JP2022071004A - Resin powder for three-dimensional molding, manufacturing method of three-dimensional molding, and manufacturing apparatus for three-dimensional molding - Google Patents

Resin powder for three-dimensional molding, manufacturing method of three-dimensional molding, and manufacturing apparatus for three-dimensional molding Download PDF

Info

Publication number
JP2022071004A
JP2022071004A JP2022024705A JP2022024705A JP2022071004A JP 2022071004 A JP2022071004 A JP 2022071004A JP 2022024705 A JP2022024705 A JP 2022024705A JP 2022024705 A JP2022024705 A JP 2022024705A JP 2022071004 A JP2022071004 A JP 2022071004A
Authority
JP
Japan
Prior art keywords
resin powder
dimensional modeling
powder
resin
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2022024705A
Other languages
Japanese (ja)
Inventor
康之 山下
Yasuyuki Yamashita
啓 斎藤
Hiroshi Saito
崇一朗 飯田
Soichiro Iida
仁 岩附
Hitoshi Iwatsuki
康夫 鈴木
Yasuo Suzuki
望 田元
Nozomi Tamoto
紀一 鴨田
Kiichi KAMODA
重徳 谷口
Shigenori Taniguchi
信三 樋口
Shinzo Higuchi
敏之 井関
Toshiyuki Izeki
康知 阿萬
Yasutomo Aman
敏之 武藤
Toshiyuki Muto
充 成瀬
Mitsuru Naruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018028721A external-priority patent/JP2018158571A/en
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JP2022071004A publication Critical patent/JP2022071004A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2359/00Characterised by the use of polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin powder for three-dimensional molding that has excellent density, dimensional stability, and surface properties of the resulting three-dimensional object, even when stored in a high humidity environment, and that prevents loss of strength.
SOLUTION: A resin powder for three-dimensional molding has an average equivalent diameter of between 10 μm and 150 μm on a piece count basis, a median of a particle size distribution of an equivalent diameter is larger than the average equivalent diameter, and a loose fill ratio is 40.4% or more.
SELECTED DRAWING: None
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、立体造形用樹脂粉末、立体造形物の製造方法、及び立体造形物の製造装置に関する。 The present invention relates to a resin powder for three-dimensional modeling, a method for producing a three-dimensional model, and an apparatus for producing a three-dimensional model.

粉末積層造形法は、粉末状の材料にレーザーやバインダーを用いて、一層ずつ固めて造形する方法である。 The powder additive manufacturing method is a method of forming a powdered material by solidifying it layer by layer using a laser or a binder.

前記レーザーを用いる方法は、粉末床溶融(PBF:powder bed fusion)方式と称され、例えば、選択的にレーザーを照射して立体造形物を形成するSLS(selective leser sintering)方式や、マスクを使い平面状にレーザーを当てるSMS(selective mask sintering)方式などが知られている。一方、前記バインダーを用いる方法は、例えば、バインダー樹脂を含むインクをインクジェット等の方法により吐出して立体造形物を形成するバインダージェット(Binder Jetting)方式などが知られている。 The method using a laser is called a powder bed fusion (PBF) method, and for example, an SLS (selective laser sintering) method for selectively irradiating a laser to form a three-dimensional object or a mask is used. An SMS (selective mask sintering) method in which a laser is applied in a plane is known. On the other hand, as a method using the binder, for example, a binder jet method for forming a three-dimensional model by ejecting ink containing a binder resin by a method such as inkjet is known.

これらの中でも、前記PBF方式は、レーザー光線を金属やセラミックス又は樹脂の薄層に選択的にレーザーを照射することにより粉末を溶融接着させ、成膜した後、前記成膜した膜の上に別の層を形成して同様の操作を繰り返すことにより順次積層して立体造形物を得ることができる(例えば、特許文献1~4参照)。 Among these, in the PBF method, the powder is melt-bonded by selectively irradiating a thin layer of metal, ceramics, or resin with a laser beam to melt and bond the powder, and then another film is formed on the film. By forming layers and repeating the same operation, three-dimensional shaped objects can be obtained by sequentially laminating them (see, for example, Patent Documents 1 to 4).

前記PBF方式の樹脂粉末を使用する場合では、薄層間の内部応力を低く維持することと緩和しながら、供給槽に供給された樹脂粉末の層を樹脂の軟化点付近の温度まで加熱しておき、この層にレーザー光線を選択的に照射し、照射された樹脂粉末自身を軟化点以上の温度まで加熱して相互に融着させることにより立体造形が行われる。 When the PBF method resin powder is used, the layer of the resin powder supplied to the supply tank is heated to a temperature near the softening point of the resin while maintaining and relaxing the internal stress between the thin layers. Then, this layer is selectively irradiated with a laser beam, and the irradiated resin powder itself is heated to a temperature above the softening point and fused to each other to perform three-dimensional modeling.

現在、PBF方式には、ポリアミド樹脂が多く用いられ、特に、ポリアミド12は、ポリアミドの中でも比較的低い融点を持ち熱収縮率が小さい点や吸水性が低い点から好適に用いることができる。
近年では、試作用途の他に、造形物を最終製品として使用する需要が増えてきており、様々な樹脂を使用したい要望が増えてきている。
Currently, a large amount of polyamide resin is used in the PBF method, and in particular, polyamide 12 can be suitably used because it has a relatively low melting point among polyamides, has a low heat shrinkage rate, and has low water absorption.
In recent years, there has been an increase in demand for using shaped objects as final products in addition to prototype applications, and there is an increasing demand for the use of various resins.

本発明は、高湿度環境下にて保管しても、得られる立体造形物の密度、寸法安定性、及び表面性に優れ、かつ強度の低下を防止できる立体造形用樹脂粉末を提供することを目的とする。 The present invention provides a resin powder for three-dimensional modeling which is excellent in density, dimensional stability, and surface properties of the three-dimensional model obtained even when stored in a high humidity environment and can prevent a decrease in strength. The purpose.

前記課題を解決するための手段としての本発明の立体造形用樹脂粉末は、個数基準の平均円相当径が、10μm以上150μm以下であり、円相当径の粒度分布の中央値が、前記平均円相当径より大きい。 The resin powder for three-dimensional modeling of the present invention as a means for solving the above-mentioned problems has an average circle-equivalent diameter of 10 μm or more and 150 μm or less based on the number, and the median particle size distribution of the circle-equivalent diameter is the average circle. Larger than the equivalent diameter.

本発明によると、高湿度環境下にて保管しても、得られる立体造形物の密度、寸法安定性、及び表面性に優れ、かつ強度の低下を防止できる立体造形用樹脂粉末を提供する。 According to the present invention, there is provided a resin powder for three-dimensional modeling which is excellent in density, dimensional stability and surface properties of the three-dimensional model obtained even when stored in a high humidity environment and can prevent a decrease in strength.

図1は、略円柱体の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a substantially cylindrical body. 図2は、本発明の立体造形物の製造方法に用いられる立体造形物の製造装置の一例を示す概略説明図である。FIG. 2 is a schematic explanatory view showing an example of an apparatus for manufacturing a three-dimensional model used in the method for manufacturing a three-dimensional model of the present invention. 図3Aは、平滑な表面を有する粉末層を形成する工程の一例を示す概略図である。FIG. 3A is a schematic view showing an example of a step of forming a powder layer having a smooth surface. 図3Bは、平滑な表面を有する粉末層を形成する工程の一例を示す概略図である。FIG. 3B is a schematic view showing an example of a step of forming a powder layer having a smooth surface. 図3Cは、立体造形用液体材料を滴下する工程の一例を示す概略図である。FIG. 3C is a schematic view showing an example of a process of dropping a liquid material for three-dimensional modeling. 図3Dは、造形用粉末貯蔵槽に新たに樹脂粉末層が形成される工程の一例を示す概略図である。FIG. 3D is a schematic view showing an example of a process in which a resin powder layer is newly formed in a modeling powder storage tank. 図3Eは、造形用粉末貯蔵槽に新たに樹脂粉末層が形成される工程の一例を示す概略図である。FIG. 3E is a schematic view showing an example of a process in which a resin powder layer is newly formed in the modeling powder storage tank. 図3Fは、再び立体造形用液体材料を滴下する工程の一例を示す概略図である。FIG. 3F is a schematic view showing an example of a process of dropping the liquid material for three-dimensional modeling again. 図4は、実施例1の立体造形用樹脂粉末の円相当径の分布を示す図である。FIG. 4 is a diagram showing the distribution of the equivalent circle diameter of the resin powder for three-dimensional modeling of Example 1. 図5は、比較例1の立体造形用樹脂粉末の円相当径の分布を示す図である。FIG. 5 is a diagram showing the distribution of the equivalent circle diameter of the resin powder for three-dimensional modeling of Comparative Example 1. 図6は、比較例2の立体造形用樹脂粉末の円相当径の分布を示す図である。FIG. 6 is a diagram showing the distribution of the equivalent circle diameter of the resin powder for three-dimensional modeling of Comparative Example 2.

(立体造形用樹脂粉末)
本発明の立体造形用樹脂粉末は、個数基準の平均円相当径が、10μm以上150μm以下であり、円相当径の粒度分布の中央値が、前記平均円相当径より大きく、熱可塑性樹脂を含むことが好ましく、更に必要に応じてその他の成分を含む。
本発明の立体造形用樹脂粉末は、従来の立体造形用樹脂粉末では、保存環境下における湿度の影響を受け、得られる立体造形物の強度が低下するという問題があるという知見に基づくものである。
(Resin powder for 3D modeling)
The resin powder for three-dimensional modeling of the present invention has an average circle-equivalent diameter of 10 μm or more and 150 μm or less on a number basis, a median particle size distribution of the circle-equivalent diameter is larger than the average circle-equivalent diameter, and contains a thermoplastic resin. It is preferable, and further contains other components as needed.
The resin powder for three-dimensional modeling of the present invention is based on the finding that the conventional resin powder for three-dimensional modeling has a problem that the strength of the obtained three-dimensional model is reduced due to the influence of humidity in the storage environment. ..

微小粉末は、体積あたりの比表面積が大きいことから粒子間の接触点と接触面積が粗大粒子に比較して大きくなる。高温高湿度環境下では粒子間の接点に水による液架橋力が働き、粉末の流動性は低下するが、微小粉体は接触点と接触面積の大きさのため流動性は大きく低下する。この流動性の低下は、粉末のかさ密度の低下に表れる。前記粉末のかさ密度の低下により造形装置での造形後の造形物密度の低下、及び強度の低下へと至る。これに対して、本発明の立体造形用樹脂粉末は、高温高湿度環境下では粒子間の接点に水による液架橋力の影響を抑制し、粉末の流動性の低下を防止することにより、前記立体造形用樹脂粉末のかさ密度の低下を抑制でき、これにより造形後の造形物密度、及び強度を向上することができる。 Since the fine powder has a large specific surface area per volume, the contact points and contact areas between the particles are larger than those of the coarse particles. In a high temperature and high humidity environment, a liquid cross-linking force by water acts on the contact points between particles, and the fluidity of the powder is lowered, but the fluidity of the fine powder is greatly lowered due to the size of the contact point and the contact area. This decrease in fluidity is manifested in a decrease in the bulk density of the powder. The decrease in the bulk density of the powder leads to a decrease in the density of the modeled object after modeling with the modeling device and a decrease in the strength. On the other hand, the resin powder for three-dimensional modeling of the present invention suppresses the influence of the liquid cross-linking force by water on the contact points between particles in a high temperature and high humidity environment, and prevents the powder from decreasing in fluidity. It is possible to suppress a decrease in the bulk density of the resin powder for three-dimensional modeling, thereby improving the density and strength of the modeled object after modeling.

[平均円相当径]
前記平均円相当径(円相当径の粒度分布の平均値)は、個数基準にて、10μm以上150μm以下であり、20μm以上90μm以下が好ましく、35μm以上60μm以下がより好ましい。前記平均円相当径が、10μm以上150μm以下であることにより、高湿度環境下にて保管しても、得られる立体造形物の密度、寸法安定性、及び表面性に優れ、かつ強度の低下を防止できる。前記平均円相当径は、例えば、粒子像分析装置(装置名:FPIA3000、スペクトリス社製)などを用いて測定することができる。
[Diameter equivalent to average circle]
The average circle-equivalent diameter (average value of the particle size distribution of the circle-equivalent diameter) is 10 μm or more and 150 μm or less, preferably 20 μm or more and 90 μm or less, and more preferably 35 μm or more and 60 μm or less. When the average circle equivalent diameter is 10 μm or more and 150 μm or less, the density, dimensional stability, and surface properties of the obtained three-dimensional model are excellent and the strength is lowered even when stored in a high humidity environment. Can be prevented. The average circle-equivalent diameter can be measured using, for example, a particle image analyzer (device name: FPIA3000, manufactured by Spectris) or the like.

円相当径としては、以下の式により求めることができる。
円相当径={4×(面積)÷π}の正の平方根
なお、前記円相当径は、粒子個別の投影図に対して算出する。得られた円相当径の平均値(個数基準)を算出して平均円相当径を算出することができる。
The diameter equivalent to a circle can be calculated by the following formula.
Circle equivalent diameter = Positive square root of {4 × (area) ÷ π} The circle equivalent diameter is calculated for the projection drawing of each particle. The average value of the obtained circle-equivalent diameters (number-based) can be calculated to calculate the average circle-equivalent diameter.

[円相当径の粒度分布の中央値、及び円相当径の粒度分布の平均値]
前記立体造形用樹脂粉末としては、微小混合物が少ない粉体で30μm以上90μm以下に粉体を構成する主な粒子の大きさが集まっており、前記範囲に平均値がある。
前記円相当径の粒度分布の中央値としては、平均円相当径(円相当径の粒度分布の平均値)より大きいことが好ましい。前記中央値が前記平均円相当径より大きいと、高湿度環境下にて保管しても、得られる立体造形物の密度、寸法安定性、及び表面性に優れ、かつ強度の低下を防止できる。
前記円相当径の粒度分布において、前記粒度分布が集中した山に対してすそ引きが広い範囲に及ぶ場合は、前記中央値は山に近い位置となり、前記平均円相当径はすそ引きの影響を大きく受けるため中央値から遠い位置となる。即ち、前記中央値が前記平均円相当径より大きい場合、主要な粒度分布が集中した山は大きい位置にあり、微粉は主要な山を形成していなことを示す。一方、前記中央値が前記平均円相当径より小さい場合、主要な山は微粉が形成していることを示す。これにより、微粉と樹脂粉末粒子のどちらが個数分布において主を占めるかの指標となる。なお、円相当径の粒度分布の中央値は、湿式フロー式粒子径・形状分析装置(装置名:FPIA-3000、シスメックス株式会社製)を用いて、粉体粒子カウント数が3,000個以上をカウントする状態にて、粒子形状画像を取得し、粒子径が0.5μm以上200μm以下の粒子の円相当径を測定し、その粒度分布を得、前記粒度分布から中央値を算出することができる。
[Median value of particle size distribution of circle equivalent diameter and average value of particle size distribution of circle equivalent diameter]
As the resin powder for three-dimensional modeling, the sizes of the main particles constituting the powder are gathered within 30 μm or more and 90 μm or less in the powder having a small amount of fine mixture, and the average value is in the above range.
The median value of the particle size distribution having the equivalent circle diameter is preferably larger than the average equivalent circle diameter (the average value of the particle size distribution having the equivalent circle diameter). When the median value is larger than the average circle equivalent diameter, the density, dimensional stability, and surface properties of the obtained three-dimensional model are excellent and the strength can be prevented from decreasing even when stored in a high humidity environment.
In the particle size distribution of the circle equivalent diameter, when the skirting covers a wide range with respect to the mountain where the particle size distribution is concentrated, the median value is close to the mountain, and the average circle equivalent diameter is affected by the skirting. It is located far from the median because it receives a large amount. That is, when the median value is larger than the average circle equivalent diameter, it means that the mountain where the main particle size distribution is concentrated is in a large position, and the fine powder does not form the main mountain. On the other hand, when the median value is smaller than the average circle equivalent diameter, it indicates that the main peaks are formed of fine powder. This provides an index as to which of the fine powder and the resin powder particles occupies the main part in the number distribution. For the median particle size distribution of the equivalent circle diameter, use a wet flow type particle size / shape analyzer (device name: FPIA-3000, manufactured by Sysmex Co., Ltd.), and the number of powder particle counts is 3,000 or more. It is possible to acquire a particle shape image, measure the equivalent circle diameter of particles having a particle diameter of 0.5 μm or more and 200 μm or less, obtain the particle size distribution, and calculate the median value from the particle size distribution. can.

[平均円形度]
前記平均円形度としては、0.75以上0.90以下が好ましく、0.75以上0.85以下がより好ましい。前記平均円形度が、0.75以上0.90以下であると、高湿度環境下にて保管しても、得られる立体造形物の密度、寸法安定性、及び表面性に優れ、かつ強度の低下を防止できる。
なお、円形度とは、円らしさを表す指標であり、1が最も円に近いことを意味する。前記円形度は、面積(画素数)をSとし、周囲長をLとしたときに、下式により求められる。
円形度=4πS/L
前記平均円形度は、前記立体造形用樹脂粉末の円形度を測定し、その算術平均した値を用いることができる。
前記円形度を簡易的に求める方法としては、例えば、湿式フロー式粒子径・形状分析装置(装置名:FPIA-3000、シスメックス株式会社製)を用いて測定することにより、数値化することができる。前記湿式フロー式粒子径・形状分析装置は、ガラスセル中を流れる懸濁液中の粒子画像をCCDで高速撮像し、個々の粒子画像をリアルタイムに解析することができ、このような粒子を撮影し、画像解析を行う装置が、本発明の平均円形度を求める上で有効である。前記粒子の測定カウント数としては、特に制限はないが、1,000以上が好ましく、3,000以上がより好ましい。
[Average circularity]
The average circularity is preferably 0.75 or more and 0.90 or less, and more preferably 0.75 or more and 0.85 or less. When the average circularity is 0.75 or more and 0.90 or less, the three-dimensional model obtained is excellent in density, dimensional stability, and surface properties even when stored in a high humidity environment, and has strength. It can prevent the decrease.
The circularity is an index showing the roundness, and 1 means that it is the closest to a circle. The circularity is obtained by the following formula when the area (number of pixels) is S and the peripheral length is L.
Circularity = 4πS / L 2
As the average circularity, the circularity of the resin powder for three-dimensional modeling is measured, and an arithmetically averaged value thereof can be used.
As a method for simply determining the circularity, for example, it can be quantified by measuring using a wet flow type particle size / shape analyzer (device name: FPIA-3000, manufactured by Sysmex Corporation). .. The wet flow type particle size / shape analyzer can take a high-speed image of particles in a suspension flowing in a glass cell with a CCD and analyze individual particle images in real time, and photographs such particles. However, an apparatus that performs image analysis is effective in determining the average circularity of the present invention. The number of measurement counts of the particles is not particularly limited, but is preferably 1,000 or more, and more preferably 3,000 or more.

[ゆるみ充填率]
前記ゆるみ充填率とは、かさ比重計(JIS Z-2504対応、株式会社蔵持科学器械製作所製)を用いて測定したゆるみかさ密度を、樹脂の真密度にて割ったものである。
前記ゆるみ充填率としては、20%以上50%以下が好ましく、30%以上40%以下がより好ましい。前記ゆるみ充填率は、かさ比重計(JIS Z-2504対応、株式会社蔵持科学器械製作所製)を用いて、ゆるみ密度を測定し、得られたゆるみ密度を樹脂の真密度にて割ることにより算出することができる。
[Loose filling rate]
The loose filling factor is the loose bulk density measured using a bulk density meter (compatible with JIS Z-2504, manufactured by Kuramochi Kagaku Kikai Seisakusho Co., Ltd.) divided by the true density of the resin.
The loose filling rate is preferably 20% or more and 50% or less, and more preferably 30% or more and 40% or less. The loose filling factor is calculated by measuring the loose density using a bulk hydrometer (JIS Z-2504 compatible, manufactured by Kuramochi Kagaku Kikai Seisakusho Co., Ltd.) and dividing the obtained loose density by the true density of the resin. can do.

前記立体造形用樹脂粉末としては、柱体形状の粒子であることが好ましい。
前記柱体形状の粒子としては、特に制限はなく、目的に応じて適宜選択することができるが、円柱長が10μm以上150μm以下であることが好ましく、円柱径が10μm以上150μm以下であることが好ましい。
The resin powder for three-dimensional modeling is preferably prism-shaped particles.
The columnar particles are not particularly limited and may be appropriately selected depending on the intended purpose, but the columnar length is preferably 10 μm or more and 150 μm or less, and the columnar diameter is 10 μm or more and 150 μm or less. preferable.

<熱可塑性樹脂>
前記熱可塑性樹脂とは、熱をかけると可塑化し、溶融するものを意味する。
前記熱可塑性樹脂としては、例えば、結晶性樹脂などが挙げられる。なお、前記結晶性樹脂とは、ISO 3146(プラスチック転移温度測定方法、JIS K7121)の測定した場合に、融解ピークを有するものを意味する。
前記結晶性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン、ポリアミド、ポリエステル、ポリエーテル、ポリフェニレンスルフィド、液晶ポリマー(LCP)、ポリアセタール(POM)、ポリイミド、フッ素樹脂等のポリマーなどが好ましく用いられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Thermoplastic resin>
The thermoplastic resin means a resin that is plasticized and melted when heated.
Examples of the thermoplastic resin include crystalline resins. The crystalline resin means a resin having a melting peak when measured by ISO 3146 (plastic transition temperature measuring method, JIS K7121).
The crystalline resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyolefin, polyamide, polyester, polyether, polyphenylene sulfide, liquid crystal polymer (LCP), polyacetal (POM), polyimide, etc. A polymer such as a fluororesin is preferably used. These may be used alone or in combination of two or more.

前記ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of the polyolefin include polyethylene and polypropylene. These may be used alone or in combination of two or more.

前記ポリアミドとしては、例えば、ポリアミド410(PA410)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド11(PA11)、ポリアミド12(PA12);半芳香族性のポリアミド4T(PA4T)、ポリアミドMXD6(PAMXD6)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)、ポリアミド10T(PA10T)などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 これらの中でも、PA9Tは、ポリノナメチレンテレフタルアミドとも呼ばれ、炭素が9つのジアミンにテレフタル酸モノマーから構成され、一般的にカルボン酸側が芳香族であるため半芳香族と呼ばれる。更には、ジアミン側も芳香族である全芳香族としてp-フェニレンジアミンとテレフタル酸モノマーとからできるアラミドと呼ばれるものも本発明のポリアミドに含まれる。 Examples of the polyamide include polyamide 410 (PA410), polyamide 6 (PA6), polyamide 66 (PA66), polyamide 610 (PA610), polyamide 612 (PA612), polyamide 11 (PA11), polyamide 12 (PA12); Examples thereof include aromatic polyamide 4T (PA4T), polyamide MXD6 (PAMXD6), polyamide 6T (PA6T), polyamide 9T (PA9T), and polyamide 10T (PA10T). These may be used alone or in combination of two or more. Among these, PA9T is also called polynonamethylene terephthalamide, and is called semi-aromatic because carbon is composed of 9 diamines and a terephthalic acid monomer, and the carboxylic acid side is generally aromatic. Further, the polyamide of the present invention also includes what is called aramid, which is composed of p-phenylenediamine and a terephthalic acid monomer as a total aromatic whose diamine side is also aromatic.

前記ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブタジエンテレフタレート(PBT)、ポリ乳酸(PLA)などが挙げられる。耐熱性を付与するため一部テレフタル酸やイソフタル酸が入った芳香族を含むポリエステルも本発明に好適に用いることができる。 Examples of the polyester include polyethylene terephthalate (PET), polybutadiene terephthalate (PBT), polylactic acid (PLA) and the like. Polyesters containing aromatics partially containing terephthalic acid or isophthalic acid can also be suitably used in the present invention in order to impart heat resistance.

前記ポリエーテルとしては、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)、ポリアリールエーテルケトン(PAEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)などが挙げられる。
前記ポリエーテル以外にも、結晶性ポリマーであればよく、例えば、ポリアセタール、ポリイミド、ポリエーテルスルフォンなどが挙げられる。PA9Tのように融点ピークが2つあるものを用いてもよい(完全に溶融させるには2つ目の融点ピーク以上に樹脂温度を上げる必要がある)。
Examples of the polyether include polyetheretherketone (PEEK), polyetherketone (PEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), polyetheretherketoneketone (PEEKK), and polyether. Examples thereof include ketone ether ketone ketone (PEKEKK).
In addition to the above-mentioned polyether, a crystalline polymer may be used, and examples thereof include polyacetal, polyimide, and polyether sulfone. A plastic having two melting point peaks such as PA9T may be used (the resin temperature needs to be raised above the second melting point peak in order to completely melt).

前記立体造形用樹脂粉末としては、前記熱可塑性樹脂以外に、非結晶性樹脂からなる樹脂粉末や、強化剤、難燃化剤、可塑剤、安定化剤、酸化防止剤、結晶核剤等の添加剤などを含んでいてもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらは、前記熱可塑性樹脂と混合し、立体造形用樹脂粉末に内在させてもよいし、前記立体造形用樹脂粉末の表面に付着させてもよい。 In addition to the thermoplastic resin, the resin powder for three-dimensional modeling includes a resin powder made of a non-crystalline resin, a reinforcing agent, a flame retardant, a plasticizer, a stabilizer, an antioxidant, a crystal nucleating agent, and the like. It may contain additives and the like. These may be used alone or in combination of two or more. These may be mixed with the thermoplastic resin and embedded in the resin powder for three-dimensional modeling, or may be adhered to the surface of the resin powder for three-dimensional modeling.

前記強化剤とは、主に強度を高めるために添加され、フィラー又は充填材として含有される。例えば、ガラスフィラーやガラスビーズ、カーボンファイバー、アルミボール、国際公開第2008/057844号パンフレットに記載のものなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいし、樹脂中に含まれていてもよい。本発明の樹脂粉末としては、適度に乾燥しているのが好ましく、真空乾燥機やシリカゲルを入れることにより使用前に乾燥させてもよい。 The fortifier is mainly added to increase the strength and is contained as a filler or a filler. For example, glass fillers, glass beads, carbon fibers, aluminum balls, and those described in International Publication No. 2008/057444 pamphlet can be mentioned. These may be used alone, may be used in combination of two or more, or may be contained in the resin. The resin powder of the present invention is preferably appropriately dried, and may be dried before use by adding a vacuum dryer or silica gel.

前記酸化防止剤としては、例えば、金属不活性化剤であるヒドラジド系やアミド系、ラジカル捕捉剤であるフェノール系(ヒンダードフェノール系)やアミン系、過酸化物分解剤であるホスフェート系や硫黄系、紫外線吸収剤であるトリアジン系などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。特に、ラジカル捕捉剤と過酸化物分解剤とを組み合わせて用いると有効であることが知られており、本発明においても特に有効である。 Examples of the antioxidant include hydrazide-based and amide-based metal inactivating agents, phenol-based (hindered-phenol-based) and amine-based radical trapping agents, and phosphate-based and sulfur-based peroxide decomposing agents. Examples include radicals and triazines, which are ultraviolet absorbers. These may be used alone or in combination of two or more. In particular, it is known that it is effective when a radical scavenger and a peroxide decomposing agent are used in combination, and it is also particularly effective in the present invention.

前記酸化防止剤の含有量としては、立体造形用樹脂粉末全量に対して、0.05質量%以上5質量%以下が好ましく、0.1質量%以上3質量%以下がより好ましく、0.2質量%以上2質量%以下が特に好ましい。前記含有量が、上記範囲内であることにより、熱劣化を防止する効果が得られ、造形に使用した立体造形用樹脂粉末を再利用することが可能になる。また、熱による変色を防止する効果も得られる。 The content of the antioxidant is preferably 0.05% by mass or more and 5% by mass or less, more preferably 0.1% by mass or more and 3% by mass or less, and 0.2. It is particularly preferable to use% by mass or more and 2% by mass or less. When the content is within the above range, the effect of preventing thermal deterioration can be obtained, and the resin powder for three-dimensional modeling used for modeling can be reused. In addition, the effect of preventing discoloration due to heat can also be obtained.

前記立体造形用樹脂粉末は、ISO 3146に準拠して測定したときの融点が100℃以上の樹脂であることが好ましい。ISO 3146に準拠して測定したときの前記融点が100℃以上であると、製品の外装等に使用されうる耐熱温度の範囲であるため好ましい。なお、前記融点は、ISO 3146(プラスチック転移温度測定方法、JIS K7121)に準拠して、示差走査熱量測定(DSC)を用いて測定することができ、複数の融点が存在する場合は、高温側の融点を使用する。 The resin powder for three-dimensional modeling is preferably a resin having a melting point of 100 ° C. or higher as measured in accordance with ISO 3146. It is preferable that the melting point of 100 ° C. or higher as measured in accordance with ISO 3146 is within the heat resistant temperature range that can be used for the exterior of the product. The melting point can be measured by using differential scanning calorimetry (DSC) in accordance with ISO 3146 (Plastic transition temperature measuring method, JIS K7121), and if there are multiple melting points, the high temperature side. Use the melting point of.

前記結晶性樹脂としては、結晶制御された結晶性熱可塑性樹脂が好ましい。結晶性熱可塑性樹脂は、例えば、熱処理、延伸、結晶核剤、超音波処理等、従来公知の外部刺激の方法により、得ることができる。このように、結晶サイズや結晶配向が制御されている結晶性熱可塑性樹脂は、高温下のリコート時に発生するエラーを低減できることからより好ましい。 As the crystalline resin, a crystal-controlled crystalline thermoplastic resin is preferable. The crystalline thermoplastic resin can be obtained by, for example, a conventionally known method of external stimulation such as heat treatment, stretching, crystal nucleating agent, and ultrasonic treatment. As described above, the crystalline thermoplastic resin in which the crystal size and the crystal orientation are controlled is more preferable because it can reduce the error generated at the time of recoating at a high temperature.

前記結晶性熱可塑性樹脂の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、粉末に対して各樹脂のガラス転移温度以上の温度で加熱し、結晶性を高めるアニーリング処理や、より結晶性を高めるために結晶核剤を添加し、その後、アニーリング処理する方法を用いることができる。また、超音波処理や溶媒に溶解しゆっくりと揮発させることにより結晶性を高める方法や、外部電場印加処理により結晶成長させる方法、更に延伸することにより高配向、高結晶化したものを粉砕、裁断等の加工を施す方法などが挙げられる。 The method for producing the crystalline thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the powder is heated at a temperature equal to or higher than the glass transition temperature of each resin to obtain crystallinity. A method of enhancing the annealing treatment or adding a crystal nucleating agent in order to further enhance the crystallinity and then performing an annealing treatment can be used. In addition, a method of increasing crystallinity by sonication or dissolving in a solvent and slowly volatilizing, a method of growing crystals by an external electric field application treatment, and a method of further stretching to crush and cut a highly oriented and highly crystallized product. Examples thereof include a method of performing processing such as.

前記アニーリング処理としては、例えば、樹脂をガラス転移温度から50℃高い温度にて3日間加熱し、その後、室温までゆっくりと冷却することにより行うことができる。 The annealing treatment can be performed, for example, by heating the resin at a temperature 50 ° C. higher than the glass transition temperature for 3 days, and then slowly cooling the resin to room temperature.

前記延伸としては、例えば、押し出し加工機を用いて、融点より30℃以上高い温度にて撹拌しながら、繊維状に樹脂溶融物を引き伸ばす方法である。具体的には、溶融物を1倍以上10倍以下程度に延伸し繊維にする。ノズルの口の数は多ければ多いほど生産性を高めることが期待できる。前期延伸については、樹脂ごと溶融粘度ごとに最大の延伸倍率を変えることができる。 The stretching is, for example, a method of stretching the resin melt in a fibrous form while stirring at a temperature higher than the melting point by 30 ° C. or more using an extrusion processing machine. Specifically, the melt is stretched 1 to 10 times or less to form fibers. The larger the number of nozzle mouths, the higher the productivity can be expected. For the early stretching, the maximum stretching ratio can be changed for each resin and melt viscosity.

前記超音波処理については、例えば、樹脂に、グリセリン(東京化成工業株式会社製、試薬グレード)溶媒を樹脂に対して5倍ほど加えた後、融点より20℃高い温度まで加熱し、超音波発生装置(ヒールシャー社製、ultrasonicator UP200S)にて24kHz、振幅60%での超音波を2時間与えることにより行うことができる。その後、室温にてイソプロパノールの溶媒で洗浄後、真空乾燥することが好ましい。 Regarding the ultrasonic treatment, for example, glycerin (manufactured by Tokyo Kasei Kogyo Co., Ltd., reagent grade) solvent is added to the resin about 5 times, and then heated to a temperature 20 ° C. higher than the melting point to generate ultrasonic waves. It can be performed by applying ultrasonic waves at 24 kHz and an amplitude of 60% for 2 hours with an apparatus (ultrasonicator UP200S manufactured by Heelshire Co., Ltd.). Then, it is preferable to wash with an isopropanol solvent at room temperature and then vacuum dry.

前記外部電場印加処理としては、例えば、樹脂粉末をガラス転移温度以上にて加熱した後に600V/cmの交流電場(500ヘルツ)を1時間印加し、ゆっくりと冷却することにより行うことができる。 The external electric field application treatment can be performed, for example, by heating the resin powder at a glass transition temperature or higher, applying an AC electric field (500 hertz) of 600 V / cm for 1 hour, and slowly cooling the resin powder.

前記粉末積層方式の中でもPBF方式では、結晶層変化についての温度幅(温度窓)が大きな方が、反り返りを抑制でき、造形安定性が高まることから、非常に有効である。そのためには、融解開始温度と冷却時の再結晶温度との間の差がより大きな樹脂粉末を用いることが好ましく、前記結晶性熱可塑性樹脂は特に好ましく用いられる。 Among the powder laminating methods, the PBF method is very effective when the temperature width (temperature window) for the change in the crystal layer is large because the warp can be suppressed and the molding stability is improved. For that purpose, it is preferable to use a resin powder having a larger difference between the melting start temperature and the recrystallization temperature at the time of cooling, and the crystalline thermoplastic resin is particularly preferably used.

前記結晶性熱可塑性樹脂は、例えば、下記(1)~(3)から選択される少なくとも1種を満たすことにより判別できる。
(1)示差走査熱量測定において、ISO 3146に準拠して、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークの融解開始温度をTmf1とし、その後、10℃/minにて、-30℃以下まで降温し、更に、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークの融解開始温度をTmf2としたときに、Tmf1>Tmf2となる。なお、前記吸熱ピークの融解開始温度は、融点での吸熱が終了した後に、熱量の一定となった所から低温側へx軸に対して平行な直線を引き、前記直線から-15mW下がった時点での温度である。
The crystalline thermoplastic resin can be identified by satisfying at least one selected from the following (1) to (3), for example.
(1) In the differential scanning calorimetry, the melting start temperature of the endothermic peak when the temperature is raised to a temperature 30 ° C. higher than the melting point at 10 ° C./min is set to Tmf1 in accordance with ISO 3146, and then 10 ° C./min. When the temperature is lowered to -30 ° C or lower at min and further raised to a temperature 30 ° C higher than the melting point at 10 ° C / min, the melting start temperature of the endothermic peak is Tmf2, and Tmf1> Tmf2. Become. The melting start temperature of the endothermic peak is when a straight line parallel to the x-axis is drawn from a place where the amount of heat is constant to the low temperature side after the endothermic heat is finished, and the temperature drops by -15 mW from the straight line. The temperature at.

(2)示差走査熱量測定において、ISO 3146に準拠して、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークのエネルギー量から求められる結晶化度をCd1とし、その後、10℃/minにて、-30℃以下まで降温し、更に、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークのエネルギー量から求められる結晶化度をCd2としたときに、Cd1>Cd2となる。 (2) In the differential scanning calorimetry, the crystallinity obtained from the energy amount of the endothermic peak when the temperature is raised to a temperature 30 ° C. higher than the melting point at 10 ° C./min in accordance with ISO 3146 is defined as Cd1. After that, the crystallinity obtained from the energy amount of the endothermic peak when the temperature is lowered to -30 ° C or lower at 10 ° C / min and further raised to a temperature 30 ° C higher than the melting point at 10 ° C / min. When Cd2 is set, Cd1> Cd2.

(3)X線回折測定により得られる結晶化度をCx1とし、窒素雰囲気下10℃/minにて、融点より30℃高い温度まで昇温し、その後、10℃/minにて、-30℃以下まで降温し、更に、10℃/minにて、融点より30℃高い温度まで昇温したときのX線回折測定により得られる結晶化度をCx2としたときに、Cx1>Cx2となる。 (3) The degree of crystallization obtained by X-ray diffraction measurement is Cx1, the temperature is raised to a temperature 30 ° C. higher than the melting point at 10 ° C./min under a nitrogen atmosphere, and then at 10 ° C./min, −30 ° C. Cx1> Cx2 when the degree of crystallization obtained by the X-ray diffraction measurement when the temperature is lowered to the following and further raised to a temperature 30 ° C. higher than the melting point at 10 ° C./min is Cx2.

前記(1)~(3)は、同一の前記樹脂粉末について、異なる視点から特性を規定したものであり、前記(1)~(3)は互いに関連しており、前記(1)~(3)のうち、いずれか1種を満たすことができれば有効である。前記(1)~(3)は、例えば、下記の方法によって測定することができる。 The above (1) to (3) define the characteristics of the same resin powder from different viewpoints, and the above (1) to (3) are related to each other, and the above (1) to (3). ), It is effective if any one of them can be satisfied. The above (1) to (3) can be measured by, for example, the following method.

[条件(1)の示差走査熱量測定による溶解開始温度の測定方法]
前記条件(1)の示差走査熱量測定(DSC)による溶解開始温度の測定方法としては、ISO 3146(プラスチック転移温度測定方法、JIS K7121)の測定方法に準じて、示差走査熱量測定装置(株式会社島津製作所製、DSC-60A)を使用し、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークの融解開始温度(Tmf1)を測定する。その後、10℃/minにて、-30℃以下まで降温し、更に、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークの融解開始温度(Tmf2)を測定する。なお、前記吸熱ピークの融解開始温度は、融点での吸熱が終了した後に、熱量の一定となった所から低温側へx軸に対して平行な直線を引き、前記直線から-15mW下がった時点での温度である。
[Measurement method of melting start temperature by differential scanning calorimetry under condition (1)]
The method for measuring the melting start temperature by the differential scanning calorimetry (DSC) under the condition (1) is based on the measurement method of ISO 3146 (plastic transition temperature measuring method, JIS K7121), and is a differential scanning calorimetry device (Co., Ltd.). Using DSC-60A) manufactured by Shimadzu Corporation, the melting start temperature (Tmf1) of the heat absorption peak when the temperature is raised to a temperature 30 ° C. higher than the melting point at 10 ° C./min is measured. After that, the temperature is lowered to −30 ° C. or lower at 10 ° C./min, and the melting start temperature (Tmf2) of the endothermic peak is measured at 10 ° C./min when the temperature is raised to a temperature 30 ° C. higher than the melting point. .. The melting start temperature of the endothermic peak is when a straight line parallel to the x-axis is drawn from a place where the amount of heat is constant to the low temperature side after the endothermic heat is finished, and the temperature drops by -15 mW from the straight line. The temperature at.

[条件(2)の示差走査熱量測定による結晶化度の測定方法]
前記条件(2)の示差走査熱量測定(DSC)による結晶化度の測定方法としては、ISO 3146(プラスチック転移温度測定方法、JISK7121)に準拠して、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークのエネルギー量(融解熱量)を測定し、完全結晶熱量に対する融解熱量から結晶化度(Cd1)を求めることができる。その後、10℃/minにて、-30℃以下まで降温し、更に、10℃/minにて、融点より30℃高い温度まで昇温したときの吸熱ピークのエネルギー量を測定し、完全結晶熱量に対する融解熱量から結晶化度(Cd2)を求めることができる。
[Method of measuring crystallinity by differential scanning calorimetry under condition (2)]
The method for measuring the degree of crystallization by differential scanning calorimetry (DSC) under the condition (2) is based on ISO 3146 (plastic transition temperature measuring method, JISK7121) at 10 ° C./min and 30 ° C. from the melting point. The energy amount (heat of fusion) of the heat absorption peak when the temperature is raised to a high temperature can be measured, and the degree of crystallization (Cd1) can be obtained from the amount of heat of fusion with respect to the complete crystal heat amount. After that, the temperature was lowered to -30 ° C or lower at 10 ° C / min, and the energy amount of the heat absorption peak when the temperature was further raised to a temperature 30 ° C higher than the melting point at 10 ° C / min was measured, and the perfect crystal calorific value was measured. The crystallinity (Cd2) can be obtained from the amount of heat of fusion with respect to.

[条件(3)のX線解析装置による結晶化度の測定方法]
前記条件(3)のX線解析装置による結晶化度の測定方法としては、二次元検出器を有するX線解析装置(Bruker社、Discover8)を使用し、室温にて2θ範囲を10~40に設定し、得られた粉末をガラスプレート上に置き、結晶化度を測定(Cx1)することができる。次に、DSC内において、窒素雰囲気下にて10℃/minで加熱し、融点より30℃高い温度まで昇温し、10分保温した後、10℃/min、-30℃まで冷却後のサンプルを室温に戻し、Cx1と同様にして、結晶化度(Cx2)を測定することができる。
[Measurement method of crystallinity by X-ray analyzer of condition (3)]
As a method for measuring the crystallinity by the X-ray analyzer of the above condition (3), an X-ray analyzer (Bruker, Discover8) having a two-dimensional detector is used, and the 2θ range is set to 10 to 40 at room temperature. The powder can be set and the obtained powder can be placed on a glass plate and the crystallinity can be measured (Cx1). Next, in the DSC, the sample was heated at 10 ° C./min under a nitrogen atmosphere, heated to a temperature 30 ° C. higher than the melting point, kept warm for 10 minutes, and then cooled to 10 ° C./min and -30 ° C. Can be returned to room temperature and the crystallinity (Cx2) can be measured in the same manner as Cx1.

また、前記立体造形用樹脂粉末としては、SLS法やSMS法について使用できるが、適切な粒度、粒度分布、熱移動特性、溶融粘度、嵩密度、流動性、溶融温度、及び再結晶温度のようなパラメーターについて適切なバランスを示す特性を呈している。 Further, as the resin powder for three-dimensional modeling, the SLS method and the SMS method can be used, but such as appropriate particle size, particle size distribution, heat transfer characteristics, melt viscosity, bulk density, fluidity, melt temperature, and recrystallization temperature. It exhibits the characteristics that show an appropriate balance for various parameters.

前記立体造形用樹脂粉末の嵩密度としては、PBF方式でのレーザー焼結度を促進する点から、樹脂自身の持っている密度に差異があるが嵩密度は大きい方が好ましく、タップ密度として0.35g/mL以上がより好ましく、0.40g/mL以上が更に好ましく、0.5g/mL以上が特に好ましい。 Regarding the bulk density of the resin powder for three-dimensional modeling, there is a difference in the density of the resin itself from the viewpoint of promoting the degree of laser sintering in the PBF method, but it is preferable that the bulk density is large, and the tap density is 0. .35 g / mL or more is more preferable, 0.40 g / mL or more is further preferable, and 0.5 g / mL or more is particularly preferable.

前記立体造形用樹脂粉末を用いて、レーザー焼結により形成される立体造形物は、滑らかであり、最小オレンジピール以下を呈する十分な解像度を示す表面を形成できる。ここで、前記オレンジピールとは、一般にPBFでのレーザー焼結により形成される立体造形物の表面上に不適切な粗面、又は空孔やゆがみのような表面欠陥の存在を意味する。前記空孔は、例えば、美観を損なうだけでなく、機械強度にも著しく影響を及ぼすことがある。 Using the resin powder for three-dimensional modeling, the three-dimensional model formed by laser sintering is smooth and can form a surface exhibiting a minimum orange peel or less and exhibiting sufficient resolution. Here, the orange peel means the presence of an improper rough surface or surface defects such as holes and distortions on the surface of a three-dimensional model generally formed by laser sintering in PBF. The holes may not only spoil the aesthetics, but may also significantly affect the mechanical strength, for example.

更に、前記立体造形用樹脂粉末を使用し、レーザー焼結により形成される立体造形物としては、焼結中から焼結後の冷却時の間に、発生する相変化による反りや歪み、発煙したりするような不適切なプロセス特性を示さないことが好ましい。 Further, the three-dimensional model formed by laser sintering using the resin powder for three-dimensional modeling may be warped, distorted, or smoked due to the phase change generated during the period from sintering to cooling after sintering. It is preferable not to show such inappropriate process characteristics.

本発明の立体造形用樹脂粉末を用いることにより、寸法精度や強度が高く、更に表面性(オレンジピール性)に優れた立体造形物を得ることができる。更に、リサイクル性に優れ、余剰粉を繰り返し使用しても、立体造形物の寸法精度や強度の低下を抑制することができる。 By using the resin powder for three-dimensional modeling of the present invention, it is possible to obtain a three-dimensional model having high dimensional accuracy and strength and excellent surface properties (orange peeling property). Further, it is excellent in recyclability, and even if the surplus powder is repeatedly used, it is possible to suppress a decrease in dimensional accuracy and strength of the three-dimensional model.

[粒子の製造方法]
本発明の立体造形用樹脂粉末としては、樹脂を繊維化し、その後裁断して直接的に略柱体粒子(略円柱体や多角柱体)を得る方法や、フィルム形状から同様の柱体を得る方法や、得られた多角柱体の粒子を作製後に後加工により略円柱体を作製する方法などを用いてもよい。
[Manufacturing method of particles]
As the resin powder for three-dimensional modeling of the present invention, a method of fiberizing a resin and then cutting it to directly obtain substantially prismatic particles (substantially cylindrical or polygonal prism), or obtaining a similar prism from a film shape. A method or a method of producing a substantially cylindrical body by post-processing after producing the obtained particles of the polygonal prism may be used.

-略柱体粒子-
本発明の立体造形用樹脂粉末は、略柱体粒子を含むことが好ましい。前記略柱体粒子とは、底面と上面を持つ柱状あるいは筒状の形状を有する粒子であり、例えば、略円柱体や多角柱体など、底面や上面の形状に特に制限はなく、目的に応じて適宜選択することができる。底面や上面の形状が円や楕円形状であれば略円柱体(図1)であり、四角形あるいは六角形など多角形であれば多角柱体である。底面と上面の間に柱状あるいは筒状の領域を有するものであれば、底面と上面の形状は、同じであってもよいし、異なっていてもよい。また、底面や上面と柱の部分(側面)とが直交した直柱体であってもよいし、直交していない斜柱体であってもよい。
-Approximately columnar particles-
The resin powder for three-dimensional modeling of the present invention preferably contains substantially prismatic particles. The substantially prismatic particles are particles having a columnar or tubular shape having a bottom surface and an upper surface, and the shape of the bottom surface or the upper surface such as a substantially cylindrical body or a polygonal prism is not particularly limited, depending on the purpose. Can be selected as appropriate. If the shape of the bottom surface or the top surface is a circle or an ellipse, it is a substantially cylindrical body (FIG. 1), and if it is a polygon such as a quadrangle or a hexagon, it is a polygonal column. The shapes of the bottom surface and the top surface may be the same or different as long as they have a columnar or cylindrical region between the bottom surface and the top surface. Further, it may be a straight pillar body in which the bottom surface or the upper surface and the portion (side surface) of the pillar are orthogonal to each other, or an oblique pillar body which is not orthogonal to each other.

前記樹脂粉末の形状が、略柱体であることにより、安息角が小さくリコート時の粉面平滑性が高い粉体を得ることができる。その結果、得られる立体造形物の表面性を高めることができる。前記略柱体としては、生産性と造形の安定性から、底面と上面は略平行で直柱体に近い方がより好ましい。なお、前記略柱体の形状は、例えば、走査型電子顕微鏡(装置名:S4200、株式会社日立製作所製)、湿式フロー式粒子径・形状分析装置(装置名:FPIA-3000、シスメックス株式会社製)などを用いて観察することにより判別することができる。 Since the shape of the resin powder is substantially a prism, it is possible to obtain a powder having a small angle of repose and high powder surface smoothness at the time of recoating. As a result, the surface property of the obtained three-dimensional model can be improved. From the viewpoint of productivity and modeling stability, it is more preferable that the bottom surface and the top surface are substantially parallel to each other and are close to a straight column. The shape of the substantially columnar body is, for example, a scanning electron microscope (device name: S4200, manufactured by Hitachi, Ltd.), a wet flow type particle size / shape analyzer (device name: FPIA-3000, manufactured by Sysmex Co., Ltd.). ) Etc., and can be discriminated by observing.

前記略柱体粒子の含有量としては、立体造形用樹脂粉末全量に対して、50%以上が好ましく、75%以上がより好ましく、90%以上が特に好ましい。前記略柱体粒子が、50%以上であると、充填密度を高める効果が顕著に現れ、得られる立体造形物の寸法精度や強度を高める上で非常に有効である。 The content of the substantially prismatic particles is preferably 50% or more, more preferably 75% or more, and particularly preferably 90% or more, based on the total amount of the resin powder for three-dimensional modeling. When the content of the substantially prismatic particles is 50% or more, the effect of increasing the packing density is remarkably exhibited, and it is very effective in improving the dimensional accuracy and strength of the obtained three-dimensional model.

-略円柱体-
前記略円柱体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、真円柱体、楕円柱体などが挙げられる。これらの中でも、真円柱体に近い方がより好ましい。なお、前記略円柱体の略円とは、長径と短径との比(長径/短径)が、1~10であるものを意味し、円部分の一部が欠けたものも含まれる。
前記略円柱体は、略円の向かい合う面を有することが好ましい。前記向かい合う面の円の大きさがずれていてもよいが、大きい面と小さい面との円の直径の比(大きい面/小さい面)としては、密度を高める上で有効であることから、1.5倍以下が好ましく、1.1倍以下がより好ましい。
-Approximately cylindrical body-
The substantially cylindrical body is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a true columnar body and an elliptical columnar body. Of these, the one closer to a true cylinder is more preferable. The substantially circle of the substantially cylindrical body means that the ratio of the major axis to the minor axis (major axis / minor axis) is 1 to 10, and includes those in which a part of the circular portion is missing.
It is preferable that the substantially cylindrical body has surfaces facing each other in substantially circles. The size of the circles on the facing surfaces may be different, but the ratio of the diameters of the circles (large surface / small surface) between the large surface and the small surface is effective in increasing the density. It is preferably 5.5 times or less, and more preferably 1.1 times or less.

前記略円柱体の底面の長辺は、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上200μm以下が好ましい。なお、前記略円柱体粒子における底面の長辺とは、底面の直径を表す。略円柱体粒子の円形部分が楕円形である場合は、長径を意味する。また、前記略円柱体の高さ(底面と上面との距離)としては、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上200μm以下が好ましい。前記底面の長辺が、範囲内であることにより、粉末層の形成時に樹脂粉末の巻き上げを低減でき、粉末層の表面が平滑になり、また樹脂粉末の間にできる空隙を低減することができ、立体造形物の表面性や寸法精度をより高める効果が得られる。
なお、前記粒子の底面の長辺及び高さが、5μm未満、又は200μm超のものが含まれていてもよいが、少ない方が好ましい。具体的には、底面の長辺及び高さが5μm以上200μm以下である粒子が、すべての粒子に対して50%以上が好ましく、75%以上がより好ましい。
The long side of the bottom surface of the substantially cylindrical body is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm or more and 200 μm or less. The long side of the bottom surface of the substantially cylindrical particles represents the diameter of the bottom surface. When the circular part of the substantially cylindrical particle is elliptical, it means the major axis. The height (distance between the bottom surface and the top surface) of the substantially cylindrical body is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm or more and 200 μm or less. When the long side of the bottom surface is within the range, the winding of the resin powder can be reduced when the powder layer is formed, the surface of the powder layer becomes smooth, and the voids formed between the resin powders can be reduced. , The effect of further improving the surface property and dimensional accuracy of the three-dimensional model can be obtained.
The long side and height of the bottom surface of the particles may be less than 5 μm or more than 200 μm, but the smaller the number is preferable. Specifically, the particles having the long side and the height of the bottom surface of 5 μm or more and 200 μm or less are preferably 50% or more, more preferably 75% or more with respect to all the particles.

前記繊維化の方法としては、例えば、押し出し加工機を用いて、融点より30℃以上高い温度にて撹拌しながら、繊維状に樹脂溶融物を引き伸ばす方法などが挙げられる。この際、樹脂溶融物は、1倍以上10倍以下程度に延伸して繊維化することが好ましい。この場合、柱体の底面の形状は、押出し加工機のノズル孔の形状により決定される。例えば、柱体の底面の形状、即ち繊維の断面が円形形状である場合は、ノズル孔も円形形状のものを用い、多角形形状である場合は、ノズル孔もそれに合わせて選定される。立体造形物の寸法精度は高ければ高いほどよい。ノズルの口の数は可能な範囲で多くした方が、生産性を高める上で好ましい。 Examples of the method of fiberization include a method of stretching the resin melt in a fibrous form while stirring at a temperature higher than the melting point by 30 ° C. or more by using an extrusion processing machine. At this time, it is preferable that the resin melt is stretched 1 to 10 times or less to become fibrous. In this case, the shape of the bottom surface of the column is determined by the shape of the nozzle hole of the extruder. For example, when the shape of the bottom surface of the pillar, that is, the cross section of the fiber is circular, the nozzle hole is also circular, and when it is polygonal, the nozzle hole is also selected accordingly. The higher the dimensional accuracy of the three-dimensional model, the better. It is preferable to increase the number of nozzle openings as much as possible in order to increase productivity.

前記繊維を裁断する方法としては、ギロチン方式の上刃と下刃が共に刃物になっている切断装置や、押し切り方式と呼ばれる下側は刃物ではなく板にて、上刃で裁断していく装置などがあり、これらの従来公知の装置を用いることができる。従来公知の前記装置は、例えば、0.005mm以上0.2mm以下に直接カットする装置や、COレーザー等を用いて裁断できる方法もあり、好ましく用いられる。これらの方法により、本発明の立体造形用樹脂粉末を得ることができる。 As a method of cutting the fiber, a cutting device in which both the upper and lower blades of the guillotine method are blades, and a device called a push-cutting method in which the lower side is cut with a plate instead of a blade and with the upper blade. And so on, these conventionally known devices can be used. The conventionally known apparatus is preferably used because, for example, there is an apparatus that directly cuts to 0.005 mm or more and 0.2 mm or less, and a method that can cut using a CO 2 laser or the like. By these methods, the resin powder for three-dimensional modeling of the present invention can be obtained.

前記樹脂ペレットを粉砕する方法も有効に用いられる。例えば、ペレット等の形態の樹脂を従来公知の粉砕機を用いて機械的に粉砕し、得られた樹脂粉末から、目的の粒径以外のものを分級することによって得られる。粉砕時の温度は、好ましくは0℃以下(各樹脂自身の脆弱温度以下)、より好ましくは-25℃以下、特に好ましくは-100℃以下とすることで、粉砕効率が高まることから有効である。 The method of crushing the resin pellets is also effectively used. For example, it can be obtained by mechanically pulverizing a resin in the form of pellets or the like using a conventionally known pulverizer, and classifying the obtained resin powder into a resin having a particle size other than the desired particle size. The temperature at the time of pulverization is preferably 0 ° C. or lower (fragile temperature or less of each resin itself), more preferably -25 ° C. or lower, and particularly preferably -100 ° C. or lower, which is effective because the pulverization efficiency is improved. ..

本発明の立体造形用樹脂粉末は、PBF方式によるレーザー焼結法、例えば、SLS(選択式レーザー焼結)方式又はSMS(選択式マスク焼結)方式を利用する三次元品を形成するのに有用である。 The resin powder for three-dimensional modeling of the present invention is used to form a three-dimensional product using a laser sintering method based on the PBF method, for example, an SLS (selective laser sintering) method or an SMS (selective mask sintering) method. It is useful.

(立体造形物の製造方法及び立体造形物の製造装置)
本発明の立体造形物の製造方法は、本発明の立体造形用樹脂粉末からなる層を形成する層形成工程と、前記形成された層の選択された領域に電磁照射して樹脂粉末同士を接着させる粉末接着工程と、を繰り返し、更に必要に応じてその他の工程を含む。
前記立体造形物の製造装置は、本発明の前記樹脂粉末からなる層を形成する層形成手段と、前記層の選択された領域内の前記立体造形用樹脂粉末同士を接着させる粉末接着手段と、を有し、更に必要に応じてその他の手段を含む。
前記立体造形物の製造方法は、前記立体造形物の製造装置を用いることにより好適に実施することができる。前記立体造形用樹脂粉末としては、本発明の立体造形用樹脂粉末と同様のものを用いることができる。
(Manufacturing method of three-dimensional model and equipment for manufacturing three-dimensional model)
The method for producing a three-dimensional model of the present invention comprises a layer forming step of forming a layer made of the resin powder for three-dimensional modeling of the present invention, and electromagnetically irradiating a selected region of the formed layer to bond the resin powders to each other. The powder bonding step is repeated, and if necessary, other steps are included.
The apparatus for producing a three-dimensional model includes a layer forming means for forming a layer made of the resin powder of the present invention, and a powder bonding means for adhering the resin powders for three-dimensional modeling in a selected region of the layer. And, if necessary, include other means.
The method for manufacturing the three-dimensional model can be suitably carried out by using the apparatus for manufacturing the three-dimensional model. As the resin powder for three-dimensional modeling, the same resin powder for three-dimensional modeling of the present invention can be used.

前記立体造形用樹脂粉末は、粉末積層方式の立体造形物製造装置すべてに使用することができ、有効である。粉末積層方式の立体造形物製造装置は、粉末の層を形成した後、選択された領域の樹脂粉末同士を接着させる手段が異なり、一般にSLS方式やSMS方式に代表される電磁照射手段と、バインダージェット方式に代表される液体吐出手段が挙げられる。本発明の立体造形用樹脂粉末は、これらのいずれにも適用することができ、粉末を積層する手段を含む立体造形装置すべてに有効である。 The resin powder for three-dimensional modeling can be used and is effective for all the three-dimensional modeling object manufacturing devices of the powder laminating method. The powder laminating type three-dimensional model manufacturing equipment has different means for adhering the resin powders in the selected region after forming the powder layer, and generally has an electromagnetic irradiation means typified by the SLS method or the SMS method and a binder. Examples thereof include a liquid discharge means represented by a jet method. The resin powder for three-dimensional modeling of the present invention can be applied to any of these, and is effective for all three-dimensional modeling devices including means for laminating powders.

前記粉末接着手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電磁波を照射する手段などが挙げられる。 The powder bonding means is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include means for irradiating electromagnetic waves.

前記電磁波の照射を用いるSLS方式やSMS方式等の立体造形物の製造装置において、電磁波の照射に用いられる電磁照射源としては、例えば、紫外線、可視光線、赤外線等を照射するレーザーのほか、マイクロ波、放電、電子ビーム、放射加熱器、LEDランプ等、又はこれらの組合せなどが挙げられる。
また、前記立体造形用樹脂粉末を選択的に接着させる方法として電磁波の照射を用いる場合、効率的に吸収させたり、あるいは吸収を妨げたりする方法もあり、例えば、吸収剤や抑制剤を前記樹脂粉末に含有させる方法も可能である。
In the manufacturing equipment for three-dimensional objects such as the SLS method and the SMS method that use the irradiation of electromagnetic waves, the electromagnetic wave irradiation source used for the irradiation of electromagnetic waves includes, for example, a laser that irradiates ultraviolet rays, visible rays, infrared rays, and the like, as well as microwaves. Examples include waves, discharges, electron beams, radiant heaters, LED lamps, etc., or combinations thereof.
Further, when electromagnetic wave irradiation is used as a method for selectively adhering the three-dimensional modeling resin powder, there is also a method of efficiently absorbing or hindering the absorption. For example, an absorbent or an inhibitor is used as the resin. It is also possible to add it to the powder.

これらの立体造形物の製造装置の一例について、図2を用いて説明する。図2は、立体造形物の製造装置の一例を示す概略図である。図2に示すように、粉末の供給槽5に粉末を貯蔵し、使用量に応じて、ローラ4を用いてレーザー走査スペース6に供給する。供給槽5は、ヒーター3により温度を調節されていることが好ましい。電磁照射源1から出力したレーザーを反射鏡2を用いて、レーザー走査スペース6に照射する。前記レーザーによる熱により、粉末を焼結して立体造形物を得ることができる。 An example of an apparatus for manufacturing these three-dimensional objects will be described with reference to FIG. FIG. 2 is a schematic view showing an example of a three-dimensional model manufacturing apparatus. As shown in FIG. 2, the powder is stored in the powder supply tank 5, and is supplied to the laser scanning space 6 by using a roller 4 according to the amount used. It is preferable that the temperature of the supply tank 5 is controlled by the heater 3. The laser output from the electromagnetic irradiation source 1 is irradiated to the laser scanning space 6 using the reflecting mirror 2. The heat from the laser can be used to sinter the powder to obtain a three-dimensional model.

前記供給槽5の温度としては、粉末の融点より10℃以上低いことが好ましい。
前記レーザー走査スペースにおける部品床温度としては、粉末の融点より5℃以上低温であることが好ましい。
レーザー出力としては、特に制限はなく、目的に応じて適宜選択することができるが、10ワット以上150ワット以下が好ましい。
The temperature of the supply tank 5 is preferably 10 ° C. or higher lower than the melting point of the powder.
The component floor temperature in the laser scanning space is preferably 5 ° C. or higher lower than the melting point of the powder.
The laser output is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 watts or more and 150 watts or less.

別の実施態様においては、選択的マスク焼結(selective mask sintering:SMS)技術を使用して、本発明における立体造形物を製造することができる。前記SMSプロセスについては、例えば、米国特許第6,531,086号明細書に記載されているものを好適に用いることができる。 In another embodiment, the selective mask sintering (SMS) technique can be used to produce the three-dimensional model of the present invention. As the SMS process, for example, the one described in US Pat. No. 6,531,086 can be preferably used.

前記SMSプロセスとしては、遮蔽マスクを使用して選択的に赤外放射を遮断し、粉末層の一部に選択的に照射する。本発明の立体造形用樹脂粉末から立体造形物を製造するためにSMSプロセスを使用する場合、前記樹脂粉末の赤外吸収特性を増強させる材料を含有させることが可能であり、有効である。例えば、前記樹脂粉末に1種以上の熱吸収剤及び/又は暗色物質(カーボンファイバー、カーボンブラック、カーボンナノチューブ、もしくはカーボンファイバー、セルロースナノファイバー等)を含有することができる。 In the SMS process, a shielding mask is used to selectively block infrared radiation and selectively irradiate a part of the powder layer. When the SMS process is used to produce a three-dimensional model from the resin powder for three-dimensional modeling of the present invention, it is possible and effective to contain a material that enhances the infrared absorption characteristics of the resin powder. For example, the resin powder can contain one or more heat absorbers and / or dark-colored substances (carbon fiber, carbon black, carbon nanotube, carbon fiber, cellulose nanofiber, etc.).

更に別の実施態様においては、本発明の立体造形用樹脂粉末を用い、前述のバインダージェット方式の立体造形装置を使用して、立体造形物を製造することができる。この方法は、本発明の立体造形用樹脂粉末からなる層を形成する層形成工程と、形成された層の選択された領域に液体を吐出し乾燥させて、樹脂粉末同士を接着させる粉末接着工程と、を繰り返し、更に必要に応じてその他の工程を含む。 In still another embodiment, the resin powder for three-dimensional modeling of the present invention can be used to produce a three-dimensional model using the binder jet type three-dimensional modeling device described above. This method comprises a layer forming step of forming a layer made of the resin powder for three-dimensional modeling of the present invention, and a powder bonding step of discharging a liquid into a selected region of the formed layer and drying the resin powder to bond the resin powders to each other. And, are repeated, and other steps are included as necessary.

前記立体造形物の製造装置は、本発明の立体造形用樹脂粉末からなる層を形成する層形成手段と、前記形成された層の選択された領域に液体を吐出する手段と、を有し、更に必要に応じてその他の手段を含む。前記液体を吐出する手段としては、得られる立体造形物の寸法精度や造形速度の観点から、インクジェットの方法を用いることが好ましい。 The three-dimensional object manufacturing apparatus has a layer forming means for forming a layer made of the resin powder for three-dimensional modeling of the present invention, and a means for discharging a liquid into a selected region of the formed layer. Further, if necessary, other means are included. As the means for discharging the liquid, it is preferable to use an inkjet method from the viewpoint of dimensional accuracy and modeling speed of the obtained three-dimensional model.

図3に、バインダージェット方式のプロセス概略図の一例を示す。図3に示される立体造形物製造装置は、造形用粉末貯蔵槽11と供給用粉末貯蔵槽12とを有し、これらの粉末貯蔵槽は、それぞれ上下に移動可能なステージ13を有し、該ステージ13上に本発明の樹脂粉末を載置し、前記立体造形用樹脂粉末からなる層を形成する。造形用粉末貯蔵槽11の上には、前記粉末貯蔵槽内の前記立体造形用樹脂粉末に向けて立体造形用液体材料16を吐出する立体造形用液体材料供給手段15を有し、更に、供給用粉末貯蔵槽12から造形用粉末貯蔵槽11に立体造形用樹脂粉末を供給すると共に、造形用粉末貯蔵槽11の樹脂粉末(層)表面を均すことが可能な樹脂粉末層形成手段14(以下、均し機構、リコーターとも称する)を有する。 FIG. 3 shows an example of a schematic process diagram of the binder jet method. The three-dimensional model manufacturing apparatus shown in FIG. 3 has a powder storage tank 11 for modeling and a powder storage tank 12 for supply, and each of these powder storage tanks has a stage 13 that can be moved up and down. The resin powder of the present invention is placed on the stage 13 to form a layer made of the resin powder for three-dimensional modeling. Above the modeling powder storage tank 11, a three-dimensional modeling liquid material supply means 15 for discharging the three-dimensional modeling liquid material 16 toward the three-dimensional modeling resin powder in the powder storage tank is provided, and further supplied. Resin powder layer forming means 14 (which can supply the resin powder for three-dimensional modeling from the powder storage tank 12 for modeling to the powder storage tank 11 for modeling and smooth the surface of the resin powder (layer) of the powder storage tank 11 for modeling. Hereinafter, it also has a leveling mechanism and a recorder).

図3A及びBは、供給用粉末貯蔵槽12から造形用粉末貯蔵槽11に樹脂粉末を供給するとともに、平滑な表面を有する樹脂粉末層を形成する工程を示す。造形用粉末貯蔵槽11及び供給用粉末貯蔵槽12の各ステージ13を制御し、所望の層厚になるようにギャップを調整し、前記樹脂粉末層形成手段14を供給用粉末貯蔵槽12から造形用粉末貯蔵槽11に移動させることにより、造形用粉末貯蔵槽11に樹脂粉末層が形成される。 3A and 3B show a step of supplying resin powder from the supply powder storage tank 12 to the modeling powder storage tank 11 and forming a resin powder layer having a smooth surface. Each stage 13 of the powder storage tank 11 for modeling and the powder storage tank 12 for supply is controlled, the gap is adjusted so as to have a desired layer thickness, and the resin powder layer forming means 14 is modeled from the powder storage tank 12 for supply. By moving to the powder storage tank 11 for modeling, a resin powder layer is formed in the powder storage tank 11 for modeling.

図3Cは、造形用粉末貯蔵槽11の樹脂粉末層上に前記立体造形用液体材料供給手段15を用いて、立体造形用液体材料16を滴下する工程を示す。この時、樹脂粉末層上に立体造形用液体材料16を滴下する位置は、立体造形物を幾層もの平面にスライスした二次元画像データ(スライスデータ)により決定される。 FIG. 3C shows a step of dropping the three-dimensional modeling liquid material 16 onto the resin powder layer of the modeling powder storage tank 11 by using the three-dimensional modeling liquid material supply means 15. At this time, the position where the liquid material 16 for three-dimensional modeling is dropped onto the resin powder layer is determined by the two-dimensional image data (slice data) obtained by slicing the three-dimensional model into a number of planes.

図3D及びEは、供給用粉末貯蔵槽12のステージ13を上昇させ、造形用粉末貯蔵槽11のステージ13を降下させ、所望の層厚になるようにギャップを制御し、再び前記樹脂粉末層形成手段14を供給用粉末貯蔵槽12から造形用粉末貯蔵槽11に移動させることにより、造形用粉末貯蔵槽11に新たに樹脂粉末層が形成される。 3D and E show that the stage 13 of the supply powder storage tank 12 is raised, the stage 13 of the modeling powder storage tank 11 is lowered, the gap is controlled so as to have a desired layer thickness, and the resin powder layer is again formed. By moving the forming means 14 from the supply powder storage tank 12 to the modeling powder storage tank 11, a new resin powder layer is formed in the modeling powder storage tank 11.

図3Fは、再び造形用粉末貯蔵槽11の樹脂粉末層上に立体造形用液体材料供給手段15を用いて、立体造形用液体材料16を滴下する工程である。これらの一連の工程を繰り返し、必要に応じて乾燥させ、立体造形用液体材料が付着していない樹脂粉末(余剰粉)を除去することによって、立体造形物を得ることができる。 FIG. 3F is a step of dropping the three-dimensional modeling liquid material 16 onto the resin powder layer of the modeling powder storage tank 11 again by using the three-dimensional modeling liquid material supply means 15. By repeating these series of steps and drying as necessary to remove the resin powder (surplus powder) to which the liquid material for three-dimensional modeling is not attached, the three-dimensional model can be obtained.

樹脂粉末同士を接着させるためには、接着剤を含むことが好ましい。前記接着剤は、吐出する液体に溶解した状態で含有させてもよいし、前期樹脂粉末に接着剤粒子として混在させてもよい。前記接着剤は、吐出する液体に溶解することが好ましく、例えば、吐出する液体が水を主成分とするものであれば、前記接着剤は水溶性であることが好ましい。 In order to bond the resin powders to each other, it is preferable to include an adhesive. The adhesive may be contained in a state of being dissolved in the liquid to be discharged, or may be mixed as adhesive particles in the resin powder of the previous term. The adhesive is preferably dissolved in the liquid to be discharged. For example, if the liquid to be discharged is mainly composed of water, the adhesive is preferably water-soluble.

前記水溶性の接着剤としては、例えば、ポリビニルアルコール(PVA)、ポリビニルピロリドン、ポリアミド、ポリアクリルアミド、ポリエチレンイミン、ポリエチレンオキシド、ポリアクリル酸樹脂、セルロース樹脂、ゼラチン等が挙げられる。これらの中でも、ポリビニルアルコールが立体造形物の強度や寸法精度を高める上で、より好ましく用いられる。 Examples of the water-soluble adhesive include polyvinyl alcohol (PVA), polyvinylpyrrolidone, polyamide, polyacrylamide, polyethyleneimine, polyethylene oxide, polyacrylic acid resin, cellulose resin, gelatin and the like. Among these, polyvinyl alcohol is more preferably used in order to increase the strength and dimensional accuracy of the three-dimensional model.

本発明の立体造形用樹脂粉末は、流動性が高く、その結果、得られる立体造形物の表面性を向上することができ、これらの効果は電磁照射を用いる方法に限定されるものではなく、バインダージェット方式を始めとする粉末積層方式を採用したすべての立体造形装置において、有効である。 The resin powder for three-dimensional modeling of the present invention has high fluidity, and as a result, the surface property of the obtained three-dimensional model can be improved, and these effects are not limited to the method using electromagnetic irradiation. It is effective in all three-dimensional modeling devices that employ the powder laminating method, including the binder jet method.

(立体造形物)
前記立体造形物は、本発明の立体造形物の製造方法により好適に製造することができる。
(Three-dimensional model)
The three-dimensional model can be suitably manufactured by the method for producing a three-dimensional model of the present invention.

以下、実施例を示して本発明を更に具体的に説明するが、本発明は、これらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

得られた立体造形用樹脂粉末について、「平均円相当径、平均円形度、並びに円相当径の粒度分布の中央値」、及び「ゆるみ充填率」は、以下のようにして測定した。結果を下記表1に示す。 For the obtained resin powder for three-dimensional modeling, the "median value of the average circle equivalent diameter, the average circularity, and the median particle size distribution of the circle equivalent diameter" and the "loose filling rate" were measured as follows. The results are shown in Table 1 below.

[平均円相当径、平均円形度、並びに円相当径の粒度分布の中央値]
前記平均円相当径、及び平均円形度は、湿式フロー式粒子径・形状分析装置(装置名:FPIA-3000、シスメックス株式会社製)を用いて、粉体粒子カウント数が3,000個以上をカウントする状態にて、粒子形状画像を取得し、粒子径が0.5μm以上200μm以下の粒子の円相当径、及び円形度を測定し、その平均値を求めた。なお、前記円形度は2回ずつ測定し、その平均値を平均円形度とした。また、前記円相当径の粒度分布から、中央値を算出した。
[Median size distribution of average circle-equivalent diameter, average circularity, and circle-equivalent diameter]
For the average circle equivalent diameter and average circularity, a wet flow type particle diameter / shape analyzer (device name: FPIA-3000, manufactured by Sysmex Co., Ltd.) is used, and the number of powder particle counts is 3,000 or more. In the state of counting, a particle shape image was acquired, the equivalent circle diameter and circularity of particles having a particle diameter of 0.5 μm or more and 200 μm or less were measured, and the average value was obtained. The circularity was measured twice, and the average value was taken as the average circularity. In addition, the median value was calculated from the particle size distribution of the equivalent circle diameter.

[ゆるみ充填率]
前記ゆるみ充填率は、かさ比重計(JIS Z-2504対応、株式会社蔵持科学器械製作所製)を用いて、ゆるみ密度を測定した。得られたゆるみ密度を樹脂の真密度にて割って、粉末の「ゆるみ充填率」を算出した。
[Loose filling rate]
The looseness filling rate was measured by using a bulk hydrometer (compatible with JIS Z-2504, manufactured by Kuramochi Kagaku Kikai Seisakusho Co., Ltd.). The "loose filling rate" of the powder was calculated by dividing the obtained loosening density by the true density of the resin.

(実施例1)
ポリブチレンテレフタレート(PBT)樹脂(商品名:ノバデュラン5020、三菱エンジニアリングプラスチック株式会社製、融点:218℃、ガラス転移温度:43℃)を押し出し加工機(株式会社日本製鋼所製)を用いて、融点より30℃高い温度にて撹拌後、ノズル孔が円形形状のものを用い、繊維状に立体造形用樹脂溶解液を伸ばした。ノズルから出る糸の本数は60本にて実施した。5倍程度延伸し、繊維直径が55μmにて精度が±4μmの繊維にした後に55μm)で押し切り方式の裁断装置(株式会社荻野精機製作所製、NJシリーズ1200型)を用いて長さ55μm狙いで裁断し、略円柱体の粒子を得、これを立体造形用樹脂粉末とした。裁断後の断面を走査型電子顕微鏡(装置名:S4200、株式会社日立製作所製)を用いて、300倍の倍率で確認したところ、断面はきれいに裁断されており、切断面は互いに平行であった。また、略円柱体の高さを測定したところ、55μm±10μmの精度で切断できていた。得られた立体造形用樹脂粉末は、目開き125μmの篩を通し、一部切断不良などの粗大粒子を排除した。図4に、実施例1の立体造形用樹脂粉末の円相当径の分布を示す。
(Example 1)
Polybutylene terephthalate (PBT) resin (trade name: Novaduran 5020, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point: 218 ° C, glass transition temperature: 43 ° C) is melted using an extrusion processing machine (manufactured by Nippon Steel Works Co., Ltd.). After stirring at a higher temperature of 30 ° C., a resin solution for three-dimensional modeling was spread in a fibrous form using a circular nozzle hole. The number of threads coming out of the nozzle was 60. Stretch about 5 times to make a fiber with a fiber diameter of 55 μm and an accuracy of ± 4 μm, and then use a push-cut type cutting device (manufactured by Ogino Seiki Seisakusho Co., Ltd., NJ series 1200 type) to aim for a length of 55 μm. The particles were cut to obtain substantially cylindrical particles, which were used as resin powder for three-dimensional modeling. When the cross section after cutting was confirmed using a scanning electron microscope (device name: S4200, manufactured by Hitachi, Ltd.) at a magnification of 300 times, the cross section was cut cleanly and the cut surfaces were parallel to each other. .. Moreover, when the height of the substantially cylindrical body was measured, it was possible to cut with an accuracy of 55 μm ± 10 μm. The obtained resin powder for three-dimensional modeling was passed through a sieve having an opening of 125 μm to eliminate coarse particles such as partial cutting defects. FIG. 4 shows the distribution of the equivalent circle diameter of the resin powder for three-dimensional modeling of Example 1.

(実施例2)
実施例1において、ポリブチレンテレフタレート(PBT)樹脂をポリアミド66(PA66)樹脂(商品名:レオナ1300S、旭化成ケミカルズ株式会社製、融点:265℃)に変更し、更に、狙い繊維直径を140μm、狙い繊維長を140μmとした以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。
(Example 2)
In Example 1, the polybutylene terephthalate (PBT) resin was changed to a polyamide 66 (PA66) resin (trade name: Leona 1300S, manufactured by Asahi Kasei Chemicals Co., Ltd., melting point: 265 ° C.), and the target fiber diameter was 140 μm. A resin powder for three-dimensional modeling was obtained in the same manner as in Example 1 except that the fiber length was 140 μm.

(実施例3)
実施例1において、ポリブチレンテレフタレート(PBT)樹脂をポリアミド9T(PA9T)樹脂(商品名:ジェネスタN1000A、株式会社クラレ製、融点:306℃)に変更し、更に、狙い繊維直径を15μm、狙い繊維長を15μmとした以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。
(Example 3)
In Example 1, the polybutylene terephthalate (PBT) resin was changed to a polyamide 9T (PA9T) resin (trade name: Genesta N1000A, manufactured by Kuraray Co., Ltd., melting point: 306 ° C.), and further, the target fiber diameter was 15 μm and the target fiber. A resin powder for three-dimensional modeling was obtained in the same manner as in Example 1 except that the length was 15 μm.

(実施例4)
実施例1において、ポリブチレンテレフタレート(PBT)樹脂をポリプロピレン(PP)樹脂(商品名:ノバテック MA3、日本ポリプロ株式会社製、融点:130℃、ガラス転移温度:0℃)に変更し、更に、狙い繊維直径を55μm、狙い繊維長を55μmとした以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。
(Example 4)
In Example 1, the polybutylene terephthalate (PBT) resin was changed to a polypropylene (PP) resin (trade name: Novatec MA3, manufactured by Nippon Polypro Co., Ltd., melting point: 130 ° C., glass transition temperature: 0 ° C.), and further aimed. A resin powder for three-dimensional modeling was obtained in the same manner as in Example 1 except that the fiber diameter was 55 μm and the target fiber length was 55 μm.

(実施例5)
実施例1において、ポリブチレンテレフタレート(PBT)樹脂をポリエーテルエーテルケトン(PEEK)樹脂(商品名:HT P22PF、VICTREX社製、融点:334℃、ガラス転移温度:143℃)に変更し、更に、狙い繊維直径を55μm、狙い繊維長を55μmとした以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。
(Example 5)
In Example 1, the polybutylene terephthalate (PBT) resin was changed to a polyetheretherketone (PEEK) resin (trade name: HT P22PF, manufactured by VICTREX, melting point: 334 ° C., glass transition temperature: 143 ° C.), and further. A resin powder for three-dimensional modeling was obtained in the same manner as in Example 1 except that the target fiber diameter was 55 μm and the target fiber length was 55 μm.

(実施例6)
実施例1において、ポリブチレンテレフタレート(PBT)樹脂をポリアセタール(POM)樹脂(商品名:ユピタール F10-01、三菱エンジニアリングプラスチック株式会社製、融点:175℃)に変更し、更に、狙い繊維直径を55μm、狙い繊維長を55μmとした以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。
(Example 6)
In Example 1, the polybutylene terephthalate (PBT) resin was changed to a polyacetal (POM) resin (trade name: Iupital F10-01, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point: 175 ° C.), and the target fiber diameter was 55 μm. A resin powder for three-dimensional modeling was obtained in the same manner as in Example 1 except that the target fiber length was 55 μm.

(実施例7)
実施例1において得た立体造形用樹脂粉末をステンレス製容器に入れ、撹拌作業を行った。撹拌作業は、ステンレス製容器を有限会社ミスギ製SKH-100にて30分間行った。
ステンレス製容器へ投入した立体造形用樹脂粉末の重量と容器内壁面積は1[kg/m]とした。これらの処理を行った後、粉体を重力で別容器へ移し替え、壁面に付着した粉体は分離し、廃棄扱いとした。これらの処理により、立体造形用樹脂粉末を得た。
(Example 7)
The resin powder for three-dimensional modeling obtained in Example 1 was placed in a stainless steel container and stirred. The stirring work was performed on a stainless steel container with SKH-100 manufactured by Misugi Co., Ltd. for 30 minutes.
The weight of the resin powder for three-dimensional modeling and the area of the inner wall of the container set in the stainless steel container were 1 [kg / m 2 ]. After performing these treatments, the powder was transferred to another container by gravity, and the powder adhering to the wall surface was separated and treated as waste. By these treatments, a resin powder for three-dimensional modeling was obtained.

(実施例8)
実施例4において得た立体造形用樹脂粉末を、実施例7と同様にして、ステンレス容器にて撹拌し、立体造形用樹脂粉末を得た。
(Example 8)
The resin powder for three-dimensional modeling obtained in Example 4 was stirred in a stainless steel container in the same manner as in Example 7 to obtain a resin powder for three-dimensional modeling.

(実施例9)
実施例1において得た立体造形用樹脂粉末を、エアー搬送システム内を通過させた。配管はステンレス製であった。
配管ステンレス製のエアー搬送システム内を通過させた立体造形用樹脂粉末の重量と容器内壁面積は1[kg/m]とした。これらの処理にて壁面に付着した粉体は分離し、廃棄扱いとした。これらの処理により、立体造形用樹脂粉末を得た。
(Example 9)
The resin powder for three-dimensional modeling obtained in Example 1 was passed through the air transfer system. The piping was made of stainless steel.
The weight of the resin powder for three-dimensional modeling and the area of the inner wall of the container that passed through the air transfer system made of piping stainless steel were set to 1 [kg / m 2 ]. The powder adhering to the wall surface was separated by these treatments and treated as waste. By these treatments, a resin powder for three-dimensional modeling was obtained.

(実施例10)
実施例4において得た立体造形用樹脂粉末を、実施例9と同様にして、ステンレス容器にて撹拌し、立体造形用樹脂粉末を得た。
(Example 10)
The resin powder for three-dimensional modeling obtained in Example 4 was stirred in a stainless steel container in the same manner as in Example 9 to obtain a resin powder for three-dimensional modeling.

(比較例1)
実施例1において、粒子の加工形成は行わず、PA12製の粉末材料(商品名:aspex-PA、株式会社アスペクト製)を用いた以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。図5に、比較例1の立体造形用樹脂粉末の円相当径の分布を示す。
(Comparative Example 1)
In Example 1, the resin powder for three-dimensional modeling is the same as in Example 1 except that the particles are not processed and formed and a powder material made of PA12 (trade name: aspex-PA, manufactured by Aspect Co., Ltd.) is used. Got FIG. 5 shows the distribution of the equivalent circle diameter of the resin powder for three-dimensional modeling of Comparative Example 1.

(比較例2)
実施例1において、粒子の加工形成は行わず、PA11製の粉末材料(商品名:aspex-FPA、株式会社アスペクト製)を用いた以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。図6に、比較例2の立体造形用樹脂粉末の円相当径の分布を示す。
(Comparative Example 2)
In Example 1, the resin powder for three-dimensional modeling is the same as in Example 1 except that the powder material (trade name: aspex-FPA, manufactured by Aspect Co., Ltd.) made of PA11 is used without processing and forming the particles. Got FIG. 6 shows the distribution of the equivalent circle diameter of the resin powder for three-dimensional modeling of Comparative Example 2.

(比較例3)
実施例1において、粒子の加工形成は行わず、PPS製の粉末材料(商品名:ASPEX-PPS、株式会社アスペクト製)を用いたこと以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。
(Comparative Example 3)
In Example 1, the resin for three-dimensional modeling is the same as in Example 1 except that the powder material made of PPS (trade name: ASPEX-PPS, manufactured by Aspect Co., Ltd.) is used without processing and forming the particles. Obtained powder.

(比較例4)
実施例1において、ポリブチレンテレフタレート(PBT)樹脂を、低温粉砕システム(装置名:リンレックスミルLX1、ホソカワミクロン株式会社製)を用いて、-200℃にて凍結粉砕し、立体造形用樹脂粉末を得た以外は、実施例1と同様にして、立体造形用樹脂粉末を得た。
(Comparative Example 4)
In Example 1, the polybutylene terephthalate (PBT) resin is freeze-milled at −200 ° C. using a low-temperature pulverization system (device name: Linlex Mill LX1, manufactured by Hosokawa Micron Co., Ltd.) to obtain a resin powder for three-dimensional modeling. A resin powder for three-dimensional modeling was obtained in the same manner as in Example 1 except that it was obtained.

得られた立体造形用樹脂粉末について、下記のようにして、「寸法精度」、「表面性(オレンジピール性)」、「引張強度」、及び「造形物密度」について評価を行った。結果を下記表1に示す。 The obtained resin powder for three-dimensional modeling was evaluated for "dimensional accuracy", "surface property (orange peel property)", "tensile strength", and "modeling object density" as follows. The results are shown in Table 1 below.

<寸法精度>
得られた立体造形用樹脂粉末を27℃、湿度80%RH環境にて1週間保管した。1週間保管後の立体造形用樹脂粉末を用いて、SLS方式の立体造形装置(株式会社リコー製、AM S5500P)を使用し、立体造形物の製造を行った。設定条件は、粉末層の平均厚みを0.1mm、レーザー出力を10ワット以上150ワット以下、レーザー走査スペースを0.1mm、床温度を樹脂の融点より-3℃に設定した。
寸法精度評価用サンプルは、1辺50mm、平均厚み5mmの直方体とし、CADデータに基づいて立体造形物を作製し、これを寸法精度評価用サンプルとした。寸法精度評価用サンプルのCADデータと、実際に造形したサンプルの各辺の長さとの差を求め、その平均値を寸法差とし、下記評価基準に基づいて、「寸法精度」を評価した。
[評価基準]
◎:寸法差が0.02mm以下
○:寸法差が0.02mm超0.05mm以下
△:寸法差が0.05mm超0.10mm以下
×:寸法差が0.10mm超0.15mm以下
<Dimensional accuracy>
The obtained resin powder for three-dimensional modeling was stored in an RH environment at 27 ° C. and a humidity of 80% for 1 week. Using the resin powder for three-dimensional modeling after storage for one week, a three-dimensional modeling device was manufactured using an SLS-type three-dimensional modeling device (AM S5500P, manufactured by Ricoh Co., Ltd.). The setting conditions were set to an average thickness of the powder layer of 0.1 mm, a laser output of 10 watts or more and 150 watts or less, a laser scanning space of 0.1 mm, and a floor temperature of -3 ° C. from the melting point of the resin.
The sample for dimensional accuracy evaluation was a rectangular parallelepiped having a side of 50 mm and an average thickness of 5 mm, and a three-dimensional model was prepared based on CAD data, and this was used as a sample for dimensional accuracy evaluation. The difference between the CAD data of the sample for dimensional accuracy evaluation and the length of each side of the actually modeled sample was obtained, the average value was used as the dimensional difference, and the "dimensional accuracy" was evaluated based on the following evaluation criteria.
[Evaluation criteria]
⊚: Dimensional difference is 0.02 mm or less ○: Dimensional difference is more than 0.02 mm and 0.05 mm or less Δ: Dimensional difference is more than 0.05 mm and 0.10 mm or less ×: Dimensional difference is more than 0.10 mm and 0.15 mm or less

<表面性(オレンジピール性)>
前記「寸法精度」の評価に用いた立体造形サンプルを用いて、表面を目視観察、光学顕微鏡観察、及び官能試験を行った。官能試験はサンプルを手で触り、その触感から表面性、特に滑らかさについて評価を行った。これらの結果を総合し、下記評価基準に基づいて、表面性(オレンジピール性)の評価を行った。
(評価基準)
◎:表面が非常に滑らかで、気になる凹凸や粗面が殆ど認められない
○:表面の滑らかさに問題はなく、表面の凹凸や粗面は許容できる
△:表面に滑らかさはなく、凹凸や粗面が目視で認識できる
×:表面が引っかかり、表面の凹凸やゆがみ等の欠陥が多数認められる
<Surface (orange peel)>
Using the three-dimensional modeling sample used for the evaluation of the "dimensional accuracy", the surface was visually observed, observed with an optical microscope, and a sensory test was performed. In the sensory test, the sample was touched by hand, and the surface texture, especially smoothness, was evaluated from the tactile sensation. These results were integrated and the surface property (orange peel property) was evaluated based on the following evaluation criteria.
(Evaluation criteria)
⊚: The surface is very smooth, and there are almost no worrisome irregularities or rough surfaces. ○: There is no problem with the smoothness of the surface, and the unevenness or rough surface of the surface is acceptable. Unevenness and rough surface can be visually recognized ×: The surface is caught, and many defects such as unevenness and distortion of the surface are recognized.

<引張強度>
前記「寸法精度」の評価と同様にして、1週間保管後の立体造形用樹脂粉末を用いて、寸法精度評価用サンプルの作製時と同じ装置及び同じ条件に設定し、引っ張り試験標本サンプルを中心部にY軸方向に長辺が向くように、引っ張り試験標本サンプルの長手方向に5個造形した。各々の造形物層の間隔は5mmとした。なお、引張り試験標本サンプルは、ISO(国際標準化機構)3167 Type1A 150mm長さの多目的犬骨様試験標本(標本は、長さ80mm、厚さ4mm、幅10mmの中心部分を有する)を使用した。
得られた引っ張り試験標本サンプル(立体造形物)について、ISO 527に準じた引張試験(株式会社島津製作所製、AGS-5kN)を使用し、引張試験を実施した。なお、引張試験における試験速度は、50mm/分間とした。得られた5個の引っ張り試験標本サンプルの引張強度の平均値から、下記評価基準に基づいて、引張強度の評価を行った。
[評価基準]
◎:引張強度が100MPa以上
○:引張強度が50MPa以上100MPa未満
△:引張強度が30MPa以上50MPa未満
×:引張強度が30MPa未満
<Tensile strength>
Similar to the evaluation of "dimensional accuracy", using the resin powder for three-dimensional modeling after storage for one week, set the same equipment and the same conditions as when preparing the sample for dimensional accuracy evaluation, and focus on the tensile test specimen sample. Five pieces were formed in the longitudinal direction of the tensile test specimen so that the long side faces the part in the Y-axis direction. The distance between each model layer was 5 mm. As the tensile test specimen sample, an ISO (International Organization for Standardization) 3167 Type1A 150 mm long multipurpose dog bone-like test specimen (the specimen has a central portion of 80 mm in length, 4 mm in thickness, and 10 mm in width) was used.
A tensile test was carried out on the obtained tensile test sample (three-dimensional model) using a tensile test (manufactured by Shimadzu Corporation, AGS-5kN) according to ISO 527. The test speed in the tensile test was 50 mm / min. From the average value of the tensile strength of the obtained 5 tensile test sample samples, the tensile strength was evaluated based on the following evaluation criteria.
[Evaluation criteria]
⊚: Tensile strength is 100 MPa or more ○: Tensile strength is 50 MPa or more and less than 100 MPa Δ: Tensile strength is 30 MPa or more and less than 50 MPa ×: Tensile strength is less than 30 MPa

<造形物密度>
前記「寸法精度」の評価に用いた立体造形サンプルを用いて、アルキメデス法(装置名:AD-1653/AD-1654、株式会社エー・アンド・デイ製)にて測定した。サンプル溶媒にはイオン交換水を使用した。なお、サンプルの周りに気泡がつかないように測定を行った。
<Density of modeled object>
Using the three-dimensional modeling sample used for the evaluation of the "dimensional accuracy", the measurement was performed by the Archimedes method (device name: AD-1653 / AD-1654, manufactured by A & D Co., Ltd.). Ion-exchanged water was used as the sample solvent. The measurement was performed so that bubbles did not form around the sample.

Figure 2022071004000001
Figure 2022071004000001

表1の結果から、実施例1~10においては、粒子と金属表面間には鏡像力が働くため、粒子は金属表面に引きつけられる。小粒径粒子の帯電量は体積比表面積大きいので比較的大きい。鏡像力により金属面へ付着しやすい。よって、小粒径粒子が選択的に金属表面への粉体付着が多くなる。撹拌を行うことにより、より小粒径粒子が壁面に付着する機会が増す。
一方、壁面に付着しなかった粉体は比較的大粒子が大きくなるので、鏡像力を利用して粉体の分級を行うことが可能となる。
From the results in Table 1, in Examples 1 to 10, the particles are attracted to the metal surface because the mirror image force acts between the particles and the metal surface. The amount of charge of the small particle size particles is relatively large because the volume specific surface area is large. It easily adheres to the metal surface due to the mirror image force. Therefore, the small particle size particles selectively increase the powder adhesion to the metal surface. Stirring increases the chances of smaller particle size particles adhering to the wall surface.
On the other hand, since the powder that does not adhere to the wall surface has relatively large particles, it is possible to classify the powder by utilizing the mirror image force.

本発明の態様としては、例えば、以下のとおりである。
<1> 個数基準の平均円相当径が、10μm以上150μm以下であり、
円相当径の粒度分布の中央値が、円相当径の粒度分布の平均値より大きいことを特徴とする立体造形用樹脂粉末である。
<2> 柱体形状の粒子を含む前記<1>に記載の立体造形用樹脂粉末である。
<3> 前記柱体形状の粒子が、円柱長が10μm以上150μm以下、円柱径が10μm以上150μm以下である前記<2>に記載の立体造形用樹脂粉末である。
<4> 平均円形度が、0.75以上0.90以下である前記<1>から<3>のいずれかに記載の立体造形用樹脂粉末である。
<5> 結晶性樹脂を含み、ポリオレフィン、ポリアミド、ポリエステル、ポリアリールケトン、及びポリフェニレンスルフィドから選択される少なくとも1種である前記<1>から<4>のいずれかに記載の立体造形用樹脂粉末である。
<6> 前記ポリエステルが、ポリエチレンテレフタレート、ポリブタジエンテレフタレート、及びポリ乳酸から選択される少なくとも1種である前記<5>に記載の立体造形用樹脂粉末である。
<7> 前記ポリオレフィンが、ポリエチレン、ポリプロピレンである前記<5>から<6>のいずれかに記載の立体造形用樹脂粉末である。
<8> 酸化防止剤を更に含む前記<1>から<7>のいずれかに記載の立体造形用樹脂粉末である。
<9> 前記酸化防止剤の含有量が、0.05質量%以上5質量%以下である前記<8>に記載の立体造形用樹脂粉末である。
<10> 前記酸化防止剤の含有量が、0.1質量%以上3質量%以下である前記<9>に記載の立体造形用樹脂粉末である。
<11> 前記酸化防止剤の含有量が、0.2質量%以上2質量%以下である前記<10>に記載の立体造形用樹脂粉末である。
<12> 可塑剤を更に含む前記<1>から<11>のいずれかに記載の立体造形用樹脂粉末である。
<13> 安定化剤を更に含む前記<1>から<12>のいずれかに記載の立体造形用樹脂粉末である。
<14> 結晶核剤を更に含む前記<1>から<13>のいずれかに記載の立体造形用樹脂粉末である。
<15> 強化剤を更に含む前記<1>から<14>のいずれかに記載の立体造形用樹脂粉末である。
<16> 前記強化剤が、ガラスフィラー、ガラスビーズ、カーボンファイバー、及びアルミボールから選択される少なくとも1種である前記<15>に記載の立体造形用樹脂粉末である。
<17> 前記強化剤が、ガラスフィラー、及びカーボンファイバーの少なくともいずれかである前記<16>に記載の立体造形用樹脂粉末である。
<18> 前記強化剤が、カーボンファイバーである前記<17>に記載の立体造形用樹脂粉末である。
<19> 前記<1>から<18>のいずれかに記載の立体造形用樹脂粉末を含む層を形成する層形成工程と、
前記層の選択された領域内の前記立体造形用樹脂粉末同士を接着させる粉末接着工程と、を繰り返すことを特徴とする立体造形物の製造方法である。
<20> 前記<1>から<18>のいずれかに記載の立体造形用樹脂粉末を含む層を形成する層形成手段と、
前記層の選択された領域内の前記立体造形用樹脂粉末同士を接着させる粉末接着手段と、を有することを特徴とする立体造形物の製造装置である。
<21> 前記粉末接着手段が、電磁波を照射する手段である前記<20>に記載の立体造形物の製造装置である。
<22> 前記<19>に記載の立体造形物の製造方法により造形されることを特徴とする立体造形物である。
Examples of aspects of the present invention are as follows.
<1> The average circle equivalent diameter based on the number is 10 μm or more and 150 μm or less.
The resin powder for three-dimensional modeling is characterized in that the median value of the particle size distribution having a diameter equivalent to a circle is larger than the average value of the particle size distribution having a diameter equivalent to a circle.
<2> The resin powder for three-dimensional modeling according to <1>, which contains prism-shaped particles.
<3> The resin powder for three-dimensional modeling according to <2>, wherein the columnar particles have a cylinder length of 10 μm or more and 150 μm or less and a cylinder diameter of 10 μm or more and 150 μm or less.
<4> The resin powder for three-dimensional modeling according to any one of <1> to <3>, wherein the average circularity is 0.75 or more and 0.90 or less.
<5> The resin powder for three-dimensional modeling according to any one of <1> to <4>, which contains a crystalline resin and is at least one selected from polyolefin, polyamide, polyester, polyarylketone, and polyphenylene sulfide. Is.
<6> The resin powder for three-dimensional modeling according to <5>, wherein the polyester is at least one selected from polyethylene terephthalate, polybutadiene terephthalate, and polylactic acid.
<7> The resin powder for three-dimensional modeling according to any one of <5> to <6>, wherein the polyolefin is polyethylene or polypropylene.
<8> The resin powder for three-dimensional modeling according to any one of <1> to <7>, which further contains an antioxidant.
<9> The resin powder for three-dimensional modeling according to <8>, wherein the content of the antioxidant is 0.05% by mass or more and 5% by mass or less.
<10> The resin powder for three-dimensional modeling according to <9>, wherein the content of the antioxidant is 0.1% by mass or more and 3% by mass or less.
<11> The resin powder for three-dimensional modeling according to <10>, wherein the content of the antioxidant is 0.2% by mass or more and 2% by mass or less.
<12> The resin powder for three-dimensional modeling according to any one of <1> to <11>, which further contains a plasticizer.
<13> The resin powder for three-dimensional modeling according to any one of <1> to <12>, which further contains a stabilizer.
<14> The resin powder for three-dimensional modeling according to any one of <1> to <13>, which further contains a crystal nucleating agent.
<15> The resin powder for three-dimensional modeling according to any one of <1> to <14>, which further contains a strengthening agent.
<16> The resin powder for three-dimensional modeling according to <15>, wherein the reinforcing agent is at least one selected from glass fillers, glass beads, carbon fibers, and aluminum balls.
<17> The resin powder for three-dimensional modeling according to <16>, wherein the reinforcing agent is at least one of a glass filler and carbon fiber.
<18> The reinforcing agent is carbon fiber, which is the resin powder for three-dimensional modeling according to <17>.
<19> The layer forming step of forming a layer containing the resin powder for three-dimensional modeling according to any one of <1> to <18>.
It is a method for producing a three-dimensional model, which comprises repeating a powder bonding step of adhering the resin powders for three-dimensional modeling in a selected region of the layer to each other.
<20> A layer forming means for forming a layer containing the resin powder for three-dimensional modeling according to any one of <1> to <18>.
It is an apparatus for producing a three-dimensional model, characterized by having a powder bonding means for adhering the resin powders for three-dimensional modeling in a selected region of the layer.
<21> The three-dimensional object manufacturing apparatus according to <20>, wherein the powder bonding means is a means for irradiating electromagnetic waves.
<22> The three-dimensional model is characterized in that it is modeled by the method for manufacturing the three-dimensional model according to the above <19>.

前記<1>から<18>のいずれかに記載の立体造形用樹脂粉末、前記<19>に記載の立体造形物の製造方法、前記<20>から<21>のいずれかに記載の立体造形物の製造装置、及び前記<22>に記載の立体造形物は、従来における前記諸問題を解決し、前記本発明の目的を達成することができる。 The resin powder for three-dimensional modeling according to any one of <1> to <18>, the method for producing a three-dimensional model according to <19>, and the three-dimensional modeling according to any one of <20> to <21>. The product manufacturing apparatus and the three-dimensional model according to <22> can solve the conventional problems and achieve the object of the present invention.

特開2015-180538号公報Japanese Unexamined Patent Publication No. 2015-180538 特表2014-522331号公報Japanese Patent Publication No. 2014-522331 特表2013-529599号公報Special Table 2013-528599 特表2015-515434号公報Japanese Patent Publication No. 2015-515434

Claims (9)

個数基準の平均円相当径が、10μm以上150μm以下であり、
円相当径の粒度分布の中央値が、前記平均円相当径より大きく、
ゆるみ充填率が40.4%以上であることを特徴とする立体造形用樹脂粉末。
The average circle equivalent diameter based on the number is 10 μm or more and 150 μm or less.
The median particle size distribution of the equivalent circle diameter is larger than the average equivalent circle diameter.
A resin powder for three-dimensional modeling characterized by a loose filling rate of 40.4% or more.
柱体形状の粒子を含む請求項1に記載の立体造形用樹脂粉末。 The resin powder for three-dimensional modeling according to claim 1, which contains prism-shaped particles. 底面と上面が略平行である柱体形状の粒子からなる請求項2に記載の立体造形用樹脂粉末。 The resin powder for three-dimensional modeling according to claim 2, which is composed of prism-shaped particles whose bottom surface and top surface are substantially parallel to each other. 前記柱体形状の粒子が、円柱長が10μm以上150μm以下、円柱径が10μm以上150μm以下である請求項2から3のいずれかに記載の立体造形用樹脂粉末。 The resin powder for three-dimensional modeling according to any one of claims 2 to 3, wherein the columnar particles have a cylinder length of 10 μm or more and 150 μm or less and a cylinder diameter of 10 μm or more and 150 μm or less. 前記ゆるみ充填率が40.4%以上50%以下である請求項1から4のいずれかに記載の立体造形用樹脂粉末。 The resin powder for three-dimensional modeling according to any one of claims 1 to 4, wherein the loose filling rate is 40.4% or more and 50% or less. 平均円形度が、0.75以上0.90以下である請求項1から5のいずれかに記載の立体造形用樹脂粉末。 The resin powder for three-dimensional modeling according to any one of claims 1 to 5, wherein the average circularity is 0.75 or more and 0.90 or less. 結晶性樹脂を含み、前記結晶性樹脂がポリオレフィン、ポリアミド、ポリエステル、ポリアリールケトン、及びポリフェニレンスルフィドから選択される少なくとも1種である請求項1から6のいずれかに記載の立体造形用樹脂粉末。 The resin powder for three-dimensional modeling according to any one of claims 1 to 6, which comprises a crystalline resin, wherein the crystalline resin is at least one selected from polyolefin, polyamide, polyester, polyarylketone, and polyphenylene sulfide. 前記立体造形用樹脂粉末が、ポリエチレンテレフタレート、ポリブタジエンテレフタレート、及びポリ乳酸から選択される少なくとも1種を含む請求項1から7のいずれかに記載の立体造形用樹脂粉末。 The resin powder for three-dimensional modeling according to any one of claims 1 to 7, wherein the resin powder for three-dimensional modeling contains at least one selected from polyethylene terephthalate, polybutadiene terephthalate, and polylactic acid. 請求項1から8のいずれかに記載の立体造形用樹脂粉末を含む層を形成する層形成工程と、
前記層の選択された領域内の前記立体造形用樹脂粉末同士を接着させる粉末接着工程と、を繰り返すことを特徴とする立体造形物の製造方法。
A layer forming step for forming a layer containing the resin powder for three-dimensional modeling according to any one of claims 1 to 8.
A method for producing a three-dimensional model, which comprises repeating a powder bonding step of adhering the resin powders for three-dimensional modeling in a selected region of the layer to each other.
JP2022024705A 2017-03-21 2022-02-21 Resin powder for three-dimensional molding, manufacturing method of three-dimensional molding, and manufacturing apparatus for three-dimensional molding Withdrawn JP2022071004A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017053873 2017-03-21
JP2017053873 2017-03-21
JP2018028721A JP2018158571A (en) 2017-03-21 2018-02-21 Resin powder for three-dimensional fabrication, method for manufacturing three-dimensional object, and apparatus for manufacturing three-dimensional object

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018028721A Division JP2018158571A (en) 2017-03-21 2018-02-21 Resin powder for three-dimensional fabrication, method for manufacturing three-dimensional object, and apparatus for manufacturing three-dimensional object

Publications (1)

Publication Number Publication Date
JP2022071004A true JP2022071004A (en) 2022-05-13

Family

ID=61911647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022024705A Withdrawn JP2022071004A (en) 2017-03-21 2022-02-21 Resin powder for three-dimensional molding, manufacturing method of three-dimensional molding, and manufacturing apparatus for three-dimensional molding

Country Status (3)

Country Link
JP (1) JP2022071004A (en)
CN (1) CN115028971A (en)
WO (1) WO2018173755A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081335B2 (en) 2018-03-15 2022-06-07 株式会社リコー Manufacturing equipment for 3D objects and manufacturing method for 3D objects
JP7338316B2 (en) 2018-08-31 2023-09-05 株式会社リコー RESIN POWDER AND METHOD FOR MANUFACTURING 3D MODEL
WO2020222756A1 (en) * 2019-04-29 2020-11-05 Hewlett-Packard Development Company, L.P. Three-dimensional printing
WO2020222747A1 (en) * 2019-04-29 2020-11-05 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11426929B2 (en) 2019-07-04 2022-08-30 Ricoh Company, Ltd. Powder material for producing three-dimensional object, kit for producing three-dimensional object, and three-dimensional object producing method and apparatus
WO2023016848A1 (en) 2021-08-09 2023-02-16 Basf Se Sinter powder (sp) comprising at least one polylactide and at least one polycaprolactone

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304329A (en) * 1992-11-23 1994-04-19 The B. F. Goodrich Company Method of recovering recyclable unsintered powder from the part bed of a selective laser-sintering machine
JP2000504642A (en) * 1996-02-07 2000-04-18 ディーティーエム・コーポレーション Polymer powder with specified particle size distribution
JP2009040870A (en) * 2007-08-08 2009-02-26 Techno Polymer Co Ltd Laser-sinterable powdery material and molded article of the same
US20110143108A1 (en) * 2008-05-09 2011-06-16 Fit Fruth Innovative Technologien Gmbh Fibers and methods for use in solid freeform fabrication
US20140377321A1 (en) * 2009-07-23 2014-12-25 Didier NIMAL Biomedical device, method for manufacturing the same and use thereof
US20150061195A1 (en) * 2013-08-29 2015-03-05 Scott DeFelice Method For Analytically Determining SLS Bed Temperatures
US20150336292A1 (en) * 2012-03-13 2015-11-26 James Mikulak Materials for powder-based additive manufacturing processes
JP2016505415A (en) * 2012-11-27 2016-02-25 スネクマ Method for additive fabrication of parts by selective melting or selective sintering of tightly optimized powder beds using high energy beams
JP2018523718A (en) * 2015-12-22 2018-08-23 ストラクチャード ポリマーズ, インコーポレイテッドStructured Polymers, Inc. System and method for producing consumable powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE509088C2 (en) 1997-04-30 1998-12-07 Ralf Larsson Methods and apparatus for the production of volume bodies
WO2008057844A1 (en) 2006-11-09 2008-05-15 Valspar Sourcing, Inc. Powder compositions and methods of manufacturing articles therefrom
US8696954B2 (en) 2010-06-09 2014-04-15 Tanaka Dental Products Method, system, and composition for coloring ceramics
JP6000342B2 (en) 2011-06-01 2016-09-28 バム ブンデサンスタルト フィア マテリアルフォルシュングウント−プリュフング Method and apparatus for producing molded body
US9365459B2 (en) 2012-03-01 2016-06-14 James R. Glidewell Dental Ceramics, Inc. Method for coloring ceramics via colloidal dispersion
JP2015180538A (en) 2014-03-07 2015-10-15 キヤノン株式会社 Method of producing three-dimensional shaped article
JP6402810B1 (en) * 2016-07-22 2018-10-10 株式会社リコー Three-dimensional modeling resin powder, three-dimensional model manufacturing apparatus, and three-dimensional model manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304329A (en) * 1992-11-23 1994-04-19 The B. F. Goodrich Company Method of recovering recyclable unsintered powder from the part bed of a selective laser-sintering machine
JP2000504642A (en) * 1996-02-07 2000-04-18 ディーティーエム・コーポレーション Polymer powder with specified particle size distribution
JP2009040870A (en) * 2007-08-08 2009-02-26 Techno Polymer Co Ltd Laser-sinterable powdery material and molded article of the same
US20110143108A1 (en) * 2008-05-09 2011-06-16 Fit Fruth Innovative Technologien Gmbh Fibers and methods for use in solid freeform fabrication
US20140377321A1 (en) * 2009-07-23 2014-12-25 Didier NIMAL Biomedical device, method for manufacturing the same and use thereof
US20150336292A1 (en) * 2012-03-13 2015-11-26 James Mikulak Materials for powder-based additive manufacturing processes
JP2016505415A (en) * 2012-11-27 2016-02-25 スネクマ Method for additive fabrication of parts by selective melting or selective sintering of tightly optimized powder beds using high energy beams
US20150061195A1 (en) * 2013-08-29 2015-03-05 Scott DeFelice Method For Analytically Determining SLS Bed Temperatures
JP2018523718A (en) * 2015-12-22 2018-08-23 ストラクチャード ポリマーズ, インコーポレイテッドStructured Polymers, Inc. System and method for producing consumable powder

Also Published As

Publication number Publication date
CN115028971A (en) 2022-09-09
WO2018173755A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP7043865B2 (en) Equipment for manufacturing resin powder for 3D modeling and 3D modeling
JP6904317B2 (en) Manufacturing equipment for three-dimensional objects and manufacturing method for three-dimensional objects
JP2022071004A (en) Resin powder for three-dimensional molding, manufacturing method of three-dimensional molding, and manufacturing apparatus for three-dimensional molding
JP7167560B2 (en) Resin powder for three-dimensional modeling, apparatus for producing three-dimensional model, and method for producing three-dimensional model
JP2018158571A (en) Resin powder for three-dimensional fabrication, method for manufacturing three-dimensional object, and apparatus for manufacturing three-dimensional object
JP6825333B2 (en) Manufacturing method of three-dimensional model and manufacturing equipment of three-dimensional model
JP7081350B2 (en) Resin powder for three-dimensional modeling, manufacturing equipment for three-dimensional modeling, manufacturing method for three-dimensional modeling, and manufacturing method for resin powder for three-dimensional modeling
US10800096B2 (en) Resin powder for solid freeform fabrication and device for solid freeform fabrication object
JP6958217B2 (en) Manufacturing method of resin powder for three-dimensional modeling and three-dimensional modeling
JP7081335B2 (en) Manufacturing equipment for 3D objects and manufacturing method for 3D objects
JP6981264B2 (en) Equipment for manufacturing resin powder for 3D modeling and 3D modeling
US20200079011A1 (en) Resin powder, method of manufacturing solid freeform fabrication object, and device for manufacturing solid freeform fabrication object
JP7338316B2 (en) RESIN POWDER AND METHOD FOR MANUFACTURING 3D MODEL
JP7183641B2 (en) Particles for three-dimensional modeling, powder for three-dimensional modeling, apparatus for producing three-dimensional article, method for producing three-dimensional article, method for producing powder for three-dimensional modeling, and particles
JP2019084815A (en) Powder for solid molding, resin powder, and manufacturing method of solid molded article
JP2021020371A (en) Resin powder for stereoscopic molding and apparatus and method for forming stereoscopic molding
JP7472445B2 (en) Resin powder and method for manufacturing three-dimensional object
EP3560685B1 (en) Resin particles for forming three-dimensional object, apparatus and method for producing three-dimensional object, and resin particles
JP7073944B2 (en) Powder for 3D modeling, manufacturing equipment for 3D modeling, manufacturing method for 3D modeling and resin powder
JP7059824B2 (en) Resin particles for three-dimensional modeling, manufacturing equipment and methods for three-dimensional modeling, and resin particles
JP2020041029A (en) Thermoplastic resin powder, molding device, and molding method
JP2020040395A (en) Resin powder, method of manufacturing the same, method of manufacturing three-dimensional shaping object, and device for manufacturing three-dimensional shaping object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20221111