JP2022072965A - Filter, and individual particle removing method - Google Patents

Filter, and individual particle removing method Download PDF

Info

Publication number
JP2022072965A
JP2022072965A JP2020182689A JP2020182689A JP2022072965A JP 2022072965 A JP2022072965 A JP 2022072965A JP 2020182689 A JP2020182689 A JP 2020182689A JP 2020182689 A JP2020182689 A JP 2020182689A JP 2022072965 A JP2022072965 A JP 2022072965A
Authority
JP
Japan
Prior art keywords
filter
inner cylinder
differential pressure
solid particles
removing solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020182689A
Other languages
Japanese (ja)
Inventor
俊一 佐藤
Shunichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020182689A priority Critical patent/JP2022072965A/en
Publication of JP2022072965A publication Critical patent/JP2022072965A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

To provide a filtration technology of a chemical cleaning solution which can execute chemical cleaning of a boiler efficiently while suppressing cost.SOLUTION: A filter includes a filter cylinder. The filter cylinder includes a cylindrical inner cylinder in which a fluid can pass, and a filter which is arranged on an outer side of the inner cylinder so as to cover a peripheral surface of the inner cylinder, and can deform in a radial direction of the inner cylinder. An individual particle removing method removes individual particles adhering to the filter included in the filter cylinder. The method stops inflow of the fluid into the filter, and repeats differential pressure return operation for reducing a differential pressure of the filter as a pressure difference between an inflow side and an outflow side of the fluid.SELECTED DRAWING: Figure 4

Description

本発明は、ボイラの化学洗浄時の化学洗浄液の濾過技術に関する。 The present invention relates to a technique for filtering a chemical cleaning liquid at the time of chemical cleaning of a boiler.

火力発電ボイラでは、火力発電ボイラの給水系統の伝熱管や配管内に付着あるいは堆積したスケールを除去するために、定期的に化学洗浄を実施する。火力発電ボイラの化学洗浄では、節炭器から汽水分離器までの洗浄対象機器の間で循環路を設置し、循環路内に酸性の化学洗浄液(以下、化洗液と呼ぶ)を流通させることにより、これらの洗浄対象機器の管内のスケールを除去する。 In thermal power generation boilers, chemical cleaning is regularly performed to remove scale adhering to or accumulated in the heat transfer pipes and pipes of the water supply system of the thermal power generation boiler. In the chemical cleaning of thermal power generation boilers, a circulation path is installed between the equipment to be cleaned from the economizer to the steam water separator, and an acidic chemical cleaning solution (hereinafter referred to as chemical cleaning solution) is circulated in the circulation path. Removes the scale in the tube of these equipment to be cleaned.

化学洗浄作業中、洗浄対象機器の管内から剥離したスケールの一部が未溶解の状態でスラッジとなり、循環路に混入する。このため、循環路の、洗浄対象機器の下流には、このスラッジを捕捉して洗浄対象機器への再持ち込みを低減する濾過器が設けられる。濾過器は、フィルタを備え、フィルタにより、濾過器内を通過する化洗液内のスラッジを捕捉する。 During the chemical cleaning work, a part of the scale exfoliated from the pipe of the equipment to be cleaned becomes sludge in an undissolved state and mixes into the circulation path. For this reason, a filter that captures this sludge and reduces re-introduction to the equipment to be cleaned is provided downstream of the equipment to be cleaned in the circulation path. The filter comprises a filter, which captures sludge in the lotion passing through the filter.

フィルタに多量のスラッジが付着すると、フィルタの差圧が上昇する。この場合、化学洗浄を停止し、循環路から濾過器を切り離してフィルタの洗浄を行う。このような濾過器のフィルタの洗浄は、逆洗エアブロー等或いは分解清掃により行われるため、時間がかかる。このため、化学洗浄自体もその間、一時的に停止しなければならない。一時停止している間に、沈降し、堆積したスラッジは、再開しても再浮上せず堆積した状態になる傾向がある。また、停止中は、循環路が酸性の化洗液による浸漬状態となることから、化洗液との接触時間が長くなり、過剰洗浄になる可能性もある。 When a large amount of sludge adheres to the filter, the differential pressure of the filter increases. In this case, the chemical cleaning is stopped, the filter is separated from the circulation path, and the filter is cleaned. Cleaning the filter of such a filter is time-consuming because it is performed by backwashing air blow or the like or disassembling and cleaning. Therefore, the chemical cleaning itself must be temporarily stopped during that time. Sludge that has settled and accumulated during the pause tends to remain in a deposited state without resurfacing when resumed. Further, during the stoppage, the circulation path is immersed in the acidic washing liquid, so that the contact time with the washing liquid becomes long, and there is a possibility of excessive washing.

化学洗浄の一時的な停止を避ける手法として、例えば、濾過器をバイパスするバイパス流路を設け、濾過器に所定以上の差圧が生じた場合、バイパス流路に洗浄液を流し、その間にフィルタを交換する技術がある(例えば、特許文献1参照)。 As a method of avoiding temporary stop of chemical cleaning, for example, a bypass flow path that bypasses the filter is provided, and when a differential pressure exceeding a predetermined value is generated in the filter, the cleaning liquid is flowed through the bypass flow path, and a filter is inserted between them. There is a technique for exchanging (see, for example, Patent Document 1).

特開2006-183902号公報Japanese Unexamined Patent Publication No. 2006-183902

特許文献1に開示の技術では、バイパス流路を使用中は、スラッジを捕捉する機構がないため、循環路を経由して、洗浄対象機器の管内にスラッジが流入する。これを避けるためにバイパス流路に予備の濾過器を設ける手法がある。しかしながら、上述のように、フィルタの洗浄には時間がかかるため、予備の濾過器を多数準備する必要があり、コストが増大する。 In the technique disclosed in Patent Document 1, since there is no mechanism for capturing sludge while the bypass flow path is in use, sludge flows into the pipe of the device to be cleaned via the circulation path. In order to avoid this, there is a method of providing a spare filter in the bypass flow path. However, as described above, since it takes time to clean the filter, it is necessary to prepare a large number of spare filters, which increases the cost.

本発明は、上記事情に鑑みてなされたもので、ボイラの化学洗浄を、コストを抑えつつ効率よく実行可能な化学洗浄液の濾過技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a filtration technique for a chemical cleaning liquid that can efficiently perform chemical cleaning of a boiler while keeping costs down.

本発明は、濾過筒を備える濾過器であって、前記濾過筒は、流体が通過可能な円筒状の内筒と、前記内筒の周面を覆うように当該内筒の外側に設けられ、当該内筒の径方向に変形可能なフィルタと、を備えることを特徴とする。 The present invention is a filter provided with a filter cylinder, wherein the filter cylinder is provided on the outside of the inner cylinder so as to cover a cylindrical inner cylinder through which a fluid can pass and a peripheral surface of the inner cylinder. It is characterized by comprising a filter that can be deformed in the radial direction of the inner cylinder.

また、本発明は、濾過筒を備える濾過器において、前記濾過筒が有するフィルタに付着した個体粒子を除去する個体粒子除去方法であって、前記濾過器への流体の流入を一時的に止め、前記フィルタの、当該流体の流入側と流出側との圧力差である差圧を低減する差圧回復操作を繰り返す、ことを特徴とする。 Further, the present invention is a method for removing solid particles adhering to a filter having a filter tube in a filter provided with a filter tube, wherein the inflow of a fluid into the filter is temporarily stopped. The filter is characterized in that the differential pressure recovery operation for reducing the differential pressure, which is the pressure difference between the inflow side and the outflow side of the fluid, is repeated.

本発明によれば、ボイラの化学洗浄を、コストを抑えつつ効率よく実行できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, chemical cleaning of a boiler can be efficiently performed while keeping costs down. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

本発明の実施形態の火力発電ボイラが用いられる発電プラントの給水系統および蒸気系統の系統図である。It is a system diagram of the water supply system and the steam system of the power plant which uses the thermal power generation boiler of embodiment of this invention. 本発明の実施形態の火力発電ボイラの化学洗浄時の配管を説明するための説明図である。It is explanatory drawing for demonstrating the piping at the time of chemical cleaning of the thermal power generation boiler of embodiment of this invention. (a)は、本発明の実施形態の濾過器の外観図であり、(b)および(c)は、それぞれ、(a)のA-A’断面図およびB-B’断面図である。(A) is an external view of the filter of the embodiment of the present invention, and (b) and (c) are a cross-sectional view taken along the line AA'and a cross-sectional view taken along the line BB'of (a), respectively. (a)は、本発明の実施形態の濾過筒の外観図であり、(b)は、濾過の様子を説明するための説明図である。(A) is an external view of the filtration tube of the embodiment of the present invention, and (b) is an explanatory view for explaining the state of filtration. (a)は、本発明の実施形態のフィルタにスラッジが堆積した状況を、(b)は、フィルタからスラッジが剥離した状況を、それぞれ説明するための説明図であり、(c)および(d)は、フィルタにかかる差圧の時間変化を示すグラフである。(A) is an explanatory diagram for explaining a situation where sludge is accumulated on the filter according to the embodiment of the present invention, and (b) is an explanatory diagram for explaining a situation where sludge is separated from the filter, respectively, and (c) and (d). ) Is a graph showing the time change of the differential pressure applied to the filter. 本発明の実施形態の化学洗浄方法のフローチャートである。It is a flowchart of the chemical cleaning method of embodiment of this invention. (a)~(c)は、本発明の実施形態の変形例の濾過筒を説明するための説明図である。(A)-(c) are explanatory views for explaining the filtration cylinder of the modification of embodiment of this invention. (a)~(d)は、本発明の実施形態の変形例の濾過筒におけるスラッジ剥離を説明するための説明図である。(A) to (d) are explanatory views for explaining sludge peeling in the filtration tube of the modification of the embodiment of this invention. (a)~(c)は、本発明の実施形態の他の変形例の濾過筒を説明するための説明図である。(A)-(c) are explanatory views for explaining the filtration cylinder of another modification of embodiment of this invention. (a)は、本発明の実施形態の変形例の化学洗浄方法のフローチャートであり、(b)は、その変形例における差圧の時間変化のグラフである。(A) is a flowchart of a chemical cleaning method of a modified example of the embodiment of the present invention, and (b) is a graph of a time change of a differential pressure in the modified example. 本発明の実施形態の変形例の火力発電ボイラの化学洗浄時の配管を説明するための説明図である。It is explanatory drawing for demonstrating the piping at the time of chemical cleaning of the thermal power generation boiler of the modification of embodiment of this invention.

以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that the present invention is not limited to this embodiment, and when there are a plurality of embodiments, the present invention also includes a combination of the respective embodiments.

[発電プラントの全体構成]
まず、本実施形態に係る火力発電ボイラ(以下、「ボイラ」という)が用いられる発電プラントを説明する。発電プラントは、ボイラから排出された燃焼ガス(排ガス)が流れる排ガス系統と、ボイラが生成する蒸気が流れる蒸気系統と、復水器によって復水された水が流れる給水系統と、を備える。
[Overall configuration of power plant]
First, a power plant in which a thermal power generation boiler (hereinafter referred to as "boiler") according to the present embodiment will be described. The power plant includes an exhaust gas system through which combustion gas (exhaust gas) discharged from the boiler flows, a steam system through which steam generated by the boiler flows, and a water supply system through which the water restored by the condenser flows.

図1は、この発電プラント101の給水系統および蒸気系統の一例を示す図である。本図に示すように、本実施形態の発電プラント101は、燃料を燃焼させ、該燃焼の熱によって蒸気(過熱蒸気)を発生させるボイラ100と、ボイラ100が発生した蒸気を用いてタービンを回転させることにより発電機を駆動させて発電する蒸気タービン160(高圧タービン161、中圧タービン162、低圧タービン163)と、蒸気タービンからの排気蒸気を水に戻してボイラ100に供給する給水ライン(主給水管216)と、を備える。 FIG. 1 is a diagram showing an example of a water supply system and a steam system of the power plant 101. As shown in this figure, the power generation plant 101 of the present embodiment rotates a turbine using a boiler 100 that burns fuel and generates steam (superheated steam) by the heat of the combustion, and the steam generated by the boiler 100. A steam turbine 160 (high pressure turbine 161, medium pressure turbine 162, low pressure turbine 163) that drives a generator to generate power, and a water supply line (mainly) that returns the exhaust steam from the steam turbine to water and supplies it to the boiler 100. A water supply pipe 216) is provided.

ボイラ100は、節炭器(ECO)129と、火炉水壁管222と、汽水分離器130と、過熱器140と、再熱器150と、を備える。過熱器140および再熱器150は、下流から上流に複数段備えてもよい。例えば、過熱器140は、一次過熱器141、二次過熱器142および三次過熱器143の三段構成とする。なお、汽水分離器130は、備えなくてもよい。 The boiler 100 includes an economizer (ECO) 129, a furnace water wall pipe 222, a brackish water separator 130, a superheater 140, and a reheater 150. The superheater 140 and the reheater 150 may be provided in a plurality of stages from the downstream to the upstream. For example, the superheater 140 has a three-stage configuration of a primary superheater 141, a secondary superheater 142, and a tertiary superheater 143. The brackish water separator 130 may not be provided.

蒸気タービン160は、それぞれ、発電機102を回転駆動させるための所定の仕事を行う、高圧タービン(HPT)161と、中圧タービン(IPT)162と、低圧タービン(LPT)163と、を備える。 The steam turbine 160 includes a high pressure turbine (HPT) 161, a medium pressure turbine (IPT) 162, and a low pressure turbine (LPT) 163, each of which performs a predetermined task for rotationally driving the generator 102.

主給水管216上には、復水器170と、復水ポンプ181と、低圧給水加熱器(低圧ヒータ)182と、脱気器183と、給水ポンプ184と、高圧給水加熱器(高圧ヒータ)185とが設けられる。 On the main feed water pipe 216, there are a condenser 170, a condenser pump 181, a low pressure feed water heater (low pressure heater) 182, a deaerator 183, a water supply pump 184, and a high pressure feed water heater (high pressure heater). 185 and are provided.

上記構成を有する発電プラント101では、節炭器129で、供給された水を燃焼ガスとの熱交換により予熱する。節炭器129で予熱された水は、火炉水壁管222において、壁に形成された炉壁管を通すことにより水-蒸気2相流体となる。火炉水壁管222において生成された水-蒸気2相流体は、第一連絡管225を介して汽水分離器130に送られて、飽和蒸気と飽和水とに分離される。ここで、飽和蒸気は過熱器140へ、飽和水は飽和水管217を通り復水器170へ、それぞれ、導かれる。 In the power plant 101 having the above configuration, the economizer 129 preheats the supplied water by heat exchange with the combustion gas. The water preheated by the economizer 129 becomes a water-steam two-phase fluid by passing through the furnace wall pipe formed on the wall in the furnace water wall pipe 222. The water-steam two-phase fluid generated in the furnace water wall pipe 222 is sent to the brackish water separator 130 via the first connecting pipe 225 and separated into saturated steam and saturated water. Here, the saturated steam is guided to the superheater 140, and the saturated water is guided to the condenser 170 through the saturated water pipe 217.

汽水分離器130で分離された飽和蒸気は、燃焼ガスとの熱交換により過熱器140で過熱され、生成された過熱蒸気は、主蒸気管212を経由して高圧タービン161に導入される。主蒸気管212には、主蒸気止弁が設けられる。 The saturated steam separated by the steam water separator 130 is superheated by the superheater 140 by heat exchange with the combustion gas, and the generated superheated steam is introduced into the high-pressure turbine 161 via the main steam pipe 212. The main steam pipe 212 is provided with a main steam stop valve.

高圧タービン161で所定の仕事を行った蒸気は、低温再熱蒸気管213を経由して再熱器150に導かれる。再熱器150では、高圧タービン161で所定の仕事を行った蒸気を再過熱する。再熱器150で過熱された蒸気は、高温再熱蒸気管214を経由して中圧タービン162および低圧タービン163に供給され、そこで、それぞれ仕事を行い、発電機102を駆動する。 The steam that has performed the predetermined work in the high-pressure turbine 161 is guided to the reheater 150 via the low-temperature reheat steam pipe 213. The reheater 150 reheats the steam that has performed the predetermined work in the high pressure turbine 161. The steam superheated by the reheater 150 is supplied to the medium pressure turbine 162 and the low pressure turbine 163 via the high temperature reheat steam pipe 214, where they work and drive the generator 102.

低圧タービン163で仕事を終えた蒸気は、タービン排気管215によって復水器170に導入される。復水器170で凝縮した復水は、汽水分離器130から送られた飽和水とともに復水ポンプ181によって低圧ヒータ182を通過した後、脱気器183に送られ、復水中のガス成分が除去される。脱気器183を経た復水は、さらに給水ポンプ184によって昇圧された後、高圧ヒータ185に送給されて加熱され、最終的には、ボイラ100へ還流される。 The steam that has finished its work in the low pressure turbine 163 is introduced into the condenser 170 by the turbine exhaust pipe 215. The condensate condensed by the condenser 170 passes through the low pressure heater 182 by the condensate pump 181 together with the saturated water sent from the brackish water separator 130, and then sent to the deaerator 183 to remove the gas component in the condensate. Will be done. The condensate that has passed through the deaerator 183 is further boosted by the water supply pump 184, then fed to the high-pressure heater 185 to be heated, and finally returned to the boiler 100.

[化学洗浄時の構成]
上述の発電プラント101では、定期的に、仮設の配管を接続して、ボイラ100の所定の機器(洗浄対象機器)を、化学洗浄する。化学洗浄は、ボイラ100の運転を停止し、主蒸気管212に設置される主蒸気止弁を閉じ、仮設の配管を設置し、洗浄対象機器に化洗液を循環させて行われる。なお、仮設の配管は、例えば、予め接続先の配管に化学洗浄時に仮設の配管を接続するための口(例えばブラインドフランジで閉じられたフランジ接続部)が設けられ、その口を開放して接続する。
[Composition during chemical cleaning]
In the above-mentioned power plant 101, temporary pipes are periodically connected to chemically clean the predetermined equipment (equipment to be cleaned) of the boiler 100. The chemical cleaning is performed by stopping the operation of the boiler 100, closing the main steam stop valve installed in the main steam pipe 212, installing a temporary pipe, and circulating the chemical cleaning liquid in the equipment to be cleaned. For the temporary piping, for example, a port for connecting the temporary piping at the time of chemical cleaning (for example, a flange connection portion closed by a blind flange) is provided in advance in the connection destination pipe, and the port is opened for connection. do.

図2は、汽水分離器130を備えない場合の、ボイラ100の化学洗浄のために設置する仮設の配管を説明するための図である。なお、本図では、仮設の配管等は破線で示す。この場合、ボイラ100の節炭器129と火炉水壁管222とを洗浄対象機器として化学洗浄する。 FIG. 2 is a diagram for explaining a temporary pipe installed for chemical cleaning of the boiler 100 when the brackish water separator 130 is not provided. In this figure, temporary pipes and the like are shown by broken lines. In this case, the economizer 129 of the boiler 100 and the furnace water wall pipe 222 are chemically cleaned as equipment to be cleaned.

化学洗浄時は、まず、洗浄対象機器内に洗浄液を供給するために、仮設管311を設ける。仮設管311は、例えば、節炭器129の入口と火炉水壁管222とに接続される。仮設管311と、節炭器129内の伝熱管、火炉水壁管222とにより、循環路が形成され、この循環路内で化洗液を循環させ、化学洗浄を行う。 At the time of chemical cleaning, first, a temporary pipe 311 is provided in order to supply the cleaning liquid into the equipment to be cleaned. The temporary pipe 311 is connected to, for example, the inlet of the economizer 129 and the furnace water wall pipe 222. A circulation passage is formed by the temporary pipe 311, the heat transfer pipe in the economizer 129, and the furnace water wall pipe 222, and the chemical washing liquid is circulated in the circulation passage to perform chemical cleaning.

仮設管311には、化洗液を循環路内で循環させるための仮設の循環ポンプ(洗浄ポンプ)312が設けられる。洗浄ポンプ312により化洗液を、循環路内で循環させ、節炭器129内の伝熱管内および火炉水壁管222内に付着したスケールを除去する。 The temporary pipe 311 is provided with a temporary circulation pump (cleaning pump) 312 for circulating the chemical washing liquid in the circulation path. The chemical washing liquid is circulated in the circulation path by the washing pump 312, and the scale adhering to the inside of the heat transfer pipe in the economizer 129 and the inside of the furnace water wall pipe 222 is removed.

仮設管311の洗浄ポンプ312の下流には、濾過器400が設けられる。濾過器400は、洗浄液に含まれる洗浄対象機器から除去されたスケールのスラッジ(個体粒子)を除去する。 A filter 400 is provided downstream of the cleaning pump 312 of the temporary pipe 311. The filter 400 removes scale sludge (solid particles) contained in the cleaning liquid from the equipment to be cleaned.

また、仮設管311には、この濾過器400をバイパスするように、バイパス管321が設けられる。仮設管311の、バイパス管321との分岐点と濾過器400の流入口との間の部分(入口管)には、入口弁351が、仮設管311のバイパス管321との合流と濾過器400の流出口との間の部分(出口管)には、出口弁352が、それぞれ設けられる。また、バイパス管321には、バイパス弁353が設けられる。 Further, the temporary pipe 311 is provided with a bypass pipe 321 so as to bypass the filter 400. At the portion (inlet pipe) of the temporary pipe 311 between the branch point with the bypass pipe 321 and the inlet of the filter 400, an inlet valve 351 joins the temporary pipe 311 with the bypass pipe 321 and the filter 400. An outlet valve 352 is provided in a portion (outlet pipe) between the outlet and the outlet. Further, the bypass pipe 321 is provided with a bypass valve 353.

化学洗浄時は、入口弁351と、出口弁352とを開き、バイパス弁353を閉じることにより、化洗液が濾過器400を通り、スラッジが除去される。 At the time of chemical cleaning, by opening the inlet valve 351 and the outlet valve 352 and closing the bypass valve 353, the chemical washing liquid passes through the filter 400 and sludge is removed.

なお、化洗液は、仮設管311に設けられる供給管に接続された薬液タンクから供給される。 The chemical lotion is supplied from a chemical liquid tank connected to a supply pipe provided in the temporary pipe 311.

[濾過器]
次に、本実施形態の濾過器400の構成を説明する。本実施形態の濾過器400は、化洗液の流入口と流出口とを有する円筒状のケーシング内に濾過筒を多数備え、濾過筒の外側から内側に化洗液を通過させて濾過を行う。
[Filter]
Next, the configuration of the filter 400 of the present embodiment will be described. The filter 400 of the present embodiment includes a large number of filtration cylinders in a cylindrical casing having an inlet and an outlet for the chemical washing liquid, and the chemical washing liquid is passed from the outside to the inside of the filtration cylinder to perform filtration. ..

図3(a)は、本実施形態の濾過器400の外観図である。また、図3(b)は、図3(a)のA-A’断面図であり、図3(c)は、図3(a)のB-B’断面図である。 FIG. 3A is an external view of the filter 400 of the present embodiment. 3 (b) is a cross-sectional view taken along the line AA'of FIG. 3 (a), and FIG. 3 (c) is a cross-sectional view taken along the line BB'of FIG. 3 (a).

本図に示すように、濾過器400は、本体部410と、円錐形のホッパ430と、を備える。また、本体部410は、複数の中空の濾過筒420と、濾過筒420を取り囲むケーシング411とを備える。ケーシング411は、円筒形状で上部に半球形の蓋状部分を有する。また、ケーシング411は、その下方に流体の入口(流入口)412を備える。また、ケーシング411の蓋状部分には流体の出口(流出口)413が設けられる。 As shown in this figure, the filter 400 includes a main body 410 and a conical hopper 430. Further, the main body 410 includes a plurality of hollow filtration cylinders 420 and a casing 411 that surrounds the filtration cylinders 420. Casing 411 is cylindrical and has a hemispherical lid-like portion at the top. Further, the casing 411 is provided with a fluid inlet (inflow port) 412 below the casing 411. Further, a fluid outlet (outlet) 413 is provided in the lid-shaped portion of the casing 411.

ホッパ430は、本体部410の下部に設けられ、各濾過筒420から剥離したスラッジを一時的に貯留するスラッジ貯留部である。本図に示すように、ホッパ430は排出口431を備え、剥離し、一時的に貯留されたスラッジは、排出口431から排出される。 The hopper 430 is a sludge storage unit provided in the lower part of the main body portion 410 and temporarily stores sludge separated from each filtration cylinder 420. As shown in this figure, the hopper 430 is provided with a discharge port 431, and sludge that has been peeled off and temporarily stored is discharged from the discharge port 431.

図4(a)は、濾過筒420の外観図である。本図に示すように、濾過筒420は、円筒状のフィルタエレメントであり、フィルタ422と、外筒423と、底が閉じ、上部が開口した中空円筒状の内筒421(図4(b)参照)と、を備える。 FIG. 4A is an external view of the filtration tube 420. As shown in this figure, the filter cylinder 420 is a cylindrical filter element, and has a filter 422, an outer cylinder 423, and a hollow cylindrical inner cylinder 421 with a closed bottom and an open top (FIG. 4 (b)). See) and.

外筒423は、内筒421と同軸に、内筒421の径方向外側に設けられ、内筒421との間に、内筒421の径方向に所定の幅を有する空洞領域を形成する。以下、本明細書では、内筒421の径方向を、単に、径方向と呼ぶ。 The outer cylinder 423 is provided coaxially with the inner cylinder 421 on the radial outer side of the inner cylinder 421, and forms a cavity region having a predetermined width in the radial direction of the inner cylinder 421 with the inner cylinder 421. Hereinafter, in the present specification, the radial direction of the inner cylinder 421 is simply referred to as the radial direction.

フィルタ422は、内筒421の周面を覆うように、内筒421の外側の空洞領域に設けられる。また、フィルタ422は、径方向に弾性変形可能に設けられる。フィルタ422は、例えば、内筒421に係止部材を設け、当該係止部材に係止される。空洞領域の径方向の幅は、この空洞領域に配置されるフィルタ422が変形可能な幅とする。 The filter 422 is provided in the outer cavity region of the inner cylinder 421 so as to cover the peripheral surface of the inner cylinder 421. Further, the filter 422 is provided so as to be elastically deformable in the radial direction. The filter 422 is, for example, provided with a locking member in the inner cylinder 421 and is locked to the locking member. The radial width of the cavity region is the width that the filter 422 arranged in this cavity region can be deformed.

フィルタ422は、濾過器400内に流入する化洗液内のスラッジを捕捉し、化洗液を濾過する。本実施形態では、径方向に所定の厚みを有し、かつ、弾性変形する素材で形成される。用いられる素材は、例えば、布や紙、合成樹脂等の繊維質の材料等である。なお、濾過性能上、例えば、メッシュ状材料や上記した材料を組み合わせる或いは多層化により1ミクロン程度の通過孔を有する素材であればよい。 The filter 422 captures the sludge in the chemical washing liquid flowing into the filter 400 and filters the chemical washing liquid. In the present embodiment, it is made of a material having a predetermined thickness in the radial direction and elastically deformable. The material used is, for example, a fibrous material such as cloth, paper, or synthetic resin. In terms of filtration performance, for example, a material having a passage hole of about 1 micron by combining a mesh-like material or the above-mentioned materials or by forming multiple layers may be used.

内筒421は、加圧によるフィルタ422の過収縮、過変形を防ぐために設けられる。また、外筒423は、減圧によるフィルタ422の過膨張、過変形を防ぐために設けられる。内筒421と外筒423とは、それぞれ、耐腐食性が高く、所定の強度を有する材料、例えば、樹脂や金属を用いて形成され、例えば、穴が多数穿設されたパンチングプレートで構成される。 The inner cylinder 421 is provided to prevent over-shrinkage and over-deformation of the filter 422 due to pressurization. Further, the outer cylinder 423 is provided to prevent overexpansion and overdeformation of the filter 422 due to decompression. The inner cylinder 421 and the outer cylinder 423 are each formed of a material having high corrosion resistance and a predetermined strength, for example, resin or metal, and are composed of, for example, a punching plate having a large number of holes. To.

なお、外筒423は、後述するように、フィルタ422から剥離したスラッジが付着しないよう、より目の粗い構成であってもよい。具体的には、例えば、ネット、亀甲金網等でもよい。 As will be described later, the outer cylinder 423 may have a coarser structure so that sludge peeled from the filter 422 does not adhere. Specifically, for example, a net, a hexagonal wire mesh, or the like may be used.

[スラッジ除去方法]
このような構成の濾過器400において、スラッジを含む化洗液は、図4(b)に示すように、外筒423からフィルタ422、内筒421に向かって流れる。そして、スラッジ510は、フィルタ422の外周部において捕捉され、蓄積される。
[Sludge removal method]
In the filter 400 having such a configuration, the lotion containing sludge flows from the outer cylinder 423 toward the filter 422 and the inner cylinder 421 as shown in FIG. 4 (b). Then, the sludge 510 is captured and accumulated in the outer peripheral portion of the filter 422.

図5(a)に示すように、フィルタ422にスラッジ510が蓄積されると、フィルタ422の目が詰まり、図5(c)に示すように、フィルタ422の化洗液の流入側の圧力と、流出側の圧力との差である差圧が上昇する。図5(c)および後述の図5(d)において、横軸は、時刻(t)、縦軸は差圧(Pa)である。この差圧により、図5(a)に示すように、フィルタ422は、径方向に弾性変形する。この弾性変形は、例えば、係止部材に係止されている部分(係止部)を起点に生じる。 As shown in FIG. 5 (a), when sludge 510 is accumulated in the filter 422, the filter 422 is clogged, and as shown in FIG. 5 (c), the pressure on the inflow side of the chemical washing liquid of the filter 422 is increased. , The differential pressure, which is the difference from the pressure on the outflow side, rises. In FIG. 5 (c) and FIG. 5 (d) described later, the horizontal axis is the time (t) and the vertical axis is the differential pressure (Pa). Due to this differential pressure, as shown in FIG. 5A, the filter 422 is elastically deformed in the radial direction. This elastic deformation occurs, for example, from a portion (locking portion) locked to the locking member.

このとき、図5(d)に示すように、短時間で差圧を低減し、差圧を回復させる差圧回復操作を行うと、フィルタ422は、径方向の押圧力が一気に低減する。この圧力変動により、図5(b)に示すように、フィルタ422は、フィルタやフィルタ支持部材などの弾性変形の復元力により、径方向の反対方向に変形する。その後、フィルタ422は、係止部を節として径方向に変形し振動する。この復元力による弾性変形およびその後の振動により、フィルタ422に付着していたスラッジが剥離する。そして、剥離したスラッジは、ホッパ430へと落下する。 At this time, as shown in FIG. 5D, when the differential pressure recovery operation for reducing the differential pressure and recovering the differential pressure in a short time is performed, the pressing force in the radial direction of the filter 422 is reduced at once. Due to this pressure fluctuation, as shown in FIG. 5B, the filter 422 is deformed in the opposite direction in the radial direction due to the restoring force of the elastic deformation of the filter, the filter support member, and the like. After that, the filter 422 deforms and vibrates in the radial direction with the locking portion as a node. The sludge adhering to the filter 422 is peeled off by the elastic deformation due to this restoring force and the subsequent vibration. Then, the peeled sludge falls to the hopper 430.

付着していたスラッジが剥離することにより、フィルタ422は、その機能を回復し、それに伴い、濾過器400の濾過能力も回復する。 When the adhering sludge is peeled off, the filter 422 recovers its function, and accordingly, the filtering capacity of the filter 400 is also restored.

本実施形態では、差圧回復操作として、例えば、入口弁351、出口弁352を閉じ、バイパス弁353を開く操作を行う。これにより、化洗液は、仮設管311ではなく、バイパス管321を通過することとなり、濾過筒420内のフィルタ422への水圧が低減し、その結果、フィルタ422に生じていた差圧が低減する。なお、入口弁351および出口弁352は、必ずしも両者を閉じる必要はなく、一方を閉じればよい。一方のみを閉じる場合、弁の操作数が減るため、濾過器400の停止期間をより短くできる。 In the present embodiment, as the differential pressure recovery operation, for example, an operation of closing the inlet valve 351 and the outlet valve 352 and opening the bypass valve 353 is performed. As a result, the chemical washing liquid passes through the bypass pipe 321 instead of the temporary pipe 311 and the water pressure on the filter 422 in the filter cylinder 420 is reduced, and as a result, the differential pressure generated in the filter 422 is reduced. do. The inlet valve 351 and the outlet valve 352 do not necessarily have to be closed, but one of them may be closed. When only one is closed, the number of valve operations is reduced, so that the stop period of the filter 400 can be shortened.

また、本実施形態では、例えば、この差圧回復操作を、差圧が、予め定めた閾値Pthになった場合に行う。 Further, in the present embodiment, for example, this differential pressure recovery operation is performed when the differential pressure reaches a predetermined threshold value Pth.

なお、本実施形態では、この差圧回復操作の直後に、復帰操作を行う。復帰操作は、入口弁351、出口弁352を開き、バイパス弁353を閉じる操作である。復帰操作は、例えば、差圧回復操作の数分後に行う。差圧回復操作から復帰操作までの期間は、フィルタ422から剥離したスラッジがホッパに落下する時間に応じて任意に定められる。 In this embodiment, the return operation is performed immediately after the differential pressure recovery operation. The return operation is an operation of opening the inlet valve 351 and the outlet valve 352 and closing the bypass valve 353. The return operation is performed, for example, a few minutes after the differential pressure recovery operation. The period from the differential pressure recovery operation to the recovery operation is arbitrarily determined according to the time during which the sludge exfoliated from the filter 422 falls on the hopper.

[スラッジ除去方法]
本実施形態のスラッジ除去方法を用いた化学洗浄の流れについて説明する。図6は、本実施形態のスラッジ除去方法を用いた化学洗浄の流れの処理フローである。
[Sludge removal method]
The flow of chemical cleaning using the sludge removal method of the present embodiment will be described. FIG. 6 is a processing flow of a chemical cleaning flow using the sludge removing method of the present embodiment.

入口弁351および出口弁352を開とし、バイパス弁353を閉とし(ステップS1101)、化学洗浄を開始する(ステップS1102)。化学洗浄中は、化洗液が、洗浄ポンプ312から仮設管311を介して濾過器400を通り節炭器129へ流れる。そして、火炉120内の火炉水壁管222を通り、仮設管311を介して洗浄ポンプ312へと循環する。 The inlet valve 351 and the outlet valve 352 are opened, the bypass valve 353 is closed (step S1101), and chemical cleaning is started (step S1102). During the chemical cleaning, the chemical cleaning liquid flows from the cleaning pump 312 to the economizer 129 through the filter 400 via the temporary pipe 311. Then, it circulates through the furnace water wall pipe 222 in the furnace 120 and to the cleaning pump 312 via the temporary pipe 311.

また、化学洗浄中、濾過器400は、濾過筒420のフィルタ422の外側の表面にスラッジ510を付着させることにより、化洗液からスラッジを除去する。フィルタ422の表面にスラッジが堆積していくにつれ、化洗液の流れが停滞し、差圧が上昇していく。 Further, during the chemical cleaning, the filter 400 removes the sludge from the chemical washing liquid by adhering the sludge 510 to the outer surface of the filter 422 of the filter cylinder 420. As sludge accumulates on the surface of the filter 422, the flow of the chemical washing liquid stagnates and the differential pressure rises.

所定の時間間隔で、差圧を確認し、差圧が閾値Pthに到達した場合(ステップS1103)、上述の差圧回復操作を行う(ステップS1104)。これにより、フィルタ422に付着したスラッジがフィルタ422から剥離し、ホッパ430に落下する。フィルタ422からスラッジが剥離することにより、化洗液の流通を妨げるものがなくなり、フィルタ422の機能が回復する。 The differential pressure is confirmed at predetermined time intervals, and when the differential pressure reaches the threshold value Pth (step S1103), the above-mentioned differential pressure recovery operation is performed (step S1104). As a result, the sludge adhering to the filter 422 is separated from the filter 422 and falls on the hopper 430. By peeling the sludge from the filter 422, there is nothing that hinders the flow of the chemical washing liquid, and the function of the filter 422 is restored.

その直後、入口弁351および出口弁352を開とし、バイパス弁353を閉とする復帰操作を行い(ステップS1105)、化学洗浄が終了するまで(ステップS1106)、ステップS1103へ戻り、処理を繰り返す。 Immediately after that, the inlet valve 351 and the outlet valve 352 are opened, the bypass valve 353 is closed (step S1105), and the process returns to step S1103 until the chemical cleaning is completed (step S1106), and the process is repeated.

以上説明したように、本実施形態の濾過器400は、濾過筒420を複数備え、各濾過筒420は、流体が通過可能な円筒状の内筒421と、内筒421の周面を覆うように当該内筒421の外側に設けられ、内筒421の径方向に弾性変形可能なフィルタ422と、を備える。そして、差圧が所定の閾値Pthに達した際、予め定めた短期間、濾過器400への化洗液の流入を止め、フィルタ422の、流入側と流出側との圧力差である差圧を低減する差圧回復操作を行う。 As described above, the filter 400 of the present embodiment includes a plurality of filtration cylinders 420, and each filtration cylinder 420 covers the cylindrical inner cylinder 421 through which the fluid can pass and the peripheral surface of the inner cylinder 421. Is provided on the outside of the inner cylinder 421 and includes a filter 422 which is elastically deformable in the radial direction of the inner cylinder 421. Then, when the differential pressure reaches a predetermined threshold value Pth, the inflow of the chemical washing liquid into the filter 400 is stopped for a predetermined short period of time, and the differential pressure which is the pressure difference between the inflow side and the outflow side of the filter 422. Perform a differential pressure recovery operation to reduce the pressure.

このように、本実施形態では、短時間の差圧回復操作によりフィルタ422に付着したスラッジを剥離除去することができ、フィルタ422の機能を回復できる。バイパス管321を使用する期間が極短時間であるため、化学洗浄の循環路へのスラッジ510の混入を最小限に抑えることができる。よって、ボイラ100の信頼性が担保される。 As described above, in the present embodiment, the sludge adhering to the filter 422 can be peeled off and removed by the differential pressure recovery operation for a short time, and the function of the filter 422 can be restored. Since the bypass pipe 321 is used for a very short period of time, it is possible to minimize the mixing of sludge 510 into the circulation path of chemical cleaning. Therefore, the reliability of the boiler 100 is guaranteed.

バイパス管321を使用する期間が短くて済むため、予備の濾過器400を用意する必要もない。さらに、短時間のバイパス管321の使用で済むため、わざわざ化学洗浄を停止して濾過器400を取り外して洗浄を行う必要もない。したがって、濾過器400の分解清掃作業も不要である。また、フィルタ422に付着したスラッジ510を剥離除去後、化学洗浄を継続できる。これらにより、化学洗浄にかかる期間を短縮することができ、また、コストも抑えることができる。すなわち、本実施形態によれば、コストを抑えつつ効率よく化学洗浄を行うことができる。 Since the period for using the bypass pipe 321 is short, it is not necessary to prepare a spare filter 400. Further, since the bypass pipe 321 can be used for a short time, it is not necessary to stop the chemical cleaning and remove the filter 400 for cleaning. Therefore, the disassembly and cleaning work of the filter 400 is also unnecessary. Further, after removing the sludge 510 adhering to the filter 422 by peeling off, chemical cleaning can be continued. As a result, the period required for chemical cleaning can be shortened, and the cost can be suppressed. That is, according to the present embodiment, chemical cleaning can be efficiently performed while suppressing the cost.

また、本実施形態によれば、短時間のうちに多量のスラッジ510が生じる化学洗浄の初期時にも対応できる。 Further, according to the present embodiment, it is possible to cope with the initial stage of chemical cleaning in which a large amount of sludge 510 is generated in a short time.

さらに、本実施形態のスラッジ除去方法は、ボイラ100の構造によらず、適用でき、汎用性がある。 Further, the sludge removing method of the present embodiment can be applied and is versatile regardless of the structure of the boiler 100.

<変形例1>
上記実施形態では、濾過筒420は、外筒423を備え、内筒421と外筒423との間にフィルタ422が配置される。しかしながら、外筒423は備えなくてもよい。
<Modification 1>
In the above embodiment, the filtration cylinder 420 includes an outer cylinder 423, and a filter 422 is arranged between the inner cylinder 421 and the outer cylinder 423. However, the outer cylinder 423 does not have to be provided.

<変形例2>
また、外筒423の代わりに、ワイヤや板状の押え部材を用いてもよい。押え部材424としてリング状のワイヤ425を用いる場合の、押え部材424の配置例を図7(a)に示す。
<Modification 2>
Further, instead of the outer cylinder 423, a wire or a plate-shaped pressing member may be used. FIG. 7A shows an example of arrangement of the presser member 424 when the ring-shaped wire 425 is used as the presser member 424.

本図に示すように、押え部材424として、リング状のワイヤ425は、濾過筒420の軸方向に所定の間隔で複数配置される。図7(b)は、押え部材424にてフィルタ422が押さえられている様子を説明するための図であり、図7(c)は、図7(b)の濾過筒420の軸方向の部分断面図である。これらの図に示すように、押え部材424は、内筒421の径方向の外側からフィルタ422を押える。また、径方向の押圧が低減した時には、押え部材424は、フィルタ422が径方向に過膨張、過変形することを防ぐ。 As shown in this figure, as the pressing member 424, a plurality of ring-shaped wires 425 are arranged at predetermined intervals in the axial direction of the filtration tube 420. FIG. 7 (b) is a diagram for explaining how the filter 422 is pressed by the presser member 424, and FIG. 7 (c) shows an axial portion of the filter cylinder 420 of FIG. 7 (b). It is a cross-sectional view. As shown in these figures, the pressing member 424 presses the filter 422 from the radial outside of the inner cylinder 421. Further, when the radial pressing is reduced, the pressing member 424 prevents the filter 422 from being over-expanded and over-deformed in the radial direction.

フィルタ422にスラッジが蓄積し、所定の差圧になったとき、差圧回復操作を行い、短時間で差圧を低減させると、フィルタ422は、弾性復元するとともに、各押え部材424を節に振動する。これにより、フィルタ422に蓄積していたスラッジが剥離する。この様子を図8(a)~図8(d)に示す。 When sludge accumulates in the filter 422 and a predetermined differential pressure is reached, a differential pressure recovery operation is performed to reduce the differential pressure in a short time. Vibrate. As a result, the sludge accumulated in the filter 422 is peeled off. This situation is shown in FIGS. 8 (a) to 8 (d).

ここで、図8(a)および図8(c)は、フィルタ422にスラッジ510が蓄積している状態の、それぞれ、軸方向および径方向の断面図である。また、図8(b)および図8(d)は、差圧回復操作を行った直後、弾性復元力により、フィルタ422が振動後、元の状態に戻った際の、それぞれ、軸方向および径方向の断面図である。なお、図8(a)、図8(b)では、押え部材424は省略する。 Here, FIGS. 8A and 8C are cross-sectional views in the axial direction and the radial direction, respectively, in a state where sludge 510 is accumulated in the filter 422. Further, FIGS. 8 (b) and 8 (d) show the axial direction and the diameter, respectively, when the filter 422 vibrates and then returns to the original state due to the elastic restoring force immediately after the differential pressure recovery operation is performed. It is a cross-sectional view of a direction. In FIGS. 8 (a) and 8 (b), the pressing member 424 is omitted.

本変形例によれば、フィルタ422は、所定間隔で押え部材424により押さえられている。このため、差圧回復操作を行った際、フィルタ422に、マルチモードの振動が生じ、フィルタ422から均等にスラッジを剥離させることができる。 According to this modification, the filter 422 is pressed by the pressing member 424 at predetermined intervals. Therefore, when the differential pressure recovery operation is performed, multi-mode vibration occurs in the filter 422, and sludge can be evenly separated from the filter 422.

なお、この場合、外筒423は、備えなくてもよい。また、ワイヤ425は、本変形例のように、リング状でなくてもよい。例えば、所定の間隔をあけて、らせん状にフィルタ422の外周に巻回してもよい。 In this case, the outer cylinder 423 does not have to be provided. Further, the wire 425 does not have to be ring-shaped as in the present modification. For example, the filter may be spirally wound around the outer circumference of the filter 422 at predetermined intervals.

<変形例3>
また、図9(a)に示すように、変形例2の、複数の押え部材424を支持する支持部材426を、さらに設けてもよい。支持部材426は、例えば、濾過筒420の軸方向に沿って配置される。支持部材426は、押え部材424同様、内筒421の外側からフィルタ422を押える機能も有する。そして、減圧時には、フィルタ422が過膨張、過変形することを防ぐ機能も有する。
<Modification 3>
Further, as shown in FIG. 9A, the support member 426 for supporting the plurality of pressing members 424 of the modification 2 may be further provided. The support member 426 is arranged, for example, along the axial direction of the filtration tube 420. Like the pressing member 424, the support member 426 also has a function of pressing the filter 422 from the outside of the inner cylinder 421. It also has a function of preventing the filter 422 from over-expanding and over-deforming when the pressure is reduced.

本変形例のように構成することにより、フィルタ422は、圧力急変時に、図9(b)および図9(c)に示すように、フィルタ422の長手方向および周方向の両方向に拘束をうけながら振動する。すなわち、フィルタ422に、変形例2よりもさらに複雑なマルチモードの振動が生じ、変形例2よりさらに、均等に、むらなく、フィルタ422からスラッジを剥離させることができる。 By configuring as in this modification, the filter 422 is constrained in both the longitudinal direction and the circumferential direction of the filter 422 as shown in FIGS. 9 (b) and 9 (c) when the pressure suddenly changes. Vibrate. That is, the filter 422 undergoes more complicated multi-mode vibration than the modified example 2, and sludge can be separated from the filter 422 more evenly and evenly than the modified example 2.

なお、上記変形例2および変形例3において、フィルタ422は、弾性復元力のある素材で形成されていなくてもよい。この場合、差圧回復操作時、押え部材424および支持部材426の弾性復元力による変形動作によりフィルタ422を変形、振動させて、スラッジを剥離させる。また、この場合、径方向の押圧が低減した時には押え部材424および支持部材426の少なくとも一方が弾性復元力により径方向に復元することで、フィルタ422を径方向に膨張させて振動を励起させると共に、フィルタ422が径方向に過膨張、過変形することとを防ぐ。 In addition, in the above-mentioned modification 2 and modification 3, the filter 422 may not be formed of a material having an elastic restoring force. In this case, during the differential pressure recovery operation, the filter 422 is deformed and vibrated by the deformation operation due to the elastic restoring force of the pressing member 424 and the support member 426 to peel off the sludge. Further, in this case, when the radial pressing is reduced, at least one of the pressing member 424 and the supporting member 426 is radially restored by the elastic restoring force, thereby expanding the filter 422 in the radial direction and exciting the vibration. , Prevents the filter 422 from being over-expanded and over-deformed in the radial direction.

フィルタ422が弾性復元力のない素材で形成されている場合であっても、差圧でフィルタ422に押し付けられていたスラッジは、差圧回復操作により差圧が略0となることにより、ある程度ずり落ちる。ここで、押え部材424および支持部材426が変形、振動することにより、さらに、フィルタ422も振動し、スラッジが引き剥がされ、スラッジの除去性が向上する。 Even when the filter 422 is made of a material having no elastic restoring force, the sludge pressed against the filter 422 by the differential pressure slides down to some extent because the differential pressure becomes substantially 0 by the differential pressure recovery operation. .. Here, when the pressing member 424 and the supporting member 426 are deformed and vibrated, the filter 422 also vibrates, the sludge is peeled off, and the sludge removability is improved.

<変形例4>
上記実施形態では、差圧が上限(閾値Pth)に達した場合、差圧回復操作を行っている。しかしながら、差圧回復操作の実行タイミングは、これに限定されない。例えば、所定の時間間隔で、濾過運転と差圧回復操作を繰り返してもよい。なお、この時間間隔は、差圧が上限に達する時間よりも短く設定される。
<Modification example 4>
In the above embodiment, when the differential pressure reaches the upper limit (threshold value Pth), the differential pressure recovery operation is performed. However, the execution timing of the differential pressure recovery operation is not limited to this. For example, the filtration operation and the differential pressure recovery operation may be repeated at predetermined time intervals. It should be noted that this time interval is set shorter than the time when the differential pressure reaches the upper limit.

この場合の、化学洗浄の流れを図10(a)に示す。上記実施形態と同じ処理には、同じ符号を付す。 The flow of chemical cleaning in this case is shown in FIG. 10 (a). The same processing as in the above embodiment is designated by the same reference numeral.

本図に示すように、本変形例では、上記実施形態同様、入口弁351および出口弁352を開とし、バイパス弁353を閉とし(ステップS1101)、化学洗浄を開始する。本変形例では、洗浄を開始する際、時刻のカウントも開始する(ステップS2102)。例えば、時刻のカウンタTを0にセットする。 As shown in this figure, in the present modification, as in the above embodiment, the inlet valve 351 and the outlet valve 352 are opened, the bypass valve 353 is closed (step S1101), and chemical cleaning is started. In this modification, when the washing is started, the time count is also started (step S2102). For example, the time counter T is set to 0.

また、化学洗浄中、所定の時間(Δt)が経過したか否かを判別し(ステップS2103)、所定の時間が経過した場合、差圧の大きさによらず、上述の差圧低減操作を行う(ステップS1104)。そして、直後に復帰操作を行い(ステップS1105)、化学洗浄が終了するまで(ステップS1106)、時刻のカウンタを0とし(ステップS2107)、ステップS2103へ戻り、処理を繰り返す。 Further, it is determined whether or not a predetermined time (Δt) has elapsed during the chemical cleaning (step S2103), and when the predetermined time has elapsed, the above-mentioned differential pressure reduction operation is performed regardless of the magnitude of the differential pressure. (Step S1104). Immediately after that, a return operation is performed (step S1105), the time counter is set to 0 (step S2107), the process returns to step S2103, and the process is repeated until the chemical cleaning is completed (step S1106).

この場合の、差圧の変化の様子を図10(b)に示す。本図に示すように、本変形例では、差圧は、所定の時間間隔で低減、上昇を繰り返す。 The state of the change of the differential pressure in this case is shown in FIG. 10 (b). As shown in this figure, in this modification, the differential pressure is repeatedly reduced and increased at predetermined time intervals.

本変形例によれば、上記実施形態同様、差圧回復操作により、フィルタ422に付着しているスラッジ510が剥離し、フィルタ422の機能が回復し、それに伴い、濾過器400の濾過能力が回復する。 According to the present modification, as in the above embodiment, the sludge 510 adhering to the filter 422 is peeled off by the differential pressure recovery operation, the function of the filter 422 is restored, and the filtration capacity of the filter 400 is restored accordingly. do.

また、本変形例では、この差圧回復操作と復帰操作とを、上記実施形態で差圧回復操作を行う間隔よりも短く設定された所定の時間間隔で繰り返す。このため、バイパス管321を使用する期間もさらに短くて済み、循環路に混入するスラッジ510の量を抑えることができる。また、フィルタ422に堆積するスラッジ510の量が少ない状態で差圧回復操作が行われるため、フィルタ422の回復度合いも向上する。これらにより、ボイラの信頼性がさらに向上する。 Further, in this modification, the differential pressure recovery operation and the recovery operation are repeated at a predetermined time interval set shorter than the interval for performing the differential pressure recovery operation in the above embodiment. Therefore, the period for which the bypass pipe 321 is used can be further shortened, and the amount of sludge 510 mixed in the circulation path can be suppressed. Further, since the differential pressure recovery operation is performed in a state where the amount of sludge 510 deposited on the filter 422 is small, the recovery degree of the filter 422 is also improved. These further improve the reliability of the boiler.

<変形例5>
バイパス管321に予備の濾過器を備えてもよい。本変形例の、化学洗浄時の仮設配管の構成を図11に示す。本図に示すように、本変形例では、バイパス管321に、バイパス弁353の代わりに、バイパス用の入口弁351aと、濾過器400aと、出口弁352bとが設けられる。
<Modification 5>
The bypass tube 321 may be equipped with a spare filter. FIG. 11 shows the configuration of the temporary piping at the time of chemical cleaning in this modified example. As shown in this figure, in this modification, the bypass pipe 321 is provided with an inlet valve 351a for bypass, a filter 400a, and an outlet valve 352b instead of the bypass valve 353.

本変形例では、仮設管311に設けた濾過器400とバイパス管321の濾過器400aとで交互に濾過運転と差圧回復操作とを行うことにより、連続的に濾過運転を行うことができる。また、バイパス管321を通す間も濾過ができるため、スラッジが循環路に混入することがない。 In this modification, the filtration operation and the differential pressure recovery operation are alternately performed by the filter 400 provided in the temporary pipe 311 and the filter 400a of the bypass pipe 321 to continuously perform the filtration operation. Further, since filtration can be performed while passing through the bypass pipe 321, sludge does not enter the circulation path.

したがって、この場合、2つの濾過器で、循環路にスラッジが混入することなく、化学洗浄を継続できる。よって、工期を短く抑えつつ、ボイラの信頼性を担保できる。また、濾過器の分解清掃作業も不要であり、総合的に低コストの化洗作業を実現できる。 Therefore, in this case, the two filters can continue the chemical cleaning without the sludge getting into the circulation path. Therefore, the reliability of the boiler can be guaranteed while keeping the construction period short. In addition, there is no need to disassemble and clean the filter, and overall low-cost washing work can be realized.

100:ボイラ、101:発電プラント、102:発電機、120:火炉、129:節炭器、130:汽水分離器、140:過熱器、141:一次過熱器、142:二次過熱器、143:三次過熱器、150:再熱器、160:蒸気タービン、161:高圧タービン、162:中圧タービン、163:低圧タービン、170:復水器、181:復水ポンプ、182:低圧ヒータ、183:脱気器、184:給水ポンプ、185:高圧ヒータ、
212:主蒸気管、213:低温再熱蒸気管、214:高温再熱蒸気管、215:タービン排気管、216:主給水管、217:飽和水管、222:火炉水壁管、225:第一連絡管、
311:仮設管、312:洗浄ポンプ、321:バイパス管、351:入口弁、351a:入口弁、352:出口弁、352b:出口弁、353:バイパス弁、
400:濾過器、400a:濾過器、410:本体部、411:ケーシング、412:流入口、413:流出口、420:濾過筒、421:内筒、422:フィルタ、423:外筒、424:押え部材、425:ワイヤ、426:支持部材、430:ホッパ、431:排出口、
510:スラッジ
100: Boiler, 101: Power plant, 102: Turbine, 120: Fire furnace, 129: Coal saver, 130: Steam water separator, 140: Superheater, 141: Primary superheater, 142: Secondary superheater, 143: Tertiary superheater, 150: reheater, 160: steam turbine, 161: high pressure turbine, 162: medium pressure turbine, 163: low pressure turbine, 170: water recovery device, 181: recovery pump, 182: low pressure heater, 183: Boiler, 184: water supply pump, 185: high pressure heater,
212: Main steam pipe, 213: Low temperature reheat steam pipe, 214: High temperature reheat steam pipe, 215: Turbine exhaust pipe, 216: Main water supply pipe, 217: Saturated water pipe, 222: Furnace water wall pipe, 225: First Contact tube,
311: Temporary pipe, 312: Cleaning pump, 321: Bypass pipe, 351: Inlet valve, 351a: Inlet valve, 352: Outlet valve, 352b: Outlet valve, 353: Bypass valve,
400: Filter, 400a: Filter, 410: Main body, 411: Casing, 412: Inlet, 413: Outlet, 420: Filtration cylinder, 421: Inner cylinder, 422: Filter, 423: Outer cylinder, 424: Presser member, 425: Wire, 426: Support member, 430: Hopper, 431: Discharge port,
510: Sludge

Claims (12)

濾過筒を備える濾過器であって、
前記濾過筒は、
流体が通過可能な円筒状の内筒と、
前記内筒の周面を覆うように当該内筒の外側に設けられ、当該内筒の径方向に変形可能なフィルタと、を備えること
を特徴とする濾過器。
A filter equipped with a filter tube,
The filter tube is
A cylindrical inner cylinder through which fluid can pass, and
A filter provided on the outside of the inner cylinder so as to cover the peripheral surface of the inner cylinder, and provided with a filter that is deformable in the radial direction of the inner cylinder.
請求項1記載の濾過器であって、
前記フィルタは、弾性変形可能であること
を特徴とする濾過器。
The filter according to claim 1.
The filter is a filter characterized by being elastically deformable.
請求項2記載の濾過器であって、
前記濾過筒は、前記内筒の径方向の外側に当該内筒と同軸に配設される外筒をさらに備え、
前記外筒は、前記内筒との間に空洞領域を形成し、
前記フィルタは、前記空洞領域に設けられること
を特徴とする濾過器。
The filter according to claim 2.
The filtration cylinder further includes an outer cylinder arranged coaxially with the inner cylinder on the outer side in the radial direction of the inner cylinder.
The outer cylinder forms a hollow region with the inner cylinder, and the outer cylinder forms a hollow region.
The filter is a filter characterized in that it is provided in the cavity region.
請求項1または2記載の濾過器であって、
前記濾過筒は、前記内筒の径方向外側から前記フィルタを押さえるリング状の押え部材をさらに備え、
前記押え部材は、当該濾過筒の軸方向に間隔をあけて複数配置されること
を特徴とする濾過器。
The filter according to claim 1 or 2.
The filtration cylinder further includes a ring-shaped pressing member that presses the filter from the radial outside of the inner cylinder.
A filter characterized in that a plurality of the presser members are arranged at intervals in the axial direction of the filter tube.
請求項4記載の濾過器であって、
前記濾過筒は、複数の前記押え部材を支持する支持部材を備え、
前記支持部材は、前記濾過筒の前記軸方向に沿って配置されること
を特徴とする濾過器。
The filter according to claim 4, wherein the filter is used.
The filter tube includes a support member that supports the plurality of presser members.
The support member is a filter characterized in that it is arranged along the axial direction of the filter tube.
請求項1記載の濾過器であって、
前記内筒は、パンチングプレートで形成されること
を特徴とする濾過器。
The filter according to claim 1.
The inner cylinder is a filter characterized in that it is formed of a punching plate.
請求項1記載の濾過器であって、
前記流体は、発電プラントのボイラの化学洗浄液であり、
当該濾過器は、前記化学洗浄液に含まれる、化学洗浄により前記ボイラの洗浄対象機器の伝熱管から除去したスケールのスラッジを濾過すること
を特徴とする濾過器。
The filter according to claim 1.
The fluid is a chemical cleaning solution for the boiler of a power plant.
The filter is a filter characterized by filtering sludge of a scale contained in the chemical cleaning liquid and removed from the heat transfer tube of the equipment to be cleaned of the boiler by chemical cleaning.
濾過筒を備える濾過器において、前記濾過筒が有するフィルタに付着した個体粒子を除去する個体粒子除去方法であって、
前記濾過器への流体の流入を止め、前記フィルタの、当該流体の流入側と流出側との圧力差である差圧を低減する差圧回復操作を繰り返す、個体粒子除去方法。
A method for removing solid particles, which is a method for removing solid particles adhering to a filter of the filter tube in a filter provided with a filter tube.
A method for removing solid particles, which stops the inflow of fluid into the filter and repeats a differential pressure recovery operation for reducing the differential pressure, which is the pressure difference between the inflow side and the outflow side of the fluid, of the filter.
請求項8記載の個体粒子除去方法であって、
前記濾過器は、請求項1から7のいずれか1項に記載の濾過器であること
を特徴とする個体粒子除去方法。
The method for removing solid particles according to claim 8.
The method for removing solid particles, wherein the filter is the filter according to any one of claims 1 to 7.
請求項8記載の個体粒子除去方法であって、
前記差圧回復操作は、
前記濾過器の流入口に接続される入口管に設けられた入口弁と前記濾過器の流出口に接続される出口管に設けられた出口弁との少なくとも一方を閉じるとともに、前記濾過器をバイパスするバイパス管に設けられたバイパス弁を開く操作であること
を特徴とする個体粒子除去方法。
The method for removing solid particles according to claim 8.
The differential pressure recovery operation is
At least one of the inlet valve provided in the inlet pipe connected to the inlet of the filter and the outlet valve provided in the outlet pipe connected to the outlet of the filter is closed, and the filter is bypassed. A method for removing solid particles, which comprises an operation of opening a bypass valve provided in a bypass pipe.
請求項8記載の個体粒子除去方法であって、
前記差圧回復操作を、所定の時間間隔で繰り返すこと
を特徴とする個体粒子除去方法。
The method for removing solid particles according to claim 8.
A method for removing solid particles, which comprises repeating the differential pressure recovery operation at predetermined time intervals.
請求項8記載の個体粒子除去方法であって、
前記差圧が予め定めた閾値を超えた場合、前記差圧回復操作を行うこと
を特徴とする個体粒子除去方法。
The method for removing solid particles according to claim 8.
A method for removing solid particles, which comprises performing the differential pressure recovery operation when the differential pressure exceeds a predetermined threshold value.
JP2020182689A 2020-10-30 2020-10-30 Filter, and individual particle removing method Pending JP2022072965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020182689A JP2022072965A (en) 2020-10-30 2020-10-30 Filter, and individual particle removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020182689A JP2022072965A (en) 2020-10-30 2020-10-30 Filter, and individual particle removing method

Publications (1)

Publication Number Publication Date
JP2022072965A true JP2022072965A (en) 2022-05-17

Family

ID=81604103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020182689A Pending JP2022072965A (en) 2020-10-30 2020-10-30 Filter, and individual particle removing method

Country Status (1)

Country Link
JP (1) JP2022072965A (en)

Similar Documents

Publication Publication Date Title
JP7475053B2 (en) FILTER ASSEMBLY FOR A PLATE HEAT EXCHANGER AND METHOD FOR CLEANING THE WORKING MEDIUM IN A PLATE HEAT EXCHANGER - Patent application
US10627104B2 (en) Method and apparatus for commissioning power plants
KR101749688B1 (en) Filtration apparatus of separating noble metal waste catalysts and filtrare and a filtration method therefor
RU2184329C2 (en) Heat exchanger/filter (versions)
JP2022072965A (en) Filter, and individual particle removing method
RU2568033C2 (en) Method of completing chemical cleaning of electric power plant
JP2013088094A (en) Operating method of heat exchanger
US8795521B1 (en) Filter apparatus
RU2132514C1 (en) Combined-cycle plant with circulating fluidized- bed reactor
JP2013176735A (en) Cleaning method and apparatus for condensate flow path
CN101124047B (en) Method and device for self-cleaning and voltage-dependent electro static filtering
JP2007289890A (en) Strainer
JP5881310B2 (en) Filtration equipment and power plant
JP6649152B2 (en) Steam valve and power generation equipment
US20190344202A1 (en) Continuous filtration with backflush clearance of alternate filters
WO2008118450A1 (en) Improved method and apparatus for commissioning power plants
JP2009113014A (en) Bag filter structure
KR100275928B1 (en) A method for washing a filter
JP2007132343A (en) Fuel filter
CN214829476U (en) Condensed water deoiling device
TWI834420B (en) A mechanical dry-cleaning method for a chemical furnace pipe
JP2006289366A (en) Filtering apparatus and power plant
JPH0631117A (en) Device for removing magnetic particles in fluid
JP4202277B2 (en) Filter and power plant using the same
JP4625484B2 (en) Nuclear power plant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304