method for forming object having been irradiated with active species
KR20130099522A (en) Apoptosis method of abnormal cell useing atmospheric pressure plasma for bio-medical applications
RU2638569C1 (en) Method for sterilisation using gas-discharge plasma of atmospheric pressure and device for its implementation
WO2008083480A1 (en) Device and method for inactivation and/or sterilization using plasma
JP2022075126A (en) Plasma sterilizer
JP2020010694A (en) Atmospheric pressure plasma sterilization apparatus
US20140003998A1 (en) Plasma Sterilization System
KR20190008632A (en) Plasma sterlizer
JP3762375B2 (en) Plasma sterilizer
KR101647480B1 (en) Atomospheric pressure plasma processing apparatus for removing high concentrated hydrogen peroxide
RU2102084C1 (en) Method for sterilizing objects
JP4836207B2 (en) Superheated steam sterilizer
KR102146200B1 (en) high density fusion plasma sterilization and deodorizer
Yoshino et al. Development of low-temperature sterilization device using atmospheric pressure air plasma with circulating flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231018