JP2022075074A - Sonar system, method, and program - Google Patents

Sonar system, method, and program Download PDF

Info

Publication number
JP2022075074A
JP2022075074A JP2020185624A JP2020185624A JP2022075074A JP 2022075074 A JP2022075074 A JP 2022075074A JP 2020185624 A JP2020185624 A JP 2020185624A JP 2020185624 A JP2020185624 A JP 2020185624A JP 2022075074 A JP2022075074 A JP 2022075074A
Authority
JP
Japan
Prior art keywords
array
sound wave
receiving elements
sound
arrival direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020185624A
Other languages
Japanese (ja)
Inventor
達也 鳴海
Tatsuya Narumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2020185624A priority Critical patent/JP2022075074A/en
Publication of JP2022075074A publication Critical patent/JP2022075074A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To provide a sonar system that can estimate the shape of a towed array without using a sensor such as a compass.SOLUTION: A sonar system includes a reception processing device that calculates an arrival direction of a sound wave from reception data of the sound wave for each of a plurality of combinations different from each other of a plurality of receiving elements constituting an array, and estimates the shape of the array based on the arrival direction and an arrival time of the sound wave.SELECTED DRAWING: Figure 3

Description

本発明は、受信処理装置、ソーナーシステム、方法、プログラムに関する。 The present invention relates to a receiving processing device, a sonar system, a method, and a program.

ソーナーは、音波を用いて水中の物体の位置を特定する装置であり、音波を受信する受信素子を複数並べたアレイを備え、水中の音響情報を得る。受信素子は、受信した音波を電気信号に変換する。えい航式ソーナーでは、船舶等のプラットフォームが、受信素子を複数並べたアレイをケーブルでえい航する。ケーブルおよびアレイは、プラットフォームの移動や海流などから外力を受け変形する。この変形は予測が難しい。このため、プラットフォームから見たアレイの正確な位置の推定を困難としている。このようなアレイの位置誤差は信号処理などに影響を及ぼし、ソーナー自体の性能に悪影響を及ぼす。 A sonar is a device that identifies the position of an object in the water using sound waves, includes an array in which a plurality of receiving elements that receive sound waves are arranged, and obtains acoustic information in the water. The receiving element converts the received sound wave into an electric signal. In tow-type sonar, a platform such as a ship tows an array of multiple receiving elements with a cable. Cables and arrays are deformed by receiving external force from platform movements and ocean currents. This deformation is difficult to predict. This makes it difficult to estimate the exact position of the array as seen from the platform. The position error of such an array affects signal processing and the like, and adversely affects the performance of the sonar itself.

例えば特許文献1には、ラインアレイの受波器の位置にコンパスを設定し、各コンパスの出力と、既知である受波器間の間隔とを用いて、各受波器の座標を求め、ラインアレイが変形した場合の形状を求めている。このように、ジャイロコンパスなどのセンサを、アレイを構成する複数の受波器に複数付けることで、プラットフォームから見たアレイの位置の推定精度を高めている。しかし、アレイを構成する受波器の数だけ、センサ(コンパス)が必要となる。えい航式ソーナーでは、受波器は多数配列されるため、多数のセンサ(コンパス)をアレイに内蔵する必要があり、製造コスト等の点で実用性に欠けたものとなる。この問題に対して、特許文献2には、えい航ケーブルにコンパスを備え、信号処理装置は、えい航ケーブルを通じてコンパスからコンパス方位情報(コンパス方位)と、ラインアレイの各受波器から受波信号とを受け取り、これらコンパス方位及び受波信号を用いて整相処理を行ない、整相出力を用いて目標の存在や方位等(例えば、方位、深度、傾斜度など)を検出する。 For example, in Patent Document 1, a compass is set at the position of the receiver of the line array, and the coordinates of each receiver are obtained by using the output of each compass and the known distance between the receivers. We are looking for a shape when the line array is deformed. In this way, by attaching a plurality of sensors such as a gyro compass to a plurality of receivers constituting the array, the accuracy of estimating the position of the array as seen from the platform is improved. However, as many sensors (compasses) as the number of receivers that make up the array are required. In a tow-type sonar, since a large number of receivers are arranged, it is necessary to incorporate a large number of sensors (compasses) in the array, which makes it impractical in terms of manufacturing cost and the like. To solve this problem, Patent Document 2 provides a compass for the tow cable, and the signal processing device receives compass directional information (compass directional) from the compass and a received signal from each receiver of the line array through the tow cable. Is received, phase adjustment processing is performed using these compass directions and received signals, and the presence and direction of the target (for example, direction, depth, inclination, etc.) are detected using the phase adjustment output.

特開2008-261727号公報Japanese Unexamined Patent Publication No. 2008-261727 特開2011-158391号公報Japanese Unexamined Patent Publication No. 2011-158391

上記したように、えい航式ソーナーは、水中にあるアレイの形状が正確に把握できないため、信号処理などにおいて誤差を発生させる要因となり、ソーナーの性能に悪影響を及ぼす。 As described above, the tow-type sonar cannot accurately grasp the shape of the array underwater, which causes an error in signal processing and the like, which adversely affects the performance of the sonar.

本発明は、上記課題に鑑みて創案されたものであって、その目的は、コンパス等のセンサによらずに、えい航式アレイの形状を推定可能な装置、方法、プログラムを提供することにある。 The present invention has been devised in view of the above problems, and an object of the present invention is to provide a device, a method, and a program capable of estimating the shape of a towed array without using a sensor such as a compass. ..

本発明の一つの側面によれば、ソーナーシステムの受信処理装置は、アレイを構成する複数の受信素子の互いに異なる複数の組み合わせの各々について、音波の受信データから前記音波の到来方位を計算し、前記到来方位と、前記音波の到来時間に基づき、前記アレイの形状を推定する。 According to one aspect of the present invention, the reception processing device of the sonar system calculates the arrival direction of the sound wave from the reception data of the sound wave for each of a plurality of different combinations of the plurality of receiving elements constituting the array. The shape of the array is estimated based on the arrival direction and the arrival time of the sound wave.

本発明の一つの側面によれば、えい航ソーナーシステムにおける複数の受信素子からなるアレイの形状を推定する方法であって、
前記受信素子の互いに異なる複数の組み合わせの各々について、音波の受信データから前記音波の到来方位を計算し、
前記到来方位と、前記音波の到来時間に基づき、前記アレイの形状を推定する、アレイ形状推定方法が提供される。
According to one aspect of the present invention, it is a method of estimating the shape of an array consisting of a plurality of receiving elements in a tow sonar system.
For each of the plurality of different combinations of the receiving elements, the arrival direction of the sound wave is calculated from the received data of the sound wave.
An array shape estimation method for estimating the shape of the array based on the arrival direction and the arrival time of the sound wave is provided.

本発明の一つの側面によれば、えい航ソーナーシステムにおける複数の受信素子からなるアレイの形状を推定する処理をコンピュータに実行させるプログラムであって、
前記受信素子の互いに異なる複数の組み合わせの各々について、音波の受信データから前記音波の到来方位を計算し、前記到来方位と、前記音波の到来時間に基づき、前記アレイの形状を推定する、プログラムが提供される。さらに、本発明によれば、上記プログラムを記憶したコンピュータ可読型記録媒体((例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM))等の半導体ストレージ、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc))が提供される。
According to one aspect of the present invention, it is a program that causes a computer to execute a process of estimating the shape of an array consisting of a plurality of receiving elements in a tow sonar system.
A program that calculates the arrival direction of the sound wave from the reception data of the sound wave for each of the plurality of different combinations of the receiving elements, and estimates the shape of the array based on the arrival direction and the arrival time of the sound wave. Provided. Further, according to the present invention, a semiconductor storage such as a computer-readable recording medium (for example, RAM (Random Access Memory), ROM (Read Only Memory), or EEPROM (Electrically Erasable and Programmable ROM)) that stores the above program. , HDD (Hard Disk Drive), CD (Compact Disc), DVD (Digital Versatile Disc)).

本発明によれば、コンパス等のセンサによらずに、えい航式アレイの形状を推定可能としている。 According to the present invention, the shape of the towed array can be estimated without using a sensor such as a compass.

本発明の実施形態の構成を模式的に例示する図である。It is a figure which schematically exemplifies the structure of the embodiment of this invention. 本発明の実施形態を模式的に例示する図である。It is a figure which schematically exemplifies the embodiment of this invention. 本発明の実施形態の構成を模式的に例示する図である。It is a figure which schematically exemplifies the structure of the embodiment of this invention. 本発明の実施形態を説明する図である。It is a figure explaining the embodiment of this invention. 本発明の実施形態を説明する図である。It is a figure explaining the embodiment of this invention. 本発明の実施形態を説明する図である。It is a figure explaining the embodiment of this invention. 本発明の実施形態の構成を模式的に例示する図である。It is a figure which schematically exemplifies the structure of the embodiment of this invention.

本発明の実施形態について説明する。本発明によれば、えい航式ソーナーにおけるアレイの各受信素子で受信した音響信号に基づき、信号処理などの数値演算によりアレイの形状の推定を実現している。ここでは、えい航式ソーナーとして、えい航用のケーブルに複数の受信素子(受波器)が数珠つなぎ(線状)に並んだアレイ(ラインアレイ)を想定する。えい航式ソーナーと送信装置を備えた艦船等のプラットフォームにおいて、アレイの受信素子の受信データから、該アレイの形状を推定する。すなわち、ラインアレイ上に並んだ複数の受信素子がある音源から発せられた音響信号(音波)を受信したとき、隣り合う受信素子対の受信信号から位相差を計算し、該受信素子対の中間点から見た音源の方位を計算する。この音源方位の計算を、ラインアレイの隣り合う受信素子対間で行うことで、ラインアレイから見た音源の方位線を複数本引くことができる。音源の位置が既知の場合、該音源から見たラインアレイの形状を推定することできる。 An embodiment of the present invention will be described. According to the present invention, the shape of the array is estimated by numerical calculation such as signal processing based on the acoustic signal received by each receiving element of the array in the towed sonar. Here, as a tow-type sonar, an array (line array) in which a plurality of receiving elements (receivers) are arranged in a string (line) on a tow cable is assumed. In a platform such as a ship equipped with a tow-type sonar and a transmitter, the shape of the array is estimated from the received data of the receiving element of the array. That is, when a plurality of receiving elements arranged on a line array receive an acoustic signal (sound wave) emitted from a sound source, the phase difference is calculated from the received signals of adjacent receiving element pairs, and the middle of the receiving element pairs. Calculate the orientation of the sound wave as seen from the point. By calculating this sound source orientation between adjacent receiving element pairs in the line array, it is possible to draw a plurality of orientation lines of the sound source as seen from the line array. If the position of the sound source is known, the shape of the line array as seen from the sound source can be estimated.

図1を参照して、本発明の一実施形態のソーナーシステム100を説明する。図1において、送受信制御装置101、送信装置102、受信処理装置103は、艦船等のプラットフォームに配置される。アレイ(ラインアレイ)105を構成する複数(N個)の受信素子104は不図示のケーブルでえい航され、受信処理装置103に電気的に接続される。 The sonar system 100 according to the embodiment of the present invention will be described with reference to FIG. In FIG. 1, the transmission / reception control device 101, the transmission device 102, and the reception processing device 103 are arranged on a platform such as a ship. The plurality of (N) receiving elements 104 constituting the array (line array) 105 are towed by a cable (not shown) and electrically connected to the receiving processing device 103.

送信装置102は、送受信制御装置101から供給される送信信号(電気信号)を音響信号(音波)に変換して送出する。 The transmission device 102 converts the transmission signal (electrical signal) supplied from the transmission / reception control device 101 into an acoustic signal (sound wave) and transmits the sound signal (sound wave).

各受信素子104は、音波を受信し該音波を電気信号に変換し、受信処理装置103にデータを送る。なお、各受信素子104では、音波を変換した電気信号を不図示のアナログデジタル変換器でデジタル信号データに変換し、不図示のケーブルの伝送線路を介して受信処理装置103に送信するようにしてもよい。受信処理装置103では、各受信素子104から送信されたデータが、いずれの受信素子104からのものであるか判別可能に構成されている。 Each receiving element 104 receives a sound wave, converts the sound wave into an electric signal, and sends data to the receiving processing device 103. In each receiving element 104, the electric signal converted from the sound wave is converted into digital signal data by an analog-digital converter (not shown) and transmitted to the receiving processing device 103 via the transmission line of the cable (not shown). May be good. The reception processing device 103 is configured to be able to determine which receiving element 104 the data transmitted from each receiving element 104 is from.

送受信制御装置101は、送信装置102から送信する送信信号波形や送信時間などの情報(データ)を、送信装置102と受信処理装置103に送る。 The transmission / reception control device 101 sends information (data) such as a transmission signal waveform and a transmission time to be transmitted from the transmission device 102 to the transmission device 102 and the reception processing device 103.

受信処理装置103は、送受信制御装置101と、各受信素子104から送信されたデータに対して演算処理を行うことで、アレイ105の形状を推定する。 The reception processing device 103 estimates the shape of the array 105 by performing arithmetic processing on the data transmitted from the transmission / reception control device 101 and each reception element 104.

図2は、本発明の実施形態のシステムを説明する図である。図1の送受信制御装置101、送信装置102、受信処理装置103を備えた艦船110は、艦尾側から、複数の受信素子104(N個の受信素子1041~104N)がケーブル106で連結されたアレイ105(「えい航アレイ」ともいう)をえい航する。艦船110の船底側の送信装置102から送信された音波は、アレイ105の複数の受信素子104で受信される。受信素子104は、円筒型受感部を備えた円筒型ハイドロフォンで構成される。アレイ105の複数の受信素子104は、艦船110内の受信処理装置103とケーブル106を介して電気的に接続される。 FIG. 2 is a diagram illustrating a system according to an embodiment of the present invention. In the ship 110 provided with the transmission / reception control device 101, the transmission device 102, and the reception processing device 103 of FIG. 1, a plurality of reception elements 104 (N reception elements 104 1 to 104 N ) are connected by a cable 106 from the stern side. Tow the array 105 (also referred to as the "tow array"). The sound wave transmitted from the transmitting device 102 on the bottom side of the ship 110 is received by the plurality of receiving elements 104 of the array 105. The receiving element 104 is composed of a cylindrical hydrophone provided with a cylindrical sensing portion. The plurality of receiving elements 104 of the array 105 are electrically connected to the receiving processing device 103 in the ship 110 via the cable 106.

図3は、図1の受信処理装置103で実行される処理(機能)を説明する図である。受信データ1031は、各受信素子104で受信した音響信号(音波)をデジタル信号に変換したデータを含む。また、各受信素子104からの受信データ1031は各受信素子104で当該音響信号(音波)を受信した時刻情報を含むようにしてもよい。 FIG. 3 is a diagram illustrating a process (function) executed by the reception processing device 103 of FIG. The received data 1031 includes data obtained by converting an acoustic signal (sound wave) received by each receiving element 104 into a digital signal. Further, the received data 1031 from each receiving element 104 may include the time information when the acoustic signal (sound wave) is received by each receiving element 104.

方位計算処理1032は、隣り合う受信素子104対からの受信データ1031の組から、受信した音波の周波数と、受信素子間の距離を用いて、音波の到来方位を計算する。 The azimuth calculation process 1032 calculates the arrival direction of the sound wave from the set of the received data 1031 from the adjacent receiving element 104 pairs by using the frequency of the received sound wave and the distance between the receiving elements.

図4は、方位計算処理1032を説明する図である。図4における到来方位θiは、隣り合うi番目と(i+1)番目の受信素子104間の距離:di、音波の周波数:f、音速:C、隣り合うi番目と(i+1)番目の受信素子104間の位相差αを用いて、次式(1)で求められる。sin-1は逆正弦関数である。 FIG. 4 is a diagram illustrating the direction calculation process 1032. The arrival direction θ i in FIG. 4 is the distance between the adjacent i-th and ( i + 1) th receiving elements 104: di, the sound wave frequency: f, the speed of sound: C, and the adjacent i-th and (i + 1). The phase difference α between the) th receiving elements 104 is obtained by the following equation (1). sin -1 is an inverse trigonometric function.

Figure 2022075074000002
…(1)
Figure 2022075074000002
… (1)

ただし、式(1)の解は、受信素子間距離diが、音波の波長:C/fより大きい場合、すなわち、di>C/fの場合に、-π<θi<πとなり、到来方位を求めることができない領域が存在する。 However, the solution of Eq. (1) is that when the distance di between the receiving elements is larger than the wavelength of the sound wave: C / f, that is, when di> C / f, −π <θ i < π . There is an area where the arrival direction cannot be determined.

音源である送信装置102が、このような波長の音波を用いる場合は、位相差αの代わりに、

Figure 2022075074000003
…(2)
を用いて式(1)を解くようにしてもよい。このとき、到来方位は(2n+1)個求まるが、同じ方位から到来する複数の波長の音波に対して同様の計算をすることで、真の到来方位を求めることができる。 When the transmission device 102, which is a sound source, uses a sound wave having such a wavelength, instead of the phase difference α,
Figure 2022075074000003
… (2)
May be used to solve equation (1). At this time, (2n + 1) arrival directions can be obtained, but the true arrival direction can be obtained by performing the same calculation for sound waves of a plurality of wavelengths arriving from the same direction.

方位計算処理1032を、隣り合う受信素子104からの受信データ1031に対して行うことで、図5に示すように、音波の到来方位線を複数本引くことができる。すなわち、隣り合う受信素子間の中心の各々における、音源である送信装置102に対する方位(到来方位線)が求まる。図5から、音源(送信装置102)の位置座標が、到来方位線(到来方位と、隣り合う受信素子間の中心と音源との間の距離)と、隣り合う受信素子間距離diから、隣り合う受信素子の位置が求まる。 By performing the direction calculation process 1032 on the received data 1031 from the adjacent receiving elements 104, as shown in FIG. 5, a plurality of sound wave arrival direction lines can be drawn. That is, the direction (arrival direction line) with respect to the transmission device 102, which is a sound source, can be obtained at each of the centers between adjacent receiving elements. From FIG. 5, the position coordinates of the sound source (transmitter 102) are derived from the arrival direction line (the arrival direction and the distance between the center between the adjacent receiving elements and the sound source) and the distance di between the adjacent receiving elements. The positions of adjacent receiving elements can be obtained.

形状推定処理1033は、受信データ1031から算出した音波の到来時間(受信素子104での音波の受信時刻)や方位計算処理1032での方位の結果などを用いることで、アレイの形状を推定する。送受信制御装置101からの音波の送信時刻と到来時間から、該受信素子104と音源との間の距離が求まる。具体的には、例えば、図6に示すような変数に対して、以下の式(3)~(6)を用いて、隣り合うi番目と(i+1)番目の受信素子104の座標を求める。 The shape estimation process 1033 estimates the shape of the array by using the arrival time of the sound wave calculated from the received data 1031 (the reception time of the sound wave by the receiving element 104), the result of the direction in the direction calculation process 1032, and the like. The distance between the receiving element 104 and the sound source can be obtained from the transmission time and arrival time of the sound wave from the transmission / reception control device 101. Specifically, for example, for the variable shown in FIG. 6, the coordinates of the i-th and (i + 1) -th receiving elements 104 adjacent to each other are set by using the following equations (3) to (6). demand.

図6において、受信素子座標(xi, yi)、(xi+1, yi+1)は、隣り合うi番目と(i+1)番目の受信素子(図2の受信素子104i、104i+1(i=1,…,N-1))の2次元位置座標、(x0, y0)は音源(送信装置102)の2次元位置座標である。なお、図6において、横方向はx座標(x軸)、縦方向はy座標(y軸)である。本実施形態では、受信素子104、音源の各座標は、例えば海面に平行な2次元平面への射影座標としている。これは、アレイ105の受信素子104は、例えば中性浮力ケーブル等を用いて海面に平行となるように設計されており、2次元平面で扱っても誤差は小さいためである。すなわち、Z軸座標(深度)の値は同一としても、アレイ形状の推定誤差は小さい。したがって、形状推定処理1033で推定されるアレイの形状は、2次元平面上に射影された形状となる。 In FIG. 6, the receiving element coordinates (x i , y i ) and (x i + 1 , y i + 1 ) are adjacent i-th and (i + 1) th receiving elements (reception element 104 i in FIG. 2). , 104 i + 1 (i = 1, ..., N-1)), and (x 0 , y 0 ) are the two-dimensional position coordinates of the sound source (transmitter 102). In FIG. 6, the horizontal direction is the x-coordinate (x-axis) and the vertical direction is the y-coordinate (y-axis). In this embodiment, the coordinates of the receiving element 104 and the sound source are, for example, the coordinates projected onto a two-dimensional plane parallel to the sea surface. This is because the receiving element 104 of the array 105 is designed to be parallel to the sea surface by using, for example, a neutral buoyancy cable, and the error is small even if it is handled in a two-dimensional plane. That is, even if the Z-axis coordinates (depth) values are the same, the estimation error of the array shape is small. Therefore, the shape of the array estimated by the shape estimation process 1033 is a shape projected on a two-dimensional plane.

図6において、diは、隣り合う受信素子104i、104i+1間の距離(受信素子間距離)(既知)である。音源距離lは、隣り合う受信素子104i、104i+1の中心からの音源(図1の送信装置102)までの距離である。音源距離lは、受信素子104i、104i+1でそれぞれ求めた音源(図1の送信装置102)までの距離(算出済み)を算術平均した値としてもよい。隣り合う受信素子104i、104i+1に関するケーブル正横方位φiは、真北からの真方位である。到来方位θiは、隣り合う受信素子104i、104i+1の中心における音波の到来方位(算出済み)である。図6から、次式(3)~(6)が成立することがわかる。 In FIG. 6, di is a distance (distance between receiving elements) (known) between adjacent receiving elements 104 i and 104 i + 1 . The sound source distance l i is the distance from the center of the adjacent receiving elements 104 i and 104 i + 1 to the sound source (transmitting device 102 in FIG. 1). The sound source distance l i may be a value obtained by arithmetically averaging the distances (calculated) to the sound source (transmitter 102 in FIG. 1) obtained by the receiving elements 104 i and 104 i + 1 , respectively. The cable positive lateral direction φ i with respect to the adjacent receiving elements 104 i and 104 i + 1 is the true direction from true north. The arrival direction θ i is the arrival direction (calculated) of the sound wave at the centers of the adjacent receiving elements 104 i and 104 i + 1 . From FIG. 6, it can be seen that the following equations (3) to (6) hold.

Figure 2022075074000004
…(3)
Figure 2022075074000004
… (3)

Figure 2022075074000005
…(4)
Figure 2022075074000005
…(Four)

Figure 2022075074000006
…(5)
Figure 2022075074000006
…(Five)

Figure 2022075074000007
…(6)
Figure 2022075074000007
… (6)

隣り合う受信素子104i、104i+1(i=1,..,N-1)に関するケーブル正横方位φi(i=1,..,N-1)が既知の場合、上式(3)~(6)から、隣り合う受信素子104i、104i+1の位置座標(xi, yi)、(xi+1, yi+1)が求まる。 If the cable forward / lateral direction φ i (i = 1, .., N-1) for the adjacent receiving elements 104 i , 104 i + 1 (i = 1, .., N-1) is known, the above equation ( From 3) to (6), the position coordinates (x i , y i ) and (x i + 1 , y i + 1 ) of the adjacent receiving elements 104 i and 104 i + 1 can be obtained.

一方、隣り合う1番目と2番目の受信素子1041、1042に関するケーブル正横方位φ1が既知であるが、隣り合う受信素子104i、104i+1(i=2,..,N-1)に関するケーブル正横方位φiが未知の場合、例えば次式(7)、(8)から、まず1番目の受信素子1041の位置座標(x1, y1)を求める。 On the other hand, the cable forward / lateral directions φ 1 for the adjacent first and second receiving elements 104 1 and 104 2 are known, but the adjacent receiving elements 104 i , 104 i + 1 (i = 2, .., N). When the cable normal lateral direction φ i regarding -1) is unknown, for example, the position coordinates (x 1 , y 1 ) of the first receiving element 104 1 are obtained from the following equations (7) and (8).

Figure 2022075074000008
…(7)
Figure 2022075074000008
… (7)

Figure 2022075074000009
…(8)
Figure 2022075074000009
… (8)

そして、1番目の受信素子104の位置座標(x1, y1)から、上式(5)、(6)の漸化式を用いて2番目の受信素子1042の位置座標(x2, y2)が求まる。 Then, from the position coordinates (x 1 , y 1 ) of the first receiving element 104 1 , the position coordinates (x 2 ) of the second receiving element 104 2 are used by using the recurrence formulas (5) and (6) above. , y 2 ) is obtained.

隣り合う2番目と3番目の受信素子1042、1043に関するケーブル正横方位φは、φと2番目の受信素子104の位置座標(x2, y2)と音源座標(x0, y0)と受信素子間距離d2及び音源距離l2の間で成り立つ関係式(逆三角関数)を用いてφを求め、式(5)、(6)より、3番目の受信素子104の位置座標(x3, y3)を再帰的に求めるようにしてもよい。ケーブル正横方位φi(i=3,..,N-1)についても、上記と同様に、φiとi番目の受信素子の位置座標(xi,yi)と音源座標(x0,y0)と受信素子間距離di及び音源距離liで成り立つ関係式(逆三角関数の関係式)を用いてφiを求め、式’5)、(6)から(i+1)番目の受信素子104i+1の位置座標(xi+1,yi+1)を再帰的に求めるようにしてもよい。 The cable forward / lateral orientation φ 2 with respect to the adjacent second and third receiving elements 104 2 and 104 3 is the position coordinates (x 2 , y 2 ) and sound source coordinates (x 0 ) of φ 2 and the second receiving element 104 2 . , y 0 ) and the relational expression (inverse trigonometric function) that holds between the distance d 2 between the receiving elements and the sound source distance l 2 is used to obtain φ 2 , and the third receiving element is obtained from the equations (5) and (6). The position coordinates (x 3 , y 3 ) of 104 3 may be obtained recursively. For the cable forward / lateral direction φ i (i = 3, .., N-1), the position coordinates (x i , y i ) and the sound source coordinates (x 0 ) of φ i and the i-th receiving element are the same as above. , Y 0 ), the distance d i between the receiving elements, and the relational expression (inverse trigonometric function relational expression) that holds for the sound source distance l i . The position coordinates (x i + 1 , y i + 1 ) of the second receiving element 104 i + 1 may be recursively obtained.

本実施形態によれば、えい航式ソーナーシステムにおいて、送信装置(音源)から送信した音響信号(音波)のアレイでの受信信号から該音響信号の到来方位を求め、到来方位と、音源距離、音源の位置座標に基づき、演算処理によってアレイを構成する複数の受信素子の位置座標を算出している。このため、アレイの受信素子にジャイロなどのセンサ等をつけることなく、アレイの形状を推定することができる。 According to the present embodiment, in the tow-type sonar system, the arrival direction of the acoustic signal is obtained from the reception signal in the array of the acoustic signal (sound wave) transmitted from the transmission device (sound wave), and the arrival direction, the sound source distance, and the sound source are obtained. Based on the position coordinates of, the position coordinates of a plurality of receiving elements constituting the array are calculated by arithmetic processing. Therefore, the shape of the array can be estimated without attaching a sensor such as a gyro to the receiving element of the array.

図7は、本発明の実施形態を説明する図であり、図1の受信処理装置103をコンピュータ装置200に実装した場合の構成を説明する図である。図7を参照すると、コンピュータ装置200は、プロセッサ201と、RAM(Random Access Memory)、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の半導体メモリ等(あるいは、HDD(Hard Disk Drive)等であってもよい)の記憶装置202と、表示装置203と、図1の送受信制御装置101や受信素子104に接続するインタフェース204を備えている。プロセッサ201はDSP(Digital Signal Processor)であってもよい。記憶装置202に格納されたプログラムを実行することで、プロセッサ201は、図3の受信処理装置103の処理を実行する。 FIG. 7 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a configuration when the reception processing apparatus 103 of FIG. 1 is mounted on a computer apparatus 200. Referring to FIG. 7, the computer device 200 includes a processor 201 and a semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and an EEPROM (Electrically Erasable Programmable Read-Only Memory) (or an HDD (Hard)). It is provided with a storage device 202 (which may be a Disk Drive) or the like), a display device 203, and an interface 204 connected to the transmission / reception control device 101 and the reception element 104 of FIG. The processor 201 may be a DSP (Digital Signal Processor). By executing the program stored in the storage device 202, the processor 201 executes the processing of the reception processing device 103 of FIG.

なお、図2では、艦船からえい航されるラインアレイの例を示したが、本実施形態は、複数の受信素子の相対位置を推定したい場合に広く用いることができる。 Although FIG. 2 shows an example of a line array towed from a ship, the present embodiment can be widely used when it is desired to estimate the relative positions of a plurality of receiving elements.

また、図3では、説明の簡易化のため、方位計算処理1032は、隣接する2つの受信素子104の受信データ1031を用いているが、方位計算処理1032で用いる受信データは、必ずしも隣接していなくてもよいことは勿論である。例えば方位計算処理1032は、3つ以上の受信データ1031から計算してもよい。 Further, in FIG. 3, for the sake of simplification of the explanation, the orientation calculation process 1032 uses the reception data 1031 of the two adjacent receiving elements 104, but the reception data used in the orientation calculation process 1032 are not necessarily adjacent to each other. Of course, it does not have to be. For example, the direction calculation process 1032 may be calculated from three or more received data 1031.

方位計算処理1032について、受信素子間距離dが音波の波長より大きい場合に、複数の波長の音波を用いる処理について説明したが、ビーム中心の近い二つのビームを作り、その位相差から、到来方位を求めるなどの処理を用いることもできる。 Regarding the azimuth calculation process 1032, the process of using sound waves of a plurality of wavelengths when the distance d between the receiving elements is larger than the wavelength of the sound wave has been described. It is also possible to use a process such as obtaining.

本実施形態において、アレイ105の受信素子104で受信する音波は、図2に例示したような、送信装置102からの直接波だけでなく、例えば、目標からの反射波など時間情報の含まれる音波であってもよい。目標が発する音の中には、エンジン等を発生源として定常的に発生する音と、船の操舵時等に短い時間だけ発生する音がある。短い時間だけ発生する過渡音はトランジェント信号と呼ばれる。アレイ105の受信素子104で受信する音波は、目標からのトランジェント信号であってもよい。 In the present embodiment, the sound wave received by the receiving element 104 of the array 105 is not only a direct wave from the transmitting device 102 as illustrated in FIG. 2, but also a sound wave including time information such as a reflected wave from a target. May be. Among the sounds emitted by the target, there are sounds that are constantly generated from the engine and the like, and sounds that are generated only for a short time when the ship is steered. Transient sounds that occur only for a short time are called transient signals. The sound wave received by the receiving element 104 of the array 105 may be a transient signal from the target.

なお、上記の特許文献1、2の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施の形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。 The disclosures of Patent Documents 1 and 2 described above shall be incorporated into this document by citation. Within the framework of the entire disclosure (including the scope of claims) of the present invention, it is possible to change or adjust the embodiments or examples based on the basic technical idea thereof. Further, various combinations or selections of various disclosure elements (including each element of each claim, each element of each embodiment, each element of each drawing, etc.) are possible within the scope of the claims of the present invention. .. That is, it goes without saying that the present invention includes all disclosure including claims, various modifications and modifications that can be made by those skilled in the art in accordance with the technical idea.

100 ソーナーシステム
101 送受信制御装置
102 送信装置
103 受信処理装置
104、104~104N 受信素子
105 ラインアレイ
106 ケーブル
110 艦船
200 コンピュータ装置
201 プロセッサ
202 記憶装置
203 表示装置
204 インタフェース
1031 受信データ
1032 方位計算処理
1033 形状推定処理
100 Sonner system 101 Transmission / reception control device 102 Transmission device 103 Reception processing device 104, 104 1 to 104 N Reception element 105 Line array 106 Cable 110 Ship 200 Computer device 201 Processor 202 Storage device 203 Display device 204 Interface 1031 Received data 1032 Direction calculation processing 1033 Shape estimation process

Claims (10)

ソーナーシステムの受信処理装置であって、
アレイを構成する複数の受信素子の互いに異なる複数の組み合わせの各々について、音波の受信データから前記音波の到来方位を計算し、前記到来方位と、前記音波の到来時間に基づき、前記アレイの形状を推定する、ことを特徴とする受信処理装置。
It is a reception processing device of the sonar system.
For each of a plurality of different combinations of the plurality of receiving elements constituting the array, the arrival direction of the sound wave is calculated from the reception data of the sound wave, and the shape of the array is determined based on the arrival direction and the arrival time of the sound wave. A reception processing device characterized in that it estimates.
前記アレイを構成する複数の前記受信素子について、隣り合う2つの受信素子の組の各々について、前記音波の受信データから前記音波の到来方位を計算し、
前記音波の音源の位置座標と、
隣り合う2つの受信素子の各組ごとの、
前記到来方位、受信素子間の距離、前記音源までの距離、及び、ケーブル正横方位と、
に基づき、
各受信素子の位置座標を算出する、ことを特徴とする請求項1記載の受信処理装置。
For each of the pair of two adjacent receiving elements for the plurality of receiving elements constituting the array, the arrival direction of the sound wave is calculated from the received data of the sound wave.
The position coordinates of the sound source of the sound wave and
For each set of two adjacent receiver elements,
The arrival direction, the distance between the receiving elements, the distance to the sound source, and the cable forward / horizontal direction.
Based on
The reception processing device according to claim 1, wherein the position coordinates of each receiving element are calculated.
前記各受信素子及び前記音源の位置座標を、前記各受信素子及び前記音源を2次元平面上に射影した2次元座標上で算出し、前記アレイの形状を2次元平面上で推定する、ことを特徴とする請求項2記載の受信処理装置。 The position coordinates of each receiving element and the sound source are calculated on the two-dimensional coordinates obtained by projecting the receiving element and the sound source on the two-dimensional plane, and the shape of the array is estimated on the two-dimensional plane. The reception processing device according to claim 2, wherein the reception processing device is characterized. アレイを構成する複数の受信素子と、
請求項1乃至3のいずれか1項に記載の受信処理装置と、
音波を送信する送信装置と、
前記送信装置に対して送信波形と送信時刻を与える制御装置と、
を備え、
前記制御装置は、前記受信処理装置に対して少なくとも前記音波の送信時刻を与え、
前記受信処理装置は、前記音波の送信時刻と前記受信素子での前記音波の受信時刻から前記音波の音源までの距離を求める、ことを特徴とするソーナーシステム。
Multiple receiving elements that make up the array,
The reception processing device according to any one of claims 1 to 3.
A transmitter that transmits sound waves, and
A control device that gives a transmission waveform and a transmission time to the transmission device,
Equipped with
The control device gives the reception processing device at least the transmission time of the sound wave.
The reception processing device is a sonar system characterized in that the distance from the transmission time of the sound wave and the reception time of the sound wave by the receiving element to the sound source of the sound wave is obtained.
前記アレイを構成する前記複数の受信素子は、
前記送信装置からの直接波、
目標からの反射波、
前記目標からのトランジェント信号のうちのいずれかを受信し、
前記受信処理装置は、前記アレイを構成する前記複数の受信素子の受信データから、前記アレイの形状を推定する、ことを特徴とする請求項4記載のソーナーシステム。
The plurality of receiving elements constituting the array are
Direct wave from the transmitter,
Reflected wave from the target,
Receive one of the transient signals from the target and
The sonar system according to claim 4, wherein the reception processing device estimates the shape of the array from the reception data of the plurality of receiving elements constituting the array.
前記受信素子は、円筒型受感部を備え、プラットフォームからケーブルでえい航される、ことを特徴とする請求項4又は5記載のソーナーシステム。 The sonar system according to claim 4 or 5, wherein the receiving element includes a cylindrical sensing portion and is towed from a platform by a cable. えい航ソーナーシステムにおける複数の受信素子からなるアレイの形状を推定する方法であって、
前記受信素子の互いに異なる複数の組み合わせの各々について、音波の受信データから前記音波の到来方位を計算し、前記到来方位と、前記音波の到来時間に基づき、前記アレイの形状を推定する、ことを特徴とするアレイ形状推定方法。
A method of estimating the shape of an array consisting of multiple receiving elements in a tow sonar system.
For each of the plurality of different combinations of the receiving elements, the arrival direction of the sound wave is calculated from the reception data of the sound wave, and the shape of the array is estimated based on the arrival direction and the arrival time of the sound wave. A featured array shape estimation method.
前記アレイを構成する前記受信素子について、隣り合う2つの受信素子の組の各々について、前記音波の受信データから前記音波の到来方位を計算し、
前記音波の音源の位置座標と、隣り合う2つの受信素子の各組ごとの前記到来方位、受信素子間の距離、前記音源までの距離、ケーブル正横方位とに基づき、各受信素子の位置座標を算出する、ことを特徴とする請求項7記載のアレイ形状推定方法。
With respect to the receiving elements constituting the array, the arrival direction of the sound waves is calculated from the received data of the sound waves for each of two pairs of adjacent receiving elements.
Position coordinates of each receiving element based on the position coordinates of the sound source of the sound wave, the arrival direction of each set of two adjacent receiving elements, the distance between the receiving elements, the distance to the sound source, and the cable normal lateral direction. 7. The array shape estimation method according to claim 7, wherein the method is calculated.
えい航ソーナーシステムにおける複数の受信素子からなるアレイの形状を推定する処理をコンピュータに実行させるプログラムであって、
前記受信素子の互いに異なる複数の組み合わせの各々について、音波の受信データから前記音波の到来方位を計算し、前記到来方位と、前記音波の到来時間に基づき、前記アレイの形状を推定する、プログラム。
A program that causes a computer to execute the process of estimating the shape of an array consisting of multiple receiving elements in a tow sonar system.
A program that calculates the arrival direction of the sound wave from the reception data of the sound wave for each of a plurality of different combinations of the receiving elements, and estimates the shape of the array based on the arrival direction and the arrival time of the sound wave.
前記アレイを構成する前記受信素子について、隣り合う2つの受信素子の組ごとに前記音波の受信データから前記音波の到来方位を計算し、
前記音波の音源の位置座標と、隣り合う2つの受信素子の各組ごとの前記到来方位、受信素子間の距離、前記音源までの距離、ケーブル正横方位とに基づき、各受信素子の位置座標を算出する処理を前記コンピュータに実行させる、請求項9記載のプログラム。
For the receiving element constituting the array, the arrival direction of the sound wave is calculated from the reception data of the sound wave for each pair of two adjacent receiving elements.
Position coordinates of each receiving element based on the position coordinates of the sound source of the sound source, the arrival direction of each set of two adjacent receiving elements, the distance between the receiving elements, the distance to the sound source, and the cable normal lateral direction. 9. The program according to claim 9, wherein the computer is made to execute the process of calculating the above.
JP2020185624A 2020-11-06 2020-11-06 Sonar system, method, and program Pending JP2022075074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020185624A JP2022075074A (en) 2020-11-06 2020-11-06 Sonar system, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020185624A JP2022075074A (en) 2020-11-06 2020-11-06 Sonar system, method, and program

Publications (1)

Publication Number Publication Date
JP2022075074A true JP2022075074A (en) 2022-05-18

Family

ID=81605921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020185624A Pending JP2022075074A (en) 2020-11-06 2020-11-06 Sonar system, method, and program

Country Status (1)

Country Link
JP (1) JP2022075074A (en)

Similar Documents

Publication Publication Date Title
EP3144700B1 (en) Adaptive beamformer for sonar imaging
US6438071B1 (en) Method for producing a 3D image
CN113640808B (en) Shallow water submarine cable buried depth detection method and device
Xin et al. A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed
CN111551942B (en) Underwater autonomous vehicle docking method based on deconvolution algorithm
Châtillon et al. SAMI: A low-frequency prototype for mapping and imaging of the seabed by means of synthetic aperture
JP4922450B2 (en) Direction measurement method for target emitting sound wave
US7495996B2 (en) Method for improved sonar velocity processing
RU2653956C1 (en) Method of determination of present position data in the bistatic mode of hydrospace detection
JP4585838B2 (en) Bottom detection device
RU2431156C1 (en) Method of positioning by hydroacoustic navigation system
RU2691217C1 (en) Method of positioning underwater objects
JP4266669B2 (en) Bistatic orientation detection system and detection method
KR20210015456A (en) Apparatus and method for compensating distance calculation error of Passive Ranging Sonar
JP2022075074A (en) Sonar system, method, and program
JP2008076294A (en) Under-bottom-of-water survey method and instrument
RU2480790C1 (en) Method of determining position of measured depths of sound signals
JPH04357487A (en) Side looking sonar
JP2558637B2 (en) Sound source position measurement method
CN115308801B (en) Method for positioning submarine seismograph by using direct wave travel time and topographic data and processing terminal
JP2022157362A (en) Sonar system, target azimuth/distance correction method, and program
RU2790529C1 (en) Method for hydroacoustic positioning of an autonomous uninhabited underwater apparatus
RU2817558C1 (en) Method of determining complete set of coordinates of noisy marine object
CN116699581B (en) Submarine topography measurement method and device based on deep sea submersible
CN115308800B (en) Method for positioning submarine seismograph by using submarine reflection wave travel time and topographic data and processing terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528