JP2022069361A - 地震発生防止方法及び火山噴火防止方法 - Google Patents

地震発生防止方法及び火山噴火防止方法 Download PDF

Info

Publication number
JP2022069361A
JP2022069361A JP2020192065A JP2020192065A JP2022069361A JP 2022069361 A JP2022069361 A JP 2022069361A JP 2020192065 A JP2020192065 A JP 2020192065A JP 2020192065 A JP2020192065 A JP 2020192065A JP 2022069361 A JP2022069361 A JP 2022069361A
Authority
JP
Japan
Prior art keywords
ionosphere
electrons
prevention method
earthquake
earthquakes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020192065A
Other languages
English (en)
Inventor
均 石井
Hitoshi Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2022069361A publication Critical patent/JP2022069361A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】地震発生及び火山噴火の防止方法を提供する。【解決手段】地震発生前には、電離層で電子数が異常に増加するということは、地表では「+」の電荷が発生していることになる。従って、コンデンサーの理論により、高周波を電離層に照射することにより電子数を平均値に戻すことにより、地表の「+」の電荷もなくすことができるため、地震が発生する原因の電磁波もなくすことが出来て、地震の発生を防ぐことができる。電磁波放射が火山噴火の原因でもあるから、電磁波をなくすことにより、火山噴火を防止することができる。電離層の異常に増加した電子数を平均値に戻す方法は、気象改変装置により、高周波を電離層に照射することで、電離層を人工的に操作して、電子数を抑制する方法などが考えられる。【選択図】なし

Description

本発明は、地震発生防止方法及び火山噴火防止方法に関する。
地震は活断層が原因だと言われているが、日本列島には活断層は毛細血管のように走っている。だから、地震が発生すると、ほとんどの場合、震源の近くに活断層がみつかる。そして、専門家は活断層が原因と結論付ける。果たして断層は地震の原因なのか結果なのか。科学的には、地震の結果であることしか明らかにされていない。
地震はプレートが沈み込んで起こると言われているが、海底あるいは地中何十キロメートル下の状況を観測する技術は、現在のところ存在しない。地下の調査をした観測データも存在しない。あくまで仮説である。プレートテクトニクス理論が登場して、大陸間の移動は測量できているが、海底の深い位置にあるプレート境界の動きを測量することは、現在でもできてない。沈み込まれたプレートが跳ね上がるという運動は、科学的には証明されてない。
地震による被害を防止する方法がない。
地震発生防止方法及び火山噴火防止方法を提供することを目的とする。
地震は電磁波が原因である。
地震発生のかなり前に、異常な電磁波が地中、地表および宇宙空間に発信され、電離層で電子数が異常に増加することは、ほぼ常識となっている。電離層とは、地球を取り巻く大気の上層部にある分子や原子が、紫外線やエックス線などにより電離した領域である。電離とは原子は原子核の回りを回転する電子を放出し、イオンになることである。
宏観異常現象として、地震発生前に、動物が異常に反応することがあるが、電磁波を察知している。
電磁波が発生する原因は、地震発生のかなり前から、地中のストレスが増大して、地電流・地電圧が発生し、更にこれが電磁波となって大気中に現れるとか、岩石に含まれる石英やトパーズのような圧電物質の周囲の電界が、外部から受ける大きな力で生じる岩石内部の電位差によって変化するため、などと言われているが、どれも科学的に証明されていない。地震が発生するかなり前から、既に地中に変化が生じるとは考えられない。従って、地震が発生する予兆として電磁波が発生するのではなく、電磁波が原因で地震が発生するのである。
地殻の活動に由来するガス、熱水、マグマなど、地下の電気伝導性をもつ電磁流動物質の流動と上昇酸化、地殻物質との化学反応や電気伝導度変調など、電磁気的、電気化学的、電気機械的な多くの作用とみられる微弱な電磁(電波)放射が、火山性群発地震、火山噴火、直下型地震、海溝型地震、いずれについても発生前後に存在することが、極超長波を用いた観測装置で検出できるようになりました。
電離層の電子密度が変化するのは、地表と電離層が極板となったコンデンサー(蓄電器)になっている。地面は電気が流れる伝導体であり、電離層はプラスイオンとマイナスイオンに電離しており、導体である。地表と電離層の間には大気があって、大地と電離層は平行だから、極板間の距離が数百キロの巨大な空気コンデンサーと考える。地震発生前に地表に電荷が生じれば、静電誘導現象で電離層の電子密度に変化が生じる。
コンデンサの基本構造は、絶縁体を2個の金属板で挟み込んだ形である。絶縁体とは電気を通さない物質のことである。コンデンサに使う絶縁体はとくに誘電体と呼ばれる。「電気が流れる」とは、導体の中にある「+」と「-」の電荷が移動することである。
電気を流そうとすると、回路上の電荷が動きはじめるが、金属板の間に絶縁体があるためそこから先に移動できない。そのため、片方の金属板には電荷が貯まる。すると絶縁体を挟んだ反対側の金属板には反対の電荷が貯まることになる。
地震発生前には、電離層で電子数が異常に増加するということは、地表では「+」の電荷が発生していることになる。従って、コンデンサーの理論により、高周波を電離層に照射することにより電子数を平均値に戻すことにより、地表の「+」の電荷もなくすことができるため、地震が発生する原因の電磁波もなくすことが出来て、地震の発生を防止することができる。
電磁波放射が火山噴火の原因でもあるから、電磁波をなくすことにより、火山噴火を防止することができる。
地震の発生及び火山の噴火を防止する。
電離層の異常に増加した電子数を平均値に戻す方法は、例えば、アメリカのHAARP施設にある、気象改変装置により、高周波を電離層に照射することで、電離層を人工的に操作して、電子数を抑制する方法などが考えられる。
高周波を電離層に照射する手段としては、小型無人宇宙ステーションを複数宇宙空間に配置して、そこから電離層に向けて高周波を照射する。もしくは、地表からアンテナを使用して、電離層に向けて高周波を照射する。

Claims (2)

  1. 電離層の電子数が異常値になった場合、高周波を電離層に照射することにより電子数を平均値に戻すことによる、地震発生防止方法。
  2. 電離層の電子数が異常値になった場合、高周波を電離層に照射することにより電子数を平均値に戻すことによる、火山噴火防止方法。
JP2020192065A 2020-10-24 2020-10-30 地震発生防止方法及び火山噴火防止方法 Pending JP2022069361A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020188332 2020-10-24
JP2020188332 2020-10-24

Publications (1)

Publication Number Publication Date
JP2022069361A true JP2022069361A (ja) 2022-05-11

Family

ID=81521895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020192065A Pending JP2022069361A (ja) 2020-10-24 2020-10-30 地震発生防止方法及び火山噴火防止方法

Country Status (1)

Country Link
JP (1) JP2022069361A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031789A1 (fr) * 1995-04-07 1996-10-10 Yoshio Kushida Procede et dispositif de detection de diastrophisme
JPH10268057A (ja) * 1997-03-25 1998-10-09 Kagaku Gijutsu Shinko Jigyodan 地殻活動監視システム
JP2003043153A (ja) * 2001-07-26 2003-02-13 Nec Eng Ltd 地震直前発生予測システム
CN101140327A (zh) * 2006-09-08 2008-03-12 赵作敏 预报与控制地震(火山喷发)的方法
JP2015518146A (ja) * 2012-04-04 2015-06-25 コーネル ユニバーシティー リスク予測および評価のためのシステムおよび方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031789A1 (fr) * 1995-04-07 1996-10-10 Yoshio Kushida Procede et dispositif de detection de diastrophisme
JPH10268057A (ja) * 1997-03-25 1998-10-09 Kagaku Gijutsu Shinko Jigyodan 地殻活動監視システム
JP2003043153A (ja) * 2001-07-26 2003-02-13 Nec Eng Ltd 地震直前発生予測システム
CN101140327A (zh) * 2006-09-08 2008-03-12 赵作敏 预报与控制地震(火山喷发)的方法
JP2015518146A (ja) * 2012-04-04 2015-06-25 コーネル ユニバーシティー リスク予測および評価のためのシステムおよび方法

Similar Documents

Publication Publication Date Title
CN110531400B (zh) 航天器在轨辐射风险探测装置
Paulmier et al. Material charging in space environment: Experimental test simulation and induced conductive mechanisms
CN103257279A (zh) 一种星用介质材料辐射诱导电导率的测试装置及方法
CN105036064A (zh) 一种高深宽比结构驻极体的射线极化装置及其极化方法
Khan et al. Characterization of defects inside the cable dielectric with partial discharge modeling
JP2022069361A (ja) 地震発生防止方法及び火山噴火防止方法
Wang et al. Coupling effect of electron irradiation and operating voltage on the deep dielectric charging characteristics of solar array drive assembly
Singh et al. Streamer propagation in hybrid gas-solid insulation
US9608157B2 (en) Photon counting semiconductor detectors
Jiang et al. Effect of thermal ageing on space charge characteristics in double-layered polyester film
CN107430974B (zh) 双极性晶片电荷监测器系统及包含其的离子注入系统
Galli et al. Characterization and localization of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors
CN105301538A (zh) 一种静电放电监测仪器的定标装置
US2960610A (en) Compact neutron source
Vorob’ev et al. Electrical breakdown in solid dielectrics
Chen et al. An equivalent investigation of space charge for plane samples and coaxial cables under a temperature gradient
WO2012154877A1 (en) Collection of atmospheric ions
Fujii et al. Low‐Energy Electron Beam Induced Charging and Secondary Electron Emission Properties of FEP Film Used on Satellite Surfaces
Wang et al. Charging and discharging mechanism of polyimide under electron irradiation and high voltage
Minow et al. Spacecraft charging: Anomaly and failure mechanisms
Oliveira et al. A Finite-Difference Time-Domain Formulation for Modeling Air Ionization Breakdown Streamers
Pejović The application of a small-volume neon-filled tube in overvoltage protection
Selvamany et al. Exploration of cross-linked polyethylene material morphological structure and its dielectric properties studied by the effect of pulse voltage
Frederickson Progress in high-energy electron and x-irradiation of insulating dielectrics
Zhang et al. Characteristic Analysis of Point Discharge Current Pulse Using Numerical Simulation Based on Fluid Dynamics Model

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220719