JP2022069001A - Method for manufacturing fiber-reinforced composite material - Google Patents

Method for manufacturing fiber-reinforced composite material Download PDF

Info

Publication number
JP2022069001A
JP2022069001A JP2020177894A JP2020177894A JP2022069001A JP 2022069001 A JP2022069001 A JP 2022069001A JP 2020177894 A JP2020177894 A JP 2020177894A JP 2020177894 A JP2020177894 A JP 2020177894A JP 2022069001 A JP2022069001 A JP 2022069001A
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced composite
prepreg
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020177894A
Other languages
Japanese (ja)
Inventor
崇寛 林
Takahiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020177894A priority Critical patent/JP2022069001A/en
Publication of JP2022069001A publication Critical patent/JP2022069001A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a method for manufacturing a fiber-reinforced composite material having a uniform thickness.SOLUTION: A method for manufacturing a fiber-reinforced composite material includes pressurizing a fiber-reinforced composite material precursor by a pressurizing body including a sheet material so as to establish at least a partial contact between the fiber-reinforced composite material precursor and the sheet material.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化複合材料の製造方法に関する。 The present invention relates to a method for producing a fiber-reinforced composite material.

航空機部品、自動車部品、電気・電子部品等の様々な分野において、強化繊維基材にマトリックス樹脂組成物を複合化した繊維強化複合材料の成形体が用いられている。 In various fields such as aircraft parts, automobile parts, electric / electronic parts, etc., a molded body of a fiber-reinforced composite material in which a matrix resin composition is composited with a reinforcing fiber base material is used.

強化繊維とマトリックス樹脂からなる繊維強化複合材料は、プリプレグ等の中間材料や成形体の製造時に均一に圧力を掛けて、マトリックス樹脂と強化繊維を複合化する必要がある。例えば、特許文献1には、製造前の繊維強化複合材料と負荷圧力の均一性を付与するシートとの間にC/Cコンポジットからなる加圧板を配置し、連続的に熱可塑性樹脂プリプレグを製造する方法が示されている。 In the fiber-reinforced composite material composed of the reinforcing fiber and the matrix resin, it is necessary to apply pressure uniformly at the time of manufacturing an intermediate material such as a prepreg or a molded body to composite the matrix resin and the reinforcing fiber. For example, in Patent Document 1, a pressure plate made of a C / C composite is arranged between a fiber-reinforced composite material before production and a sheet that imparts uniformity of load pressure, and a thermoplastic resin prepreg is continuously produced. How to do it is shown.

特許第3876276号公報Japanese Patent No. 3876276

従来の繊維強化複合材料の製造方法では、繊維強化複合材料の厚みや空隙(ボイド)率を均一にするための加圧が十分ではなかった。その結果、繊維強化複合材料の厚みが設計と異なることにより、設計した強度や剛性が得られない場合があった。 In the conventional method for producing a fiber-reinforced composite material, the pressurization for making the thickness and the void ratio of the fiber-reinforced composite material uniform is not sufficient. As a result, the designed strength and rigidity may not be obtained because the thickness of the fiber-reinforced composite material is different from the design.

本発明は、厚みが均一な繊維強化複合材料の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a fiber-reinforced composite material having a uniform thickness.

本発明者等は、上記課題を解決すべく鋭意検討した結果、シート材を繊維強化複合材料前駆体に近い位置に配置して繊維強化複合材料前駆体を加圧すると、圧力を均一にする効果が大きいことが分かった。 As a result of diligent studies to solve the above problems, the present inventors have the effect of making the pressure uniform by arranging the sheet material at a position close to the fiber-reinforced composite material precursor and pressurizing the fiber-reinforced composite material precursor. Turned out to be large.

[1]シート材を具備する加圧体で繊維強化複合材料前駆体を加圧する繊維強化複合材料の製造方法であって、前記繊維強化複合材料前駆体と前記シート材の少なくとも一部とが接するように加圧する、繊維強化複合材料の製造方法。
[2]前記繊維強化複合材料が炭素繊維とマトリクス樹脂とからなる、[1]に記載の繊維強化複合材料の製造方法。
[3]前記繊維強化複合材料前駆体が、炭素繊維とマトリクス樹脂とからなる中間材に離型紙または離型フィルムが積層された積層体である、[1]または[2]に記載の繊維強化複合材料の製造方法。
[4]前記繊維強化複合材料前駆体が、炭素繊維とマトリクス樹脂とからなる中間材が複数積層され、最表面に離型紙または離型フィルムが積層された積層体である、[1]または[2]に記載の繊維強化複合材料の製造方法。
[5]前記マトリクス樹脂が熱可塑樹脂である、[2]~[4]のいずれか1つに記載の繊維強化複合材料の製造方法。
[6]前記シート材が、面内方向の線膨張係数が50×10-6(1/℃)以下である、[1]~[5]のいずれか1つに記載の繊維強化複合材料の製造方法。
[7]前記シート材が、面内方向の線膨張係数が20×10-6(1/℃)以下である、[1]~[6]のいずれか1つに記載の繊維強化複合材料の製造方法。
[8]前記シート材が、黒鉛、テトラフルオロエチレン樹脂、シリコーン樹脂からなる群より選ばれる少なくとも1種からなるシート材である、[1]~[7]のいずれか1つに記載の繊維強化複合材料の製造方法。
[9]前記シート材が、黒鉛からなるシート材である、[8]に記載の繊維強化複合材料の製造方法。
[10]前記加圧体がC/Cコンポジット、ステンレス、インバー、繊維強化プラスチックからなる群より選ばれる少なくとも1種の材料からなる部分を含む[1]~[9]のいずれか1つに記載の繊維強化複合材料の製造方法。
[11]前記繊維強化複合材料前駆体を200℃以上に加熱する工程を含む、[1]~[10]のいずれか1つに記載の繊維強化複合材料の製造方法。
[12]連続的または間欠的に加圧する、[1]~[11]のいずれかつに記載の繊維強化複合材料の製造方法。
[13]前記繊維強化複合材料が、プリプレグである、[1]~[12]のいずれか1つに記載の繊維強化複合材料の製造方法。
[14]前記繊維強化複合材料が、成形体である、[1]~[12]のいずれか1つに記載の繊維強化複合材料の製造方法。
[15]繊維強化複合材料前駆体にシート材を用いて加圧する繊維強化複合材料の製造方法であって、
加圧時に前記繊維強化複合材料前駆体の最表面と前記シート材の最表面の加圧方向における最短距離が2.0mm以内となるように前記繊維強化複合材料前駆体に前記シート材を重ねて配置する、繊維強化複合材料の製造方法。
[16]強化繊維とマトリクス樹脂とからなるプリプレグであって、下記測定方法で観測される平均凹凸度が1.5°以上であり、凹凸度が2.0°以上5°未満である割合が40%を超える、プリプレグ。
<測定方法>
200倍の倍率でプリプレグの断面を投影したときに、プリプレグ厚み方向の視野内のすべての境界線が、横:縦の比率が5以上の長方形に含まれ、且つ前記長方形の長辺と平行な水平線と前記境界線のなす角が90℃未満になるようにプリプレグを配置し、前記長方形の短辺と平行かつ同一長さの垂直線を視野内に200μm間隔で表示する。ある垂直線を垂直線aとしたとき、垂直線aと視野内上部側のプリプレグ境界線との交点Aと、垂直線aから200μm間隔をあけて隣に存在する垂直線bと視野内上部側のプリプレグ境界線との交点Bと、を直線で結び直線ABを得る。同様に、垂直線aと視野内下部側のプリプレグ境界線との交点Cと、垂直線bと視野内下部側のプリプレグ境界線との交点Dとを直線で結び直線CDを得る。直線ABと直線CDがなす角度を0°以上180°未満の範囲で得る。視野内の複数の垂直線で得られた前記角度の平均値をプリプレグの平均凹凸度とする。
[17][16]に記載のプリプレグを使用して自動積層成形する、繊維強化複合材料成形体の製造方法。
[1] A method for producing a fiber-reinforced composite material in which a fiber-reinforced composite material precursor is pressed by a pressurizing body provided with a sheet material, wherein the fiber-reinforced composite material precursor and at least a part of the sheet material are in contact with each other. A method of manufacturing a fiber-reinforced composite material that is pressurized in such a manner.
[2] The method for producing a fiber-reinforced composite material according to [1], wherein the fiber-reinforced composite material is composed of carbon fiber and a matrix resin.
[3] The fiber reinforced according to [1] or [2], wherein the fiber-reinforced composite material precursor is a laminate in which a release paper or a release film is laminated on an intermediate material composed of carbon fiber and a matrix resin. Method for manufacturing composite materials.
[4] The fiber-reinforced composite material precursor is a laminate in which a plurality of intermediate materials composed of carbon fibers and a matrix resin are laminated, and a release paper or a release film is laminated on the outermost surface. [1] or [ 2] The method for producing a fiber-reinforced composite material.
[5] The method for producing a fiber-reinforced composite material according to any one of [2] to [4], wherein the matrix resin is a thermoplastic resin.
[6] The fiber-reinforced composite material according to any one of [1] to [5], wherein the sheet material has an in-plane linear expansion coefficient of 50 × 10 -6 (1 / ° C.) or less. Production method.
[7] The fiber-reinforced composite material according to any one of [1] to [6], wherein the sheet material has an in-plane linear expansion coefficient of 20 × 10 -6 (1 / ° C.) or less. Production method.
[8] The fiber reinforced according to any one of [1] to [7], wherein the sheet material is a sheet material composed of at least one selected from the group consisting of graphite, tetrafluoroethylene resin, and silicone resin. Method for manufacturing composite materials.
[9] The method for producing a fiber-reinforced composite material according to [8], wherein the sheet material is a sheet material made of graphite.
[10] Described in any one of [1] to [9], wherein the pressurizing body includes a portion made of at least one material selected from the group consisting of C / C composite, stainless steel, Invar, and fiber reinforced plastic. How to make fiber reinforced composite materials.
[11] The method for producing a fiber-reinforced composite material according to any one of [1] to [10], which comprises a step of heating the fiber-reinforced composite material precursor to 200 ° C. or higher.
[12] The method for producing a fiber-reinforced composite material according to any one of [1] to [11], which is continuously or intermittently pressurized.
[13] The method for producing a fiber-reinforced composite material according to any one of [1] to [12], wherein the fiber-reinforced composite material is a prepreg.
[14] The method for producing a fiber-reinforced composite material according to any one of [1] to [12], wherein the fiber-reinforced composite material is a molded product.
[15] A method for producing a fiber-reinforced composite material in which a sheet material is used to pressurize a fiber-reinforced composite material precursor.
The sheet material is laminated on the fiber-reinforced composite material precursor so that the shortest distance between the outermost surface of the fiber-reinforced composite material precursor and the outermost surface of the sheet material in the pressurizing direction is within 2.0 mm at the time of pressurization. A method of manufacturing a fiber-reinforced composite material to be placed.
[16] A prepreg composed of a reinforcing fiber and a matrix resin, in which the average unevenness observed by the following measuring method is 1.5 ° or more and the unevenness is 2.0 ° or more and less than 5 °. Pre-preg that exceeds 40%.
<Measurement method>
When the cross section of the prepreg is projected at a magnification of 200 times, all the boundaries in the field of view in the prepreg thickness direction are included in the rectangle having a horizontal: vertical ratio of 5 or more, and are parallel to the long side of the rectangle. The prepreg is arranged so that the angle formed by the horizon and the boundary line is less than 90 ° C., and vertical lines parallel to the short side of the rectangle and having the same length are displayed in the field of view at intervals of 200 μm. When a certain vertical line is defined as a vertical line a, the intersection A of the vertical line a and the prepreg boundary line on the upper side of the field of view, and the vertical line b and the upper side of the field of view adjacent to the vertical line a at a distance of 200 μm. A straight line AB is obtained by connecting the intersection B with the prepreg boundary line of the above with a straight line. Similarly, the intersection C of the vertical line a and the prepreg boundary line on the lower side of the field of view and the intersection D of the vertical line b and the prepreg boundary line on the lower side of the field of view are connected by a straight line to obtain a straight line CD. The angle formed by the straight line AB and the straight line CD is obtained in the range of 0 ° or more and less than 180 °. The average value of the angles obtained by a plurality of vertical lines in the field of view is defined as the average unevenness of the prepreg.
[17] A method for producing a fiber-reinforced composite material molded body, which is automatically laminated and molded using the prepreg according to [16].

本発明によれば、厚みのバラツキの少ない繊維強化複合材料の製造方法を提供できる。また、強度や剛性が部位によるバラツキの少ない繊維強化複合材料を提供できる。 According to the present invention, it is possible to provide a method for producing a fiber-reinforced composite material having little variation in thickness. Further, it is possible to provide a fiber-reinforced composite material having less variation in strength and rigidity depending on the site.

本発明の態様を示す図である。It is a figure which shows the aspect of this invention. 本発明の態様を示す図である。It is a figure which shows the aspect of this invention. 本発明の態様を示す図である。It is a figure which shows the aspect of this invention. 加圧後のプリプレグ断面を示す図である。It is a figure which shows the prepreg cross section after pressurization.

[繊維強化複合材料の製造方法]
繊維強化複合材料の製造方法の態様の一つは、シート材を具備する加圧体で繊維強化複合材料前駆体を加圧するものであり、繊維強化複合材料前駆体と前記シート材の少なくとも一部とが接するように加圧する。シート材の柔軟性により、繊維強化複合材料前駆体を均一に加圧することができる。シート材は、加圧体の加圧方向側の面に配置されることが好ましい。加圧体の加圧方向側とは、加圧体で繊維強化複合材料前駆体を加圧する状態における加圧体の繊維強化複合材料前駆体側である。具体的には、図1に示すように、上下に配置された加圧体1で繊維強化複合材料前駆体3を挟むことで加圧する。上下に配置された加圧体1の加圧方向である繊維強化複合材料前駆体3に近い面にシート材2を具備している。
また、他の態様は、繊維強化複合材料前駆体にシート材を用いて加圧するものであり、加圧時に前記繊維強化複合材料前駆体の最表面と前記シート材の最表面の加圧方向における最短距離が2.0mm以内となるように前記繊維強化複合材料前駆体に前記シート材を重ねて配置する。繊維強化複合材料前駆体と前記シート材とが直接接しない場合であっても、温度と圧力を均一にできることより、繊維強化複合材料前駆体を均一に加圧することができる。
いずれの態様においても、圧力を均一に負荷できる理由から、連続的または間欠的に加圧する場合に適用することが好ましい。
シート材の面積は、繊維強化複合材料前駆体の加圧される面の面積の10%~300%であることが好ましく、50%~150%であることがより好ましい。シート材と繊維強化複合材料前駆体との接触面積は、繊維強化複合材料前駆体の加圧される面の面積の10%~100%であることが好ましく、50%~100%であることがより好ましい。
[Manufacturing method of fiber reinforced composite material]
One aspect of the method for producing a fiber-reinforced composite material is to pressurize the fiber-reinforced composite material precursor with a pressurizing body provided with a sheet material, and the fiber-reinforced composite material precursor and at least a part of the sheet material. Pressurize so that it comes into contact with. Due to the flexibility of the sheet material, the fiber reinforced composite precursor can be uniformly pressurized. The sheet material is preferably arranged on the surface of the pressurizing body on the pressurizing direction side. The pressurizing direction side of the pressurizing body is the fiber reinforced composite material precursor side of the pressurizing body in a state where the fiber reinforced composite material precursor is pressed by the pressurizing body. Specifically, as shown in FIG. 1, the fiber-reinforced composite material precursor 3 is pressed by sandwiching the fiber-reinforced composite material precursor 3 between the pressure bodies 1 arranged one above the other. The sheet material 2 is provided on the surface close to the fiber-reinforced composite material precursor 3 which is the pressurizing direction of the pressurizing bodies 1 arranged above and below.
In addition, another aspect is to pressurize the fiber-reinforced composite material precursor using a sheet material, and in the pressurizing direction of the outermost surface of the fiber-reinforced composite material precursor and the outermost surface of the sheet material at the time of pressurization. The sheet material is superposed on the fiber-reinforced composite material precursor so that the shortest distance is within 2.0 mm. Even when the fiber-reinforced composite material precursor and the sheet material do not come into direct contact with each other, the fiber-reinforced composite material precursor can be uniformly pressurized because the temperature and pressure can be made uniform.
In any of the embodiments, it is preferable to apply the pressure continuously or intermittently because the pressure can be uniformly applied.
The area of the sheet material is preferably 10% to 300%, more preferably 50% to 150% of the area of the pressurized surface of the fiber-reinforced composite material precursor. The contact area between the sheet material and the fiber-reinforced composite material precursor is preferably 10% to 100%, preferably 50% to 100% of the area of the pressurized surface of the fiber-reinforced composite material precursor. More preferred.

本複合材料がプリプレグである場合には、シート材を具備する加圧体で繊維強化複合材料前駆体を加圧する加圧工程は、複合化工程として機能する。複合化工程としては、強化繊維基材にマトリックス樹脂を含浸させる含浸工程、または強化繊維基材にマトリックス樹脂から成形したフィルム、不織布、繊維、または粒子を付着させる付着工程が挙げられる。例えば、図2に示すように、上下に配置された平板の加圧体1で未含浸の強化繊維が表面に存在するプリプレグ3aと内部に空隙を残して含浸されたプリプレグ3bとを挟んで加圧することでマトリクス樹脂を強化繊維基材に含浸して積層されたプリプレグを得ることができる。上下に配置された加圧体1の加圧方向であるプリプレグ3aおよびプリプレグ3bに近い面にそれぞれシート材2を具備している。加圧状態においては、シート材2とプリプレグ3aおよびプリプレグ3bとはそれぞれ直接接している。プリプレグ3aとプリプレグ3bとを重ねた例を示したが、プリプレグ3aまたはプリプレグ3bをそれぞれ単独で加圧してもよい。プリプレグ3aを複数積層したプリプレグ積層体3A、プリプレグ3bを複数積層したプリプレグ積層体3Bをそれぞれ単独で加圧してもよく、プリプレグ積層体3Aと3Bとをさらに積層してから加圧してもよい。繊維強化複合材料前駆体としてのプリプレグ1枚またはプリプレグ積層体どうしの間に加圧体やシート材を挿入して複数の繊維強化複合材料としてのプリプレグを得ることもできる。また、プリプレグを積層する場合には、例えばプリプレグの繊維体積含有率(Vf)が65体積%以上となるように設定しておいてプリプレグどうしの間にマトリクス樹脂シートを挿入して加圧することもできる。複合化工程においては、加温することが好ましく、繊維強化複合材料前駆体の表面温度が100~450℃となるように調整することが好ましく、高耐熱用途の部材に用いられる場合は、200℃以上となるように調整することが好ましい。熱可塑性樹脂繊維又は熱可塑性樹脂粒子を強化繊維基材に付与し、ロールや平板等による加圧と共に加熱溶融してマトリックス樹脂を含浸させ、繊維間の空気を除去する方法を用いてもよい。マトリックス樹脂に熱可塑性樹脂繊維を用いる場合、樹脂繊維の繊維径は、5~50μmが好ましい。マトリックス樹脂に熱可塑性樹脂粒子を用いる場合、樹脂粒子の平均粒径は、10~100μmが好ましい。その他に、マトリックス樹脂を用いて成形した熱可塑性樹脂フィルムや不織布と強化繊維基材とを重ね、加熱溶融して含浸させ、強化繊維間の空気を除去する方法が挙げられる。またモノマー、低分子量体を強化繊維基材に含浸させた後、重合させて繊維強化複合材料としてもよい。含浸工程においては、含浸を促進する観点から強化繊維基材の表面温度がマトリックス樹脂の軟化温度以上であることが好ましい。 When the composite material is a prepreg, the pressurizing step of pressurizing the fiber-reinforced composite material precursor with the pressurizing body provided with the sheet material functions as a composite step. Examples of the compounding step include an impregnation step of impregnating the reinforcing fiber base material with a matrix resin, and a bonding step of adhering a film, a non-woven fabric, fibers, or particles formed from the matrix resin to the reinforcing fiber base material. For example, as shown in FIG. 2, a prepreg 3a in which unimpregnated reinforcing fibers are present on the surface and a prepreg 3b impregnated with a gap left inside are sandwiched between the pressurizing bodies 1 of flat plates arranged one above the other. By pressing, a matrix resin can be impregnated into a reinforcing fiber base material to obtain a laminated prepreg. The sheet material 2 is provided on the surfaces of the vertically arranged pressurizing bodies 1 close to the prepregs 3a and the prepregs 3b, which are the pressurizing directions. In the pressurized state, the sheet material 2 is in direct contact with the prepreg 3a and the prepreg 3b, respectively. Although an example in which the prepreg 3a and the prepreg 3b are overlapped with each other is shown, the prepreg 3a or the prepreg 3b may be pressurized independently. The prepreg laminated body 3A in which a plurality of prepregs 3a are laminated and the prepreg laminated body 3B in which a plurality of prepregs 3b are laminated may be pressed independently, or the prepreg laminated bodies 3A and 3B may be further laminated and then pressed. It is also possible to obtain a plurality of prepregs as a fiber-reinforced composite material by inserting a pressurizing body or a sheet material between one prepreg as a fiber-reinforced composite material precursor or between prepreg laminates. When laminating prepregs, for example, the fiber volume content (Vf) of the prepregs may be set to 65% by volume or more, and a matrix resin sheet may be inserted between the prepregs to pressurize them. can. In the compounding step, it is preferable to heat the fiber-reinforced composite material precursor, and it is preferable to adjust the surface temperature of the fiber-reinforced composite material precursor to 100 to 450 ° C., and when used for a member for high heat resistance, 200 ° C. It is preferable to make adjustments so as to be as described above. A method may be used in which a thermoplastic resin fiber or a thermoplastic resin particle is applied to a reinforcing fiber base material, heated and melted by heating with pressure by a roll, a flat plate, or the like to impregnate the matrix resin, and air between the fibers is removed. When a thermoplastic resin fiber is used as the matrix resin, the fiber diameter of the resin fiber is preferably 5 to 50 μm. When thermoplastic resin particles are used for the matrix resin, the average particle size of the resin particles is preferably 10 to 100 μm. Another method is to stack a thermoplastic resin film or non-woven fabric molded using a matrix resin and a reinforcing fiber base material, heat and melt them to impregnate them, and remove air between the reinforcing fibers. Further, the reinforcing fiber base material may be impregnated with a monomer or a low molecular weight substance and then polymerized to form a fiber-reinforced composite material. In the impregnation step, the surface temperature of the reinforcing fiber base material is preferably equal to or higher than the softening temperature of the matrix resin from the viewpoint of promoting impregnation.

本複合材料が成形体である場合には、シート材を具備する加圧体で繊維強化複合材料前駆体を加圧する加圧工程は、成形工程として機能する。本複合材料を成形することにより成形体を得ることができる。例えば、図3に示すように、一対の金型を用いて、上型である加圧体1と下型である加圧体1でマトリクス樹脂が強化繊維基材に含浸されたプリプレグ3cを挟んで加圧することで形状を付与した成形体を得ることができる。上型と下型のそれぞれの加圧方向であるプリプレグ3cに近い面にシート材2を具備している。加圧状態においては、シート材2とプリプレグ3cは直接接している。繊維強化複合材料前駆体としてのプリプレグ1枚またはプリプレグ積層体どうしの間に加圧体やシート材を挿入して複数の繊維強化複合材料として成形体を得ることもできる。本複合材料と、本複合材料以外の複合材料とが成形された成形体であってもよい。本複合材料の形状及び寸法は、用途に応じて適宜設定できる。成形工程は、特に限定されず、スタンピングプレス法、ヒートアンドクール法、オートクレーブ法、自動積層法等が挙げられる。 When the present composite material is a molded body, the pressurizing step of pressurizing the fiber-reinforced composite material precursor with the pressurizing body provided with the sheet material functions as a molding step. A molded body can be obtained by molding the present composite material. For example, as shown in FIG. 3, using a pair of dies, a prepreg 3c in which a reinforcing fiber base material is impregnated with a matrix resin is sandwiched between a pressurizing body 1 which is an upper die and a pressurizing body 1 which is a lower die. By pressurizing with, a molded body having a shape can be obtained. The sheet material 2 is provided on a surface close to the prepreg 3c, which is the pressurizing direction of each of the upper mold and the lower mold. In the pressurized state, the sheet material 2 and the prepreg 3c are in direct contact with each other. It is also possible to obtain a molded body as a plurality of fiber-reinforced composite materials by inserting a pressurizing body or a sheet material between one prepreg as a fiber-reinforced composite material precursor or between prepreg laminates. It may be a molded body obtained by molding the present composite material and a composite material other than the present composite material. The shape and dimensions of this composite material can be appropriately set according to the application. The molding process is not particularly limited, and examples thereof include a stamping press method, a heat and cool method, an autoclave method, and an automatic laminating method.

(シート材)
シート材の材料は、成形する温度に合わせて選択でき、加圧時に繊維強化複合材料へ均一に圧力をかけられる程度の柔軟性を有する観点から、黒鉛、テトラフルオロエチレン樹脂、シリコーン樹脂からなる群より選ばれる少なくとも1種からなるシート材であることが好ましい。400℃以上の耐熱性があり、成形温度を高くできることから、黒鉛からなるシート材であることがより好ましい。シート材は、繊維強化複合材料の成形時の膨張変形を抑制できるため、面内方向の線膨張係数が50×10-6(1/℃)以下であることが好ましく、20×10-6(1/℃)以下であることがより好ましく、10×10-6(1/℃)以下であることが更に好ましい。面内方向の線膨張係数は通常1×10-6(1/℃)以上である。黒鉛からなるシート材は、空隙を含むことにより柔軟性が発現し、繊維強化複合材料前駆体へ均一に圧力をかけられることが可能になる。圧力均一性の観点から、密度が2.0g/cm以下が好ましく、耐久性の観点から0.5g/cm以上が好ましい。シート材の厚みは、熱伝導と圧力を均一にする観点から、0.1~5.0mmが好ましく、0.5~2.0mmがより好ましい。
(Sheet material)
The material of the sheet material can be selected according to the molding temperature, and from the viewpoint of having flexibility enough to uniformly apply pressure to the fiber-reinforced composite material at the time of pressurization, a group consisting of graphite, tetrafluoroethylene resin, and silicone resin. It is preferable that the sheet material is made of at least one selected from the above. A sheet material made of graphite is more preferable because it has a heat resistance of 400 ° C. or higher and can raise the molding temperature. Since the sheet material can suppress expansion and deformation during molding of the fiber-reinforced composite material, the linear expansion coefficient in the in-plane direction is preferably 50 × 10 -6 (1 / ° C.) or less, preferably 20 × 10 -6 (1 / ° C.). It is more preferably 1 / ° C.) or less, and further preferably 10 × 10 -6 (1 / ° C.) or less. The coefficient of linear expansion in the in-plane direction is usually 1 × 10 -6 (1 / ° C.) or more. The sheet material made of graphite exhibits flexibility by containing voids, and it becomes possible to uniformly apply pressure to the fiber-reinforced composite material precursor. From the viewpoint of pressure uniformity, the density is preferably 2.0 g / cm 3 or less, and from the viewpoint of durability, 0.5 g / cm 3 or more is preferable. The thickness of the sheet material is preferably 0.1 to 5.0 mm, more preferably 0.5 to 2.0 mm, from the viewpoint of making heat conduction and pressure uniform.

(加圧体)
加圧体は、加圧時にシート材に対して効率よく圧力をかけられるよう、成形時に変形しないものであれば限定されないが、目的の繊維強化複合材料の形状に対応した形状とすることが好ましい。プリプレグ等の平らな繊維強化複合材料を製造する場合には、平板形状の加圧体が適している。加圧体は、C/Cコンポジット、ステンレス、インバー、繊維強化プラスチックからなる群より選ばれる少なくとも1種の材料からなる部分を含むことが好ましい。400℃以上の耐熱性があり、成形温度を高くできることからC/Cコンポジットからなる部分を含むことがより好ましい。加圧体の面内方向の線膨張係数は、繊維強化複合材料の成形時の変形を抑制できるため、20×10-6(1/℃)以下が好ましく、5×10-6(1/℃)以下がより好ましい。面内方向の線膨張係数は通常1×10-6(1/℃)以上である。加圧体とシート材との間には耐熱性のあるフィルム、紙、金属シートを挿入してもよく、加圧体とシート材とが容易に剥離または分割しないよう接合してもよい。
(Pressurized body)
The pressurizing body is not limited as long as it does not deform during molding so that pressure can be efficiently applied to the sheet material during pressurization, but it is preferable that the pressurizing body has a shape corresponding to the shape of the target fiber-reinforced composite material. .. When producing a flat fiber-reinforced composite material such as a prepreg, a flat plate-shaped pressurizing body is suitable. The pressurizing body preferably contains a portion made of at least one material selected from the group consisting of C / C composite, stainless steel, Invar, and fiber reinforced plastic. It is more preferable to include a portion made of a C / C composite because it has a heat resistance of 400 ° C. or higher and can raise the molding temperature. The coefficient of linear expansion in the in-plane direction of the pressurizing body is preferably 20 × 10 -6 (1 / ° C.) or less, preferably 5 × 10 -6 (1 / ° C.), because deformation of the fiber-reinforced composite material during molding can be suppressed. ) The following is more preferable. The coefficient of linear expansion in the in-plane direction is usually 1 × 10 -6 (1 / ° C.) or more. A heat-resistant film, paper, or a metal sheet may be inserted between the pressurizing body and the sheet material, or the pressurizing body and the sheet material may be joined so as not to be easily peeled off or divided.

(繊維強化複合材料および繊維強化複合材料前駆体)
繊維強化複合材料(以下、本複合材料と称する場合がある)は、強化繊維とマトリックス樹脂とからなる。繊維強化複合材料としては、部品に成形するためのプリプレグ、特定形状に成形された成形体が挙げられる。繊維強化複合材料前駆体としては、強化繊維基材にマトリクス樹脂を含浸させたプリプレグ、および強化繊維基材にマトリクス樹脂シートを積層した積層材等の炭素繊維とマトリクス樹脂とからなる中間材が挙げられる。中間材に離型紙または離型フィルムが積層された積層体としてもよい。中間材が複数積層され、最表面に離型紙または離型フィルムが積層された積層体とすることもできる。離型紙または離型フィルムは、公知の離型処理を施したプラスチック、金属箔やフッ素樹脂などの材料からなるものを使用できるが、耐熱性の観点でポリイミドフィルムが好ましい。
(Fiber-reinforced composite material and fiber-reinforced composite material precursor)
The fiber-reinforced composite material (hereinafter, may be referred to as the present composite material) is composed of a reinforcing fiber and a matrix resin. Examples of the fiber-reinforced composite material include a prepreg for molding into a part and a molded body molded into a specific shape. Examples of the fiber-reinforced composite material precursor include a prepreg in which a reinforced fiber base material is impregnated with a matrix resin, and an intermediate material composed of a carbon fiber and a matrix resin such as a laminated material in which a matrix resin sheet is laminated on a reinforced fiber base material. Be done. It may be a laminate in which a release paper or a release film is laminated on an intermediate material. It is also possible to form a laminate in which a plurality of intermediate materials are laminated and a release paper or a release film is laminated on the outermost surface. As the release paper or release film, a material made of a known release-treated plastic, metal foil, fluororesin, or the like can be used, but a polyimide film is preferable from the viewpoint of heat resistance.

本複合材料の厚さは、プリプレグの場合は、成形体の残留応力の点から、0.015~10.0mmが好ましく、0.04~6.0mmがより好ましい。成形体の場合は、例えば0.1~50mmで成形体の形状により適宜決定できる。本複合材料が成形体である場合のボイド率は、0.1~20体積%が好ましく、0.2~2体積%がより好ましく、0.2~1体積%がさらに好ましい。下限値以上では生産性に優れ、上限値以下では機械特性に優れる。強度の観点から、繊維体積含有率(Vf)は、20~75体積%が好ましく、40~65体積%がより好ましい。繊維強化複合材料前駆体全体の厚さは、成形体の残留応力の点から、0.015~10.0mmが好ましく、0.04~6.0mmがより好ましい。繊維強化複合材料としてプリプレグを製造する場合の繊維強化複合材料前駆体であるプリプレグの含浸率は、5~98%が好ましく、20~80%がさらに好ましい。この場合の繊維体積含有率(Vf)は、1~74体積%が好ましく、4~60体積%がより好ましい。繊維強化複合材料として成形体を製造する場合の繊維強化複合材料前駆体であるプリプレグの含浸率は、10~98体積%が好ましく、30~80体積%がより好ましい。この場合のプリプレグのボイド率は、2~90%が好ましく、20~70%がさらに好ましい。この場合の繊維体積含有率(Vf)は、2~74体積%が好ましく、6~60体積%がより好ましい。 In the case of prepreg, the thickness of the composite material is preferably 0.015 to 10.0 mm, more preferably 0.04 to 6.0 mm from the viewpoint of residual stress of the molded product. In the case of a molded product, the size is, for example, 0.1 to 50 mm, which can be appropriately determined depending on the shape of the molded product. When the composite material is a molded product, the void ratio is preferably 0.1 to 20% by volume, more preferably 0.2 to 2% by volume, still more preferably 0.2 to 1% by volume. Above the lower limit, productivity is excellent, and below the upper limit, mechanical properties are excellent. From the viewpoint of strength, the fiber volume content (Vf) is preferably 20 to 75% by volume, more preferably 40 to 65% by volume. The thickness of the entire fiber-reinforced composite precursor is preferably 0.015 to 10.0 mm, more preferably 0.04 to 6.0 mm from the viewpoint of residual stress of the molded product. When the prepreg is produced as the fiber-reinforced composite material, the impregnation rate of the prepreg, which is a fiber-reinforced composite material precursor, is preferably 5 to 98%, more preferably 20 to 80%. In this case, the fiber volume content (Vf) is preferably 1 to 74% by volume, more preferably 4 to 60% by volume. The impregnation rate of the prepreg, which is a fiber-reinforced composite material precursor in the case of producing a molded product as a fiber-reinforced composite material, is preferably 10 to 98% by volume, more preferably 30 to 80% by volume. In this case, the void ratio of the prepreg is preferably 2 to 90%, more preferably 20 to 70%. In this case, the fiber volume content (Vf) is preferably 2 to 74% by volume, more preferably 6 to 60% by volume.

(強化繊維)
強化繊維としては、炭素繊維、ガラス繊維、金属繊維、樹脂繊維等が挙げられ、それらを複数組み合わせてもよい。剛性、強度の点から炭素繊維が好ましい。炭素繊維としては、ポリアクリロニトリル(PAN)系、石油・石炭ピッチ系、レーヨン系、リグニン系等が挙げられる。強化繊維基材中の強化繊維の割合は、強化繊維基材の総質量に対して、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%が特に好ましい。強化繊維を複数本束ねてサイジング剤を付着させることにより、強化繊維束とすることができる。
(Reinforcing fiber)
Examples of the reinforcing fiber include carbon fiber, glass fiber, metal fiber, resin fiber and the like, and a plurality of them may be combined. Carbon fiber is preferable from the viewpoint of rigidity and strength. Examples of carbon fibers include polyacrylonitrile (PAN) type, petroleum / coal pitch type, rayon type, lignin type and the like. The ratio of the reinforcing fiber in the reinforcing fiber base material is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and 100% by mass with respect to the total mass of the reinforcing fiber base material. Especially preferable. A reinforcing fiber bundle can be obtained by bundling a plurality of reinforcing fibers and attaching a sizing agent.

(強化繊維束)
強化繊維束としては、工業的規模における生産性及び力学特性に優れる点から、3,000~60,000本からなるトウが好ましい。優れた引張強度を有する成形体を得るには、強化繊維束のストランド強度は、4000MPa以上が好ましく、5000MPa以上がより好ましい。強化繊維束のストランド弾性率は、十分な成形体の剛性が発現しやすいため、200GPa以上であることが好ましく、230GPa以上であることがより好ましい。また、強化繊維の表面及び内部の黒鉛結晶サイズが小さくなり、繊維断面方向の強度及び繊維軸方向の圧縮強度の低下が抑制されやすいことから380GPa以下であることが好ましく、350GPa以下であることがより好ましい。なお、強化繊維束のストランド強度及びストランド弾性率は、ASTM D4018に準拠した方法で測定される。
(Reinforcing fiber bundle)
As the reinforcing fiber bundle, a tow consisting of 3,000 to 60,000 tow is preferable from the viewpoint of excellent productivity and mechanical properties on an industrial scale. In order to obtain a molded product having excellent tensile strength, the strand strength of the reinforcing fiber bundle is preferably 4000 MPa or more, more preferably 5000 MPa or more. The strand elastic modulus of the reinforcing fiber bundle is preferably 200 GPa or more, and more preferably 230 GPa or more, because sufficient rigidity of the molded product is likely to be exhibited. Further, since the graphite crystal size on the surface and inside of the reinforcing fiber becomes small and the decrease in the strength in the cross-sectional direction of the fiber and the compressive strength in the fiber axis direction is easily suppressed, it is preferably 380 GPa or less, preferably 350 GPa or less. More preferred. The strand strength and the strand elastic modulus of the reinforcing fiber bundle are measured by a method according to ASTM D4018.

(強化繊維基材)
強化繊維基材の形態としては、連続した強化繊維束の繊維を一方向に引き揃えた一方向連続繊維形態、連続した強化繊維束を用いた平織、綾織、朱子織、ノンクリンプファブリック(NCF)、三次元織物等の織物形態、強化繊維束を切断して用いたコンティニュアスストランドマット、チョップドストランドマット等のチョップド繊維形態が挙げられる。織物の配列を保持するため、強化繊維等によるステッチや熱硬化性樹脂や熱可塑性樹脂繊維の溶着等の固定方法を適用することができる。
(Reinforcing fiber base material)
The morphology of the reinforced fiber base material is a unidirectional continuous fiber morphology in which the fibers of the continuous reinforced fiber bundles are aligned in one direction, a plain weave, a twill weave, a red woven fabric, and a non-crimp fabric (NCF) using the continuous reinforced fiber bundles. , A woven fabric form such as a three-dimensional fabric, a continuous strand mat used by cutting a reinforcing fiber bundle, and a chopped fiber form such as a chopped strand mat. In order to maintain the arrangement of the woven fabric, a fixing method such as stitching with reinforcing fibers or welding of thermosetting resin or thermoplastic resin fibers can be applied.

強化繊維基材のサイジング剤付着率は、0.1~5.0質量%が好ましく、0.2~3.0質量%がより好ましく、0.2~1.5質量%がさらに好ましい。サイジング剤の付着率が前記範囲の下限値以上であれば、強化繊維が十分に収束しプリプレグ製造時に毛羽が発生しにくく、力学特性に優れた成形体が得られやすい。 The sizing agent adhesion rate of the reinforcing fiber base material is preferably 0.1 to 5.0% by mass, more preferably 0.2 to 3.0% by mass, and even more preferably 0.2 to 1.5% by mass. When the adhesion rate of the sizing agent is at least the lower limit of the above range, the reinforcing fibers are sufficiently converged and fluff is less likely to occur during the production of the prepreg, and it is easy to obtain a molded product having excellent mechanical properties.

(マトリックス樹脂)
マトリックス樹脂は、エポキシ樹脂、ビニルエステル樹脂等の熱硬化性樹脂や、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂等の熱可塑性樹脂や、それらを組み合わせた樹脂を用いることができる。成形サイクルの観点で、熱可塑性樹脂が好ましく、中でもポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、またはポリエーテルケトンケトン樹脂を含むことが好ましい。アクリル樹脂、ポリアミド樹脂、熱可塑エポキシ樹脂等の、モノマーや低分子量体を強化繊維基材に含浸させた後、重合可能な樹脂を用いることができる。マトリックス樹脂には発明の効果を損なわない範囲で必要に応じて公知の熱硬化性樹脂、充填剤、熱安定剤、酸化防止剤、老化防止剤、難燃剤、顔料などの各種添加剤を含有させてもよい。マトリックス樹脂がフィルム形態の場合、フィルムの厚さは、10~100μmが好ましい。フィルムは、無延伸フィルムであっても、延伸フィルムであってもよく、二次加工性に優れる点から、無延伸フィルムが好ましい。なお、無延伸フィルムには、延伸倍率が2倍未満であるフィルムを含むものとする。プリプレグ用フィルムの製造法は、特に限定されず、公知の方法を採用できる。例えば、マトリックス樹脂組成物に用いる材料を溶融混練した後、フィルム状に押出成形し、冷却する方法が挙げられる。溶融混練には、単軸又は二軸押出機等の公知の混練機を用いることができる。押出成形は、例えば、Tダイ等の金型を用いることにより行える。溶融温度は、樹脂の種類や混合比率、添加剤の有無や種類に応じて適宜調整できる。冷却は、例えば、冷却されたキャストロール等の冷却機に接触させる方法が挙げられる。
(Matrix resin)
The matrix resin includes heat-curable resins such as epoxy resin and vinyl ester resin, polypropylene resin, polyamide resin, polycarbonate resin, polyphenylene sulfide resin, polyether sulfone resin, polyetherimide resin, polyether ether ketone resin, and polyether. A thermoplastic resin such as a ketone ketone resin or a resin in which they are combined can be used. From the viewpoint of the molding cycle, a thermoplastic resin is preferable, and among them, a polyamide resin, a polyphenylene sulfide resin, a polyetherimide resin, a polyetheretherketone resin, or a polyetherketoneketone resin is preferably contained. A resin that can be polymerized after impregnating the reinforcing fiber base material with a monomer or a low molecular weight substance such as an acrylic resin, a polyamide resin, and a thermoplastic epoxy resin can be used. The matrix resin contains various additives such as known thermosetting resins, fillers, heat stabilizers, antioxidants, antioxidants, flame retardants, pigments, etc., as necessary, as long as the effects of the invention are not impaired. May be. When the matrix resin is in the form of a film, the thickness of the film is preferably 10 to 100 μm. The film may be a non-stretched film or a stretched film, and a non-stretched film is preferable from the viewpoint of excellent secondary processability. The non-stretched film includes a film having a draw ratio of less than 2 times. The method for producing the prepreg film is not particularly limited, and a known method can be adopted. For example, a method in which the material used for the matrix resin composition is melt-kneaded, then extruded into a film and cooled. A known kneader such as a single-screw or twin-screw extruder can be used for melt-kneading. Extrusion molding can be performed, for example, by using a mold such as a T-die. The melting temperature can be appropriately adjusted according to the type and mixing ratio of the resin, the presence or absence of additives, and the type. Examples of cooling include a method of contacting with a cooler such as a cooled cast roll.

[プリプレグ]
強化繊維基材にマトリクス樹脂を含浸させてプリプレグとすることができる。強化繊維基材およびマトリクス樹脂は前述の態様を適用することができる。成形性を向上させるため、切込み加工を施した切込みプリプレグとしたり、連続繊維プリプレグをリボン状に切断してスリットテーププリプレグとしたり、長方形もしくは平行四辺形のチョップドストランドとし、前記チョップドストランドを等方的もしくは異方的にランダムに分散させたランダムシートとすることができる。強化繊維束の繊維軸方向が同一または異なるプリプレグを複数枚積層した積層体としてもよい。例えば、各プリプレグの強化繊維束の繊維軸方向が揃えられた一方向性材料、各プリプレグの強化繊維束の繊維軸方向が直交する直交積層材料、各プリプレグの強化繊維束の繊維軸方向が擬似等方となる擬似等方積層材料が挙げられる。積層体におけるプリプレグの積層枚数は、プリプレグの厚さと成形体に求められる厚さに応じて適宜設定できる。プリプレグ中のマトリックス樹脂の含有量は、強化繊維との接着性の観点から、プリプレグの総質量に対して、15~50質量%が好ましく、20~45質量%がより好ましく、25~40質量%がさらに好ましい。
[Prepreg]
A prepreg can be obtained by impregnating a reinforcing fiber base material with a matrix resin. The above-mentioned embodiment can be applied to the reinforcing fiber base material and the matrix resin. In order to improve formability, a notched prepreg may be used, a continuous fiber prepreg may be cut into a ribbon to form a slit tape prepreg, or a rectangular or parallelogram chopped strand may be used, and the chopped strand may be isotropic. Alternatively, it can be a random sheet that is anisotropically randomly dispersed. A laminated body in which a plurality of prepregs having the same or different fiber axial directions of the reinforcing fiber bundles may be laminated may be used. For example, a unidirectional material in which the fiber axial directions of the reinforcing fiber bundles of each prepreg are aligned, an orthogonal laminated material in which the fiber axial directions of the reinforcing fiber bundles of each prepreg are orthogonal to each other, and a simulated fiber axial direction of the reinforcing fiber bundles of each prepreg. Examples thereof include pseudo isotropic laminated materials that are isotropic. The number of laminated prepregs in the laminated body can be appropriately set according to the thickness of the prepreg and the thickness required for the molded body. The content of the matrix resin in the prepreg is preferably 15 to 50% by mass, more preferably 20 to 45% by mass, and 25 to 40% by mass with respect to the total mass of the prepreg from the viewpoint of adhesiveness to the reinforcing fibers. Is more preferable.

(凹凸度)
プリプレグは、下記測定方法で観測される平均凹凸度が1.5°以上であり、凹凸度が2.0°以上5°未満である割合が40%を超えるものであることが好ましい。平均凹凸度が3.0°以上であり、凹凸度が2.0°以上5°未満である割合が40%を超えることは、プリプレグ表面に高さ10~50μmの凹凸形状が存在することを意味する。例えば、前述の黒鉛シートが繊維強化複合材料前駆体に接した状態で加圧することにより、平均凹凸度と凹凸度を特定の範囲とすることができる。
<測定方法>
200倍の倍率でプリプレグの断面を投影したときに、プリプレグ厚み方向の視野内のすべての境界線が、横:縦の比率が5以上の長方形に含まれ、且つ前記長方形の長辺と平行な水平線と前記境界線のなす角が90℃未満になるようにプリプレグを配置し、前記長方形の短辺と平行かつ同一長さの垂直線を視野内に200μm間隔で表示する。ある垂直線を垂直線aとしたとき、垂直線aと視野内上部側のプリプレグ境界線との交点Aと、垂直線aから200μm間隔をあけて隣に存在する垂直線bと視野内上部側のプリプレグ境界線との交点Bと、を直線で結び直線ABを得る。同様に、垂直線aと視野内下部側のプリプレグ境界線との交点Cと、垂直線bと視野内下部側のプリプレグ境界線との交点Dとを直線で結び直線CDを得る。直線ABと直線CDがなす角度を0°以上180°未満の範囲で得る。視野内の複数の垂直線で得られた前記角度の平均値をプリプレグの平均凹凸度とする。
プリプレグ表面に存在する適度な凹凸形状は、成形時に層間が軟化し密着しながら、層間の空気を効率よく除去できるため、成形体中のボイド残存を抑制することができる。プリプレグの凹凸形状は、表面または内部に凹凸が存在する前記シート材を使用してプリプレグを製造することにより、凹凸形状を付与することができる。凹凸度の測定は、プリプレグを研磨し、顕微鏡やマイクロスコープにてプリプレグが水平となるよう配置した撮影画像から得ることができる。具体的には、図4を用いて説明する。図4における繊維強化複合材料4を加圧後の連続繊維基材とマトリクス樹脂からなるプリプレグとした場合、プリプレグの幅方向に切断して得られる断面について顕微鏡を用いて200倍で観察したプリプレグの断面と200μmの格子スケールを同時に画面上に表示し、格子スケールの「ある縦線aとプリプレグの上面との交点A」と、「200μm隣の縦線bとプリプレグ上面との交点B」を結び直線ABを引く。プリプレグの下面も同様に交点CとDを結び直線CDを得る。続いてプリプレグの上面と下面の直線ABと直線CDのなす角度θを0°以上180°未満の範囲で値を凹凸度として得る。角度θは、それぞれの直線を外挿またはいずれかの直線を平行移動して交わった交点における角度を測定することで得られる。なお、2つの直線が平行な場合は0°で表す。凹凸度の平均値をプリプレグの平均凹凸度とする。プリプレグの平均凹凸度は2.0°以上が好ましく、3.0°以上がより好ましい。平均凹凸度が10°以下の場合は、成形体の内部にプリプレグ表面の凹凸形状がボイドとして残ることを抑制できる。凹凸度が2.0°以上5°未満である割合が40%を超えるものであることが好ましく、45%以上であることがより好ましい。厚みの均一にする観点から、凹凸度が2.0°以上5°未満である割合は60%以下が好ましい。
(Roughness)
It is preferable that the prepreg has an average unevenness of 1.5 ° or more and an unevenness of 2.0 ° or more and less than 5 ° as a percentage of more than 40% observed by the following measuring method. The fact that the ratio of the average unevenness of 3.0 ° or more and the unevenness of 2.0 ° or more and less than 5 ° exceeds 40% means that the uneven shape having a height of 10 to 50 μm exists on the surface of the prepreg. means. For example, by pressurizing the above-mentioned graphite sheet in contact with the fiber-reinforced composite material precursor, the average degree of unevenness and the degree of unevenness can be set in a specific range.
<Measurement method>
When the cross section of the prepreg is projected at a magnification of 200 times, all the boundaries in the field of view in the prepreg thickness direction are included in the rectangle having a horizontal: vertical ratio of 5 or more, and are parallel to the long side of the rectangle. The prepreg is arranged so that the angle formed by the horizon and the boundary line is less than 90 ° C., and vertical lines parallel to the short side of the rectangle and having the same length are displayed in the field of view at intervals of 200 μm. When a certain vertical line is defined as a vertical line a, the intersection A of the vertical line a and the prepreg boundary line on the upper side of the field of view, the vertical line b existing next to the vertical line a at a distance of 200 μm, and the upper side of the field of view. A straight line AB is obtained by connecting the intersection B with the prepreg boundary line of the above with a straight line. Similarly, the intersection C of the vertical line a and the prepreg boundary line on the lower side of the field of view and the intersection D of the vertical line b and the prepreg boundary line on the lower side of the field of view are connected by a straight line to obtain a straight line CD. The angle formed by the straight line AB and the straight line CD is obtained in the range of 0 ° or more and less than 180 °. The average value of the angles obtained by a plurality of vertical lines in the field of view is defined as the average unevenness of the prepreg.
The appropriate uneven shape existing on the surface of the prepreg can efficiently remove the air between the layers while softening and adhering to the layers at the time of molding, so that it is possible to suppress the residual voids in the molded body. The uneven shape of the prepreg can be imparted by manufacturing the prepreg using the sheet material having unevenness on the surface or inside. The degree of unevenness can be measured from a photographed image obtained by polishing the prepreg and arranging the prepreg horizontally with a microscope or a microscope. Specifically, it will be described with reference to FIG. When the fiber-reinforced composite material 4 in FIG. 4 is a prepreg composed of a continuous fiber base material after pressurization and a matrix resin, the cross section obtained by cutting in the width direction of the prepreg is observed at 200 times using a microscope. The cross section and the 200 μm lattice scale are displayed on the screen at the same time, and the “intersection point A between a certain vertical line a and the upper surface of the prepreg” and the “intersection point B between the vertical line b adjacent to 200 μm and the upper surface of the prepreg” are connected. Draw a straight line AB. Similarly, the lower surface of the prepreg connects the intersections C and D to obtain a straight line CD. Subsequently, the angle θ formed by the straight line AB and the straight line CD on the upper surface and the lower surface of the prepreg is obtained as the degree of unevenness in the range of 0 ° or more and less than 180 °. The angle θ is obtained by extrapolating each straight line or translating one of the straight lines and measuring the angle at the intersection. When two straight lines are parallel, it is represented by 0 °. The average value of the degree of unevenness is defined as the average degree of unevenness of the prepreg. The average unevenness of the prepreg is preferably 2.0 ° or higher, more preferably 3.0 ° or higher. When the average degree of unevenness is 10 ° or less, it is possible to prevent the uneven shape of the prepreg surface from remaining as a void inside the molded body. The ratio of the degree of unevenness of 2.0 ° or more and less than 5 ° is preferably more than 40%, and more preferably 45% or more. From the viewpoint of making the thickness uniform, the ratio of unevenness of 2.0 ° or more and less than 5 ° is preferably 60% or less.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description.

[実施例1]
炭素繊維TRH50 18M(三菱ケミカル社製)を使用し、炭素繊維目付(FAW)が64g/mの一方向性繊維基材とTダイにてPEEK樹脂(ダイセルエボニック社製 3300G、融点330~340℃)を押出成形した25μm厚みのフィルムを熱融着により張り合わせ、未含浸繊維が残る繊維強化複合材料前駆体プリプレグを得た。
[Example 1]
Using carbon fiber TRH50 18M (manufactured by Mitsubishi Chemical Co., Ltd.), PEEK resin (3300G manufactured by Daicel Ebonic Co., Ltd., melting point 330 to 340) using a unidirectional fiber base material with a carbon fiber grain (FAW) of 64 g / m 2 and T-die. A 25 μm-thick film extruded at ° C.) was bonded by heat fusion to obtain a fiber-reinforced composite material precursor prepreg in which unimpregnated fibers remained.

前記繊維強化複合材料前駆体プリプレグを繊維方向長さ118mm、繊維直角方向長さが198mmに切断し、上から離型フィルム(東レ社製ポリイミドフィルム、商品名カプトン、50μm厚み)/前記繊維強化複合材料前駆体プリプレグ3枚/感圧フィルム(富士フィルム社製プレスケール、中圧用)/離型フィルム(東レ社製ポリイミドフィルム、商品名カプトン、50μm厚み)の順に重ね、表1の実施例1の構成にて膨張黒鉛シート(東洋炭素社製 PF-60、寸法118mm×198mm、60μm厚み、面内方向線膨張係数5×10-6(1/℃))、C/Cコンポジット板(CFCデザイン社製FS740、寸法118mm×198mm、2mm厚み、面内方向線膨張係数0.6×10-6(1/℃))と共に鋼材金型(内寸120mm×200mm)に封入し、加熱冷却二段式プレス(神藤金属工業社製50トンプレス)にて、室温にてプレス成形(2MPa×45秒、8MPa×45秒、2MPa×45秒)を行った。次に前記感圧フィルムを圧力画像解析システム(富士フィルム社製FPD9210)にて画像解析し、加圧時のバラツキの指標となる、圧力の標準偏差を求めた。標準偏差は1.4MPaであった。 The fiber-reinforced composite material precursor prepreg is cut to a length of 118 mm in the fiber direction and a length of 198 mm in the direction perpendicular to the fiber, and a release film (polyimide film manufactured by Toray Co., Ltd., trade name: Capton, 50 μm thickness) / the fiber-reinforced composite 3 sheets of material precursor prepreg / pressure-sensitive film (prescale manufactured by Fuji Film Co., Ltd., for medium pressure) / release film (polyimide film manufactured by Toray Co., Ltd., trade name: Capton, 50 μm thickness) are stacked in this order, and in Example 1 of Table 1. Expanded polyimide sheet (PF-60 manufactured by Toyo Carbon Co., Ltd., dimensions 118 mm x 198 mm, thickness 60 μm, in-plane direction line expansion coefficient 5 x 10-6 (1 / ° C.)), C / C composite plate (CFC Design Co., Ltd.) FS740, dimensions 118 mm x 198 mm, 2 mm thickness, in-plane linear expansion coefficient 0.6 x 10-6 (1 / ° C)) and sealed in a steel mold (inner dimensions 120 mm x 200 mm), heating and cooling two-stage type Press molding (2 MPa × 45 seconds, 8 MPa × 45 seconds, 2 MPa × 45 seconds) was performed at room temperature in a press (50 ton press manufactured by Kondo Metal Industry Co., Ltd.). Next, the pressure-sensitive film was image-analyzed by a pressure image analysis system (FPD9210 manufactured by Fuji Film Co., Ltd.), and the standard deviation of pressure, which is an index of variation during pressurization, was obtained. The standard deviation was 1.4 MPa.

次に前記繊維強化複合材料前駆体プリプレグを、繊維方向長さ約120mm、繊維直角方向長さが約200mmに切断し、3枚重ねて表1の実施例1の構成にて、前記加熱冷却二段式プレスにて、ヒートアンドクールプレス成形(380℃×2MPa×45秒、380℃×8MPa×45秒、80℃×2MPa×120秒)を行い、約0.2mm厚さのプリプレグを得た。得られたプリプレグの中心部分を切り出し、繊維直角方向の断面を研磨し、デジタルマイクロスコープ(キーエンス社製、VHX-5000シリーズ)にて縦400μm×横2000μmの画面内にプリプレグの厚みがすべて含まれるよう水平に配置し、200倍で観察した。その際に200μmの格子スケールを画面上に表示し、ある格子スケールの縦線とプリプレグの上面との交点と、200μm隣の縦線とプリプレグ上面との交点を結び直線を引いて、次にその格子スケールの縦線とプリプレグの下面も同様に交点を結び直線を得た。上面と下面からなる2つの線の角度を0°以上180°未満の範囲で値を得た。1つの撮影画像から8か所の角度を求め、プリプレグ内をランダムに5か所撮影し、計40か所の角度の平均値をプリプレグの平均凹凸度とした。実施例1のプリプレグの平均凹凸度は3.1°であった。ボイド率は、前記デジタルマイクロスコープにて500倍の倍率で撮影した。画像解析はImage J(アメリカ国立衛生研究所(NIH)開発ソフト)を使用し、ボイド部分とボイド以外の部分を二値化処理してプリプレグ中のボイド率を得た。同プリプレグから5か所をランダムに撮影し、その平均値は0.7%であった。 Next, the fiber-reinforced composite material precursor prepreg was cut to a length of about 120 mm in the fiber direction and a length of about 200 mm in the direction perpendicular to the fiber, and three sheets were stacked and heated and cooled according to the configuration of Example 1 in Table 1. Heat and cool press molding (380 ° C. × 2 MPa × 45 seconds, 380 ° C. × 8 MPa × 45 seconds, 80 ° C. × 2 MPa × 120 seconds) was performed in a step press to obtain a prepreg having a thickness of about 0.2 mm. .. The central part of the obtained prepreg is cut out, the cross section in the direction perpendicular to the fiber is polished, and the entire thickness of the prepreg is included in the screen of 400 μm in length × 2000 μm in width with a digital microscope (Keyence, VHX-5000 series). It was arranged horizontally and observed at 200 times. At that time, a 200 μm grid scale is displayed on the screen, and a straight line is drawn by connecting the intersection of the vertical line of a certain grid scale and the upper surface of the prepreg and the intersection of the vertical line adjacent to 200 μm and the upper surface of the prepreg. Similarly, the vertical lines of the grid scale and the lower surface of the prepreg were also connected at the intersections to obtain straight lines. The angles of the two lines consisting of the upper surface and the lower surface were obtained in the range of 0 ° or more and less than 180 °. Eight angles were obtained from one captured image, five angles were randomly photographed in the prepreg, and the average value of the angles at a total of 40 points was taken as the average unevenness of the prepreg. The average degree of unevenness of the prepreg of Example 1 was 3.1 °. The void ratio was photographed with the digital microscope at a magnification of 500 times. Image J (National Institutes of Health (NIH) development software) was used for image analysis, and the void portion and the portion other than the void were binarized to obtain the void ratio in the prepreg. Five places were randomly photographed from the same prepreg, and the average value was 0.7%.

[実施例2]
実施例1と同様のプレス条件にて、異なる構成(表1の実施例2)で圧力分布の標準偏差を求めたところ、1.9MPaと小さいバラツキを示した。プリプレグの平均凹凸度は1.6°、ボイド率は1.6%であった。
[Example 2]
When the standard deviation of the pressure distribution was obtained with different configurations (Example 2 in Table 1) under the same press conditions as in Example 1, a small variation of 1.9 MPa was shown. The average porosity of the prepreg was 1.6 ° and the void ratio was 1.6%.

[実施例3]
実施例1と同様のプレス条件にて、C/Cコンポジット板を使用しない構成(表1の実施例3)にて圧力分布の標準偏差を求めたところ、2.5MPaであった。プリプレグの平均凹凸度は3.1°、ボイド率は1.3%であった。
[Example 3]
The standard deviation of the pressure distribution was determined under the same press conditions as in Example 1 in the configuration without using the C / C composite plate (Example 3 in Table 1), and it was 2.5 MPa. The average porosity of the prepreg was 3.1 ° and the void ratio was 1.3%.

[比較例1]
実施例1と同様のプレス条件にて、黒鉛シートを使用しない構成(表1の比較例1)にて圧力分布の標準偏差を求めたところ、6.2MPaであった。プリプレグの平均凹凸度は2.0°、ボイド率は2.7%であった。
[Comparative Example 1]
Under the same press conditions as in Example 1, the standard deviation of the pressure distribution was determined in a configuration without a graphite sheet (Comparative Example 1 in Table 1), and it was 6.2 MPa. The average unevenness of the prepreg was 2.0 ° and the void ratio was 2.7%.

[比較例2]
実施例1と同様のプレス条件にて、黒鉛シートが繊維強化複合材料前駆体と接することなく2mm以上離れる構成(表1の比較例2)にて圧力分布の標準偏差を求めたところ、4.3MPaであった。プリプレグの平均凹凸度は1.1°、ボイド率は0.8%であった。
[Comparative Example 2]
3. Under the same press conditions as in Example 1, the standard deviation of the pressure distribution was obtained in a configuration in which the graphite sheet was separated by 2 mm or more without contacting the fiber-reinforced composite material precursor (Comparative Example 2 in Table 1). It was 3 MPa. The average porosity of the prepreg was 1.1 ° and the void ratio was 0.8%.

[実施例4]
実施例1と同様のプレス条件にて、表2の実施例4の構成で繊維強化複合材料前駆体プリプレグ3枚を2セット使用し、各繊維強化複合材料前駆体プリプレグ積層体にかかる圧力分布を、前記感圧フィルム及び圧力画像解析システムにて標準偏差をそれぞれ求めたところ、それぞれ2.3、2.1MPaであった。
[Example 4]
Under the same press conditions as in Example 1, two sets of three fiber-reinforced composite material precursor prepregs were used in the configuration of Example 4 in Table 2, and the pressure distribution applied to each fiber-reinforced composite material precursor prepreg laminate was measured. When the standard deviations were obtained by the pressure-sensitive film and the pressure image analysis system, respectively, they were 2.3 and 2.1 MPa, respectively.

[実施例5]
実施例1と同様のプレス条件にて、表2の実施例5の構成で繊維強化複合材料前駆体プリプレグ3枚を2セット使用し、各繊維強化複合材料前駆体プリプレグ積層体にかかる圧力分布を、前記感圧フィルム及び圧力画像解析システムにて標準偏差をそれぞれ求めたところ、それぞれ1.9、2.0MPaであった。
[Example 5]
Under the same press conditions as in Example 1, two sets of three fiber-reinforced composite material precursor prepregs were used in the configuration of Example 5 in Table 2, and the pressure distribution applied to each fiber-reinforced composite material precursor prepreg laminate was measured. When the standard deviations were obtained by the pressure-sensitive film and the pressure image analysis system, respectively, they were 1.9 and 2.0 MPa, respectively.

[実施例6]
実施例1と同様のプレス条件にて、表2の実施例6の構成で繊維強化複合材料前駆体プリプレグ3枚を2セット使用し、各繊維強化複合材料前駆体プリプレグ積層体にかかる圧力分布を、前記感圧フィルム及び前記圧力画像解析システムにて標準偏差をそれぞれ求めたところ、それぞれ1.8、1.7MPaであった。
[Example 6]
Under the same press conditions as in Example 1, two sets of three fiber-reinforced composite material precursor prepregs were used in the configuration of Example 6 in Table 2, and the pressure distribution applied to each fiber-reinforced composite material precursor prepreg laminate was measured. When the standard deviations were obtained by the pressure-sensitive film and the pressure image analysis system, they were 1.8 and 1.7 MPa, respectively.

表1及び表2に示すように、実施例1~6は、比較例1、2に比べて圧力標準偏差の値およびボイド率が小さく圧力の均一性に優れていた。つまり、繊維強化複合材料前駆体に均一に圧力を与えることによって、マトリックス樹脂の含浸が均一に進み、繊維強化複合材料の厚みのバラツキも小さくなる。 As shown in Tables 1 and 2, Examples 1 to 6 had smaller pressure standard deviation values and void ratios than Comparative Examples 1 and 2, and were excellent in pressure uniformity. That is, by uniformly applying pressure to the fiber-reinforced composite material precursor, the impregnation of the matrix resin proceeds uniformly, and the variation in the thickness of the fiber-reinforced composite material becomes small.

Figure 2022069001000002
Figure 2022069001000002








Figure 2022069001000003
Figure 2022069001000003

1 加圧体
2 シート材
3 繊維強化複合材料前駆体
4 繊維強化複合材料
1 Pressurizing body 2 Sheet material
3 Fiber reinforced composite material precursor 4 Fiber reinforced composite material

Claims (17)

シート材を具備する加圧体で繊維強化複合材料前駆体を加圧する繊維強化複合材料の製造方法であって、
前記繊維強化複合材料前駆体と前記シート材の少なくとも一部とが接するように加圧する、繊維強化複合材料の製造方法。
A method for producing a fiber-reinforced composite material in which a fiber-reinforced composite material precursor is pressed by a pressure body provided with a sheet material.
A method for producing a fiber-reinforced composite material, in which pressure is applied so that the fiber-reinforced composite material precursor and at least a part of the sheet material are in contact with each other.
前記繊維強化複合材料が炭素繊維とマトリクス樹脂とからなる、請求項1に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 1, wherein the fiber-reinforced composite material comprises carbon fiber and a matrix resin. 前記繊維強化複合材料前駆体が、炭素繊維とマトリクス樹脂とからなる中間材に離型紙または離型フィルムが積層された積層体である、請求項1または2に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 1 or 2, wherein the fiber-reinforced composite material precursor is a laminate in which a release paper or a release film is laminated on an intermediate material composed of carbon fiber and a matrix resin. .. 前記繊維強化複合材料前駆体が、炭素繊維とマトリクス樹脂とからなる中間材が複数積層され、最表面に離型紙または離型フィルムが積層された積層体である、請求項1または2に記載の繊維強化複合材料の製造方法。 The fiber-reinforced composite material precursor is a laminate in which a plurality of intermediate materials composed of carbon fibers and a matrix resin are laminated, and a release paper or a release film is laminated on the outermost surface, according to claim 1 or 2. A method for manufacturing a fiber-reinforced composite material. 前記マトリクス樹脂が熱可塑樹脂である、請求項2~4のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 2 to 4, wherein the matrix resin is a thermoplastic resin. 前記シート材が、面内方向の線膨張係数が50×10-6(1/℃)以下である、請求項1~5のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 1 to 5, wherein the sheet material has an in-plane linear expansion coefficient of 50 × 10 -6 (1 / ° C.) or less. 前記シート材が、面内方向の線膨張係数が20×10-6(1/℃)以下である、請求項1~6のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 1 to 6, wherein the sheet material has an in-plane linear expansion coefficient of 20 × 10 -6 (1 / ° C.) or less. 前記シート材が、黒鉛、テトラフルオロエチレン樹脂、シリコーン樹脂からなる群より選ばれる少なくとも1種からなるシート材である、請求項1~7のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 1 to 7, wherein the sheet material is a sheet material composed of at least one selected from the group consisting of graphite, tetrafluoroethylene resin, and silicone resin. .. 前記シート材が、黒鉛からなるシート材である、請求項8に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 8, wherein the sheet material is a sheet material made of graphite. 前記加圧体がC/Cコンポジット、ステンレス、インバー、繊維強化プラスチックからなる群より選ばれる少なくとも1種の材料からなる部分を含む請求項1~9のいずれか1項に記載の繊維強化複合材料の製造方法。 The fiber-reinforced composite material according to any one of claims 1 to 9, wherein the pressurizing body comprises a portion made of at least one material selected from the group consisting of C / C composite, stainless steel, Invar, and fiber reinforced plastic. Manufacturing method. 前記繊維強化複合材料前駆体を200℃以上に加熱する工程を含む、請求項1~10のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 1 to 10, which comprises a step of heating the fiber-reinforced composite material precursor to 200 ° C. or higher. 連続的または間欠的に加圧する、請求項1~11のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 1 to 11, wherein the pressure is continuously or intermittently applied. 前記繊維強化複合材料が、プリプレグである、請求項1~12のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 1 to 12, wherein the fiber-reinforced composite material is a prepreg. 前記繊維強化複合材料が、成形体である、請求項1~12のいずれか1項に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to any one of claims 1 to 12, wherein the fiber-reinforced composite material is a molded product. 繊維強化複合材料前駆体にシート材を用いて加圧する繊維強化複合材料の製造方法であって、
加圧時に前記繊維強化複合材料前駆体の最表面と前記シート材の最表面の加圧方向における最短距離が2.0mm以内となるように前記繊維強化複合材料前駆体に前記シート材を重ねて配置する、繊維強化複合材料の製造方法。
A method for producing a fiber-reinforced composite material in which a sheet material is used to pressurize a fiber-reinforced composite material precursor.
The sheet material is laminated on the fiber-reinforced composite material precursor so that the shortest distance between the outermost surface of the fiber-reinforced composite material precursor and the outermost surface of the sheet material in the pressurizing direction is within 2.0 mm at the time of pressurization. A method of manufacturing a fiber-reinforced composite material to be placed.
強化繊維とマトリクス樹脂とからなるプリプレグであって、下記測定方法で観測される平均凹凸度が1.5°以上であり、凹凸度が2.0°以上5°未満である割合が40%を超える、プリプレグ。
<測定方法>
200倍の倍率でプリプレグの断面を投影したときに、プリプレグ厚み方向の視野内のすべての境界線が、横:縦の比率が5以上の長方形に含まれ、且つ前記長方形の長辺と平行な水平線と前記境界線のなす角が90℃未満になるようにプリプレグを配置し、前記長方形の短辺と平行かつ同一長さの垂直線を視野内に200μm間隔で表示する。ある垂直線を垂直線aとしたとき、垂直線aと視野内上部側のプリプレグ境界線との交点Aと、垂直線aから200μm間隔をあけて隣に存在する垂直線bと視野内上部側のプリプレグ境界線との交点Bと、を直線で結び直線ABを得る。同様に、垂直線aと視野内下部側のプリプレグ境界線との交点Cと、垂直線bと視野内下部側のプリプレグ境界線との交点Dとを直線で結び直線CDを得る。直線ABと直線CDがなす角度を0°以上180°未満の範囲で得る。視野内の複数の垂直線で得られた前記角度の平均値をプリプレグの平均凹凸度とする。
It is a prepreg composed of reinforced fibers and matrix resin, and the average unevenness observed by the following measurement method is 1.5 ° or more, and the ratio of unevenness of 2.0 ° or more and less than 5 ° is 40%. Exceed, prepreg.
<Measurement method>
When the cross section of the prepreg is projected at a magnification of 200 times, all the boundaries in the field of view in the prepreg thickness direction are included in the rectangle having a horizontal: vertical ratio of 5 or more, and are parallel to the long side of the rectangle. The prepreg is arranged so that the angle formed by the horizon and the boundary line is less than 90 ° C., and vertical lines parallel to the short side of the rectangle and having the same length are displayed in the field of view at intervals of 200 μm. When a certain vertical line is defined as a vertical line a, the intersection A of the vertical line a and the prepreg boundary line on the upper side of the field of view, and the vertical line b and the upper side of the field of view adjacent to the vertical line a at a distance of 200 μm. A straight line AB is obtained by connecting the intersection B with the prepreg boundary line of the above with a straight line. Similarly, the intersection C of the vertical line a and the prepreg boundary line on the lower side of the field of view and the intersection D of the vertical line b and the prepreg boundary line on the lower side of the field of view are connected by a straight line to obtain a straight line CD. The angle formed by the straight line AB and the straight line CD is obtained in the range of 0 ° or more and less than 180 °. The average value of the angles obtained by a plurality of vertical lines in the field of view is defined as the average unevenness of the prepreg.
請求項16に記載のプリプレグを使用して自動積層成形する、繊維強化複合材料成形体の製造方法。
A method for producing a fiber-reinforced composite material molded product, which is automatically laminated and molded using the prepreg according to claim 16.
JP2020177894A 2020-10-23 2020-10-23 Method for manufacturing fiber-reinforced composite material Pending JP2022069001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020177894A JP2022069001A (en) 2020-10-23 2020-10-23 Method for manufacturing fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177894A JP2022069001A (en) 2020-10-23 2020-10-23 Method for manufacturing fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2022069001A true JP2022069001A (en) 2022-05-11

Family

ID=81521602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177894A Pending JP2022069001A (en) 2020-10-23 2020-10-23 Method for manufacturing fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2022069001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220032092A (en) * 2019-10-18 2022-03-15 디아이씨 가부시끼가이샤 How to make a molded article
WO2024111669A1 (en) * 2022-11-25 2024-05-30 株式会社レゾナック Prepreg, laminated plate, printed wiring board, and semiconductor package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220032092A (en) * 2019-10-18 2022-03-15 디아이씨 가부시끼가이샤 How to make a molded article
KR102643906B1 (en) * 2019-10-18 2024-03-07 디아이씨 가부시끼가이샤 Manufacturing method of molded products
WO2024111669A1 (en) * 2022-11-25 2024-05-30 株式会社レゾナック Prepreg, laminated plate, printed wiring board, and semiconductor package

Similar Documents

Publication Publication Date Title
JP6325193B2 (en) Carbon fiber reinforced composite material and method for producing the same
CN110072693B (en) Composite structure and method for manufacturing same
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
TWI547371B (en) Carbon fiber reinforced thermoplastic resin composite material, molded body using the same and electronic equipment case
JP5920690B2 (en) Pre-preg sheet material and manufacturing method thereof
EP3263631B1 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
US10800894B2 (en) Resin supply material, preform, and method of producing fiber-reinforced resin
US11584835B2 (en) Laminated substrate and method for manufacturing the same
US20180044489A1 (en) Resin supply material, method of using reinforcing fibers, preform, and method of producing fiber-reinforced resin
JP2022069001A (en) Method for manufacturing fiber-reinforced composite material
JP2010229238A (en) Carbon fiber-reinforced resin sheet, and roll-wound rolled body thereof
JP2009120627A (en) Carbon fiber-reinforced prepreg having gas barrier property and carbon fiber-reinforced plastic, and method for producing them
JP5236840B1 (en) Carbon fiber reinforced composite material and method for producing the same
JP2014069403A (en) Method for producing press-molded article by using stampable sheet-like product
US20200001550A1 (en) Method for producing fiber-reinforced plastic
JP2022120692A (en) Method for producing fiber-reinforced composite material
JP2005213469A (en) Reinforced fiber base material, preform and composite material and method of manufacturing the base material
JP2023140384A (en) Method for manufacturing fiber-reinforced composite material
US11883989B2 (en) Method for producing press molded body
JP2020128075A (en) Method of producing laminate and laminate
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
JP6477114B2 (en) Fiber reinforced thermoplastic resin laminate and method for producing the same
JPH08327290A (en) Panel for heat exchanger made of fiber-reinfored thermoplastic resin
WO2022050213A1 (en) Thermoplastic prepreg, fiber-reinforced plastic, and manufacturing method therefor
JP2024061029A (en) Laminate, and method for manufacturing molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20241001