JP2022071816A - Gas detector - Google Patents

Gas detector Download PDF

Info

Publication number
JP2022071816A
JP2022071816A JP2021122620A JP2021122620A JP2022071816A JP 2022071816 A JP2022071816 A JP 2022071816A JP 2021122620 A JP2021122620 A JP 2021122620A JP 2021122620 A JP2021122620 A JP 2021122620A JP 2022071816 A JP2022071816 A JP 2022071816A
Authority
JP
Japan
Prior art keywords
ellipsoid
region
light
light receiving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021122620A
Other languages
Japanese (ja)
Inventor
貴明 古屋
Takaaki Furuya
圭一郎 桑田
Keiichiro Kuwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to CN202111254876.5A priority Critical patent/CN114486790B/en
Priority to US17/452,617 priority patent/US11921030B2/en
Publication of JP2022071816A publication Critical patent/JP2022071816A/en
Priority to US18/421,052 priority patent/US20240210306A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a compact and high accuracy gas detector using an elliptical mirror.SOLUTION: The gas detector comprises a light emission part 10, a light reception part 20, and a light guide part 30. The shape of at least a portion of inner surface of the light guide part is composed of entire or partial diagram of n ellipsoids, and when it is assumed, using n ellipsoids E1 to En, an ellipse Eci having a maximum area in the cross section of an ellipsoid Ei, and an ellipsoid Esi passing through two focal points Fai, Fbi of the ellipse Eci and having a minimum area in an expansion/contraction relationship with the ellipsoid Ei, not being rotated, that the region inside of the ellipsoid Ei and not including the ellipsoid Esi is a region Ri, that the ellipsoid Ei including the light source region of the light emission part is an ellipsoid Es, that the ellipsoid Ei including the light reception region of the light reception part is an ellipsoid Ed, that the region Ri of the ellipsoid Es is a region Rin, and that the region Ri of the ellipsoid Ed is a region Rout, 60% or more of the light source region exists in the region Rin, and 60% or more of the light reception region exists in the region Rout.SELECTED DRAWING: Figure 3

Description

本開示はガス検出装置に関する。 The present disclosure relates to a gas detector.

ガスを検出するガス検出装置が様々な分野で利用されている。例えば特許文献1は、赤外線を放射する光源と、特定波長の赤外線を検出する検出器とを楕円体の内面(楕円体ミラー)を有するケース内に備え、当該ケース内に被検出ガスが導入されるように構成された装置を開示する。 Gas detectors that detect gas are used in various fields. For example, Patent Document 1 provides a light source that radiates infrared rays and a detector that detects infrared rays of a specific wavelength in a case having an inner surface of an ellipsoid (ellipsoidal mirror), and a gas to be detected is introduced into the case. The device configured to be such is disclosed.

米国特許出願公開第2018/0348121号明細書US Patent Application Publication No. 2018/0348121

図1及び図2は、特許文献1のように楕円体ミラーの焦点位置に発光部及び受光部の中心部を配置した光路設計における光線追跡の一例である。図1のように発光部のサイズに対して楕円体ミラーが十分に大きい場合には、焦点位置に置かれた発光部から出た光線を、もう一方の焦点に置かれた受光部に集めることができる。つまり、発光部を近似的に点光源と見なすことができるため、楕円体の一般的な性質に従い、片方の焦点位置から出た光線はもう一方の焦点位置に集まる。 1 and 2 are examples of light ray tracing in an optical path design in which a light emitting portion and a light receiving portion are arranged at the focal position of an ellipsoidal mirror as in Patent Document 1. When the ellipsoidal mirror is sufficiently large with respect to the size of the light emitting part as shown in FIG. 1, the light rays emitted from the light emitting part placed at the focal position are collected by the light receiving part placed at the other focal point. Can be done. That is, since the light emitting portion can be approximately regarded as a point light source, the light rays emitted from one focal position are concentrated at the other focal position according to the general property of the ellipsoid.

一方で、図2で示すように発光部のサイズに対して楕円体ミラーが十分に大きくない場合には、発光部から出た光線は楕円体ミラー全体に散らばり、受光素子の受光部に集めることができない。これは、発光部が近似的に点光源として振る舞う物理的描像が破綻し、発光部のサイズによる楕円体ミラーの収差の影響が強く出るためである。 On the other hand, when the ellipsoidal mirror is not sufficiently large with respect to the size of the light emitting portion as shown in FIG. 2, the light rays emitted from the light emitting portion are scattered over the entire ellipsoidal mirror and collected at the light receiving portion of the light receiving element. I can't. This is because the physical image in which the light emitting portion behaves approximately as a point light source is broken, and the aberration of the ellipsoidal mirror due to the size of the light emitting portion is strongly affected.

近年のガス検出装置の小型化トレンドにともない、発光部のサイズと楕円体ミラーのサイズ比は小さくなってきている。 With the trend of miniaturization of gas detectors in recent years, the size ratio of the light emitting part to the size of the ellipsoidal mirror has become smaller.

かかる点に鑑みてなされた本開示の目的は、楕円体ミラーを用いた小型で高精度なガス検出装置を提供することにある。 An object of the present disclosure made in view of such a point is to provide a small and highly accurate gas detection device using an ellipsoidal mirror.

一実施形態に係るガス検出装置は、
発光部と、受光部と、発光部からの光を受光部に導く導光部を備え、
前記導光部の内面の少なくとも一部の形状は、n個(n:1以上の自然数)の楕円体の全部又は一部の図形で構成され、
前記n個の楕円体を楕円体E、E、…、E(n-1)、Eとし、
楕円体E(i:1≦i≦nを満たす自然数)の断面において最大の面積となる楕円を楕円Ecとし、楕円Ecの二つの焦点Fai、Fbiを通り、回転させずに楕円体Eと拡大縮小の関係にある最小の体積を持つ楕円体を楕円体Esiとしたときに、
楕円体E内部であって楕円体Esiを含まない領域を領域Rとし、
前記発光部の光源領域を含む楕円体Eを、楕円体Eとし、
前記受光部の受光領域を含む楕円体Eを、楕円体Eとし、
前記楕円体Eの領域Rを、領域Rinとし、
前記楕円体Eの領域Rを、領域Routとしたときに、
前記光源領域の60%以上が領域Rinに存在し、前記受光領域の60%以上が領域Routに存在する。
The gas detection device according to one embodiment is
It is equipped with a light emitting unit, a light receiving unit, and a light guide unit that guides the light from the light emitting unit to the light receiving unit.
The shape of at least a part of the inner surface of the light guide portion is composed of all or a part of n (n: 1 or more natural numbers) ellipsoids.
Let the n ellipsoids be ellipsoids E 1 , E 2 , ..., E (n-1) , En.
The ellipsoid having the largest area in the cross section of the ellipsoid E i (a natural number satisfying i: 1 ≦ i ≦ n) is defined as the ellipse Ec i , and passes through the two focal points F ai and F bi of the ellipsoid E c i without being rotated. When the ellipsoid with the smallest volume that has a scaling relationship with the ellipsoid Ei is the ellipsoid Esi ,
The region inside the ellipsoid E i and not including the ellipsoid E si is defined as the region R i .
The ellipsoid E i including the light source region of the light emitting portion is defined as an ellipsoid E s .
The ellipsoid E i including the light receiving region of the light receiving portion is referred to as an ellipsoid Ed.
The region R i of the ellipsoid Es is defined as a region R in .
When the region R i of the ellipsoid Ed is defined as the region R out ,
More than 60% of the light source region is present in the region R in , and 60% or more of the light receiving region is present in the region R out .

一実施形態に係るガス検出装置は、
発光部と、受光部と、発光部からの光を受光部に導く導光部を備え、
前記導光部の内面の少なくとも一部の形状は、n個(n:1以上の自然数)の楕円体の全部又は一部の図形で構成され、
前記n個の楕円体を楕円体E、E、…、E(n-1)、Eとし、
楕円体E(i:1≦i≦nを満たす自然数)の断面において最大の面積となる楕円を楕円Ecとし、楕円Ecの二つの焦点Fai、Fbiを通り、回転させずに楕円体Eと拡大縮小の関係にある最小の体積を持つ楕円体を楕円体Esiとしたときに、
楕円体E内部であって楕円体Esiを含まない領域を領域Rとし、
前記発光部の光源領域を含む楕円体Eを、楕円体Eとし、
前記受光部の受光領域を含む楕円体Eを、楕円体Eとし、
前記楕円体Eの領域Rを、領域Rinとし、
前記楕円体Eの領域Rを、領域Routとしたときに、
前記光源領域の重心又は輝度のピーク点を点Gin、前記受光領域の重心を点Goutとし、
点Ginが領域Rinに存在し、点Goutが領域Routに存在する。
The gas detection device according to one embodiment is
It is equipped with a light emitting unit, a light receiving unit, and a light guide unit that guides the light from the light emitting unit to the light receiving unit.
The shape of at least a part of the inner surface of the light guide portion is composed of all or a part of n (n: 1 or more natural numbers) ellipsoids.
Let the n ellipsoids be ellipsoids E 1 , E 2 , ..., E (n-1) , En.
The ellipsoid having the largest area in the cross section of the ellipsoid E i (a natural number satisfying i: 1 ≦ i ≦ n) is defined as the ellipse Ec i , and passes through the two focal points F ai and F bi of the ellipsoid E c i without being rotated. When the ellipsoid with the smallest volume that has a scaling relationship with the ellipsoid Ei is the ellipsoid Esi ,
The region inside the ellipsoid E i and not including the ellipsoid E si is defined as the region R i .
The ellipsoid E i including the light source region of the light emitting portion is defined as an ellipsoid E s .
The ellipsoid E i including the light receiving region of the light receiving portion is referred to as an ellipsoid Ed.
The region R i of the ellipsoid Es is defined as a region R in .
When the region R i of the ellipsoid Ed is defined as the region R out ,
The center of gravity of the light source region or the peak point of luminance is defined as a point G in , and the center of gravity of the light receiving region is defined as a point G out .
The point G in exists in the region R in , and the point G out exists in the region R out .

本開示の実施形態によれば、楕円体ミラーを用いた小型で高精度なガス検出装置を提供することが可能になる。 According to the embodiment of the present disclosure, it becomes possible to provide a small and highly accurate gas detection device using an ellipsoidal mirror.

図1は、楕円体ミラーにおける光線追跡の一例を示す図である。FIG. 1 is a diagram showing an example of ray tracing in an ellipsoidal mirror. 図2は、楕円体ミラーにおける光線追跡の別の例を示す図である。FIG. 2 is a diagram showing another example of ray tracing in an ellipsoidal mirror. 図3は、一実施形態に係るガス検出装置の一部を透過させた斜視図である。FIG. 3 is a perspective view showing a part of the gas detection device according to the embodiment. 図4は、回転楕円体のミラーにおける光線追跡シミュレーション結果を示す図である。FIG. 4 is a diagram showing a ray tracing simulation result in a mirror of a spheroid. 図5は、領域Rを説明するための図である。FIG. 5 is a diagram for explaining the region Ri . 図6は、本実施形態に係るガス検出装置の一構成例を示す図である。FIG. 6 is a diagram showing a configuration example of the gas detection device according to the present embodiment. 図7は、本実施形態に係るガス検出装置の変形例を示す図である。FIG. 7 is a diagram showing a modified example of the gas detection device according to the present embodiment. 図8は、一般的な楕円体の光線シミュレーション結果を示す図である。FIG. 8 is a diagram showing a ray simulation result of a general ellipsoid. 図9は、受動素子を含む発光部と間接素子を含む受光部の構成例を示す図である。FIG. 9 is a diagram showing a configuration example of a light emitting unit including a passive element and a light receiving unit including an indirect element. 図10は、受動素子を含む発光部と間接素子を含む受光部の他の構成例を示す図である。FIG. 10 is a diagram showing another configuration example of a light emitting unit including a passive element and a light receiving unit including an indirect element.

<本実施形態のガス検出装置>
本実施形態のガス検出装置は、発光部と、受光部と、発光部からの光を受光部に導く導光部を備える。
<Gas detection device of this embodiment>
The gas detection device of the present embodiment includes a light emitting unit, a light receiving unit, and a light guide unit that guides light from the light emitting unit to the light receiving unit.

導光部の内面の少なくとも一部の形状は、n個(n:1以上の自然数)の回転楕円体の全部又は一部の図形で構成される。 The shape of at least a part of the inner surface of the light guide portion is composed of all or a part of n (n: 1 or more natural numbers) spheroids.

n個の回転楕円体を楕円体E、E、…、E(n-1)、Eと定義する。楕円体E(i:1≦i≦nを満たす自然数)の二つの焦点Fai、Fbiを通り、楕円体Eの回転対称軸と同一の回転対称軸をもち、楕円体Eと相似縮小の関係にある楕円体を楕円体Esiと定義する。楕円体E内部であって楕円体Esiを含まない領域を領域Rと定義する。発光部の光源領域を含む楕円体Eを、楕円体Eと定義する。受光部の受光領域を含む楕円体Eを、楕円体Eと定義する(楕円体が一個の場合、つまりn=1である場合は、E=Eである)。楕円体Eの領域Rを、領域Rinと定義する。楕円体Eの領域Rを、領域Routと定義する。 N spheroids are defined as ellipsoids E 1 , E 2 , ..., E (n-1) , En. It passes through the two focal points F ai and F bi of the ellipsoid E i (a natural number satisfying i: 1 ≤ i ≤ n), has the same axis of rotational symmetry as the axis of rotational symmetry of the ellipsoid E i , and has the same axis of rotational symmetry as the ellipsoid E i . An ellipsoid having a similarity reduction relationship is defined as an ellipsoid E si . The region inside the ellipsoid E i and not including the ellipsoid E si is defined as the region R i . The ellipsoid E i including the light source region of the light emitting portion is defined as the ellipsoid E s . The ellipsoid E i including the light receiving region of the light receiving portion is defined as an ellipsoid Ed (when there is one ellipsoid, that is, when n = 1, E s = Ed ). The region Ri of the ellipsoid Es is defined as the region R in . The region R i of the ellipsoid Ed is defined as the region R out .

本実施形態のガス検出装置は、光源領域の面積の60%以上が領域Rinに存在し、受光領域の面積の60%以上が領域Routに存在する。 In the gas detection device of the present embodiment, 60% or more of the area of the light source region is present in the region R in , and 60% or more of the area of the light receiving region is present in the region R out .

詳細な原理は後述するが、この構成を備えることにより、楕円体ミラーを用いた小型で高精度なガス検出装置を提供することが可能になる。 Although the detailed principle will be described later, by providing this configuration, it becomes possible to provide a compact and highly accurate gas detection device using an ellipsoidal mirror.

<本実施形態のガス検出装置の具体的な構成の一例>
図3は、本開示の一実施形態に係るガス検出装置の一部を透過させた斜視図である。ガス検出装置は、一例として縦×横×高さが7mm×5mm×3mmの小型の装置であって、ガスセンサとも称される。
<Example of specific configuration of the gas detection device of this embodiment>
FIG. 3 is a perspective view showing a part of the gas detection device according to the embodiment of the present disclosure. As an example, the gas detection device is a small device having a length × width × height of 7 mm × 5 mm × 3 mm, and is also referred to as a gas sensor.

本実施形態において、ガス検出装置は、導入した気体を透過した赤外線に基づいて被検出ガスの濃度を測定するNDIR(Non Dispersive InfraRed)方式の装置である。 In the present embodiment, the gas detection device is an NDIR (Non Dispersive InfraRed) type device that measures the concentration of the detected gas based on the infrared rays transmitted through the introduced gas.

被検出ガスは、例えば二酸化炭素、水蒸気、、一酸化炭素、一酸化窒素、アンモニア、二酸化硫黄又はアルコール、ホルムアルデヒドやメタン、プロパン等の炭化水素系ガス等である。 The detected gas is, for example, carbon dioxide, water vapor, carbon monoxide, nitrogen monoxide, ammonia, sulfur dioxide or alcohol, a hydrocarbon gas such as formaldehyde, methane, or propane.

<アーキテクチャー(構成部材の相互関係)>
ガス検出装置は、発光部と、受光部と、導光部と、を備える。ガス検出装置は、さらに保持部を備えてよい。また、ガス検出装置は、付加的に制御部を備えてよい。図3に示す本開示の一実施形態に係るガス検出装置は、保持部40によって保持された受光部20と発光部10、保持部40に保持された導光部30を備えている。図示はしないが、保持部40内に、発光部10及び受光部20の少なくとも一方を制御する制御部を備えていてよい。
<Architecture (mutual relationship of components)>
The gas detection device includes a light emitting unit, a light receiving unit, and a light guide unit. The gas detector may further include a retainer. Further, the gas detection device may additionally include a control unit. The gas detection device according to the embodiment of the present disclosure shown in FIG. 3 includes a light receiving unit 20 held by a holding unit 40, a light emitting unit 10, and a light guide unit 30 held by the holding unit 40. Although not shown, the holding unit 40 may include a control unit that controls at least one of the light emitting unit 10 and the light receiving unit 20.

発光部10及び受光部20の表面は、導光部30の内壁と保持部40の上面との間の空間(検知空間)に接している。また導光部30は検知空間にガスを導入及び導出が可能なガスポート31を備えている。 The surfaces of the light emitting unit 10 and the light receiving unit 20 are in contact with the space (detection space) between the inner wall of the light guide unit 30 and the upper surface of the holding unit 40. Further, the light guide unit 30 is provided with a gas port 31 capable of introducing and deriving gas into the detection space.

発光部10から放射された光は、導光部30の内面で少なくとも一度反射し、受光部20に到達する。 The light radiated from the light emitting unit 10 is reflected at least once on the inner surface of the light guide unit 30 and reaches the light receiving unit 20.

次に、本実施形態のガス検出装置の構成部材について詳細な説明をする。 Next, the constituent members of the gas detection device of the present embodiment will be described in detail.

<発光部>
発光部10は、被検出ガスの検出に用いられる光を発する部品である。発光部10は、被検出ガスによって吸収される波長を含む光を出力するものであれば特に制限されない。本実施形態において、発光部10が発する光は赤外線であるが、これに限定されない。
<Light emitting part>
The light emitting unit 10 is a component that emits light used for detecting the gas to be detected. The light emitting unit 10 is not particularly limited as long as it outputs light including a wavelength absorbed by the detected gas. In the present embodiment, the light emitted by the light emitting unit 10 is infrared rays, but the light is not limited thereto.

発光部10は発光素子10Aを有する。本実施形態において、発光素子10AはLED(light emitting diode、発光ダイオード)であるが、別の例として、ランプ、レーザー(Light Amplification by Stimulated Emission of Radiation)、有機発光素子又はMEMS(Micro Electro Mechanical Systems)ヒーター等であり得る。また、発光部10は発光素子10Aだけでなく、発光素子10Aで発した光を受けて受動的に発光する受動素子を含んでもよい。具体的には、受動素子はミラー、光学フィルタ、蛍光体、光学像、光ファイバ、光導波路、レンズ、あるいは回折格子である。 The light emitting unit 10 has a light emitting element 10A. In the present embodiment, the light emitting element 10A is an LED (light emitting diode), but as another example, a lamp, a laser (Light Amplification by Standardized Emission of Radiation), an organic light emitting element, or a MEMS (MicroElectromechanical System). ) It can be a heater or the like. Further, the light emitting unit 10 may include not only the light emitting element 10A but also a passive element that passively emits light by receiving the light emitted by the light emitting element 10A. Specifically, the passive element is a mirror, an optical filter, a phosphor, an optical image, an optical fiber, an optical waveguide, a lens, or a diffraction grating.

なお、本実施形態においては、発光部10は発光素子10Aしか有さないため、発光部10と発光素子10Aは同義である。 In this embodiment, since the light emitting unit 10 has only the light emitting element 10A, the light emitting unit 10 and the light emitting element 10A have the same meaning.

発光部10は光源領域をもつ。光源領域とは本実施形態のように発光素子10Aから受動素子を介さずに直接導光部30に光を導く場合には、発光素子10Aの光子が生成される領域である。具体的には、量子型の発光素子10Aであれば活性領域であり、熱式光源であれば高温領域である。例えば、ランプの場合はフィラメントである。 The light emitting unit 10 has a light source region. The light source region is a region in which photons of the light emitting element 10A are generated when the light is directly guided from the light emitting element 10A to the light guide unit 30 without passing through the passive element as in the present embodiment. Specifically, if it is a quantum type light emitting element 10A, it is an active region, and if it is a thermal light source, it is a high temperature region. For example, in the case of a lamp, it is a filament.

また、発光部10が受動素子を含み、発光素子10Aで発した光を受動素子を介して導光部30に光を導く場合には、光源領域は受動素子の光線の出射端の集合体である。具体的には、受動素子がミラーの場合、光源領域は光線を反射している領域である。 Further, when the light emitting unit 10 includes a passive element and the light emitted by the light emitting element 10A is guided to the light guide unit 30 via the passive element, the light source region is an aggregate of the emission ends of the light rays of the passive element. be. Specifically, when the passive element is a mirror, the light source region is a region that reflects light rays.

また、受動素子が波長選択機能を有する光学フィルタの場合、光学フィルタの空間と接する面で光線の通過する領域を光源領域ととらえてよい。また、受動素子が光ファイバ、光導波路、レンズの場合、空間と接する面で光線の通過する出射面を光源領域ととらえてよい。 Further, when the passive element is an optical filter having a wavelength selection function, a region in which a light ray passes on a surface in contact with the space of the optical filter may be regarded as a light source region. Further, when the passive element is an optical fiber, an optical waveguide, or a lens, the emission surface through which the light beam passes on the surface in contact with the space may be regarded as the light source region.

また、レンズやミラーなどによって発光部10として光学像が結像されている場合は、結像された像を光源領域ととらえてよい。 Further, when an optical image is formed as the light emitting portion 10 by a lens, a mirror, or the like, the formed image may be regarded as a light source region.

ここで発光素子10Aは、LED、MEMSヒーター、VCSEL(Vertical Cavity Surface Emitting LASER)など、平面状である面光源であることが好ましい。 Here, the light emitting element 10A is preferably a planar surface light source such as an LED, a MEMS heater, or a VCSEL (Vertical Cavity Surface Emitting Laser).

<受光部>
受光部20は、導入した気体を透過した光を受け取る部品である。受光部20は、被検出ガスによって吸収される波長を含む光の帯域に感度を有するものであれば特に制限されない。本実施形態において、受光部20が受け取る光は赤外線であるが、これに限定されない。
<Light receiving part>
The light receiving unit 20 is a component that receives light transmitted through the introduced gas. The light receiving unit 20 is not particularly limited as long as it has sensitivity in the band of light including the wavelength absorbed by the detected gas. In the present embodiment, the light received by the light receiving unit 20 is infrared rays, but the light is not limited thereto.

受光部20は受光素子20Aを有する。本実施形態において、受光素子20Aはフォトダイオード(Photodiode)であるが、別の例としてフォトトランジスタ、サーモパイル、焦電センサ、ボロメータ又は光音響式検出器等であり得る。また、受光部20は受光素子20Aだけでなく、受光素子20Aに光を導く間接素子を含んでもよい。具体的には間接素子はミラー、光学フィルタ、蛍光体、レンズ、回折格子、光ファイバ、光導波路である。 The light receiving unit 20 has a light receiving element 20A. In the present embodiment, the light receiving element 20A is a photodiode, but another example may be a phototransistor, a thermopile, a charcoal sensor, a bolometer, a photoacoustic detector, or the like. Further, the light receiving unit 20 may include not only the light receiving element 20A but also an indirect element that guides light to the light receiving element 20A. Specifically, the indirect element is a mirror, an optical filter, a phosphor, a lens, a diffraction grating, an optical fiber, and an optical waveguide.

なお、本実施形態においては、受光部20は受光素子20Aしか有さないため、受光部20と受光素子20Aは同義である。 In this embodiment, since the light receiving unit 20 has only the light receiving element 20A, the light receiving unit 20 and the light receiving element 20A have the same meaning.

受光部20は受光領域をもつ。受光領域とは、本実施形態のように受光素子20Aが間接素子を介さずに直接受光する場合には、受光素子20Aのうち受け取った光を信号に変換する機能を有する領域である。具体的には受光素子20Aがフォトダイオードの場合、受光領域は活性層のことであり、またサーモパイルの場合は熱電変換部である。 The light receiving unit 20 has a light receiving region. The light receiving region is a region having a function of converting the received light into a signal in the light receiving element 20A when the light receiving element 20A directly receives light without interposing the indirect element as in the present embodiment. Specifically, when the light receiving element 20A is a photodiode, the light receiving region is an active layer, and in the case of a thermopile, it is a thermoelectric conversion unit.

また、受光部20が間接素子を介して受光素子20Aが受光する場合には受光領域とは間接素子のうち受け取った光を受光素子20Aに導くにあたり光学機能を有し、光線が通過する領域である。具体的には、間接素子が波長選択機能を有する光学フィルタの場合、光学フィルタの空間と接する面で光線の通過する領域を受光領域ととらえてよい。また、間接素子が光ファイバ、光導波路、レンズの場合、空間と接する面で光線の通過する入射面を受光領域ととらえてよい。また、間接素子がミラーの場合、受光領域は光線を反射している領域である。 Further, when the light receiving unit 20 receives light from the light receiving element 20A via the indirect element, the light receiving region has an optical function in guiding the received light from the indirect element to the light receiving element 20A, and is a region through which the light beam passes. be. Specifically, when the indirect element is an optical filter having a wavelength selection function, the region in which the light beam passes on the surface of the optical filter in contact with the space may be regarded as the light receiving region. Further, when the indirect element is an optical fiber, an optical waveguide, or a lens, the incident surface on which the light ray passes on the surface in contact with the space may be regarded as the light receiving region. When the indirect element is a mirror, the light receiving region is a region that reflects light rays.

<導光部>
導光部30は発光部10が発した光を受光部20に導く部材であり、ガス検出装置の光学系である。発光部10から射出された光は、導光部30で反射され受光部20に到達する。換言すると、導光部30は、発光部10と受光部20とを光学的に接続させる。
<Light guide unit>
The light guide unit 30 is a member that guides the light emitted by the light emitting unit 10 to the light receiving unit 20, and is an optical system of a gas detection device. The light emitted from the light emitting unit 10 is reflected by the light guide unit 30 and reaches the light receiving unit 20. In other words, the light guide unit 30 optically connects the light emitting unit 10 and the light receiving unit 20.

本実施形態において導光部30の内面はミラー(反射面)である。その内面の少なくとも一部の形状は回転楕円体の全部又は一部の図形である。導光部30は、補助的に平面ミラー、凹面ミラー又は凸面ミラー、レンズ、回折格子を更に備えていてよい。 In the present embodiment, the inner surface of the light guide unit 30 is a mirror (reflection surface). The shape of at least a part of the inner surface is a figure of all or a part of a spheroid. The light guide unit 30 may further include a planar mirror, a concave mirror or a convex mirror, a lens, and a diffraction grating as an auxiliary.

ミラーを構成する材料は、例えば、金属、ガラス、セラミックス、ステンレス等であってよいが、この限りではない。 The material constituting the mirror may be, for example, metal, glass, ceramics, stainless steel, etc., but is not limited to this.

検出感度向上の観点から、これらのミラーを構成する材料は、光の吸収係数が小さく反射率が高い材料で構成されることが好ましい。具体的には、アルミニウム、金、銀を含む合金、誘電体又はこれらの積層体のコーティングが施された樹脂筐体が好ましい。樹脂筐体の材料としては、例えば、LCP(液晶ポリマー)、PP(ポリプロピレン)、PEEK(ポリエーテルエーテルケトン)、PA(ポリアミド)、PPE(ポリフェニレンエーテル)、PC(ポリカーボネート)又はPPS(ポリフェニレンスルファイド)、PMMA(ポリメタクリル酸メチル樹脂)、PAR(ポリアリレート樹脂)等、及び、これらの2つ以上を混合した硬質樹脂等があげられる。また、信頼性及び経時変化の観点から金又は金を含む合金層でコーティングされた樹脂筐体が好ましい。さらに、反射率を高めるために金属層の表面に誘電体積層膜を形成することが好ましい。導光部30の内面が樹脂筐体上に蒸着又はめっきによって形成される場合、金属材料で形成される場合と比較して、高生産性と軽量化の向上を図ることができる。さらに、保持部40との熱膨張係数差が縮まり、熱変形が抑制され、感度が変動しづらくなる。 From the viewpoint of improving the detection sensitivity, it is preferable that the material constituting these mirrors is made of a material having a small light absorption coefficient and a high reflectance. Specifically, a resin housing coated with aluminum, an alloy containing gold, silver, a dielectric, or a laminate thereof is preferable. Examples of the material of the resin housing include LCP (liquid crystal polymer), PP (polyetherketone), PEEK (polyetheretherketone), PA (polyetherketone), PPE (polyphenylene ether), PC (polycarbonate), or PPS (polyphenylensuulfide). ), PMMA (polymethylmethacrylate resin), PAR (polyallylate resin), etc., and a hard resin obtained by mixing two or more of these. Further, from the viewpoint of reliability and aging, a resin housing coated with gold or an alloy layer containing gold is preferable. Further, it is preferable to form a dielectric laminated film on the surface of the metal layer in order to increase the reflectance. When the inner surface of the light guide portion 30 is formed on the resin housing by thin film deposition or plating, it is possible to improve productivity and weight reduction as compared with the case where the inner surface is formed of a metal material. Further, the difference in the coefficient of thermal expansion from the holding portion 40 is reduced, thermal deformation is suppressed, and the sensitivity is less likely to fluctuate.

また、導光部30は切削加工で成形されてよく、生産性の観点からより好ましくは射出成型で成形されることが望ましい。 Further, the light guide portion 30 may be formed by cutting, and is more preferably formed by injection molding from the viewpoint of productivity.

<保持部>
保持部40は、受光部20、発光部10、導光部30を保持する部材である。保持とは、外力に対して各部材の相対的位置関係を維持しようとすることを意味する。保持の形態は特に制限されないが、機械的な保持である事が好ましい。保持の形態は、電磁的、化学的な保持であってよい。
<Holding part>
The holding unit 40 is a member that holds the light receiving unit 20, the light emitting unit 10, and the light guide unit 30. Holding means trying to maintain the relative positional relationship of each member with respect to an external force. The form of holding is not particularly limited, but mechanical holding is preferable. The form of retention may be electromagnetic or chemical retention.

本実施形態のガス検出装置が制御部を有する場合、制御部は保持部40により保持されてよい。 When the gas detection device of the present embodiment has a control unit, the control unit may be held by the holding unit 40.

保持部40は、受光部20、発光部10、導光部30を保持することができれば特に制限されない。本実施形態において保持部40は樹脂パッケージであるが、別の例として、プリント基板、セラミックパッケージであってよい。もしくは、半導体基板を保持部40とし、受光部20と発光部10が同一の半導体基板上に形成されていてもよい。保持部40が樹脂パッケージである場合、内部にリードフレームを内蔵していてよく、リードフレームと発光部10、受光部20、制御部がワイヤー等によって電気的に接続されていてよい。また、保持部40がプリント基板である場合、プリント基板と受光部20及び発光部10ははんだによって電気的かつ機械的に接合されていてよい。さらに、保持部40と導光部30は、接着剤、ネジ、ツメ、はめ合い、グロメット、溶着等によって機械的に保持される。また、保持部40は外部と電気的な接続を行うための接続端子を有していてよい。 The holding unit 40 is not particularly limited as long as it can hold the light receiving unit 20, the light emitting unit 10, and the light guide unit 30. In the present embodiment, the holding portion 40 is a resin package, but as another example, it may be a printed circuit board or a ceramic package. Alternatively, the semiconductor substrate may be used as the holding portion 40, and the light receiving portion 20 and the light emitting portion 10 may be formed on the same semiconductor substrate. When the holding unit 40 is a resin package, a lead frame may be built in, and the lead frame, the light emitting unit 10, the light receiving unit 20, and the control unit may be electrically connected by a wire or the like. When the holding portion 40 is a printed circuit board, the printed circuit board, the light receiving portion 20, and the light emitting portion 10 may be electrically and mechanically bonded by solder. Further, the holding portion 40 and the light guide portion 30 are mechanically held by an adhesive, screws, claws, fittings, grommets, welding and the like. Further, the holding portion 40 may have a connection terminal for making an electrical connection with the outside.

<制御部>
制御部は、発光部10及び受光部20の少なくとも一方を制御する部材である。制御部は、受光部20から出力されたアナログ電気信号をデジタル電気信号に変換する、アナログ-デジタル変換回路を有していてよい。さらに、制御部は変換されたデジタル電気信号に基づきガス濃度演算を実行する演算部を有していてよい。
<Control unit>
The control unit is a member that controls at least one of the light emitting unit 10 and the light receiving unit 20. The control unit may have an analog-to-digital conversion circuit that converts an analog electric signal output from the light receiving unit 20 into a digital electric signal. Further, the control unit may have a calculation unit that executes a gas concentration calculation based on the converted digital electric signal.

制御部は、読み込むプログラムに応じた機能を実行する汎用のプロセッサ及び特定の処理に特化した専用のプロセッサの少なくとも1つを有してよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。 The control unit may have at least one of a general-purpose processor that executes a function according to a program to be read and a dedicated processor specialized in a specific process. The dedicated processor may include an application specific integrated circuit (ASIC). The processor may include a programmable logic device (PLD).

<ガス検出装置のサイズ>
図1(a)及び図1(b)で、発光部10のサイズに対して楕円体ミラーが十分に大きい場合には、発光部10から出た光線を受光部20に集めることができることを示した。ここで導光部30のサイズとして、導光部30の一部の形状は楕円体として構成されるが、そのうち発光部10を包含する楕円体の最大長をLmsとし、光源領域の最大長をLsと定義する。ここでLs<Lms/50の条件が成り立つとき、発光部10のサイズが楕円体ミラーに対して十分に小さく、近似的に点光源と見なすことができる。そのため、片方の焦点位置から出た光線はもう一方の焦点位置に集まる。一方で、図2(a)及び図2(b)で示すように発光部10のサイズに対して楕円体ミラーが十分に大きくない場合(Ls≧Lms/50)では、発光部10から出た光線は楕円体ミラー全体に散らばり、受光部20に集めることができない。
<Size of gas detector>
1 (a) and 1 (b) show that when the ellipsoidal mirror is sufficiently large with respect to the size of the light emitting unit 10, the light rays emitted from the light emitting unit 10 can be collected by the light receiving unit 20. rice field. Here, as the size of the light guide unit 30, a part of the shape of the light guide unit 30 is configured as an ellipsoid, of which the maximum length of the ellipsoid including the light emitting unit 10 is Lms and the maximum length of the light source region is set. Defined as Ls. Here, when the condition of Ls <Lms / 50 is satisfied, the size of the light emitting unit 10 is sufficiently small with respect to the ellipsoidal mirror, and it can be approximately regarded as a point light source. Therefore, the light rays emitted from one focal position are focused on the other focal position. On the other hand, when the ellipsoidal mirror is not sufficiently large with respect to the size of the light emitting unit 10 as shown in FIGS. 2 (a) and 2 (b) (Ls ≧ Lms / 50), the light emitting unit 10 exits. The light rays are scattered over the entire ellipsoidal mirror and cannot be collected by the light receiving unit 20.

特に制限されないが、本実施形態のガス検出装置は、Ls≧Lms/50の場合に、特に顕著な効果を奏する。 Although not particularly limited, the gas detection device of the present embodiment exerts a particularly remarkable effect when Ls ≧ Lms / 50.

特に制限されないが、同様に、本実施形態のガス検出装置は、受光部20を包含する楕円体の最大長をLmdとし、受光部20の最大長をLdとしたときに、Ld≧Lmd/50の場合に、特に顕著な効果を奏する。 Although not particularly limited, similarly, in the gas detection device of the present embodiment, when the maximum length of the ellipsoid including the light receiving unit 20 is Lmd and the maximum length of the light receiving unit 20 is Ld, Ld ≧ Lmd / 50. In the case of, it has a particularly remarkable effect.

次に、本実施形態のガス検出装置の原理について図面を参酌しながら詳細に説明する。 Next, the principle of the gas detection device of the present embodiment will be described in detail with reference to the drawings.

<原理の説明>
図4は、本実施形態における基礎原理を説明するための図であり、回転楕円体のミラーにおいて、その回転軸を通る平面内おける光線追跡シミュレーション結果である。上記のようにガス検出装置は複数の回転楕円体でも構成され得るが、基礎原理の説明において1つの回転楕円体を用いて説明する。ガス検出装置を構成するn個(n:1以上の自然数)の回転楕円体を楕円体E、…、E、…、E(i:1≦i≦nを満たす自然数)とする場合に、図4(a)、図4(b)及び図5の回転楕円体は1つの楕円体E(i=n=1)に対応する。
<Explanation of the principle>
FIG. 4 is a diagram for explaining the basic principle in the present embodiment, and is a result of a ray tracing simulation in a plane passing through the axis of rotation of a spheroidal mirror. As described above, the gas detector may be configured with a plurality of spheroids, but one spheroid will be used in the explanation of the basic principle. When n (n: 1 or more natural numbers) spheroids constituting the gas detection device are ellipsoids E 1 , ..., E i , ..., En (natural numbers satisfying i: 1≤i≤n ) In addition, the spheroids of FIGS. 4 (a), 4 (b) and 5 correspond to one ellipsoid Ei ( i = n = 1).

図4(a)では回転楕円体の焦点Fai、Fbiよりも外側の領域である領域Rの点から光線が射出した場合の光線のシミュレーション結果である。このとき、光線はミラー表面で反射を繰り返す。しかし、楕円体中央付近の焦点と焦点をつないだ領域である領域RINTERに光線が侵入することはない。 FIG. 4A shows a simulation result of a light ray when the light ray is emitted from the point of the region Ri , which is a region outside the focal points F ai and F bi of the spheroid. At this time, the light rays repeatedly reflect on the mirror surface. However, the light beam does not penetrate into the region R INTER , which is the region connecting the focal point and the focal point near the center of the ellipsoid.

また図4(b)は領域RINTERの点から光線が出射した場合の光線のシミュレーション結果である。回転楕円体の焦点Fai、Fbiよりも外側の両端領域である領域REDGEに光線が侵入することはない。 Further, FIG. 4B is a simulation result of a light ray when the light ray is emitted from the point of the region R INTER . No light rays enter the region R EDGE , which is the region at both ends outside the focal points F ai and F bi of the spheroid.

この領域Rと領域RINTERにおける光線の侵入領域の分離現象(以降は、領域分離現象と称する)は、光線の軌道と、ミラー面と同一形状の壁に弾性衝突を繰り返す剛体球の軌道とを、同一視することで説明される。楕円体壁で弾性反射する自由空間での剛体球の運動に対して、焦点Faiを中心とする角運動量LFaiと焦点Fbiを中心とする角運動量LFbiを内積した一般角運動量J=LFai・LFbiが保存される。このとき、領域Rの点から出射された剛体球の軌道では、各焦点から見て同じ方向に回転運動しているため、角運動量LFaiとLFbiは同一方向となり一般角運動量Jは正である(J>0)。一方で、領域RINTERを通過する軌道の場合は、各焦点から見た回転方向が逆方向であるため一般角運動量Jは負となる(J<0)。 The separation phenomenon of the intrusion region of the light ray in the region Ri and the region R INTER ( hereinafter referred to as the region separation phenomenon) includes the trajectory of the light ray and the trajectory of a rigid sphere that repeatedly elastically collides with the wall having the same shape as the mirror surface. Is explained by equating. General angular momentum J = which is the inner product of the angular momentum L Fai centered on the focal point F ai and the angular momentum L F bi centered on the focal point F bi with respect to the motion of the rigid sphere in the free space elastically reflected by the elliptical wall. L Fai and L Fbi are saved. At this time, since the orbit of the rigid sphere emitted from the point of the region Ri is rotationally moving in the same direction when viewed from each focal point, the angular momentums L Fai and L F bi are in the same direction, and the general angular momentum J is positive. (J> 0). On the other hand, in the case of an orbit passing through the region R INTER , the general angular momentum J is negative because the rotation direction seen from each focal point is opposite (J <0).

つまり一般角運動量Jの保存則より、最初に領域Rから出射された剛体球の軌道(光線)は一般角運動量Jが正の値であり、ミラー上の壁で何度反射されても、一般角運動量Jが負値で領域RINTERを通過する剛体球の軌道(光線)になることはない。また逆に一般角運動量Jが負値である領域RINTERから出射された剛体球の軌道(光線)は、ミラー上の壁で何度反射されようとも、一般角運動量Jが正の値である領域Rを通過する剛体球の軌道(光線)になることはない。このようにして領域分離現象がおこる。ここで、一般角運動量J=0の場合は、焦点から出射され、もう一方の焦点に至る軌道に相当し、これにより剛体球の運動の位相空間が分離されている。 That is, according to the conservation law of the general angular momentum J, the trajectory (ray) of the rigid sphere first emitted from the region Ri has a positive value for the general angular momentum J, and no matter how many times it is reflected by the wall on the mirror, The general angular momentum J does not become the orbit (ray) of a rigid sphere passing through the region R INTER with a negative value. On the contrary, the trajectory (light ray) of the rigid sphere emitted from the region R INTER where the general angular momentum J is a negative value has a positive value regardless of how many times it is reflected by the wall on the mirror. It does not become the orbit (ray) of a rigid sphere passing through the region R i . In this way, the region separation phenomenon occurs. Here, when the general angular momentum J = 0, it corresponds to the orbit emitted from the focal point and reaching the other focal point, whereby the phase space of the motion of the rigid sphere is separated.

ここで、楕円体E(i:1≦i≦nを満たす自然数)の断面において最大の面積となる楕円を楕円Ecとする場合に、回転楕円体であれば、焦点が一義的に決まり、最大の面積は焦点の2つを通る断面である。また、楕円Ecの二つの焦点Fai、Fbiを通り、回転させずに楕円体Eと拡大縮小の関係にある最小の体積を持つ楕円体を楕円体Esiとした場合に、回転楕円体であれば、焦点は一義的に決まる。そのため、上記の原理は、一般的に「楕円体E(i:1≦i≦nを満たす自然数)の断面において最大の面積となる楕円を楕円Ecとし、楕円Ecの二つの焦点Fai、Fbiを通り、回転させずに楕円体Eと拡大縮小の関係にある最小の体積を持つ楕円体を楕円体Esiとしたときに」成り立つ。 Here, when the ellipsoid having the largest area in the cross section of the ellipsoid E i (a natural number satisfying i: 1 ≦ i ≦ n) is the ellipsoid Ec i , the focal point is uniquely determined if it is a spheroid. The largest area is the cross section through the two focal points. Further, when the ellipsoid having the smallest volume having a scaling relationship with the ellipsoid E i without being rotated through the two focal points F ai and F bi of the ellipsoid E c i is the ellipsoid E si , it is rotated. If it is an ellipsoid, the focus is uniquely determined. Therefore, in the above principle, in general, the ellipse having the largest area in the cross section of the ellipsoid E i (a natural number satisfying i: 1≤i≤n) is defined as the ellipse Ec i , and the two focal points F of the ellipsoid Ec i . This is true when the ellipsoid E si , which passes through ai and F bi and has the smallest volume in the relationship of enlargement / reduction with the ellipsoid E i without being rotated, is defined as the ellipsoid E si. "

次に、上述した光線の侵入領域の分離現象を踏まえた本実施形態のガス検出装置の構成について説明する。 Next, the configuration of the gas detection device of the present embodiment based on the above-mentioned separation phenomenon of the light beam intrusion region will be described.

図5は、一つの回転楕円体形状を含む導光部30の内面に対し、領域分離現象を応用した本実施形態を説明する図である。領域分離現象により、光源領域の少なくとも一部を領域R内に配置することで、この位置の光源から射出される光線はミラーで反射を繰り返しても常に領域Rに存在する。このとき、同じく領域Rに受光領域を配置することで、光線は領域RINTERには散らばることなく領域R内に留まるので、受光領域に対して効率的に光を集めることができる。 FIG. 5 is a diagram illustrating the present embodiment in which the region separation phenomenon is applied to the inner surface of the light guide unit 30 including one spheroidal shape. By arranging at least a part of the light source region in the region Ri due to the region separation phenomenon, the light rays emitted from the light source at this position always exist in the region Ri even if the mirror repeatedly reflects them. At this time, by similarly arranging the light receiving region in the region Ri, the light rays stay in the region Ri without being scattered in the region R INTER , so that the light can be efficiently collected with respect to the light receiving region.

これにより検出装置のガス感度を向上することができる。光源領域と受光領域が部分的に領域Rに存在する場合も、その部分領域において本実施形態の効果が発揮される。よって、光源領域の60%以上が領域Rに存在することでその効果は実現される。また相補的に同一の表現であるが、光源領域と受光領域の40%未満が領域RINTERに存在することでその効果は実現される。ガス感度向上の観点から、光源領域の70%以上が領域Rに存在することが好ましく、光源領域の80%以上が領域Rに存在することがより好ましく、光源領域の全てが領域Rに存在することが好ましい。同様に、ガス感度向上の観点から、受光領域の70%以上が領域Rに存在することが好ましく、受光領域の80%以上が領域Rに存在することがより好ましく、受光領域の全てが領域Rに存在することが好ましい。 This makes it possible to improve the gas sensitivity of the detector. Even when the light source region and the light receiving region partially exist in the region Ri , the effect of the present embodiment is exhibited in the partial region. Therefore, the effect is realized when 60% or more of the light source region exists in the region Ri . Further, although the expressions are complementary and the same, the effect is realized when less than 40% of the light source region and the light receiving region are present in the region R INTER . From the viewpoint of improving gas sensitivity, it is preferable that 70% or more of the light source region is present in the region R i , more preferably 80% or more of the light source region is present in the region R i , and the entire light source region is present in the region R i . It is preferable to be present in. Similarly, from the viewpoint of improving gas sensitivity, it is preferable that 70% or more of the light receiving region is present in the region Ri , more preferably 80% or more of the light receiving region is present in the region Ri , and all of the light receiving region is present. It is preferably present in the region Ri .

すなわち、導光部30の内面の少なくとも一部の形状が楕円体Eの二つの焦点Fai、Fbiを通り、楕円体Eの回転対称軸と同一の回転対称軸をもち、楕円体Eと相似縮小の関係にある楕円体を楕円体Esiとしたときに、楕円体E内部であって楕円体Esiを含まない領域を領域Rし、発光部10の光源領域と受光部20の受光領域の面積の60%以上が領域Rに存在することで、楕円体ミラーを用いた小型で高精度なガス検出装置が実現される。回転楕円体の2つの焦点が十分に離れており、領域RINTERが形成されている場合に、この効果は顕著に発現する。具体的には回転楕円体の短半径bと長半径aの比「a/b」が1.2以上である場合に、この効果は顕著に発現する。 That is, the shape of at least a part of the inner surface of the light guide portion 30 passes through the two focal points F ai and F bi of the ellipsoid E i , has the same axis of rotational symmetry as the axis of rotational symmetry of the ellipsoid E i , and is an ellipsoid. When the ellipsoid that has a similar reduction relationship with E i is defined as the ellipsoid E si , the area inside the ellipsoid E i that does not include the ellipsoid E si is defined as the area R i , and the area is the light source region of the light emitting unit 10. Since 60% or more of the area of the light receiving region of the light receiving unit 20 exists in the region Ri , a compact and highly accurate gas detection device using an ellipsoidal mirror is realized. This effect is noticeable when the two focal points of the spheroid are sufficiently far apart and the region R INTER is formed. Specifically, this effect is remarkably exhibited when the ratio "a / b" of the short radius b and the long radius a of the spheroid is 1.2 or more.

ここで、光源領域の60%以上が領域Rinに存在し、受光領域の60%以上が領域Routに存在するとしたが、重心又は輝度のピーク点に着目すると以下が成り立つ。すなわち、光源領域の重心又は輝度のピーク点を点Gin、受光領域の重心を点Goutとする。このとき、点Ginが領域Rinに存在し、点Goutが領域Routに存在する。 Here, it is assumed that 60% or more of the light source region exists in the region R in and 60% or more of the light receiving region exists in the region R out . However, when focusing on the center of gravity or the peak point of the luminance, the following holds. That is, the center of gravity of the light source region or the peak point of luminance is defined as a point G in , and the center of gravity of the light receiving region is defined as a point G out . At this time, the point G in exists in the region R in , and the point G out exists in the region R out .

<複数の楕円体における配置>
上記においては、回転楕円体ミラーが一つの場合(i=1の場合)の実施形態を説明したが、本実施形態のガス検出装置は複数の回転楕円体ミラーを有する導光部30を備える場合に関しても同様の効果を発現する。
<Arrangement in multiple ellipsoids>
In the above, the embodiment in the case of one spheroidal mirror (in the case of i = 1) has been described, but the gas detection device of the present embodiment includes a light guide unit 30 having a plurality of spheroidal mirrors. The same effect is exhibited with respect to.

図6は回転楕円体形状の内面(反射面)を有する3つの導光部30を用いた場合の本実施形態に係るガス検出装置を説明する図である。図6(a)は模式図である。図6(b)は光線追跡シミュレーション結果である。 FIG. 6 is a diagram illustrating a gas detection device according to the present embodiment when three light guide portions 30 having an inner surface (reflection surface) having a spheroidal shape are used. FIG. 6A is a schematic diagram. FIG. 6B is a ray tracing simulation result.

図6(a)において、回転楕円体うち光源領域を包含する楕円体Eに対する領域Rを領域Rinとする。隣り合う楕円体Eは領域Rを含む。光源領域が領域Rinにある場合に、光線は楕円体Es1のもう一方の端側の領域Rinに散らばることなく運ばれる。この光が運ばれる領域を改めて楕円体Eの光源と見なすことにより、光線は領域Rを散らばらず移動することができる。これを効率的に実現するためには、光線の折り返しのために隣の回転楕円体への導光部30として、図6(a)及び図6(b)に示すような補助反射部50を更に有することが好ましい。補助反射部50の形態は特に制限されないが、例えば、平面ミラー、凹面ミラー、凸面ミラー等が挙げられる。補助反射部50は、回転楕円体とは異なる図形で構成されてよい。簡易性と効率性の観点から、補助反射部50は平面ミラーであることが好ましい。また、補助反射部50は波長選択機能を持っていてよい。補助反射部50は回転楕円体の領域R内に配置されることが好ましい。 In FIG. 6A, the region R 1 with respect to the ellipsoid E 1 including the light source region among the spheroids is defined as the region R in . Adjacent ellipsoids E 2 include region R 2 . When the light source region is in the region R in , the light rays are carried without being scattered in the region R in on the other end side of the ellipsoid Es1 . By considering the region where this light is carried as the light source of the ellipsoid E2 again, the light rays can move without being scattered in the region R2 . In order to efficiently realize this, an auxiliary reflection unit 50 as shown in FIGS. 6 (a) and 6 (b) is provided as a light guide unit 30 to the adjacent spheroid for folding back the light beam. It is preferable to have more. The form of the auxiliary reflection unit 50 is not particularly limited, and examples thereof include a flat mirror, a concave mirror, and a convex mirror. The auxiliary reflection unit 50 may be formed of a figure different from that of the spheroid. From the viewpoint of simplicity and efficiency, the auxiliary reflection unit 50 is preferably a flat mirror. Further, the auxiliary reflection unit 50 may have a wavelength selection function. The auxiliary reflection unit 50 is preferably arranged in the region Ri of the spheroid.

これを順次繰り返すことによって、図6(b)の光線追跡シミュレーション結果に示されるように、光線が散らばらずに移動することができるが、最後に受光領域を楕円体Eの領域Rである領域Routに配置することで、ひとつの回転楕円体ミラーの場合と同じように効率的に光を集めることができる。 By repeating this sequentially, as shown in the ray tracing simulation result of FIG. 6B , the ray can move without being scattered , but finally the light receiving region is set in the region R3 of the ellipsoid E3. By arranging it in a certain region R out , light can be efficiently collected as in the case of one spheroidal mirror.

すなわち、発光部10の光源領域の面積の60%以上が領域Rinに存在し、受光部20の受光領域の面積の60%以上が領域Routに存在することで、楕円体ミラーを用いた小型で高精度なガス検出装置を実現できる。回転楕円体ミラーが1つの場合と比べて、光路長を長く設計することが可能であり、検出精度の観点から好ましい場合がある。 That is, an ellipsoidal mirror was used because 60% or more of the area of the light source region of the light emitting unit 10 is present in the region R in and 60% or more of the area of the light receiving region of the light receiving unit 20 is present in the region R out . A compact and highly accurate gas detection device can be realized. It is possible to design an optical path length longer than in the case of one spheroidal mirror, which may be preferable from the viewpoint of detection accuracy.

図7は回転楕円体が2つの場合の変形例である。導光部30が2つの回転楕円体を組み合わせたミラーと1つの平面ミラーからなり、2つの回転楕円の長軸が直角に交わる形態となっている。このとき、領域Rに補助反射部50を備えることにより、図6の場合と同様に、楕円体ミラーを用いた小型で高精度なガス検出装置を実現できる。 FIG. 7 is a modified example when there are two spheroids. The light guide unit 30 is composed of a mirror in which two spheroids are combined and one plane mirror, and the long axes of the two spheroids intersect at right angles. At this time, by providing the auxiliary reflection unit 50 in the region Ri , a compact and highly accurate gas detection device using an ellipsoidal mirror can be realized as in the case of FIG.

以上、導光部30を回転楕円体として説明してきたが、一般的な楕円、つまり回転対称性を持たず3つの径の長さが違うものであってよい。これは楕円体壁のなかで弾性反射する剛体球の系(いわゆるビリヤード問題)も可積分系であるため、一般角運動量Jと同様な保存量が存在し、同様な領域分離現象が従う。図8は一般的な楕円体の焦点Fai、Fbiよりも外側の領域である領域Rの点から光線が射出した場合の光線のシミュレーション結果である。図8に示される焦点Fai、Fbiは楕円体を平面で切断した場合に最大の面積となる平面楕円における焦点であり、その外側である領域Rの中から出射された光線は反射を繰り返しても領域Rにとどまり続ける。これは楕円の径のうち一番小さいものが、極限的に0となる場合には平面楕円内において光線する場合の焦点による領域分離現象と同じになることからも理解され、一般的な楕円は、これまで説明してきた回転楕円体とこの平面楕円の場合の中間に場合に位置づけされる。 Although the light guide unit 30 has been described above as a spheroid, it may be a general ellipsoid, that is, one having no rotational symmetry and having three different diameters. This is because the system of rigid spheres that elastically reflect in the ellipsoidal wall (so-called billiard problem) is also an integrable system, so there is a conserved quantity similar to the general angular momentum J, and the same region separation phenomenon follows. FIG. 8 shows a simulation result of a light ray when the light ray is emitted from the point of the region Ri , which is a region outside the focal points F ai and F bi of a general ellipsoid. The focal points F ai and F bi shown in FIG. 8 are the focal points in a plane ellipsoid that has the maximum area when the ellipsoid is cut by a plane, and the light rays emitted from the region R i outside the focal point reflect reflection. Even if it is repeated, it remains in the area Ri . This is also understood from the fact that when the smallest diameter of an ellipse becomes 0 in the limit, it becomes the same as the region separation phenomenon due to the focal point when a light beam is emitted in a plane ellipse, and a general ellipse is a general ellipse. , The case is positioned between the case of the spheroid described so far and the case of this plane ellipse.

以上、実施形態を諸図面及び実施例に基づき説明したが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。したがって、これらの変形及び修正は本開示の範囲に含まれることに留意すべきである。例えば、各部材、各手段などに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段などを1つに組み合わせたり、或いは分割したりすることが可能である。 Although the embodiments have been described above based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and modifications based on the present disclosure. It should therefore be noted that these modifications and modifications are within the scope of this disclosure. For example, the functions included in each member, each means, and the like can be rearranged so as not to be logically inconsistent, and a plurality of means and the like can be combined or divided into one.

図9及び図10は、別の実施形態における、受動素子を含む発光部10と間接素子を含む受光部20の構成例を示す図である。図9の例において、発光部10は発光素子10Aと45°ミラーである受動素子を含んで構成される。また、図9の例において、受光部20は受光素子20Aと45°ミラーである間接素子を含んで構成される。図10の例において、発光部10は発光素子10Aとレンズである受動素子を含んで構成される。また、図10の例において、受光部20は受光素子20Aと凹面鏡である間接素子を含んで構成される。 9 and 10 are diagrams showing a configuration example of a light emitting unit 10 including a passive element and a light receiving unit 20 including an indirect element in another embodiment. In the example of FIG. 9, the light emitting unit 10 includes a light emitting element 10A and a passive element which is a 45 ° mirror. Further, in the example of FIG. 9, the light receiving unit 20 includes a light receiving element 20A and an indirect element which is a 45 ° mirror. In the example of FIG. 10, the light emitting unit 10 includes a light emitting element 10A and a passive element which is a lens. Further, in the example of FIG. 10, the light receiving unit 20 includes a light receiving element 20A and an indirect element which is a concave mirror.

(付記)
一実施形態に係るガス検出装置は、
発光部と、受光部と、発光部からの光を受光部に導く導光部を備え、
前記導光部の内面の少なくとも一部の形状は、n個(n:1以上の自然数)の回転楕円体の全部又は一部の図形で構成され、
前記n個の回転楕円体を楕円体E、E、…、E(n-1)、Eとし、
楕円体E(i:1≦i≦nを満たす自然数)の二つの焦点Fai、Fbiを通り、前記楕円体Eの回転対称軸と同一の回転対称軸をもち、楕円体Eと相似縮小の関係にある楕円体を楕円体Esiとしたときに、
楕円体E内部であって楕円体Esiを含まない領域を領域Rとし、
前記発光部の発光面を含む楕円体Eを、楕円体Eとし、
前記受光部の受光面を含む楕円体Eを、楕円体Eとし、
前記楕円体Eの領域Rを、領域Rinとし、
前記楕円体Eの領域Rを、領域Routとしたときに、
前記発光面の面積の60%以上が領域Rinに存在し、前記受光面の面積の60%以上が領域Routに存在してよい。
(Additional note)
The gas detection device according to one embodiment is
It is equipped with a light emitting unit, a light receiving unit, and a light guide unit that guides the light from the light emitting unit to the light receiving unit.
The shape of at least a part of the inner surface of the light guide portion is composed of all or a part of n (n: 1 or more natural numbers) spheroids.
Let the n spheroids be ellipsoids E 1 , E 2 , ..., E (n-1) , En.
It passes through the two focal points F ai and F bi of the ellipsoid E i (a natural number satisfying i: 1 ≦ i ≦ n), has the same axis of rotational symmetry as the axis of rotational symmetry of the ellipsoid E i , and has the same axis of rotational symmetry as the ellipsoid E i . When the ellipsoid that has a similar reduction relationship with is the ellipsoid E si ,
The region inside the ellipsoid E i and not including the ellipsoid E si is defined as the region R i .
The ellipsoid E i including the light emitting surface of the light emitting portion is defined as an ellipsoid E s .
The ellipsoid E i including the light receiving surface of the light receiving portion is referred to as an ellipsoid Ed.
The region R i of the ellipsoid Es is defined as a region R in .
When the region R i of the ellipsoid Ed is defined as the region R out ,
60% or more of the area of the light emitting surface may be present in the region R in , and 60% or more of the area of the light receiving surface may be present in the region R out .

10 発光部
20 受光部
30 導光部
31 ガスポート
40 保持部
50 補助反射部
10 Light emitting part 20 Light receiving part 30 Light guide part 31 Gas port 40 Holding part 50 Auxiliary reflecting part

Claims (12)

発光部と、受光部と、発光部からの光を受光部に導く導光部を備え、
前記導光部の内面の少なくとも一部の形状は、n個(n:1以上の自然数)の楕円体の全部又は一部の図形で構成され、
前記n個の楕円体を楕円体E、E、…、E(n-1)、Eとし、
楕円体E(i:1≦i≦nを満たす自然数)の断面において最大の面積となる楕円を楕円Ecとし、楕円Ecの二つの焦点Fai、Fbiを通り、回転させずに楕円体Eと拡大縮小の関係にある最小の体積を持つ楕円体を楕円体Esiとしたときに、
楕円体E内部であって楕円体Esiを含まない領域を領域Rとし、
前記発光部の光源領域を含む楕円体Eを、楕円体Eとし、
前記受光部の受光領域を含む楕円体Eを、楕円体Eとし、
前記楕円体Eの領域Rを、領域Rinとし、
前記楕円体Eの領域Rを、領域Routとしたときに、
前記光源領域の60%以上が領域Rinに存在し、前記受光領域の60%以上が領域Routに存在する、ガス検出装置。
It is equipped with a light emitting unit, a light receiving unit, and a light guide unit that guides the light from the light emitting unit to the light receiving unit.
The shape of at least a part of the inner surface of the light guide portion is composed of all or a part of n (n: 1 or more natural numbers) ellipsoids.
Let the n ellipsoids be ellipsoids E 1 , E 2 , ..., E (n-1) , En.
The ellipsoid having the largest area in the cross section of the ellipsoid E i (a natural number satisfying i: 1 ≦ i ≦ n) is defined as the ellipse Ec i , and passes through the two focal points F ai and F bi of the ellipsoid E c i without being rotated. When the ellipsoid with the smallest volume that has a scaling relationship with the ellipsoid Ei is the ellipsoid Esi ,
The region inside the ellipsoid E i and not including the ellipsoid E si is defined as the region R i .
The ellipsoid E i including the light source region of the light emitting portion is defined as an ellipsoid E s .
The ellipsoid E i including the light receiving region of the light receiving portion is referred to as an ellipsoid Ed.
The region R i of the ellipsoid Es is defined as a region R in .
When the region R i of the ellipsoid Ed is defined as the region R out ,
A gas detection device in which 60% or more of the light source region is present in the region R in and 60% or more of the light receiving region is present in the region R out .
前記楕円体E及び前記楕円体Eのそれぞれの長半径aと短半径bの比a/bが、1.2以上である、請求項1に記載のガス検出装置。 The gas detection device according to claim 1, wherein the ratio a / b of the semi-major axis a and the semi-minor axis b of the ellipsoid Es and the ellipsoid Ed is 1.2 or more. 前記光源領域の最大長をLsとし、前記楕円体Eの最大長をLmsとしたときに、Ls≧Lms/50である、請求項1又は2に記載のガス検出装置。 The gas detection device according to claim 1 or 2, wherein Ls ≧ Lms / 50 when the maximum length of the light source region is Ls and the maximum length of the ellipsoid Es is Lms . 前記受光部の最大長をLdとし、前記楕円体Eの最大長をLmdとしたときに、Ld≧Lmd/50である、請求項1から3のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 3, wherein Ld ≧ Lmd / 50 when the maximum length of the light receiving portion is Ld and the maximum length of the ellipsoid Ed is Lmd . 同一の保持部が前記発光部と、前記受光部を保持する、請求項1から4のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 4, wherein the same holding unit holds the light emitting unit and the light receiving unit. 前記同一の保持部が、さらに制御部も保持する、請求項5に記載のガス検出装置。 The gas detection device according to claim 5, wherein the same holding unit further holds a control unit. 前記受光部と、前記発光部の少なくとも一方が光学フィルタを備えている、請求項1から6のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 6, wherein at least one of the light receiving unit and the light emitting unit includes an optical filter. 前記n個の楕円体とは異なる図形で構成される補助反射部を更に備えている、請求項1から7のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 7, further comprising an auxiliary reflection unit having a figure different from the n ellipsoids. 前記領域R内に、前記補助反射部が存在する、請求項8に記載のガス検出装置。 The gas detection device according to claim 8, wherein the auxiliary reflection unit exists in the region Ri . 前記発光部が、面光源である、請求項1から9のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 9, wherein the light emitting unit is a surface light source. 前記n個の楕円体は、回転楕円体である、請求項1から10のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 10, wherein the n ellipsoids are spheroids. 発光部と、受光部と、発光部からの光を受光部に導く導光部を備え、
前記導光部の内面の少なくとも一部の形状は、n個(n:1以上の自然数)の楕円体の全部又は一部の図形で構成され、
前記n個の楕円体を楕円体E、E、…、E(n-1)、Eとし、
楕円体E(i:1≦i≦nを満たす自然数)の断面において最大の面積となる楕円を楕円Ecとし、楕円Ecの二つの焦点Fai、Fbiを通り、回転させずに楕円体Eと拡大縮小の関係にある最小の体積を持つ楕円体を楕円体Esiとしたときに、
楕円体E内部であって楕円体Esiを含まない領域を領域Rとし、
前記発光部の光源領域を含む楕円体Eを、楕円体Eとし、
前記受光部の受光領域を含む楕円体Eを、楕円体Eとし、
前記楕円体Eの領域Rを、領域Rinとし、
前記楕円体Eの領域Rを、領域Routとしたときに、
前記光源領域の重心又は輝度のピーク点を点Gin、前記受光領域の重心を点Goutとし、
点Ginが領域Rinに存在し、点Goutが領域Routに存在する、ガス検出装置。
It is equipped with a light emitting unit, a light receiving unit, and a light guide unit that guides the light from the light emitting unit to the light receiving unit.
The shape of at least a part of the inner surface of the light guide portion is composed of all or a part of n (n: 1 or more natural numbers) ellipsoids.
Let the n ellipsoids be ellipsoids E 1 , E 2 , ..., E (n-1) , En.
The ellipsoid having the largest area in the cross section of the ellipsoid E i (a natural number satisfying i: 1 ≦ i ≦ n) is defined as the ellipse Ec i , and passes through the two focal points F ai and F bi of the ellipsoid E c i without being rotated. When the ellipsoid with the smallest volume that has a scaling relationship with the ellipsoid Ei is the ellipsoid Esi ,
The region inside the ellipsoid E i and not including the ellipsoid E si is defined as the region R i .
The ellipsoid E i including the light source region of the light emitting portion is defined as an ellipsoid E s .
The ellipsoid E i including the light receiving region of the light receiving portion is referred to as an ellipsoid Ed.
The region R i of the ellipsoid Es is defined as a region R in .
When the region R i of the ellipsoid Ed is defined as the region R out ,
The center of gravity of the light source region or the peak point of luminance is defined as a point G in , and the center of gravity of the light receiving region is defined as a point G out .
A gas detector in which a point G in is present in the region R in and a point G out is present in the region R out .
JP2021122620A 2020-10-28 2021-07-27 Gas detector Pending JP2022071816A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111254876.5A CN114486790B (en) 2020-10-28 2021-10-27 Gas detection device
US17/452,617 US11921030B2 (en) 2020-10-28 2021-10-28 Gas detection apparatus
US18/421,052 US20240210306A1 (en) 2020-10-28 2024-01-24 Gas detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020180845 2020-10-28
JP2020180845 2020-10-28

Publications (1)

Publication Number Publication Date
JP2022071816A true JP2022071816A (en) 2022-05-16

Family

ID=81593851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021122620A Pending JP2022071816A (en) 2020-10-28 2021-07-27 Gas detector

Country Status (1)

Country Link
JP (1) JP2022071816A (en)

Similar Documents

Publication Publication Date Title
EP1987346B1 (en) Dome gas sensor
US20240210306A1 (en) Gas detection apparatus
TW201135213A (en) Multi-channel optical cell
US11747272B2 (en) Gas detection using differential path length measurement
US20180337165A1 (en) Optical module, detecting apparatus
KR20180021956A (en) Optical wave guide using parabolic reflectors and an Infrared gas sensor containing the same
KR101108497B1 (en) NDIR Gas Sensor
CN111290087A (en) Light splitting detector
JP2002204021A (en) Laser beam radiation device, and optical reader having the device and protection package for light beam radiation source
US20240085318A1 (en) Fully compensated optical gas sensing system and apparatus
JP2022071816A (en) Gas detector
KR102426648B1 (en) Integrated photoacoustic gas sensor and method for manufacturing the same
US6715683B2 (en) Optical data code reader
US20230349814A1 (en) Gas detection device
US11644417B2 (en) Gas detection apparatus
CN214795194U (en) Electronic device and transmission beam splitter
CN108700720B (en) Optical receptacle and optical module
US11474031B2 (en) Gas detection apparatus
US20240035958A1 (en) Gas detection apparatus
JP2021148782A (en) Gas detector
WO2020225977A1 (en) Non-dispersive infrared gas detection device
US20070272834A1 (en) Optical module
CN106855658B (en) Light splitting device
US20240295493A1 (en) Optical physical quantity measuring apparatus
JP7569712B2 (en) Gas detection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240322