JP2022068070A - Far infrared generation device - Google Patents

Far infrared generation device Download PDF

Info

Publication number
JP2022068070A
JP2022068070A JP2020186161A JP2020186161A JP2022068070A JP 2022068070 A JP2022068070 A JP 2022068070A JP 2020186161 A JP2020186161 A JP 2020186161A JP 2020186161 A JP2020186161 A JP 2020186161A JP 2022068070 A JP2022068070 A JP 2022068070A
Authority
JP
Japan
Prior art keywords
carbon fiber
string
fiber felt
shaped carbon
far
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020186161A
Other languages
Japanese (ja)
Inventor
昌史 一越
Masashi Ichikoshi
令 大川
Rei Okawa
星喚 小杉
Seikan Kosugi
義晴 藤井
Yoshiharu Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020186161A priority Critical patent/JP2022068070A/en
Publication of JP2022068070A publication Critical patent/JP2022068070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

To provide a generation device that is inexpensive, lightweight, and portable, does not have to use a quartz glass tube that does not transmit far infrared rays of 6 μm or more without maintaining a vacuum or filling with inert gas, is easy to be maintained and replaced, and can emit far-infrared rays corresponding to growing rays of animals and plants in order to grow animals and plants and to achieve low temperature drying.SOLUTION: In order to provide a device that directly generates far-infrared rays in the wavelength range of 6 μm to 14 μm, which are the growing rays of animals and plants, on the wavelength side shorter than 0°C, a string-shaped carbon fiber felt is cut out from a planar carbon fiber felt, the felt is inserted into a cylindrical tube and energized to raise the felt to the target temperature. At this time, a carbon fiber heater 4 capable of directly radiating animals and plants with the transmitted far-infrared rays by using a cylindrical tube made of a material that absorbs or transmits the far-infrared wavelengths peculiar to the substance.SELECTED DRAWING: Figure 4

Description

本発明は、動植物の育成光線である遠赤外線を直接放射する遠赤外線発生装置に関する The present invention relates to a far-infrared generator that directly emits far-infrared rays, which are growing rays of animals and plants.

赤外線としては、一般的に、近赤外線(およそ0.7~2.5μm)は赤外線カメラや赤外線通信・リモコン等に利用され、中赤外線(2.5~4μm)は天文分野や高温の熱利用(例えば、特許文献1、2参照及びカーボンヒーター:非特許文献1、2)されている。遠赤外線(4~1,000μm)の利用は、中・遠赤外線ヒーター(例えば、特許文献3)や乾燥機そして健康器具等での利用となっている。 As infrared rays, near-infrared rays (about 0.7 to 2.5 μm) are generally used for infrared cameras, infrared communication, remote controls, etc., and mid-infrared rays (2.5 to 4 μm) are used in the astronomical field and high-temperature heat. (For example, see Patent Documents 1 and 2 and Carbon Heater: Non-Patent Documents 1 and 2). The use of far-infrared rays (4 to 1,000 μm) is used in medium / far-infrared heaters (for example, Patent Document 3), dryers, health appliances, and the like.

高温ヒーターでは、メトロ電機工業株式会社の近赤外線(ピーク波長2μm)に用いられる独自のカーボンフィラメントを使用する高出力カーボンヒーター(フィラメント温度1,300℃)等や、フェルト状の炭素繊維のフィラメントを使用する株式会社ESPの次世代のカーボンファイバーヒーター(ピーク波長2.0~3.0μm付近、フィラメント温度約827℃)を見ることが出来る(非特許文献1,2)。いずれも炭素繊維を使用した製品である。これらの製品は、近~中赤外領域の放射強度の、ウイーンの変位則による、ピーク波長(2.0~3.0μm付近)の赤外線を放射する、シール処理を設けた不活性ガスを封入したあるいは真空処理をした石英ガラスの管に、炭素繊維であるカーボンフィラメントを内蔵したヒーターである。この石英ガラスは5μm以上の遠赤外線を透過しないため、大気の窓と言われる8μmから13μmの遠赤外線の利用には不向きである。また、このカーボンファイバーヒーターやカーボンヒーターは、不活性ガスが封入されたあるいは管内が真空の石英ガラス管内に、炭素繊維であるカーボンフィラメントが設置され、炭素繊維のフィラメントの酸化を防ぎつつ高温にすることが出来るが、稼働中は、人が容易に石英ガラスに触れることも扱うことも出来ない。遠赤外線の利用に当たっては人が容易に扱える軽量な装置にする必要がある。 For high-temperature heaters, high-power carbon heaters (filament temperature 1,300 ° C) that use unique carbon filaments used for near-infrared rays (peak wavelength 2 μm) of Metro Denki Kogyo Co., Ltd., and felt-like carbon fiber filaments are used. You can see the next-generation carbon fiber heater (peak wavelength around 2.0 to 3.0 μm, filament temperature about 827 ° C) used by ESP Co., Ltd. (Non-Patent Documents 1 and 2). Both are products using carbon fiber. These products contain a sealed inert gas that emits infrared rays with a peak wavelength (around 2.0 to 3.0 μm) according to Wien's displacement law, which has a radiant intensity in the near to mid-infrared region. It is a heater in which carbon filament, which is a carbon fiber, is built in a quartz glass tube that has been radiated or vacuum-treated. Since this quartz glass does not transmit far infrared rays of 5 μm or more, it is not suitable for use of far infrared rays of 8 μm to 13 μm, which is called an atmospheric window. Further, in this carbon fiber heater or carbon heater, a carbon filament, which is a carbon fiber, is installed in a quartz glass tube in which an inert gas is sealed or the inside of the tube is vacuum, and the temperature is raised while preventing the oxidation of the carbon fiber filament. However, during operation, humans cannot easily touch or handle the quartz glass. When using far infrared rays, it is necessary to make a lightweight device that can be easily handled by humans.

遠赤外線は、4~1,000μmの波長帯であるが、その中でも大気による吸収が少ない3から5μm強及び8から13μmの波長帯は「大気の窓」と言われている。その波長のうち太陽が放射する光線で地上に達する赤外線は、大気の窓と言われる波長帯の、中赤外線では3.5μmと、遠赤外線では10μmを中心とする波長帯となっている。模式図を図1「大気による赤外線の吸収」に示す。その中で水の吸収波長は中赤外線の3μmと、生物(有機物)の吸収波長と重なる遠赤外線の6~12μmとなっている。特に6(資料により8)~14(資料により15)μmの遠赤外線の波長帯は動植物の「育成光線」と言われている。ところがこの6(資料により8)~14(資料により15)μmの遠赤外線の波長帯の有効利用は、海産物や農産物等の加熱加工や乾燥用遠赤外線プレートヒーター(Max.130℃ 7.18μ程度)を利用)とか健康機器利用であり、さらに遠赤外線を、幅広く、容易に、有効利用が出来る新たな軽量な遠赤外線発生装置の技術開発が必要になる。 Far-infrared rays have a wavelength band of 4 to 1,000 μm, and among them, wavelength bands of 3 to 5 μm or more and 8 to 13 μm, which are less absorbed by the atmosphere, are called “atmospheric windows”. Of these wavelengths, the infrared rays that reach the ground with the rays emitted by the sun are in the wavelength band called the window of the atmosphere, centered on 3.5 μm for mid-infrared rays and 10 μm for far-infrared rays. A schematic diagram is shown in FIG. 1 “Absorption of infrared rays by the atmosphere”. Among them, the absorption wavelength of water is 3 μm of mid-infrared rays and 6 to 12 μm of far-infrared rays that overlap with the absorption wavelength of living organisms (organic substances). In particular, the wavelength band of far infrared rays of 6 (8 according to the material) to 14 (15) μm is said to be the “growth ray” of animals and plants. However, the effective use of the far-infrared wavelength band of 6 (8) to 14 (15 according to the material) μm is the far-infrared plate heater for heat processing and drying of marine products and agricultural products (Max. 130 ℃ 7.18μ). ) Is used) and health equipment is used, and it is necessary to develop a new lightweight far-infrared ray generator that can widely and easily and effectively use far-infrared rays.

動植物の育成光線である6(あるいは8)~14μmの波長域の遠赤外線を放射可能な、取扱いが容易で安価・軽量な遠赤外線発生装置の技術開発が必要とされるが、現状そういった装置は見当たらない。植物の育成用に設置された温室やビニールハウスは、太陽から波長が3~5μm以下の可視・近・中赤外線を取り入れるが、温室内から放射された5μm以上の遠赤外線を外部に放出しない特性を有する。しかし、外気の温度が下がった場合は熱伝導等により温室内やビニールハウス内の温度が徐々に下がるため、その熱放出に見合ったエネルギーを、化石燃料や電気による暖房機を使用し、熱供給を行っている。そこで、植物の近くで、空気に吸収されにくく、土壌や植物等の有機物を直接暖め、植物の育成を効率的に行うことが出来る、そして化石燃料の使用量を削減できる、誰でも容易に使用可能な安価で軽量な遠赤外線発生装置の実現が望まれる。 It is necessary to develop a technology for an easy-to-use, inexpensive and lightweight far-infrared ray generator that can radiate far-infrared rays in the wavelength range of 6 (or 8) to 14 μm, which is a growing ray of animals and plants. I can't find it. Greenhouses and greenhouses installed for growing plants take in visible, near, and middle infrared rays with wavelengths of 3 to 5 μm or less from the sun, but do not emit far infrared rays of 5 μm or more emitted from the greenhouse to the outside. Has. However, when the temperature of the outside air drops, the temperature inside the greenhouse or vinyl house gradually drops due to heat conduction, etc., so energy commensurate with the heat release is supplied by using a fossil fuel or electric heater. It is carried out. Therefore, near plants, it is not easily absorbed by the air, it can directly warm organic matter such as soil and plants, it can grow plants efficiently, and it can reduce the amount of fossil fuel used, so anyone can use it easily. It is desired to realize an inexpensive and lightweight far-infrared generator that is possible.

特開平2006-294337遠赤外線ヒーターJP-A-2006-294337 Far-infrared heater 特開平11-086804遠赤外線ヒーターJapanese Patent Laid-Open No. 11-086804 Far-infrared heater 特開2010-27224(P2010-27224A)炭素繊維ヒーター線の製造方法、炭素繊維ヒーター線及び融雪用ヒーターJP-A-2010-27224 (P2010-27224A) Method for manufacturing carbon fiber heater wire, carbon fiber heater wire and heater for melting snow

メトロ電気工業株式会社 ピュアタンヒータ(単管ヒーター)(www.metro-co.com/product/heatertubes/prod04.html#ref_sp)遠赤黒膜ヒーター(黒膜塗装)(www.metro-co.com/product/heatertubes/prod07.html)Metro Electric Industry Co., Ltd. Pure Tan Heater (single tube heater) (www.metro-co.com/product/heatertubes/prod04.html#ref_sp) Far-red black film heater (black film coating) (www.metro-co.com/ product / heatertubes /prod07.html) 株式会社ESP CFH~カーボンファイバーヒーター~(esp-kanagawa.co.jp/cfh.html)次世代のカーボンファイバーヒーター p.3/11,p10/11ESP CFH Co., Ltd.-Carbon Fiber Heater- (esp-kanagawa.co.jp/cfh.html) Next-generation carbon fiber heater p. 3/11, p10 / 11

空気中で植物の育成に遠赤外線を利用するためには、図1に示したように、動植物の「育成光線」と言われ6(資料により8)~14(資料により15)μmのうち、遠赤外線が空気に吸収されにくい空気の窓(図1)と言われる波長域を考慮に入れた、大気の窓(8μm~13μm)を有効利用出来る、図2に模式図を示すが、ピーク波長相当の温度が0℃(相当する波長が10.6μm)以上の温度帯の放射光を利用する必要がある。本発明の目的は、ピーク波長で6(資料により8)μm~10.6μの波長帯の遠赤外線を有効に動植物や土壌に直接照射できるカーボンファイバーヒーターを備えた遠赤外線発生装置を実現し提供することにある。 In order to use far infrared rays to grow plants in the air, as shown in Fig. 1, it is said to be the "growth ray" of animals and plants, and out of 6 (8 according to the material) to 14 (15) μm according to the material. An atmospheric window (8 μm to 13 μm) can be effectively used in consideration of the wavelength range called the air window (Fig. 1) where far infrared rays are not easily absorbed by the air. Fig. 2 shows a schematic diagram, but the peak wavelength. It is necessary to use radiated light in a temperature range in which the corresponding temperature is 0 ° C. (corresponding wavelength is 10.6 μm) or higher. An object of the present invention is to realize and provide a far-infrared ray generator equipped with a carbon fiber heater capable of effectively irradiating far-infrared rays in a wavelength band of 6 (8 according to the material) μm to 10.6 μm at a peak wavelength directly to animals, plants and soil. To do.

石英ガラス管内に設けた炭素繊維に通電し1,000℃前後の温度を生み出すヒーターが実用されているが、炭素繊維は空気中で熱するとき、炭素繊維の性状とか品質にもよるが、低いものでは150℃以上で徐々に酸化するため、高温ヒーターのように高温を必要とする場合は、石英ガラス管内を真空にするか石英ガラス管内に不活性ガスを封入し、炭素繊維の酸化を防止している。しかし用いられている石英ガラスは5μm以上の遠赤外線を透過できない。従って遠赤外線を透過させ、有効利用するためには、石英ガラス管や光を透過しない金属管を用いることは出来ない。そのため、本発明の目的は、紐状炭素繊維フェルトを管内に設置して5μm以上の、特に動植物の「育成光線」と言われ6(あるいは8)~14μmの遠赤外線の波長帯の遠赤外線を透過させるようにするため、遠赤外線が透過できる材質を使用した管の適用を実現し、提供することにある。 A heater that energizes the carbon fiber provided in the quartz glass tube to generate a temperature of around 1,000 ° C is practically used, but when the carbon fiber is heated in the air, it is low, although it depends on the properties and quality of the carbon fiber. Since carbon fiber gradually oxidizes at 150 ° C or higher, when high temperature is required such as in a high temperature heater, the inside of the quartz glass tube is evacuated or an inert gas is sealed in the quartz glass tube to prevent the oxidation of carbon fiber. are doing. However, the quartz glass used cannot transmit far infrared rays of 5 μm or more. Therefore, in order to transmit far infrared rays and make effective use of them, it is not possible to use a quartz glass tube or a metal tube that does not transmit light. Therefore, an object of the present invention is to install a string-shaped carbon fiber felt in a tube to generate far-infrared rays having a wavelength band of far-infrared rays of 6 (or 8) to 14 μm, which is said to be a “growth ray” of animals and plants of 5 μm or more. In order to make it transmit, it is intended to realize and provide a tube using a material capable of transmitting far infrared rays.

本発明の目的は、動植物の育成用や、保温用そして低温乾燥用装置として実現するために、同時に誰もが容易に使用を可能にするために、安価で軽量で持ち運びが可能な、5μm以上の遠赤外線を透過しない石英ガラス管を使用しなくて済む、また真空の維持や不活性ガスの封入をしないで済む、メンテナンスが容易な、また取り替えが容易な安価な遠赤外線発生装置を実現し、提供することにある。 An object of the present invention is to realize it as a device for growing animals and plants, for heat retention and for low temperature drying, and at the same time, in order to make it easy for anyone to use, it is inexpensive, lightweight and portable, 5 μm or more. We have realized an inexpensive far-infrared generator that is easy to maintain and easy to replace, without using a quartz glass tube that does not transmit far-infrared rays, and without maintaining a vacuum or filling with an inert gas. , To provide.

本発明の目的は、高電気抵抗の、図3に示す面状炭素繊維のフェルト1から切り取った紐状炭素繊維のフェルト2は、わずかな引っ張り応力で切断され、上下左右への引っ張り応力で紐状炭素繊維のフェルトから炭素繊維のフィラメントが容易に剥がれるため、面状炭素繊維のフェルトから切り取り紐状炭素繊維フェルトを作成するとき、その幅にむらが出来ないように、また紐状炭素繊維のフェルトに通電して使用するとき安定的に使用出来るように、炭素繊維フェルトを切断し、切断した紐状炭素繊維フェルトを提供するすることにある。 An object of the present invention is that the string-shaped carbon fiber felt 2 cut from the planar carbon fiber felt 1 shown in FIG. 3 having high electrical resistance is cut by a slight tensile stress and is stringed by a tensile stress in the vertical and horizontal directions. Since the filament of the carbon fiber is easily peeled off from the felt of the shaped carbon fiber, when making a string-shaped carbon fiber felt by cutting from the felt of the planar carbon fiber, the width should not be uneven and the string-shaped carbon fiber should be used. It is an object of the present invention to cut a carbon fiber felt and provide a cut string-shaped carbon fiber felt so that the carbon fiber felt can be used stably when the felt is energized.

前述の紐状炭素繊維フェルト2を内蔵する管は、その管の材料となる物質に関し、さまざまな材料の管が考えられるが、それぞれ管の材料それぞれが、指紋領域(1,300(7.69μm)~650cm-1(15.38μm))と言われる周波数帯で物質固有の吸収スペクトルがある。本発明の目的は、紐状炭素繊維フェルト2を内蔵する管から透過した遠赤外線を放射するに当たり、動植物が必要とする領域の遠赤外線の吸収率の低いすなわち透過率の高い材料で製造された管を提供することにある。The tube containing the string-shaped carbon fiber felt 2 may be a tube of various materials with respect to the substance used as the material of the tube, and each of the tube materials has a fingerprint area (1,300 (7.69 μm)). ) ~ 650 cm -1 (15.38 μm)) There is a substance-specific absorption spectrum in the frequency band. An object of the present invention is to use a material having a low absorption rate of far infrared rays, that is, a high transmittance, in a region required by animals and plants when radiating far infrared rays transmitted from a tube containing a string-shaped carbon fiber felt 2. To provide the tube.

円筒管に内蔵された紐状炭素繊維フェルト2から、紐状炭素繊維フェルト2の温度に基づくピーク波長を有する遠赤外線が放射され、その遠赤外線のうち目的とする動植物に到達する遠赤外線は、円筒管の物質固有の遠赤外線の波長に従った透過率に従って円筒管を透過した波長の遠赤外線になる。すなわち、本発明の目的は、円筒管に内蔵された紐状炭素繊維フェルト2の温度によるピーク波長を有する遠赤外線と、円筒管の特有の遠赤外線の透過率という二つのパラメータを考慮して、動植物の育成や保温用そして低温乾燥に有効な遠赤外線を照射出来るカーボンファイバーヒーター4を提供することにある。 Far-infrared rays having a peak wavelength based on the temperature of the string-shaped carbon fiber felt 2 are emitted from the string-shaped carbon fiber felt 2 built in the cylindrical tube, and the far-infrared rays that reach the target animals and plants among the far-infrared rays are According to the transmission according to the wavelength of far infrared rays peculiar to the substance of the cylindrical tube, the far infrared rays having the wavelength transmitted through the cylindrical tube are obtained. That is, an object of the present invention is to consider two parameters, that is, far-infrared rays having a peak wavelength depending on the temperature of the string-shaped carbon fiber felt 2 built in the cylindrical tube, and the transmittance of far-infrared rays peculiar to the cylindrical tube. It is an object of the present invention to provide a carbon fiber heater 4 capable of irradiating far infrared rays effective for growing animals and plants, keeping warmth, and drying at low temperature.

本発明の目的は、空気中で紐状炭素繊維フェルト2に通電するとき炭素繊維が酸化されない温度域と、紐状炭素繊維フェルト2を内蔵する円筒管の耐熱温度とを考慮してカーボンファイバーヒーター4を設計・製造し、温調器5や交流電力調整器6と合わせ、図4に示す遠赤外線発生装置を提供することにあるある。 An object of the present invention is a carbon fiber heater in consideration of a temperature range in which carbon fibers are not oxidized when the string-shaped carbon fiber felt 2 is energized in the air and a heat resistant temperature of a cylindrical tube containing the string-shaped carbon fiber felt 2. 4 is to be designed and manufactured, and to provide the far-infrared generator shown in FIG. 4 together with the temperature controller 5 and the AC power regulator 6.

本発明に係わる遠赤外線発生装置は、動植物の「育成光線」と言われ6(資料により8)~14(資料により15)μmのうち、大気の窓(8μm~13μm)を有効利用して、ピーク波長相当の温度で0℃相当の波長10.6μmよりも短波長側の遠赤外線を放射し、直接動植物に放射を可能とする装置を形成する。そのため、稠密な炭素繊維の積層された面状炭素繊維フェルト1から最適な幅の紐状炭素繊維フェルト2を切り出し、円筒管の中に設置した、その紐状炭素繊維フェルト2に通電し、酸化温度以下の温度で求める温度に上昇させ、遠赤外線を発生させる。この時、円筒管に挿入する紐状炭素繊維フェルト2の形状、円筒管の材質による赤外線の波長による透過率を勘案して、動植物の育成や保温用及び低温乾燥用に必要な遠赤外線を放射が可能なカーボンファイバーヒーター4を有する遠赤外線発生装置を形成する。 The far-infrared ray generator according to the present invention is said to be a "growth ray" of animals and plants, and effectively utilizes the atmospheric window (8 μm to 13 μm) out of 6 (8 according to the material) to 14 (15 according to the material) μm. A device that radiates far infrared rays on the wavelength side shorter than the wavelength of 10.6 μm corresponding to 0 ° C. at a temperature corresponding to the peak wavelength and can radiate directly to animals and plants is formed. Therefore, a string-shaped carbon fiber felt 2 having an optimum width is cut out from the planar carbon fiber felt 1 in which dense carbon fibers are laminated, and the string-shaped carbon fiber felt 2 installed in the cylindrical tube is energized and oxidized. It is raised to the desired temperature at a temperature below the temperature to generate far infrared fiber. At this time, considering the shape of the string-shaped carbon fiber felt 2 to be inserted into the cylindrical tube and the transmission rate due to the wavelength of infrared rays depending on the material of the cylindrical tube, far infrared rays necessary for growing animals and plants, heat retention, and low-temperature drying are emitted. A far-infrared ray generator having a carbon fiber heater 4 capable of forming a far-infrared ray generator.

現在実用化されている真空そして不活性ガスで満たされた石英管を用いた高温ヒーターでは5μm以上の波長の遠赤外線を透過しないし、それに対し高温源を金属等のコーティングに当て遠赤外線を発生させる間接的な手法では必要とするコストが高い。本発明では、大気中で遠赤外線の透過率が高い大気の窓と言われる波長帯(8μm~13μm)の遠赤外線を有効利用して、同時に動植物を育成する土壌や動植物に有効な「育成光線」と言われる6(資料により8)~14(資料により15)μmの遠赤外線を放射し、動植物の育成や保温、低温乾燥用に使用することを可能とする。そのために、空気で満たされた円筒管の中に紐状炭素繊維フェルト2を、安定的に使用するために内蔵し、紐状炭素繊維フェルト2の両端に通電し遠赤外線を発生させる。ただ、円筒管の内部で遠赤外線を放射するため、円筒管を透過できる遠赤外線は、波長ごとに、円筒管の材料により、多寡が生じる。そこで、紐状炭素繊維の温度を制御し発生する遠赤外線の波長と、円筒管の材質により透過率の高い波長域を勘案して、さらに使用する部材の耐熱温度等を考慮に入れて、軽量で容易な取扱いで、同時に安価な装置で、土壌や動植物に育成光線の直接照射を、更に保温や低温乾燥を、可能にする装置が実現できる。 High-temperature heaters using vacuum and inert gas-filled quartz tubes, which are currently in practical use, do not transmit far-infrared rays with wavelengths of 5 μm or more, whereas a high-temperature source is applied to a coating such as metal to generate far-infrared rays. The cost required for the indirect method of making the gas is high. In the present invention, far-infrared rays in a wavelength band (8 μm to 13 μm) called an atmospheric window, which has a high transmittance of far-infrared rays in the atmosphere, are effectively used, and at the same time, “growth rays” effective for soil and animals and plants for growing animals and plants. It radiates far infrared rays of 6 (8 according to the material) to 14 (15) μm according to the material, and can be used for growing animals and plants, keeping warm, and drying at low temperature. Therefore, the string-shaped carbon fiber felt 2 is built in a cylindrical tube filled with air for stable use, and both ends of the string-shaped carbon fiber felt 2 are energized to generate far infrared rays. However, since far-infrared rays are radiated inside the cylindrical tube, the amount of far-infrared rays that can pass through the cylindrical tube varies depending on the material of the cylindrical tube for each wavelength. Therefore, considering the wavelength of far infrared rays generated by controlling the temperature of the string-shaped carbon fiber and the wavelength range with high transmittance depending on the material of the cylindrical tube, and considering the heat resistant temperature of the member to be used, etc., it is lightweight. It is possible to realize a device that enables direct irradiation of growing light on soil, animals and plants, and further heat retention and low-temperature drying with an inexpensive device that is easy to handle.

大気による赤外線の吸収(模式図、日本機械学会熱工学部門講習会2009年7月29-30日「熱設計を支援する熱流体計測技術」赤外線放射温度計の基礎 中村 元氏 から曲線部分を採取)Absorption of infrared rays by the atmosphere (schematic diagram, Thermal Engineering Division, Japan Society of Mechanical Engineers, July 29-30, 2009 "Thermal fluid measurement technology that supports thermal design" Basics of infrared radiation thermometers Collected curved parts from Mr. Moto Nakamura ) 物体の温度と放射エネルギーの関係(ウィーンの変位則)(模式図、赤外線工学 オーム社より一部を採取)Relationship between object temperature and radiant energy (Wien's displacement law) (schematic diagram, partly taken from Infrared Engineering Ohmsha) 面状炭素繊維フェルトと紐状炭素繊維フェルトPlanar carbon fiber felt and string carbon fiber felt 遠赤外線装置Far infrared device 紐状炭素繊維フェルトと紐状炭素繊維フェルトを内蔵したカーボンファイバーヒーターを構成する円筒管の縦断図と横断図Longitudinal and cross-sectional views of the cylindrical carbon fiber felt and the cylindrical tube constituting the carbon fiber heater with the built-in string carbon fiber felt. 紐状炭素繊維フェルト棒と紐状炭素繊維フェルト棒を内蔵したカーボンファーバーヒーターを構成する円筒管の縦断図と横断図Longitudinal view and cross-sectional view of a cylindrical tube constituting a carbon fiber felt rod and a carbon fiber felt rod with a built-in string-shaped carbon fiber felt rod. 樹脂の遠赤外線の透過率例(資料:遠赤外線ヒーター 発光ハイレックス カタログより)Example of far-infrared transmittance of resin (Source: Far-infrared heater emission HI-LEX catalog) 金属円筒管型カーボンファイバーヒーターMetal cylinder tube type carbon fiber heater

市販されているカーボンヒーターは、数百Wから1kW以上の電力で、真空に維持されたあるいはまた不活性ガスに満たされた石英ガラス管に内蔵された、例えば炭素繊維フェルトやフィラメントを用いた場合で、製品目的に従って、ピーク波長として、炭素繊維フェルトやフィラメントの温度が1,000℃前後の、近赤外線や中赤外線を放射する。しかし、石英ガラスは5μm以上の赤外線を透過しない。遠赤外線を放射する場合は、高温に熱せられた金属管の表面にコーティングを施して、間接的に遠赤外線を放射する遠赤外線発生装置が用いられる。それに対し、本発明は、低使用電力で、遠赤外線を動植物に直接照射出来そして保温そして低温乾燥用に使用出来る、ピーク波長で約6μm~10.6μmまでの遠赤外線を照射できるカーボンファイバーヒーター4を備えた遠赤外線発生装置。 Commercially available carbon heaters use, for example, carbon fiber felt or filament, which is contained in a quartz glass tube maintained in a vacuum or filled with an inert gas at a power of several hundred watts to 1 kW or more. Then, according to the purpose of the product, near-infrared rays or mid-infrared rays having a peak wavelength of about 1,000 ° C. for carbon fiber felt or filament are emitted. However, quartz glass does not transmit infrared rays of 5 μm or more. When radiating far infrared rays, a far infrared ray generator that indirectly radiates far infrared rays by coating the surface of a metal tube heated to a high temperature is used. On the other hand, the present invention is a carbon fiber heater 4 capable of irradiating far infrared rays with a peak wavelength of about 6 μm to 10.6 μm, which can directly irradiate animals and plants with low power consumption and can be used for heat retention and low temperature drying. Far-infrared generator equipped with.

商品化されている高出力カーボンヒーターは、カーボンフィラメントや炭素繊維(フェルト)フィラメントを、石英ガラス管の中に設置し、通電し、1,000℃前後の高温を発することが出来る。この時、カーボンフィラメントや炭素繊維(フェルト)フィラメントを内蔵する石英管は、不活性ガスの封入や真空を維持して、炭素繊維の酸化を防いでいる。ただ、石英ガラスは、5μ以上の遠赤外線を透過しない。そこで新たな遠赤外線発生装置では、高出力カーボンヒーターがカバーできない5μ以上の遠赤外線を放射するため、炭素繊維の酸化温度(例えば酸化温度が低い炭素繊維で150℃程度)以下の温度域で、コーティングと言った間接的な物質を使わずに直接遠赤外線を発生する、透過率が波長ごとに相違する樹脂やゴム系の円筒の管を利用したカーボンファイバーヒーター4である。すなわち、5μm以上の遠赤外線を放射しない石英ガラスを用いず、石英ガラス管内を真空に維持することや不活性ガスを充填する手法を用いず、そしてコーティングを用いないで、動植物や動植物を育成する土壌に直接遠赤外線を照射出来、保温や低温乾燥にも適用出来るカーボンファイバーヒーター4を備えた遠赤外線発生装置。 In the commercialized high-power carbon heater, a carbon filament or a carbon fiber (felt) filament is installed in a quartz glass tube and energized to generate a high temperature of about 1,000 ° C. At this time, the quartz tube containing the carbon filament and the carbon fiber (felt) filament prevents the carbon fiber from being oxidized by enclosing the inert gas and maintaining the vacuum. However, quartz glass does not transmit far infrared rays of 5μ or more. Therefore, the new far-infrared ray generator emits far-infrared rays of 5μ or more that cannot be covered by the high-power carbon heater. It is a carbon fiber heater 4 using a resin or rubber-based cylindrical tube having a different transmission rate for each wavelength, which directly generates far infrared rays without using an indirect substance such as a coating. That is, plants and animals and plants are grown without using quartz glass that does not emit far infrared rays of 5 μm or more, without using a method of keeping the inside of the quartz glass tube in a vacuum or filling with an inert gas, and without using a coating. A far-infrared generator equipped with a carbon fiber heater 4 that can directly irradiate the soil with far-infrared rays and can be applied to heat retention and low-temperature drying.

赤外線は、波長によってさまざまな分類がなされている。例えば、近赤外線(0.7~2.5μm)中赤外線(2.5~4μm)遠赤外線(4~1,000μm)他の分類がある。この中で、大気の赤外線の透過率が高い(大気による赤外線の吸収の低い)波長帯(3~5μm、8~13μm)は「大気の窓」と呼ばれている(図1)。そして、人も6μm~14μmの遠赤外線を出しており、人間の細胞内にあるミトコンドリアは8~14μm遠赤外線を放射している。そして、6(資料によっては8)~14(資料によっては15)μmは動植物の育成光線と呼ばれる。また、化学物質の同定にも用いられ、物質固有の吸収スペクトルが現れる波数1,300(7.69)~650cm-1(15.38μm)は指紋領域と呼ばれている。本発明の、遠赤外線発生装置を構成するカーボンファイバーヒーター4は、動植物の育成に有効な育成光線を発生し、動植物に直接放射するヒーターである。Infrared rays are classified in various ways according to their wavelengths. For example, there are other classifications such as near infrared rays (0.7 to 2.5 μm), middle infrared rays (2.5 to 4 μm), and far infrared rays (4 to 1,000 μm). Among them, the wavelength band (3 to 5 μm, 8 to 13 μm) in which the infrared transmittance of the atmosphere is high (the absorption of infrared rays by the atmosphere is low) is called the “atmospheric window” (FIG. 1). Humans also emit far infrared rays of 6 μm to 14 μm, and mitochondria in human cells emit far infrared rays of 8 to 14 μm. And 6 (8 depending on the material) to 14 (15) μm depending on the material is called a growing ray of animals and plants. It is also used for identification of chemical substances, and the wave number of 1,300 (7.69) to 650 cm -1 (15.38 μm) at which the absorption spectrum peculiar to the substance appears is called the fingerprint region. The carbon fiber heater 4 constituting the far-infrared ray generator of the present invention is a heater that generates a growing ray effective for growing animals and plants and radiates directly to the animals and plants.

本発明の、カーボンファイバーヒーター4は、紐状炭素繊維フェルトを内蔵する円筒管、円筒管に内蔵された通電したとき遠赤外線を発生する紐状炭素繊維フェルト8あるいはまた炭素繊維フェルト棒12、そして必要とする付属品とから構成される。 The carbon fiber heater 4 of the present invention includes a cylindrical tube containing a string-shaped carbon fiber felt, a string-shaped carbon fiber felt 8 built in the cylindrical tube that generates far infrared rays when energized, or a carbon fiber felt rod 12, and a carbon fiber felt rod 12. It consists of the necessary accessories.

本発明に使用する紐状炭素繊維フェルト2は、面状炭素繊維フェルト1から、必要とする仕様そして寸法・形状を有する紐状炭素繊維フェルト2を切りとり製作する。紐状炭素繊維フェルト2を利用し、カーボンファイバーヒーター4の仕様を満たす紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を製作する。なお、紐状炭素繊維フェルト2は、引っ張り応力に弱く、ちぎれやすく、剥がされやすいため、外部からの影響を受けにくくするために、管に挿入して使用する。 The string-shaped carbon fiber felt 2 used in the present invention is manufactured by cutting the string-shaped carbon fiber felt 2 having the required specifications, dimensions and shape from the planar carbon fiber felt 1. Using the string-shaped carbon fiber felt 2, the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 satisfying the specifications of the carbon fiber heater 4 is manufactured. Since the string-shaped carbon fiber felt 2 is vulnerable to tensile stress, easily torn off, and easily peeled off, it is used by inserting it into a pipe in order to make it less susceptible to external influences.

紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を内蔵する管は、遠赤外線に対し、使用するいずれの物質とも、物質固有の吸収スペクトルを有する。その紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12に通電し、空気の窓と言われる領域の波長の遠赤外線を放射するとき、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維棒8を外部からの与えられる引っ張り等の影響を受けないように安定的に使用出来、四方に遠赤外線をむらなく放射するために、円筒管を使用する。 The tube containing the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12 has a substance-specific absorption spectrum for far infrared rays with respect to any substance used. When the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12 is energized and emits far infrared rays having a wavelength in a region called an air window, the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber rod is emitted. 8 can be used stably so as not to be affected by pulling or the like applied from the outside, and a cylindrical tube is used to radiate far infrared rays evenly in all directions.

物質から放射される電磁波のピーク波長(エネルギーの一番高いところ)は、すなわち黒体の単色放射光が最大となる波長は、λ=2,897/T(μm)(ウイーンの変位則、T絶対温度=物体のセルシウス度+273)であり、例えば体温が36℃の人は約9.4μmをピーク波長とする遠赤外線を放射している。そこで、円筒管内の紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12の両端に通電して、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12の温度が0℃以上(0℃相当のピーク波長(10.6μm))で放射される遠赤外線を利用するカーボンファイバーヒーター4である。本願では、説明を容易にするために、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12の置かれた温度とその温度に相当するピーク波長とで記述する。 The peak wavelength (highest energy) of the electromagnetic wave emitted from the substance, that is, the wavelength at which the monochromatic radiation of the blackbody is maximum, is λ = 2,897 / T (μm) (Wean's displacement law, T). Absolute temperature = Celsius degree of the object +273). For example, a person with a body temperature of 36 ° C. emits far infrared rays having a peak wavelength of about 9.4 μm. Therefore, both ends of the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 in the cylindrical tube are energized, and the temperature of the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is 0 ° C. or higher (0). It is a carbon fiber heater 4 that utilizes far infrared rays emitted at a peak wavelength (10.6 μm) corresponding to ° C. In the present application, for the sake of simplicity, the temperature at which the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is placed and the peak wavelength corresponding to the temperature are described.

実施形態に係わる図5及び6に示すカーボンファイバーヒーター4は、両端を通電し遠赤外線を発生出来る紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を備えるが、本段落では紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12の原材料として製作される紐状炭素繊維フェルト2に基づき説明する。面状の炭素繊維フェルト1は、それぞれは短い炭素繊維を稠密に密集させ、面状に製造されている。その面状の炭素繊維フェルト1を、紐状炭素繊維フェルト8としてあるいは又紐状炭素繊維フェルト棒12に見合った適切な仕様で切断し紐状炭素繊維フェルト2を製造する。この紐状炭素繊維フェルト2を管に挿入し、紐状炭素繊維フェルト8としてあるいは又補強したものを紐状炭素繊維フェルト棒12として使用する。本段落では、紐状炭素繊維フェルト2として記述する寸法・面積、そして紐状炭素繊維フェルト2の両端に電圧を印加するときの熱量W、電圧V、電流I、抵抗R、係数kは、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を使用した場合にも、そのまま当てはめることができるものとする。紐状炭素繊維フェルト2の両端に電圧を印可し通電するとき、炭素繊維フェルト2の断面の炭素繊維の面積、炭素繊維フェルト2長さによって電気抵抗が決定される。それぞれの炭素繊維は短く、短い繊維間の通電には抵抗があるため、紐状炭素繊維フェルト2の両端には大きな抵抗が生じる。その紐状炭素繊維フェルト2の両端間の高抵抗を利用し電圧を印加したときの電流値を抑える。R(紐状炭素繊維フェルト2の両端の抵抗)、k(定数)、L(紐状炭素繊維フェルト2の長さ)、S(紐状炭素繊維フェルト2の炭素繊維部分の断面積)、a(紐状炭素繊維フェルト2の厚さ)、b(紐状炭素繊維フェルト2の幅)とするとき、R=k(L/S)=k(L/a・b)となる。電流値Iは, I=V/R=V・S/k・L=V・a・b/k・Lで表される。この時、紐状炭素繊維フェルト2に生じる熱量Wは、電圧V、電流Iとするとき、V=IR=I・k・L/a・bであり、W=IR=V/R=V・S/k・L=V・a・b/k・Lで表される。ここで、印加電圧Vを決め、紐状炭素繊維フェルト2の厚さaが事前に決まり、紐状炭素繊維フェルト2の長さLが設計するカーボンファイバーヒーター4の設計で決めるとき、またkが紐状炭素繊維フェルト2の定数であるとき、熱容量Wは、紐状炭素繊維フェルト2の断面積Sに比例する。従い、カーボンファイバーヒーター4の熱容量Wを増やすためには、紐状炭素繊維フェルト2の断面積Sを、管に挿入可能な寸法として、最大限大きくする必要がある。そのため、紐状炭素繊維フェルト2の厚みaと幅bを同じ正方形として断面積の対角線3を円筒管の内径にする。なお、紐状炭素繊維フェルト2を内蔵する管は、管から遠赤外線をむらなく四方に放射するために円筒であることが求められる。そして熱量Wを増やすためには、円筒管の直径を大きくし、紐状炭素繊維フェルト2の断面積Sを大きくする必要がある。そのためには円筒管は内蔵する紐状炭素繊維フェルト2で満たす必要がある。そこでさらに隙間をさらに細い紐状炭素繊維フェルト、例えば9,で埋めることで可能とする。そして紐状炭素繊維フェルト2の温度を上げピーク波長を短波長側に移すためには紐状炭素繊維の両端に印可する電圧Vをあげる必要がある。同時に、空気の窓の波長域でも若干の遠赤外線の吸収があるため、管内を紐状炭素繊維フェルトで埋め、管内の空気量を減少させることが有効である。The carbon fiber heater 4 shown in FIGS. 5 and 6 according to the embodiment includes a string-shaped carbon fiber felt 8 or also a string-shaped carbon fiber felt rod 12 capable of generating far infrared rays by energizing both ends, but in this paragraph, the string-shaped carbon The description will be based on the string-shaped carbon fiber felt 2 manufactured as a raw material for the fiber felt 8 or the string-shaped carbon fiber felt rod 12. Each of the planar carbon fiber felts 1 is manufactured in a planar shape by densely densely packing short carbon fibers. The planar carbon fiber felt 1 is cut as a string-shaped carbon fiber felt 8 or also with appropriate specifications suitable for the string-shaped carbon fiber felt rod 12 to produce the string-shaped carbon fiber felt 2. The string-shaped carbon fiber felt 2 is inserted into a tube, and the string-shaped carbon fiber felt 8 or the reinforced one is used as the string-shaped carbon fiber felt rod 12. In this paragraph, the dimensions and area described as the string-shaped carbon fiber felt 2, and the calories W, voltage V, current I, resistance R, and coefficient k when a voltage is applied to both ends of the string-shaped carbon fiber felt 2 are strings. Even when the shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is used, it can be applied as it is. When a voltage is applied to both ends of the string-shaped carbon fiber felt 2 and energized, the electric resistance is determined by the area of the carbon fiber in the cross section of the carbon fiber felt 2 and the length of the carbon fiber felt 2. Since each carbon fiber is short and has resistance to energization between the short fibers, a large resistance is generated at both ends of the string-shaped carbon fiber felt 2. The high resistance between both ends of the string-shaped carbon fiber felt 2 is used to suppress the current value when a voltage is applied. R (resistance at both ends of the string-shaped carbon fiber felt 2), k (constant), L (length of the string-shaped carbon fiber felt 2), S (cross-sectional area of the carbon fiber portion of the string-shaped carbon fiber felt 2), a When (thickness of string-shaped carbon fiber felt 2) and b (width of string-shaped carbon fiber felt 2), R = k (L / S) = k (L / a · b). The current value I is represented by I = V / R = V · S / k · L = V · a · b / k · L. At this time, the amount of heat W generated in the string-shaped carbon fiber felt 2 is V = IR = I · k · L / a · b when the voltage V and the current I, and W = I 2 R = V 2 / R. = V 2 · S / k · L = V 2 · a · b / k · L. Here, when the applied voltage V is determined, the thickness a of the string-shaped carbon fiber felt 2 is determined in advance, and the length L of the string-shaped carbon fiber felt 2 is determined by the design of the carbon fiber heater 4, k is also determined. When it is a constant of the string-shaped carbon fiber felt 2, the heat capacity W is proportional to the cross-sectional area S of the string-shaped carbon fiber felt 2. Therefore, in order to increase the heat capacity W of the carbon fiber heater 4, it is necessary to maximize the cross-sectional area S of the string-shaped carbon fiber felt 2 as a dimension that can be inserted into the pipe. Therefore, the thickness a and the width b of the string-shaped carbon fiber felt 2 are set to the same square, and the diagonal line 3 of the cross-sectional area is set to the inner diameter of the cylindrical tube. The tube containing the string-shaped carbon fiber felt 2 is required to be a cylinder in order to radiate far infrared rays evenly in all directions from the tube. Then, in order to increase the calorific value W, it is necessary to increase the diameter of the cylindrical tube and increase the cross-sectional area S of the string-shaped carbon fiber felt 2. For that purpose, the cylindrical tube needs to be filled with the built-in string-shaped carbon fiber felt 2. Therefore, it is possible to fill the gap with a finer string-shaped carbon fiber felt, for example, 9. Then, in order to raise the temperature of the string-shaped carbon fiber felt 2 and shift the peak wavelength to the short wavelength side, it is necessary to raise the voltage V applied to both ends of the string-shaped carbon fiber. At the same time, since there is some absorption of far infrared rays even in the wavelength range of the air window, it is effective to fill the inside of the tube with string-shaped carbon fiber felt to reduce the amount of air in the tube.

0℃(10.6μm)以上で炭素繊維フェルト8の炭素繊維の酸化が生じるまでの間の温度帯で使用されるカーボンファイバーヒーター4で、ピーク波長(エネルギーの一番高いところ)で遠赤外線を放射する放射体である紐状炭素繊維フェルト8の放射エネルギー量は、紐状炭素繊維フェルト8が保有する熱量による。そのため、カーボンファイバーヒーター4が発生する遠赤外線量を上げるために、紐状炭素繊維フェルト8を内蔵する円筒管の直径・長さといった仕様を設定するとき、紐状炭素繊維フェルト8の断面が角形の場合は、断面における炭素繊維部分の面積を増やすために、紐状炭素繊維フェルト8の厚みを紐状炭素繊維フェルト8の断面の幅と同じ寸法として、すなわち紐状炭素繊維フェルト8の断面を正方形としてその対角線の長さを該円筒管の内径と同じかあるいはできるだけ近い寸法として、紐状炭素繊維フェルト8の断面積を該円筒管の断面積にちかづけるように、紐状炭素繊維フェルト8の断面の形状を設定する必要がある。そして紐状炭素繊維フェルト8のピーク波長相当の波長を短波長側に移すため、紐状炭素繊維フェルト8の発生熱量が印加電圧の二乗に比例するため、印加電圧を上げピーク波長を放射する温度を上げる必要がある。すなわち紐状炭素繊維フェルト8の断面の正方形の対角線の長さは、紐状炭素繊維フェルト8を内蔵する該円筒管の内径を上限とする。また、1本の紐状炭素繊維フェルト8で、内蔵する該円筒管の内径側を可能な限り埋めるためには、紐状炭素繊維フェルト8を内蔵する円筒管の内径と、内蔵する紐状炭素繊維の幅と厚みの関係において、内蔵する紐状炭素繊維フェルト8の厚みと幅が同じ寸法で、すなわち紐状炭素繊維フェルト8の断面を正方形としその対角線の長さを該円筒管の内径と同一とするように、面状フェルト1から切り取り、図5に示すように必要に応じて更に細い紐状炭素繊維フェルト9を加え隙間を埋め、できるだけ管内を炭素繊維で満たし空気部分を減らした、そして紐状炭素繊維フェルト8の酸化温度以下で使用し、紐状炭素繊維フェルト8を内蔵した円筒の管7の材料の耐熱温度以下で、紐状炭素繊維フェルト8に通電する電圧を制御して、ピーク波長相当の紐状炭素繊維フェルト8の温度の設定が出来ることを特徴とするカーボンファイバーヒーター4。なお、紐状炭素繊維フェルト8を円筒管に挿入するとき、挿入を容易にするため、紐状炭素繊維フェルト8の断面の対角線の寸法を必要に応じ小さくしても良い。紐状炭素繊維フェルト8の断面が円形の場合は、その直径を該円筒管の内径とする。なお、紐状炭素繊維フェルト8を円筒管に挿入するとき、挿入を容易にするため、紐状炭素繊維フェルト8の断面の円の直径を必要に応じ小さくしても良い。 A carbon fiber heater 4 used in the temperature range until the carbon fiber oxidation of the carbon fiber felt 8 occurs at 0 ° C. (10.6 μm) or higher, and emits far infrared rays at the peak wavelength (where the energy is highest). The amount of radiation energy of the string-shaped carbon fiber felt 8 which is a radiating radiator depends on the amount of heat possessed by the string-shaped carbon fiber felt 8. Therefore, in order to increase the amount of far infrared rays generated by the carbon fiber heater 4, when the specifications such as the diameter and length of the cylindrical tube containing the string-shaped carbon fiber felt 8 are set, the cross section of the string-shaped carbon fiber felt 8 is square. In the case of, in order to increase the area of the carbon fiber portion in the cross section, the thickness of the string-shaped carbon fiber felt 8 is set to the same dimension as the width of the cross section of the string-shaped carbon fiber felt 8, that is, the cross section of the string-shaped carbon fiber felt 8 is set. As a square, the length of the diagonal line is the same as or as close as possible to the inner diameter of the cylindrical tube, and the cross-sectional area of the string-shaped carbon fiber felt 8 is similar to the cross-sectional area of the cylindrical tube. It is necessary to set the shape of the cross section of. Then, in order to shift the wavelength corresponding to the peak wavelength of the string-shaped carbon fiber felt 8 to the short wavelength side, the amount of heat generated by the string-shaped carbon fiber felt 8 is proportional to the square of the applied voltage, so that the applied voltage is increased and the peak wavelength is radiated. Need to raise. That is, the length of the diagonal line of the square in the cross section of the string-shaped carbon fiber felt 8 is limited to the inner diameter of the cylindrical tube containing the string-shaped carbon fiber felt 8. Further, in order to fill the inner diameter side of the built-in cylindrical tube with one string-shaped carbon fiber felt 8 as much as possible, the inner diameter of the cylindrical tube containing the string-shaped carbon fiber felt 8 and the built-in string-shaped carbon In the relationship between the fiber width and the thickness, the thickness and width of the built-in string-shaped carbon fiber felt 8 are the same, that is, the cross section of the string-shaped carbon fiber felt 8 is square and the diagonal length thereof is the inner diameter of the cylindrical tube. Cut out from the planar felt 1 so as to be the same, and add finer string-shaped carbon fiber felt 9 as needed to fill the gap as shown in FIG. 5, and fill the inside of the pipe with carbon fiber as much as possible to reduce the air portion. Then, it is used below the oxidation temperature of the string-shaped carbon fiber felt 8, and the voltage for energizing the string-shaped carbon fiber felt 8 is controlled below the heat-resistant temperature of the material of the cylindrical tube 7 containing the string-shaped carbon fiber felt 8. The carbon fiber heater 4 is characterized in that the temperature of the string-shaped carbon fiber felt 8 corresponding to the peak wavelength can be set. When the string-shaped carbon fiber felt 8 is inserted into the cylindrical tube, the diagonal dimension of the cross section of the string-shaped carbon fiber felt 8 may be reduced as necessary in order to facilitate the insertion. When the cross section of the string-shaped carbon fiber felt 8 is circular, the diameter thereof is taken as the inner diameter of the cylindrical tube. When the string-shaped carbon fiber felt 8 is inserted into the cylindrical tube, the diameter of the circle in the cross section of the string-shaped carbon fiber felt 8 may be reduced as necessary to facilitate the insertion.

面状炭素繊維1から切り取った紐状炭素繊維のフェルト2は、わずかな引っ張り応力で切断され、上下左右へのわずかな引っ張り応力で炭素繊維の繊維が容易に剥がれる性状があるため、紐状炭素繊維フェルト2に通電して使用するとき、より安定的に使用出来るようにするため、それらの引っ張り応力に影響を受けにくい、新たな紐状炭素繊維フェルトが求められる。そのような紐状炭素繊維フェルト2の性状をカバーするために、紐状炭素繊維フェルト2に、弾性変形が容易な、例えばポリアミドイミド繊維等の絶縁を施した金属線11やアルマイト処理をしたアルミニウムそしてテグス(釣り糸)等の細い線で補強した紐状炭素繊維フェルト棒12を製作する。なお、紐状炭素繊維フェルト棒12の取扱いは該炭素繊維フェルト8と同じである。すなわち、0℃(10.6μm)以上で炭素繊維フェルト棒12の炭素繊維の酸化が生じるまでの間の温度帯で使用されるカーボンファイバーヒーター4で、ピーク波長(エネルギーの一番高いところ)で遠赤外線を放射する放射体である紐状炭素繊維フェルト棒12の放射エネルギー量は、紐状炭素繊維フェルト棒12が保有する熱量による。そのため、カーボンファイバーヒーター4が発生する遠赤外線量を上げるために、紐状炭素繊維フェルト棒12を内蔵する該円筒管の直径・長さといった仕様を設定するとき、紐状炭素繊維フェルト棒12の断面が角形の場合は、断面における炭素繊維部分の面積を増やすために、紐状炭素繊維フェルト棒12の厚みを紐状炭素繊維フェルト棒12の断面の幅と同じ寸法として、すなわち紐状炭素繊維フェルト棒12の断面を正方形としてその対角線の長さを円筒管の内径と同じかあるいはできるだけ近い寸法として、紐状炭素繊維フェルト棒12の断面積を該円筒管の断面積にちかづけるように、紐状炭素繊維フェルト棒12の断面の形状を設定する必要がある。そして紐状炭素繊維フェルト棒12のピーク波長相当の波長を短波長側に移すため、紐状炭素繊維フェルト棒12の発生熱量が印加電圧の二乗に比例するため、印加電圧を上げピーク波長を放射する温度を上げる必要がある。すなわち紐状炭素繊維フェルト棒12の断面の正方形の対角線の長さは、紐状炭素繊維フェルト棒12を内蔵する円筒管の内径を上限とする。また、1本の紐状炭素繊維フェルト棒12で、内蔵する円筒管の内径側を可能な限り埋めるためには、紐状炭素繊維フェルト棒12を内蔵する円筒の管の内径と、内蔵する紐状炭素繊維の幅と厚みの関係において、内蔵する紐状炭素繊維フェルト棒12の厚みと幅が同じ寸法で、すなわち紐状炭素繊維フェルト棒12の断面を正方形としその対角線の長さを円筒管の内径と同一とするように、面状フェルト1から切り取り、例えば図6に示すように必要に応じて更に細い紐状炭素繊維フェルト9を加え隙間を埋め、できるだけ管内を炭素繊維で満たし空気部分を減らした、そして紐状炭素繊維フェルト棒12の酸化温度以下で使用し、紐状炭素繊維フェルト棒12を内蔵した円筒管の材料の耐熱温度以下で、紐状炭素繊維フェルト棒12に通電する電圧を制御して、ピーク波長相当の紐状炭素繊維フェルト棒12の温度の設定が出来ることを特徴とするカーボンファイバーヒーター4。なお、紐状炭素繊維フェルト棒12を円筒管に挿入するとき、挿入を容易にするため、紐状炭素繊維フェルト棒12の断面の対角線の寸法を必要に応じ小さくしても良い。紐状炭素繊維フェルト棒12の断面が円形の場合は、その直径を円筒管の内径とする。なお、紐状炭素繊維フェルト棒12を円筒管に挿入するとき、挿入を容易にするため、紐状炭素繊維フェルト棒12の断面の円の直径を必要に応じ小さくしても良い。なお、紐状炭素繊維フェルト棒12を作成する場合、ポリアミドイミド繊維等の絶縁を施した金属線11やアルマイト処理をしたアルミニウムそしてテグス(釣り糸)等の細い線を、予め決められた間隔で埋め込んだ面状炭素繊維フェルト2を製造し、その面状炭素繊維フェルト1から紐状炭素繊維フェルト棒12を切り出すのが望ましい。なお、遠赤外線の放射を減少させることになるが、金属線11を紐状炭素繊維フェルト2の正方形の側面に固定し、それが円筒管と紐状炭素繊維フェルト2の隙間に相当する部分、すなわち図6の細い紐状炭素繊維9のどれか1箇所あるいはまた複数箇所に設置し、紐状炭素繊維フェルト2の正方形の形状を損ねないように設置し、紐状炭素繊維フェルト棒12を作成しても良い。なお紐状炭素繊維フェルト棒12の断面が円形の場合、紐状炭素繊維フェルト棒12の直径は、挿入する円筒管の内径を限界とし、円筒管の内径よりも必要に応じ小さくても良い。 The string-shaped carbon fiber felt 2 cut from the planar carbon fiber 1 is cut with a slight tensile stress, and the carbon fiber fibers have a property of being easily peeled off with a slight tensile stress in the vertical and horizontal directions. In order to enable more stable use when the fiber felt 2 is energized and used, a new string-shaped carbon fiber felt that is not easily affected by their tensile stress is required. In order to cover the properties of the string-shaped carbon fiber felt 2, the string-shaped carbon fiber felt 2 is easily elastically deformed, for example, an insulated metal wire 11 such as a polyamide imide fiber or an alumite-treated aluminum. Then, a string-shaped carbon fiber felt rod 12 reinforced with a thin wire such as Tegs (fishing thread) is manufactured. The handling of the string-shaped carbon fiber felt rod 12 is the same as that of the carbon fiber felt 8. That is, in the carbon fiber heater 4 used in the temperature range until the carbon fiber of the carbon fiber felt rod 12 is oxidized at 0 ° C. (10.6 μm) or higher, at the peak wavelength (the place where the energy is highest). The amount of radiation energy of the string-shaped carbon fiber felt rod 12, which is a radiator that emits far infrared rays, depends on the amount of heat possessed by the string-shaped carbon fiber felt rod 12. Therefore, in order to increase the amount of far infrared rays generated by the carbon fiber heater 4, when setting specifications such as the diameter and length of the cylindrical tube containing the string-shaped carbon fiber felt rod 12, the string-shaped carbon fiber felt rod 12 is used. When the cross section is square, in order to increase the area of the carbon fiber portion in the cross section, the thickness of the string-shaped carbon fiber felt rod 12 is set to the same dimension as the width of the cross section of the string-shaped carbon fiber felt rod 12, that is, the string-shaped carbon fiber. With the cross section of the felt rod 12 as a square and the length of the diagonal line as the inner diameter of the cylindrical tube or as close as possible to the inner diameter of the cylindrical tube, the cross-sectional area of the string-shaped carbon fiber felt rod 12 is set to be similar to the cross-sectional area of the cylindrical tube. It is necessary to set the shape of the cross section of the string-shaped carbon fiber felt rod 12. Then, in order to shift the wavelength corresponding to the peak wavelength of the string-shaped carbon fiber felt rod 12 to the short wavelength side, the amount of heat generated by the string-shaped carbon fiber felt rod 12 is proportional to the square of the applied voltage, so the applied voltage is increased and the peak wavelength is radiated. It is necessary to raise the temperature. That is, the length of the diagonal line of the square in the cross section of the string-shaped carbon fiber felt rod 12 is set to the upper limit of the inner diameter of the cylindrical tube containing the string-shaped carbon fiber felt rod 12. Further, in order to fill the inner diameter side of the built-in cylindrical tube as much as possible with one string-shaped carbon fiber felt rod 12, the inner diameter of the cylindrical tube containing the string-shaped carbon fiber felt rod 12 and the built-in string Regarding the relationship between the width and thickness of the string-shaped carbon fibers, the thickness and width of the built-in string-shaped carbon fiber felt rod 12 are the same dimensions, that is, the cross section of the string-shaped carbon fiber felt rod 12 is square and the diagonal length thereof is a cylindrical tube. Cut out from the planar felt 1 so as to be the same as the inner diameter of, and add a finer string-shaped carbon fiber felt 9 as needed to fill the gap as shown in FIG. 6, and fill the inside of the pipe with carbon fiber as much as possible to fill the air portion. And used below the oxidation temperature of the string carbon fiber felt rod 12 and energize the string carbon fiber felt rod 12 below the heat resistant temperature of the material of the cylindrical tube containing the string carbon fiber felt rod 12. The carbon fiber heater 4 is characterized in that the temperature of the string-shaped carbon fiber felt rod 12 corresponding to the peak wavelength can be set by controlling the voltage. When the string-shaped carbon fiber felt rod 12 is inserted into the cylindrical tube, the diagonal dimension of the cross section of the string-shaped carbon fiber felt rod 12 may be reduced as necessary in order to facilitate the insertion. When the cross section of the string-shaped carbon fiber felt rod 12 is circular, the diameter thereof is taken as the inner diameter of the cylindrical tube. When the string-shaped carbon fiber felt rod 12 is inserted into the cylindrical tube, the diameter of the circle in the cross section of the string-shaped carbon fiber felt rod 12 may be reduced as necessary to facilitate the insertion. When the string-shaped carbon fiber felt rod 12 is produced, a metal wire 11 having insulation such as polyamide imide fiber, aluminum treated with alumite, and thin wires such as Tegs (fishing thread) are embedded at predetermined intervals. It is desirable to produce the planar carbon fiber felt 2 and cut out the string-shaped carbon fiber felt rod 12 from the planar carbon fiber felt 1. Although the emission of far infrared rays will be reduced, the metal wire 11 is fixed to the side surface of the square of the string-shaped carbon fiber felt 2, and the portion corresponding to the gap between the cylindrical tube and the string-shaped carbon fiber felt 2. That is, it is installed at any one place or a plurality of places of the thin string-shaped carbon fiber 9 in FIG. 6 so as not to impair the square shape of the string-shaped carbon fiber felt 2, and the string-shaped carbon fiber felt rod 12 is created. You may. When the cross section of the string-shaped carbon fiber felt rod 12 is circular, the diameter of the string-shaped carbon fiber felt rod 12 may be smaller than the inner diameter of the cylindrical tube, if necessary, with the inner diameter of the cylindrical tube to be inserted as the limit.

[0026]に記載した紐状炭素繊維フェルト8あるいはまた[0027]に記述した紐状炭素繊維フェルト棒12を、通常の大気圧の空気で満たされた、例えば樹脂やゴム等を材質とする、円筒管7の中に挿入し、防水した円筒管7の両端で、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を結束バンド14で接続端子15に固定し固定し、通電用の外部回路のリード線13と接続したことを特徴とするカーボンファイバーヒーター4。なお、このとき、ポリアミドイミド繊維等の絶縁を施した金属線11やアルマイト処理をしたアルミニウムそしてテグス(釣り糸)等の細い線には通電はされない。 The string-shaped carbon fiber felt 8 described in [0026] or the string-shaped carbon fiber felt rod 12 described in [0027] is filled with normal atmospheric pressure air, for example, made of resin, rubber, or the like. The string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is fixed to the connection terminal 15 with a binding band 14 at both ends of the waterproof cylindrical tube 7 inserted into the cylindrical tube 7 for energization. A carbon fiber heater 4 characterized by being connected to a lead wire 13 of an external circuit. At this time, the metal wire 11 having insulation such as polyamide-imide fiber, the aluminum treated with alumite, and the thin wire such as Tegs (fishing line) are not energized.

必要に応じて紐状炭素繊維フェルト8を内蔵した、あるいはまた紐状炭素繊維フェルト2を補強し固定し新たに作成した紐状炭素繊維フェルト棒12を内蔵した円筒管7を、等間隔に位置する結束バンドやあるいはまた金属カシメ10で、該円筒管7の外側から間接的に紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を固定したことを特徴とするカーボンファイバーヒーター4。 If necessary, the cylindrical tubes 7 containing the string-shaped carbon fiber felt 8 or the newly created string-shaped carbon fiber felt rod 12 by reinforcing and fixing the string-shaped carbon fiber felt 2 are positioned at equal intervals. The carbon fiber heater 4 is characterized in that the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is indirectly fixed from the outside of the cylindrical tube 7 with a binding band or also a metal caulking 10.

紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を円筒管に挿入に当たり、防水を考慮する必要のない場所で使用する場合は、円筒管表面の一方を切り、切り取ったところを広げ紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を該円筒管7に挿入し、円筒管7の外側から等間隔に位置する結束バンドや金属カシメ10で円筒管7の外側から間接的に紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を固定したことを特徴とするカーボンファイバーヒーター4。 When inserting the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12 into the cylindrical tube and using it in a place where waterproofing is not required, cut one of the surfaces of the cylindrical tube and spread the cut out to make a string. The shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is inserted into the cylindrical tube 7, and indirectly from the outside of the cylindrical tube 7 with a binding band or a metal caulking 10 located at equal intervals from the outside of the cylindrical tube 7. A carbon fiber heater 4 characterized by fixing a string-shaped carbon fiber felt 8 or also a string-shaped carbon fiber felt rod 12.

図5に示した紐状炭素繊維フェルト8、あるいはまた、図6に示した、必要に応じて紐状炭素繊維フェルト棒12を使用するとき、いずれの場合も、円筒管7の出入り口に接続端子15を設け、結束バンド14で接続端子15と紐炭素繊維フェルト8とあるいはまた紐状炭素繊維フェルト棒12を接続・固定し、同時に管の内部に水が入らないように防水処理を行い、図4に示した、温度制御をするための温調器5を備えた、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12の設定温度を監視する温調器5を介して交流電力調整器6で電圧を調整する回路を介して、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を構成する炭素繊維に通電する、低電力で、直接遠赤外線を、カーボンファイバーヒーター4から対象物に放射する、図4に記載した、遠赤外線装置。 When using the string-shaped carbon fiber felt 8 shown in FIG. 5 or, if necessary, the string-shaped carbon fiber felt rod 12 shown in FIG. 6, the connection terminal is connected to the entrance / exit of the cylindrical tube 7. 15 is provided, and the connection terminal 15 and the string carbon fiber felt 8 or also the string carbon fiber felt rod 12 are connected and fixed by the binding band 14, and at the same time, waterproof treatment is performed so that water does not enter the inside of the pipe. AC power adjustment via the temperature controller 5 for monitoring the set temperature of the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12 provided with the temperature controller 5 for controlling the temperature shown in 4. Low power, direct far infrared rays from the carbon fiber heater 4 that energize the carbon fibers constituting the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12 via a circuit for adjusting the voltage with the vessel 6. The far-infrared device according to FIG. 4, which emits light to an object.

紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を挿入する円筒管7に関して、可能な範囲で炭素繊維の酸化が始まる温度に近い耐熱温度の材料から製造された樹脂やゴム等の材料で作成された円筒管7を用いることが望ましく、同時に円筒管7による遠赤外線の吸収を少なくするために管厚を可能な範囲で薄くし、同時に、管の形状を、U字にしたり円形にしたり、使用者の希望に応じた形状に変形可能なカーボンファイバーヒーター4。 Regarding the cylindrical tube 7 into which the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is inserted, a material such as resin or rubber manufactured from a material having a heat resistant temperature close to the temperature at which the carbon fiber starts to oxidize to the extent possible. It is desirable to use the cylindrical tube 7 made in 1. At the same time, the tube thickness should be made as thin as possible in order to reduce the absorption of far infrared rays by the cylindrical tube 7, and at the same time, the shape of the tube should be U-shaped or circular. Or, a carbon fiber heater 4 that can be transformed into a shape according to the user's wishes.

紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を挿入する円筒管7に関して、円筒管7として選ぶ材質は、以下の遠赤外線の波長(括弧内はピーク長に相当する物体の温度)を考慮に入れて選択される。
長波長側の大気の窓:8μm(89.1℃)から13μm(-50.2℃)の波長帯
動植物の「育成光線」:6μm(209.8℃)(資料により8μm(89.1℃))~ 14μm(-66.1℃)(資料により15μm(-79.9℃))
0℃のピーク波長:10.6μm
物体の常温の放射エネルギーのピーク波長は10μm:16.7℃
人の体温36.5℃:9.36μm
ピーク波長換算100℃の時のピーク波長:7.77μm
ピーク波長換算200℃の時のピーク波長:6.12μm
従って、大気の窓の波長帯を生かし、0℃のピーク波長までをカバーできる遠赤外線発生装置が望ましい。なお、放射対象とする物体に近く、大気の影響が少ないときは、大気の窓の外の8μmよりも短波長側の放射エネルギーを発する物体の温度を達成することが望ましい。その時、8μmよりも短波長側の放射エネルギーを発する紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を構成する炭素繊維の耐熱温度そして経年劣化すなわち寿命を設定するとき、紐状炭素繊維フェルト棒12を構成する補強用絶縁を施した金属線11やテグス(釣り糸)等の細線の耐熱温度そして経年劣化すなわち寿命、そして紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を内蔵する円筒管7を構成する樹脂とかゴムとかの材料の耐熱温度や経年劣化すなわち寿命の時間を考慮して、その他に円筒管7に装着される結束バンド14・金属かしめ10等の部材の耐熱温度や寿命を併せ考慮して、カーボンファイバーヒーター4の紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を設計・製作することが求められる。
Regarding the cylindrical tube 7 into which the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is inserted, the material selected as the cylindrical tube 7 is the following far-infrared wavelength (the temperature of the object corresponding to the peak length in parentheses). Is selected in consideration of.
Atmospheric window on the long wavelength side: Wavelength band from 8 μm (89.1 ° C) to 13 μm (-50.2 ° C) “Growing rays” of animals and plants: 6 μm (209.8 ° C) (8 μm (89.1 ° C according to data) )) -14 μm (-66.1 ° C) (15 μm (-79.9 ° C) depending on the material)
Peak wavelength at 0 ° C: 10.6 μm
The peak wavelength of radiant energy at room temperature of an object is 10 μm: 16.7 ° C.
Human body temperature 36.5 ° C: 9.36 μm
Peak wavelength at peak wavelength conversion of 100 ° C: 7.77 μm
Peak wavelength at peak wavelength conversion of 200 ° C: 6.12 μm
Therefore, it is desirable to use a far-infrared generator that can cover up to the peak wavelength of 0 ° C. by making the best use of the wavelength band of the window of the atmosphere. When the object is close to the object to be radiated and the influence of the atmosphere is small, it is desirable to achieve the temperature of the object that emits radiant energy on the shorter wavelength side than 8 μm outside the window of the atmosphere. At that time, when setting the heat resistant temperature and aging deterioration, that is, the life of the carbon fibers constituting the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 that emits radiation energy on the wavelength side shorter than 8 μm, the string-shaped carbon fibers The heat-resistant temperature and aging deterioration, that is, the life of the metal wire 11 and the thin wire such as Tegs (fishing thread) that have been insulated for reinforcement that make up the felt rod 12, and the string-shaped carbon fiber felt 8 and the string-shaped carbon fiber felt rod 12 are built-in. Considering the heat-resistant temperature and aging deterioration of materials such as resin and rubber that make up the cylindrical tube 7, that is, the time of life, the heat-resistant temperature of members such as the binding band 14 and metal caulking 10 attached to the cylindrical tube 7 It is required to design and manufacture the string-shaped carbon fiber felt 8 and the string-shaped carbon fiber felt rod 12 of the carbon fiber heater 4 in consideration of the service life.

紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を構成する炭素繊維で、熱処理温度の低い汎用性タイプの製品は、空気中において150℃(ピーク長換算で6.85μm)でゆっくりと酸化が始まるものがあり、ピーク波長換算で6μm(209.8℃)の実現を望むのであれば、耐熱温度が150℃よりも高い炭素繊維で構成された炭素繊維フェルトを選択することが必要になる。紐状炭素繊維フェルト棒12を構成する補強用絶縁を施した金属線11の場合、例えば絶縁性のあるポリアミドイミド銅線を使用する場合、ポリアミドイミド繊維の耐熱温度は275℃(ピーク波長換算で5.29μM)前後とある。また、アルマイト処理の皮膜は絶縁性があるが、100℃程度でクラックを発生するので100℃(7.77μmのピーク波長程度)以下で使用する仕様になる。従い、使用する目的に従い、紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を内蔵する円筒管7の仕様や、その他に使用する部材の仕様を、決める必要がある。 The carbon fibers constituting the string-shaped carbon fiber felt 8 and the string-shaped carbon fiber felt rod 12 and having a low heat treatment temperature are versatile products that slowly oxidize in air at 150 ° C. (6.85 μm in terms of peak length). If you want to achieve 6 μm (209.8 ° C) in terms of peak wavelength, it is necessary to select carbon fiber felt made of carbon fiber with a heat resistant temperature higher than 150 ° C. .. In the case of the reinforcing insulated metal wire 11 constituting the string-shaped carbon fiber felt rod 12, for example, when an insulating polyamide-imide copper wire is used, the heat resistant temperature of the polyamide-imide fiber is 275 ° C. (in terms of peak wavelength). It is around 5.29 μM). Further, although the alumite-treated film has an insulating property, cracks occur at about 100 ° C., so the specifications are such that it is used at 100 ° C. (a peak wavelength of about 7.77 μm) or less. Therefore, it is necessary to determine the specifications of the cylindrical tube 7 containing the string-shaped carbon fiber felt 8 and the string-shaped carbon fiber felt rod 12 and the specifications of other members to be used according to the purpose of use.

使用する目的に従い、紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を内蔵する円筒管7の性状を決めとき、該円筒管7の材料である、例えば樹脂の耐熱温度と樹脂を構成する材料の吸収スペクトル(図7に例を示す)を考慮して、該円筒管7の材質の性状を考慮し、該円筒管を選択することが重要になる。例えば、動植物や植物を育成する土壌に遠赤外線を照射する場合には、四方に放射することを考え、動植物や土壌との距離を勘案して、ピーク長勘案で100℃(7.77μm)以下の温度で遠赤外線を放射することで対応が可能である。例えば、なお農作物や樹脂等の緩慢乾燥に使用する場合は、ピーク長換算で200℃(6.12μm)程度のピーク長勘案の温度までの遠赤外線の放射の使用が求められる。例えば、ピーク波長勘案で100℃(7.77μm)以下の温度で使用する場合、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12の炭素繊維の劣化開始温度が一番低い150℃程度として、例えば樹脂である場合は使用温度範囲5℃~90℃の耐熱性硬質ポリ塩化ビニル管(H.T)(図7に塩化ビニルの吸収スペクトルを示す)とかプラスチックの1種である使用温度範囲-60℃~100℃のポリオレフィン管といった樹脂等の中で、遠赤外線の波長によるが、透過率の高い樹脂で製作された円筒管の利用が考えられる。あるいは、また、150℃~200℃程度までの温度帯で使用する場合は、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12の炭素繊維の劣化温度が150℃~200℃以上の品質のものを選ぶものとし、紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を内蔵する円筒管7の、例えば樹脂である場合は炭素繊維の劣化温度150℃~200℃以上程度かそれ以上の耐熱性のある、例えばプラスチック系の樹脂等で遠赤外線の透過率の特性を見て選択する。 When determining the properties of the cylindrical tube 7 containing the string-shaped carbon fiber felt 8 and the string-shaped carbon fiber felt rod 12 according to the purpose of use, the heat-resistant temperature of the resin, for example, the heat-resistant temperature of the resin and the resin are configured. It is important to select the cylindrical tube in consideration of the material properties of the cylindrical tube 7 in consideration of the absorption spectrum of the material (an example is shown in FIG. 7). For example, when irradiating far-infrared rays to the soil where animals and plants are grown, consider radiating in all directions, consider the distance to the animals and plants and soil, and consider the peak length to be 100 ° C (7.77 μm) or less. It is possible to deal with it by radiating far infrared rays at the temperature of. For example, when it is used for slow drying of agricultural products, resins, etc., it is required to use far-infrared radiation up to a temperature considering the peak length of about 200 ° C. (6.12 μm) in terms of peak length. For example, when used at a temperature of 100 ° C. (7.77 μm) or less in consideration of the peak wavelength, the deterioration start temperature of the carbon fiber of the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is about 150 ° C., which is the lowest. For example, in the case of a resin, a heat-resistant rigid polyvinyl chloride tube (HT) having an operating temperature range of 5 ° C to 90 ° C (the absorption spectrum of vinyl chloride is shown in FIG. 7) or an operating temperature which is a kind of plastic. Among resins such as polyolefin tubes with a range of -60 ° C to 100 ° C, it is conceivable to use a cylindrical tube made of a resin having a high transmittance, although it depends on the wavelength of far infrared rays. Alternatively, when used in a temperature range of about 150 ° C. to 200 ° C., the quality of the carbon fiber deterioration temperature of the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is 150 ° C. to 200 ° C. or higher. In the case of a cylindrical tube 7 containing a string-shaped carbon fiber felt 8 and a string-shaped carbon fiber felt rod 12, for example, in the case of a resin, the deterioration temperature of the carbon fiber is about 150 ° C. to 200 ° C. or higher or higher. Select by looking at the characteristics of far-infrared transmission with heat-resistant, for example, plastic resin.

紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を内蔵する円筒管7を選択する場合は、耐熱性に加え、化学物質の同定にも用いられる、物質固有の吸収スペクトルが現れる、指紋領域(波数1,300cm-1(7.69μm)~650cm-1(15.38μm))と呼ばれる周波数領域(波長領域)に併せ、さらに放射対象とする物体に近く大気の影響が少ないときを考える時は、短波長側6μm(ピーク波長換算で209.8℃)までの領域の吸収特性も併せ考慮に加え、必要とする波長の遠赤外線の透過率の高い樹脂で製造された樹脂管を選択する。When a cylindrical tube 7 containing a string-shaped carbon fiber felt 8 or a string-shaped carbon fiber felt rod 12 is selected, a fingerprint region in which a substance-specific absorption spectrum appears, which is also used for identifying chemical substances in addition to heat resistance. In addition to the frequency region (wavelength region) called (wavelength 1,300 cm -1 (7.69 μm) to 650 cm -1 ( 15.38 μm)), when considering the time when the influence of the atmosphere is small near the object to be radiated. Selects a resin tube made of a resin having a high transmittance of far infrared rays of a required wavelength, taking into consideration the absorption characteristics in the region up to 6 μm on the short wavelength side (209.8 ° C. in terms of peak wavelength). ..

例えば、100℃以下の低温度で使用される、図7に遠赤外線6μm~10.6μmにおける透過率の概略図を示した塩化ビニルの場合、その素材は、波長6μm(210℃)~約6.6μm(166℃)の間の透過率は90%を超えているが、波長が約6.6μm(166℃)~10.6μm(0℃)の間では透過率が約61%と約37%の間を上下している。また、例えば、図7に示した天然ゴムの場合、波長が約6μm~約7.5μmの間では透過率の変化が激しいが、約7.5μm(113℃)~10.6μm(0℃)の間で透過率が高く約61%~69%の間を上下する。従って、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12から放射される遠赤外線のピーク波長相当の温度と樹脂の管の耐熱温度とを考慮するとき、塩化ビニルでは最高温度を塩化ビニルの耐熱温度相当の90℃(8μm)とするので有れば、使用出来る遠赤外線の使用範囲は遠赤外線の透過率は落ちるが、8μm(90℃)~10.6μm(0℃)の間で使用することになる。この波長の範囲は、0℃以上の大気の窓と育成光線の範囲に相当するので、動植物や植物を育成する土壌の保温には有用である。200℃(6.12μm)とか210℃(6μm)のピーク波長を有する遠赤外線を必要とする場合は、大気圧でそれなりの耐熱性を有する炭素繊維そして樹脂等の円筒管7を使用したカーボンファイバーヒーター4を設けた遠赤外線発生装置を適用する。 For example, in the case of vinyl chloride, which is used at a low temperature of 100 ° C. or lower and whose transmittance is shown in FIG. 7 in the far infrared rays of 6 μm to 10.6 μm, the material thereof has a wavelength of 6 μm (210 ° C.) to about 6. The transmittance between 6.6 μm (166 ° C) exceeds 90%, but the transmittance between about 6.6 μm (166 ° C) and 10.6 μm (0 ° C) is about 61% and about 37. It goes up and down between%. Further, for example, in the case of the natural rubber shown in FIG. 7, the transmittance changes drastically when the wavelength is between about 6 μm and about 7.5 μm, but it is about 7.5 μm (113 ° C) to 10.6 μm (0 ° C). The transmittance is high between them, and it fluctuates between about 61% and 69%. Therefore, when considering the temperature corresponding to the peak wavelength of far infrared rays radiated from the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12 and the heat resistant temperature of the resin tube, the maximum temperature of vinyl chloride is vinyl chloride. If the temperature is set to 90 ° C (8 μm), which is equivalent to the heat resistant temperature of, the range of use of far infrared rays that can be used is between 8 μm (90 ° C) and 10.6 μm (0 ° C), although the transmission rate of far infrared rays decreases. Will be used. Since this wavelength range corresponds to the range of atmospheric windows and growing rays of 0 ° C. or higher, it is useful for heat insulation of animals, plants and soil in which plants are grown. When far infrared rays having a peak wavelength of 200 ° C (6.12 μm) or 210 ° C (6 μm) are required, carbon fiber having a certain degree of heat resistance at atmospheric pressure and carbon fiber using a cylindrical tube 7 such as resin are used. A far-infrared ray generator provided with the heater 4 is applied.

紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12から放射される遠赤外線のさまざまな分光スペクトラムの有するエネルギー密度と、円筒管の材質によって円筒管を透過して円筒管から放射される遠赤外線のさまざまなスペクトラムのエネルギー密度との間に相違が生じる。従って、円筒管を構成する材料の特性に従って、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12から発生される遠赤外線の特定の波長の遠赤外線が円筒管に多く吸収されるため、円筒管から外部に透過するスペクトラムのエネルギー密度には円筒管の材質によって濃淡が発生する。そのため、ある材質の円筒管が存在するするとき、その円筒管と材質が相違する別の円筒管を使用することにより、一方の円筒管で透過率が低く吸収され減少した遠赤外線の波長スペクトラムを別の円筒管の波長スペクトラムでカバーすることを可能とする、材質の相違する二つの円筒管を設置したカーボンファイバーヒーターで構成された遠赤外線発生装置。あるいはまた三つあるいはそれ以上の、複数の材質の異なる円筒管で作成されたカーボンファイバーヒーター4を設置した遠赤外線発生装置。 The energy density of various spectral spectra of far infrared rays emitted from the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12, and the distance transmitted from the cylindrical tube through the cylindrical tube depending on the material of the cylindrical tube. Differences occur between the energy densities of the various spectra of infrared light. Therefore, according to the characteristics of the material constituting the cylindrical tube, a large amount of far infrared rays having a specific wavelength of far infrared rays generated from the string-shaped carbon fiber felt 8 or also the string-shaped carbon fiber felt rod 12 are absorbed by the cylindrical tube. The energy density of the spectrum transmitted from the cylindrical tube to the outside varies depending on the material of the cylindrical tube. Therefore, when a cylindrical tube of a certain material exists, by using another cylindrical tube made of a different material from that cylindrical tube, the far-infrared wavelength spectrum that is absorbed and reduced by one of the cylindrical tubes with low transmittance can be obtained. A far-infrared generator consisting of a carbon fiber heater with two cylindrical tubes of different materials that can be covered by the wavelength spectrum of another cylindrical tube. Alternatively, a far-infrared generator equipped with a carbon fiber heater 4 made of three or more cylindrical tubes made of different materials.

紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を内蔵した樹脂やゴム等を材料とする円筒管から、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12に通電して遠赤外線を放射するとき、単に円筒管7に遠赤外線が吸収されるだけではなく、円筒管7の材料を構成する物質固有の吸収スペクトルに従って遠赤外線のスペクトラムが吸収されるため、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を、円筒管内に内蔵せずすなわち円筒管等を通さず、直接空気中で遠赤外線を放射し、対象物に照射することが出来れば、遠赤外線の一部が空気に吸収されるだけで、円筒管に吸収されることはなく、照射対象の物体を直接照射することが可能となる。そこで、図8に示したように、金属、例えば鏡面研磨したアルミニウムで製造された円筒管16で、片側をとめて金属管の半分に開くことが出来るとき、半円筒の金属の内面を反射板とし、その半円筒の焦点の部分に、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12を、FRP等の絶縁物17を支えとして設置し、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒12から放射される遠赤外線及び半円筒の内面から反射された遠赤外線を併せて目的とする対象物に効率良く直接照射出来るカーボンファイバーヒーター4を備えた遠赤外線発生装置。 The string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 is energized from a cylindrical tube made of a resin, rubber, or the like containing the string-shaped carbon fiber felt rod 12 or the string-shaped carbon fiber felt rod 12 to be far away. When emitting infrared rays, not only the far infrared rays are absorbed by the cylindrical tube 7, but also the far infrared rays spectrum is absorbed according to the absorption spectrum peculiar to the substance constituting the material of the cylindrical tube 7, so that the string-shaped carbon fiber felt. If the string-shaped carbon fiber felt rod 12 or the string-shaped carbon fiber felt rod 12 is not built in the cylindrical tube, that is, it does not pass through the cylindrical tube or the like and can directly radiate far infrared rays in the air and irradiate the object, it is one of the far infrared rays. Only the portion is absorbed by the air, not by the cylindrical tube, and it is possible to directly irradiate the object to be irradiated. Therefore, as shown in FIG. 8, when a cylindrical tube 16 made of metal, for example, mirror-polished aluminum, can be opened to half of the metal tube by stopping one side, the inner surface of the semi-cylindrical metal is a reflector. Then, a string-shaped carbon fiber felt 8 or a string-shaped carbon fiber felt rod 12 is installed at the focal portion of the semi-cylindrical body with an insulator 17 such as FRP as a support, and the string-shaped carbon fiber felt 8 or also a string-shaped A far-infrared generator equipped with a carbon fiber heater 4 capable of efficiently and directly irradiating a target object with far-infrared rays emitted from a carbon fiber felt rod 12 and far-infrared rays reflected from the inner surface of a semi-cylindrical surface.

円筒管の材質は、図5及び6では円筒樹脂管と記載したが、あるいはまた段落によって、単に円筒管と記載したが、さまざま材質の円筒管であって良い。 The material of the cylindrical tube is described as a cylindrical resin tube in FIGS. 5 and 6, or is also simply described as a cylindrical tube in the paragraph, but may be a cylindrical tube of various materials.

以上、紐状炭素繊維フェルト8あるいはまた紐状炭素繊維フェルト棒を内蔵する容器を円筒管と記載したが、ランプであっても良い。 Although the container containing the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod is described above as a cylindrical tube, it may be a lamp.

以上、樹脂の円筒管と記載したが、耐熱温度・遠赤外線の透過率・寿命等の性状から見て、膜であっても良い。 Although described as a resin cylindrical tube above, it may be a film in view of the heat resistant temperature, the transmittance of far infrared rays, the life, and the like.

なお、円筒管の材料として、製作する価格を考慮しないのであれば、物質固有の吸収スペクトルが少ない、ゲルマニウムとかフッ化バリウム等を材料とした円筒管を使用したカーボンファイバーヒーター。 If the manufacturing price is not taken into consideration as the material of the cylindrical tube, a carbon fiber heater using a cylindrical tube made of germanium, barium fluoride, etc., which has a small absorption spectrum peculiar to the substance.

樹脂等の円筒管内に装着した紐状炭素繊維フェルト8や紐状炭素繊維フェルト棒12を、円筒管内で動かないように固定するために、円筒管の外から金属カシメ等で固定したカーボンファイバーヒーター。 A carbon fiber heater fixed from the outside of the cylindrical tube with a metal caulking or the like in order to fix the string-shaped carbon fiber felt 8 or the string-shaped carbon fiber felt rod 12 mounted in the cylindrical tube of resin or the like so as not to move in the cylindrical tube. ..

安価で容易な取扱いで、しかも省エネルギーで、限定されたエリアの土壌や植物そして動物に育成光線と言われる遠赤外線の直接の照射を可能とし、また低温長時間乾燥装置として産業上の利用の可能性がある。 Inexpensive, easy to handle, and energy-saving, it enables direct irradiation of far-infrared rays called growing rays to soil, plants and animals in a limited area, and can be industrially used as a low-temperature long-time drying device. There is sex.

円筒管に内蔵される紐状炭素繊維フェルトあるいはまた紐状炭素繊維フェルト棒が複数である場合、円筒管を埋めるように、断面が円筒管に比較して小さな角形の形状のものを、積み重ねても、小さな角形の形状のものと大きい角形の形状のものを組み合わせても良い。あるいはまた紐状炭素繊維フェルトと紐状炭素繊維フェルト棒を組み合わせて内蔵しても良い。 If there are multiple string-shaped carbon fiber felts or string-shaped carbon fiber felt rods built into the cylindrical tube, stack those with a small square cross section compared to the cylindrical tube so as to fill the cylindrical tube. Also, a combination of a small square shape and a large square shape may be used. Alternatively, a string-shaped carbon fiber felt and a string-shaped carbon fiber felt rod may be combined and incorporated.

円筒管内の空気に含まれる湿気の悪影響を除去するために、必要に応じて、円筒管内に乾燥空気を挿入してもよい。あるいはまた真空にしても良い。 If necessary, dry air may be inserted into the cylindrical tube in order to remove the adverse effect of moisture contained in the air in the cylindrical tube. Alternatively, it may be evacuated again.

1面状炭素繊維フェルト
2面状炭素繊維フェルトから切り取った紐状炭素繊維フェルト
3紐状炭素繊維フェルトの断面の対角線
4カーボンファイバーヒーター
5温調器
6交流電力調整器
7円筒樹脂管
8断面が正方形の紐状炭素繊維フェルト
9細い紐状炭素繊維
10金属かしめ
11絶縁を施した金属線
12断面が正方形の紐状炭素繊維フェルト棒
13リード線
14結束バンド
15接続端子
16金属製半円筒
17支持棒
18金属製半円等蓋側
1 planar carbon fiber felt 2 String carbon fiber felt cut from planar carbon fiber felt 3 Diagonal cross section of string carbon fiber felt 4 Carbon fiber heater 5 Temperature controller 6 AC power regulator 7 Cylindrical resin tube 8 Cross section Square string-shaped carbon fiber felt 9 Fine string-shaped carbon fiber 10 Metal caulking 11 Insulated metal wire 12 String-shaped carbon fiber felt rod with square cross section 13 Lead wire 14 Binding band 15 Connection terminal 16 Metal semi-cylindrical 17 Support Bar 18 Metal semi-circle, etc. Lid side

Claims (6)

カーボンファイバーヒーターに適用する紐状炭素繊維のフェルトは、わずかな引っ張り応力で切断され、上下左右への応力で炭素繊維が容易に剥がれる。そのため、カーボンファイバーヒーターに適用する紐状炭素繊維フェルトを補強し、同時に円筒管への挿入を容易にするために、弾性変形が容易な、電気に対し絶縁された、熱的耐性を有する、絶縁処理を施した金属線や樹脂線に、紐状炭素繊維フェルトを固定し、新たに紐状炭素繊維フェルト棒を作成し、適用することを特徴とするとするカーボンファイバーヒーター。 The string-shaped carbon fiber felt applied to the carbon fiber heater is cut by a slight tensile stress, and the carbon fiber is easily peeled off by the stress in the vertical and horizontal directions. Therefore, in order to reinforce the string-shaped carbon fiber felt applied to the carbon fiber heater and at the same time to facilitate insertion into the cylindrical tube, it is easily elastically deformed, insulated against electricity, and insulated. A carbon fiber heater characterized by fixing a string-shaped carbon fiber felt to a treated metal wire or resin wire to create a new string-shaped carbon fiber felt rod and applying it. カーボンファイバーヒーターを構成する空気で満たされた円筒の管に遠赤外線を放射する紐状炭素繊維フェルトあるいはまた紐状炭素繊維フェルト棒を挿入する。その紐状炭素繊維フェルトあるいはまた紐状炭素繊維フェルト棒の両端に通電し遠赤外線を発生する時、円筒の管に挿入される紐状炭素繊維フェルトあるいはまた紐状炭素繊維フェルト棒が有する熱量を最大限に上げ、同時にまた管中の空気による遠赤外線の吸収を最小限とし同時に温度上昇時の紐状炭素繊維フェルトあるいはまた紐状炭素繊維フェルト棒を構成する炭素繊維の酸化を抑制するために、円筒管内の空気量を減らすことを目的に、円筒管に挿入される、断線のない、角形あるいは円形の断面を有する、紐状炭素繊維フェルトあるいはまた紐状炭素繊維フェルト棒で、円筒管断面の隙間が最小になるように、円筒管を埋めることを特徴とするカーボンファイバーヒーター。 A string-shaped carbon fiber felt or a string-shaped carbon fiber felt rod that emits far infrared rays is inserted into a cylindrical tube filled with air that constitutes the carbon fiber heater. When both ends of the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rod are energized to generate far infrared rays, the amount of heat possessed by the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rod inserted into the cylindrical tube is applied. To maximize and at the same time minimize the absorption of far infrared rays by the air in the tube and at the same time suppress the oxidation of the string-shaped carbon fiber felt or the carbon fiber constituting the string-shaped carbon fiber felt rod at the time of temperature rise. A string-shaped carbon fiber felt or also a string-shaped carbon fiber felt rod having a square or circular cross section, inserted into the cylindrical tube for the purpose of reducing the amount of air in the cylindrical tube, the cylindrical tube cross section. A carbon fiber heater characterized by filling a cylindrical tube so that the gap between the two is minimized. カーボンファイバーヒーターを構成する該紐状炭素繊維フェルトあるいは該紐状炭素繊維フェルト棒から放射される遠赤外線は、その波長により通過する該円筒管の材質固有の吸収率により吸収される。そのため、遠赤外線中の育成光線である6μm(資料により8μm)~14μm(資料により15μm)域の遠赤外線の波長域の中で、該円筒管の材質が高透過率で透過させることが可能な遠赤外線の波長域で、ピーク波長に相当する温度で遠赤外線の発生を可能とするように、該紐状炭素繊維フェルトあるいは該紐状炭素繊維フェルト棒の両端に印可する電圧を、設定そして制御できる、該カーボンファイバーヒーターを設置した遠赤外線発生装置。 The far infrared rays emitted from the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rod constituting the carbon fiber heater are absorbed by the material-specific absorption rate of the cylindrical tube passing by the wavelength. Therefore, the material of the cylindrical tube can transmit with high transmission rate in the wavelength range of far infrared rays in the wavelength range of 6 μm (8 μm according to the material) to 14 μm (15 μm according to the material), which is the growing light beam in the far infrared rays. Set and control the voltage applied to both ends of the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rod so that far-infrared rays can be generated at a temperature corresponding to the peak wavelength in the far-infrared wavelength range. A far-infrared ray generator equipped with the carbon fiber heater. 別々のカーボンファイバーヒーターにおいて、それぞれのカーボンファイバーヒーターに設けた材質の異なる円筒管内に挿入した紐状炭素繊維フェルトあるいは該紐状炭素繊維フェルト棒の両端に印可する電圧を制御し、それぞれの円筒管から別々の高透過率で透過した波長域の遠赤外線を得るとき、高透過率で透過する波長域の異なる二つあるいはそれ以上の円筒管を備え、それぞれ異なる材質の円筒管による遠赤外線の吸収域を別の材質の円筒管から高透過率で透過した遠赤外線でカバーすることを可能とする、それぞれ波長の異なる遠赤外線を放射するのカーボンファイバーヒーターを複数備えた遠赤外線装置。 In separate carbon fiber heaters, the voltage applied to both ends of the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rods inserted into the cylindrical tubes of different materials provided in each carbon fiber heater is controlled, and each cylindrical tube is used. When obtaining far-infrared fibers in different wavelength ranges transmitted by different high transmittances from, two or more cylindrical tubes having different wavelength ranges transmitted by high transmittance are provided, and the far-infrared fibers are absorbed by the cylindrical tubes made of different materials. A far-infrared device equipped with multiple carbon fiber heaters that emit far-infrared rays of different wavelengths, which makes it possible to cover the area with far-infrared rays transmitted from a cylindrical tube made of a different material with high transmittance. 該カーボンファイバーヒーターを構成する、該紐状炭素繊維フェルトあるいはまた該紐状炭素繊維フェルト棒の両端に通電し、電圧を制御することにより該紐状炭素繊維フェルトあるいはまた該紐状炭素繊維フェルト棒の温度を0℃から上げ、カーボンファイバーヒーターを構成する各部材の中で、許容するもっとも低い耐熱温度に相当する短波長側のピーク波長にシフトが出来るように、電圧の上限を設定することを特徴とする遠赤外線発生装置。 By energizing both ends of the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rod constituting the carbon fiber heater and controlling the voltage, the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rod is also used. The upper limit of the voltage should be set so that the temperature of the carbon fiber heater can be increased from 0 ° C and shifted to the peak wavelength on the short wavelength side corresponding to the lowest allowable heat resistant temperature among the members constituting the carbon fiber heater. A featured far-infrared generator. 該紐状炭素繊維フェルトあるいはまた該紐状炭素繊維フェルト棒を、使用時に金属円筒管の半面を開き、反射面を有した金属管の側の、外から反射面に入射した光が焦点を結ぶ位置に、金属円筒管に設けた絶縁支持棒で固定した、一本ないし複数本の紐状炭素繊維フェルトあるいはまた紐状炭素繊維フェルト棒に通電し、発生した遠赤外線のうち、照射の目的とする対象物に向かう遠赤外線と、半円筒の金属の反射面から反射する遠赤外線とを併せ、効率良く、照射を目的とする対象物に直接放射できる、金属円筒管型カーボンファイバーヒーターを備えた遠赤外線装置。 When the string-shaped carbon fiber felt or the string-shaped carbon fiber felt rod is used, one side of the metal cylindrical tube is opened, and the light incident on the reflecting surface from the outside on the side of the metal tube having the reflecting surface focuses. One or more string-shaped carbon fiber felts or string-shaped carbon fiber felt rods fixed at the position with an insulating support rod provided on a metal cylindrical tube are energized, and among the far infrared rays generated, the purpose of irradiation is Equipped with a metal cylindrical tube type carbon fiber heater that can efficiently radiate far infrared rays toward the object to be irradiated and far infrared rays reflected from the reflective surface of the semi-cylindrical metal. Far infrared device.
JP2020186161A 2020-10-21 2020-10-21 Far infrared generation device Pending JP2022068070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020186161A JP2022068070A (en) 2020-10-21 2020-10-21 Far infrared generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020186161A JP2022068070A (en) 2020-10-21 2020-10-21 Far infrared generation device

Publications (1)

Publication Number Publication Date
JP2022068070A true JP2022068070A (en) 2022-05-09

Family

ID=81455992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020186161A Pending JP2022068070A (en) 2020-10-21 2020-10-21 Far infrared generation device

Country Status (1)

Country Link
JP (1) JP2022068070A (en)

Similar Documents

Publication Publication Date Title
US8334974B2 (en) Method and apparatus for detecting polarizing direction of electromagnetic wave
US7133604B1 (en) Infrared air heater with multiple light sources and reflective enclosure
FR2545273A1 (en) HEATING TUBULAR LAMP WITH HIGH PERFORMANCE
KR101969044B1 (en) Heater unit and heat treatment apparatus
US6534904B1 (en) Infrared lamp with carbon ribbon being longer than a radiation length
JP2022068070A (en) Far infrared generation device
US20190240361A1 (en) Fluid sterilization device
ES2284522T3 (en) PROCEDURE AND DEVICE FOR THE INSULATION OF ELECTROTECHNICAL COMPONENTS.
US3397301A (en) Electrical radiant heater having cellular air shield
KR100984312B1 (en) Winding heater
JP2741995B2 (en) Far-infrared radiation electric heater
KR102335871B1 (en) Electrical heat wires for facility cultivation heating
US8242419B2 (en) Aquarium heater
KR100628602B1 (en) Cable crosslinking apparatus using infrared
CN108321663A (en) A kind of continuous terahertz emission source of wideband and corresponding exciting method
JP6706815B2 (en) Thermophotovoltaic generator and thermophotovoltaic system
KR100644489B1 (en) Infrared heater having means for adjusting distribution of hot wire
US20100193510A1 (en) Wireless radiative system
JP3965501B2 (en) Microwave radiometer
EP3377940B1 (en) A white light source and a method of white light generation
SU1455394A1 (en) Ir electric heater
KR20130012992A (en) Plate type heater with-excellent flexibilty and durability
JP2978716B2 (en) Far infrared heater
JPS6129087A (en) Far infrared ray heater
DE202008007815U1 (en) Infrared large area resonator heating and cooling system