JP2022067328A - Image forming optical system - Google Patents

Image forming optical system Download PDF

Info

Publication number
JP2022067328A
JP2022067328A JP2020175981A JP2020175981A JP2022067328A JP 2022067328 A JP2022067328 A JP 2022067328A JP 2020175981 A JP2020175981 A JP 2020175981A JP 2020175981 A JP2020175981 A JP 2020175981A JP 2022067328 A JP2022067328 A JP 2022067328A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
imaging optical
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020175981A
Other languages
Japanese (ja)
Inventor
大地 田之上
Daichi Tanoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Corp
Original Assignee
Sigma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Corp filed Critical Sigma Corp
Priority to JP2020175981A priority Critical patent/JP2022067328A/en
Publication of JP2022067328A publication Critical patent/JP2022067328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide an inner focus type image forming optical system that is compact, and that has a wide angle of view, a high photographing magnification, and excellent optical performance obtained by satisfactorily correcting various aberrations.SOLUTION: An image forming optical system consists of, in order from an object side: a first lens group G1 having a positive refractive index; an aperture stop S; a second lens group G2 having positive refractive power; and a third lens group G3 having negative refractive power. The first lens group G1 has a negative meniscus lens that is nearest to the object, and has a convex surface facing the object. During focusing from an object at infinity to an object at a short distance, a specific conditional expression is satisfied when the first lens group G1, the aperture stop S, and the third lens group G3 are fixed, and the second lens group G2 moves along the optical axis toward the object.SELECTED DRAWING: Figure 1

Description

本発明は、デジタルカメラ、銀塩カメラ及びビデオカメラ等の撮影装置に好適な撮影レンズに関するものである。 The present invention relates to a photographing lens suitable for an imaging device such as a digital camera, a silver salt camera and a video camera.

近年、デジタルカメラをはじめとする撮影装置の高画素化に伴い、諸収差が十分良好に補正された高い光学性能を有する光学系が求められている。 In recent years, with the increase in the number of pixels of photographing devices such as digital cameras, there is a demand for an optical system having high optical performance in which various aberrations are sufficiently corrected.

また、撮像装置の小型化が進むに伴い、小型の結像光学系が求められている。特に、撮像装置の小型化が進むことで携帯性が高まり、スナップ写真や風景写真に適した広角の結像光学系が求められている。さらに、広角レンズは撮影倍率が高いほど遠近感を強調させた撮影表現が可能となるため、最大撮影倍率は高いことが好ましい。 Further, as the miniaturization of the image pickup apparatus progresses, a compact imaging optical system is required. In particular, as the miniaturization of image pickup devices progresses, portability increases, and a wide-angle imaging optical system suitable for snapshots and landscape photographs is required. Further, since the wide-angle lens enables a shooting expression that emphasizes the perspective as the shooting magnification is higher, it is preferable that the maximum shooting magnification is high.

特許第6061187号Patent No. 6061187 特許第6597626号Patent No. 6597626 特開2019-74632号公報Japanese Unexamined Patent Publication No. 2019-74632 特許第3816726号Patent No. 3816726

特許文献1、2に記載のレンズは小型のインナーフォーカス式広角レンズであるが、フォーカス移動量に対する像面の移動量が小さく、またフォーカス時に移動できる量が限られており、近接撮影倍率が十分でないという課題を有する。 The lenses described in Patent Documents 1 and 2 are small inner focus type wide-angle lenses, but the amount of movement of the image plane with respect to the amount of focus movement is small, and the amount that can be moved at the time of focusing is limited, so that the close-up shooting magnification is sufficient. It has the problem that it is not.

特許文献3、4に記載のレンズはフォーカス時に前玉を繰り出す構成であり、光学全長が変化する。撮影倍率が高くなると、被写体とレンズ最前面が接触し、被写体やレンズが汚れる危険性が高まる。また、前玉を繰り出す構成では重量が重くなりやすい前玉を動かすため、フォーカス速度の高速化が難しい等の課題を有する。 The lenses described in Patent Documents 3 and 4 have a configuration in which the front lens is extended at the time of focusing, and the total optical length changes. When the shooting magnification is high, the subject and the front surface of the lens come into contact with each other, increasing the risk of the subject and the lens becoming dirty. Further, in the configuration in which the front lens is extended, the front lens, which tends to be heavy, is moved, which causes a problem that it is difficult to increase the focus speed.

本発明はこのような状況に鑑みてなされたものであり、小型かつ広角であり撮影倍率が高く、諸収差が良好に補正され高い光学性能を有するインナーフォーカス式の結像光学系を提供することを目的とする。 The present invention has been made in view of such a situation, and provides an inner focus type imaging optical system having a small size, a wide angle, a high shooting magnification, good correction of various aberrations, and high optical performance. With the goal.

上記課題を解決するための手段である本発明を実施の結像光学系は、物体側から順に、正の屈折率を有する第1レンズ群G1と、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3から構成され、前記第1レンズ群G1は最も物体側に、物体側に凸を向けた負のメニスカスレンズを有し、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記開口絞りSと前記第3レンズG3は固定であり、前記第2レンズ群G2が光軸に沿って物体側へ移動し、以下の条件式を満たすことを特徴とする。
(1) -0.70 < f2/f3 < -0.30
f2:前記第2レンズ群G2の焦点距離
f3:前記第3レンズ群G3の焦点距離
The imaging optical system according to the present invention, which is a means for solving the above problems, has a first lens group G1 having a positive refractive index, an aperture aperture S, and a positive refractive force in order from the object side. It is composed of two lens groups G2 and a third lens group G3 having a negative refractive force. When focusing on a short-range object, the first lens group G1, the aperture aperture S, and the third lens G3 are fixed, and the second lens group G2 moves toward the object along the optical axis. However, it is characterized by satisfying the following conditional expression.
(1) -0.70 <f2 / f3 <-0.30
f2: Focal length of the second lens group G2 f3: Focal length of the third lens group G3

また、本発明を実施の結像光学系は、さらに前記第1レンズ群G1は、以下の条件式を満たす負レンズを有することを特徴とする。
(2) νd1m < 25.00
(3) ΔPgF1m > 0.0150
νd1m:前記負レンズのアッベ数
ΔPgF1m:前記負レンズの異常分散性
ΔPgF1m = PgF1m + 0.0018 × νd1m ― 0.64833
PgF1mは前記負レンズのg線とF線に関する部分分散比PgFである。
Further, the imaging optical system according to the present invention is further characterized in that the first lens group G1 has a negative lens satisfying the following conditional expression.
(2) νd1m <25.00
(3) ΔPgF1m> 0.0150
νd1m: Abbe number of the negative lens ΔPgF1m: Abnormal dispersibility of the negative lens ΔPgF1m = PgF1m + 0.0018 × νd1m ― 0.64833
PgF1m is a partial dispersion ratio PgF with respect to the g-line and F-line of the negative lens.

また、本発明を実施の結像光学系は、さらに前記第1レンズ群G1が物体側から順に負レンズL1m、負レンズL2m、正レンズL1pの並びを有し、前記正レンズL1pが以下の条件式を満たすことを特徴とする結像光学系。
(4) NdL1p > 1.85
NdL1p:前記正レンズL1pの屈折率
Further, in the imaging optical system according to the present invention, the first lens group G1 further has an arrangement of a negative lens L1m, a negative lens L2m, and a positive lens L1p in order from the object side, and the positive lens L1p has the following conditions. An imaging optical system characterized by satisfying an equation.
(4) NdL1p> 1.85
NdL1p: Refractive index of the positive lens L1p

また、本発明を実施の結像光学系は、さらに以下の条件式を満たすことを特徴とする結像光学系。
(5) 1.25 < β3 < 2.33
β3:無限遠状態における前記第3レンズ群G3の横倍率
Further, the imaging optical system according to the present invention is further characterized by satisfying the following conditional expression.
(5) 1.25 <β3 <2.33
β3: Lateral magnification of the third lens group G3 in the infinity state

また、本発明を実施の結像光学系は、さらに以下の条件を満足することを特徴とする。
(6) 2.50 < LT/Ymax <3.30
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:結像光学系の最大像高
Further, the imaging optical system according to the present invention is further characterized by satisfying the following conditions.
(6) 2.50 <LT / Ymax <3.30
LT: Surface spacing from the most object-side surface of the first lens group G1 to the image plane in the infinity-focused state Ymax: Maximum image height of the imaging optical system

また、本発明を実施の結像光学系は、さらに以下の条件を満足することを特徴とする。
(7) 2.50 < β3^2*(1-β2^2)< 3.50
β3:無限遠状態における前記第3レンズ群G3の横倍率
β2:無限遠状態における前記第2レンズ群G2の横倍率
Further, the imaging optical system according to the present invention is further characterized by satisfying the following conditions.
(7) 2.50 <β3 ^ 2 * (1-β2 ^ 2) <3.50
β3: Lateral magnification of the third lens group G3 in the infinity state β2: Lateral magnification of the second lens group G2 in the infinity state

本発明によれば、小型かつ広角であり撮影倍率が高く、諸収差が良好に補正され高い光学性能を有するインナーフォーカス式の結像光学系を得られる。 According to the present invention, it is possible to obtain an inner focus type imaging optical system having a small size, a wide angle, a high shooting magnification, good correction of various aberrations, and high optical performance.

本発明の結像光学系の実施例1に係るレンズ構成図である。It is a lens block diagram which concerns on Example 1 of the imaging optical system of this invention. 実施例1の結像光学系の撮影距離無限遠における縦収差図である。FIG. 3 is a longitudinal aberration diagram of the imaging optical system of Example 1 at an infinity shooting distance. 実施例1の結像光学系の撮影倍率-0.5倍における縦収差図である。It is a longitudinal aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 1. FIG. 実施例1の結像光学系の撮影距離無限遠における横収差図である。FIG. 5 is a lateral aberration diagram of the imaging optical system of Example 1 at an infinity shooting distance. 実施例1の結像光学系の撮影倍率-0.5倍における横収差図である。It is a lateral aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 1. FIG. 本発明の結像光学系の実施例2に係るレンズ構成図である。It is a lens block diagram which concerns on Example 2 of the imaging optical system of this invention. 実施例2の結像光学系の撮影距離無限遠における縦収差図である。FIG. 3 is a longitudinal aberration diagram of the imaging optical system of the second embodiment at an infinity shooting distance. 実施例2の結像光学系の撮影倍率-0.5倍における縦収差図である。It is a longitudinal aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 2. FIG. 実施例2の結像光学系の撮影距離無限遠における横収差図である。FIG. 3 is a lateral aberration diagram of the imaging optical system of the second embodiment at an infinity shooting distance. 実施例2の結像光学系の撮影倍率-0.5倍における横収差図である。It is a lateral aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 2. FIG. 本発明の結像光学系の実施例3に係るレンズ構成図である。It is a lens block diagram which concerns on Example 3 of the imaging optical system of this invention. 実施例3の結像光学系の撮影距離無限遠における縦収差図である。FIG. 3 is a longitudinal aberration diagram of the imaging optical system of Example 3 at an infinity shooting distance. 実施例3の結像光学系の撮影倍率-0.5倍における縦収差図である。It is a longitudinal aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 3. FIG. 実施例3の結像光学系の撮影距離無限遠における横収差図である。FIG. 3 is a lateral aberration diagram of the imaging optical system of Example 3 at an infinity shooting distance. 実施例3の結像光学系の撮影倍率-0.5倍における横収差図である。It is a lateral aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 3. FIG. 本発明の結像光学系の実施例4に係るレンズ構成図である。It is a lens block diagram which concerns on Example 4 of the imaging optical system of this invention. 実施例4の結像光学系の撮影距離無限遠における縦収差図である。FIG. 3 is a longitudinal aberration diagram of the imaging optical system of Example 4 at a shooting distance of infinity. 実施例4の結像光学系の撮影倍率-0.5倍における縦収差図である。It is a longitudinal aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 4. FIG. 実施例4の結像光学系の撮影距離無限遠における横収差図である。FIG. 5 is a lateral aberration diagram of the imaging optical system of Example 4 at a shooting distance of infinity. 実施例4の結像光学系の撮影倍率-0.5倍における横収差図である。It is a lateral aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 4. FIG. 本発明の結像光学系の実施例5に係るレンズ構成図である。It is a lens block diagram which concerns on Example 5 of the imaging optical system of this invention. 実施例5の結像光学系の撮影距離無限遠における縦収差図である。FIG. 5 is a longitudinal aberration diagram of the imaging optical system of Example 5 at an infinity shooting distance. 実施例5の結像光学系の撮影倍率-0.5倍における縦収差図である。FIG. 3 is a longitudinal aberration diagram at an imaging magnification of −0.5 times of the imaging optical system of Example 5. 実施例5の結像光学系の撮影距離無限遠における横収差図である。FIG. 5 is a lateral aberration diagram of the imaging optical system of Example 5 at a shooting distance of infinity. 実施例5の結像光学系の撮影倍率-0.5倍における横収差図である。FIG. 3 is a lateral aberration diagram at an imaging magnification of −0.5 times of the imaging optical system of Example 5. 本発明の結像光学系の実施例6に係るレンズ構成図である。It is a lens block diagram which concerns on Example 6 of the imaging optical system of this invention. 実施例6の結像光学系の撮影距離無限遠における縦収差図である。6 is a longitudinal aberration diagram of the imaging optical system of Example 6 at an infinity shooting distance. 実施例6の結像光学系の撮影倍率-0.5倍における縦収差図である。It is a longitudinal aberration diagram at the imaging magnification −0.5 times of the imaging optical system of Example 6. 実施例6の結像光学系の撮影距離無限遠における横収差図である。FIG. 3 is a lateral aberration diagram of the imaging optical system of Example 6 at an infinity shooting distance. 実施例6の結像光学系の撮影倍率-0.5倍における横収差図である。FIG. 3 is a lateral aberration diagram at an imaging magnification of −0.5 times of the imaging optical system of Example 6.

以下に、本発明に係る光学系の実施例について詳細に説明する。なお、以下の実施例の説明は本発明の結像光学系の一例を説明したものであり、本発明はその要旨を逸脱しない範囲において本実施例に限定されるものではない。 Hereinafter, examples of the optical system according to the present invention will be described in detail. It should be noted that the following description of the examples describes an example of the imaging optical system of the present invention, and the present invention is not limited to the present embodiment as long as the gist of the present invention is not deviated.

本発明の実施例の結像光学系は、図1、図6、図11、図16、図21、図26に示すレンズ構成図からわかるように、物体側から像側へ順に正の屈折率を有する第1レンズ群G1と、開口絞りS、正の屈折率を有する第2レンズ群G2、負の屈折率を有する第3レンズ群G3、から構成され、前記第1レンズ群G1は最も物体側に、物体側に凸を向けた負のメニスカスレンズを有し、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記開口絞りSと前記第3レンズ群G3は固定であり、前記第2レンズ群G2が光軸に沿って物体側へ移動し、以下の条件式を満たすことを特徴とする。
(1) -0.70 < f2/f3 < -0.30
f2:前記第2レンズ群G2の焦点距離
f3:前記第3レンズ群G3の焦点距離
As can be seen from the lens configuration diagrams shown in FIGS. 1, 6, 11, 16, 21, and 26, the imaging optical system of the embodiment of the present invention has a positive refractive index in order from the object side to the image side. The first lens group G1 is composed of a first lens group G1 having a positive refractive index, a second lens group G2 having a positive refractive index, and a third lens group G3 having a negative refractive index. It has a negative meniscus lens with a convex on the side of the object, and when focusing from an infinity object to a short-range object, the first lens group G1, the aperture aperture S, and the third lens group G3 is fixed, and the second lens group G2 moves toward the object along the optical axis and satisfies the following conditional expression.
(1) -0.70 <f2 / f3 <-0.30
f2: Focal length of the second lens group G2 f3: Focal length of the third lens group G3

第1レンズ群G1の屈折力を正とすることで、後続する第2レンズ群G2に入射する軸上光線高を低くすることでき、フォーカス群である第2レンズ群G2の軽量化が図れる。また第1レンズ群G1の最も物体側に、物体側に凸を向けた負のメニスカスレンズを配置することで、レトロフォーカスタイプの構成とし、広角化を行うことができる。 By setting the refractive power of the first lens group G1 to be positive, the height of the axial light beam incident on the subsequent second lens group G2 can be lowered, and the weight of the second lens group G2, which is the focus group, can be reduced. Further, by arranging a negative meniscus lens whose convexity is directed toward the object side on the most object side of the first lens group G1, a retrofocus type configuration can be obtained and a wide angle can be achieved.

条件式(1)は第2レンズ群G2と第3レンズ群G3の焦点距離の比を適切に規定し、小型化を達成するための条件である。 The conditional expression (1) is a condition for appropriately defining the ratio of the focal lengths of the second lens group G2 and the third lens group G3 and achieving miniaturization.

条件式(1)の上限値を超えて、フォーカス群である第2レンズ群G2の正の屈折力が相対的に弱くなると、フォーカス群の移動量が大きくなるため、結像光学系全体の小型化に不利である。 When the positive refractive power of the second lens group G2, which is the focus group, becomes relatively weak beyond the upper limit of the conditional expression (1), the amount of movement of the focus group increases, so that the entire imaging optical system is compact. It is disadvantageous to the conversion.

条件式(1)の下限値を超えて、相対的に第3レンズ群G3の負の屈折力が強くなると、バックフォーカスが大きくなるため、結像光学系全体の小型化が困難となる。 If the negative refractive power of the third lens group G3 becomes relatively strong beyond the lower limit of the conditional expression (1), the back focus becomes large, and it becomes difficult to reduce the size of the entire imaging optical system.

なお、条件式(1)の上限値を-0.40、下限値を-0.65とすることで前述の効果をより確実にすることができる。 By setting the upper limit value of the conditional expression (1) to −0.40 and the lower limit value to −0.65, the above-mentioned effect can be further ensured.

さらに、前記第1レンズ群G1は、以下の条件式を満たす負レンズを有することを特徴とする。
(2) νd1m < 25.00
(3) ΔPgF1m > 0.0150
νd1m:前記負レンズのアッベ数
ΔPgF1m:前記負レンズの異常分散性
ΔPgF1m = PgF1m + 0.0018 × νd1m ― 0.64833
PgF1mは前記負レンズのg線とF線に関する部分分散比PgFである。
Further, the first lens group G1 is characterized by having a negative lens satisfying the following conditional expression.
(2) νd1m <25.00
(3) ΔPgF1m> 0.0150
νd1m: Abbe number of the negative lens ΔPgF1m: Abnormal dispersibility of the negative lens ΔPgF1m = PgF1m + 0.0018 × νd1m ― 0.64833
PgF1m is a partial dispersion ratio PgF with respect to the g-line and F-line of the negative lens.

条件式(2)及び条件式(3)は、倍率色収差を良好に補正するため、第1レンズ群G1内の負レンズのアッベ数と異常分散性を規定するものである。 The conditional equation (2) and the conditional equation (3) define the Abbe number and the anomalous dispersibility of the negative lens in the first lens group G1 in order to satisfactorily correct the chromatic aberration of magnification.

条件式(2)の上限値を超えるとともに条件式(3)の下限値を超えて、アッベ数が大きくなるとともに異常分散性が小さくなると、倍率色収差の補正が不十分となる。 If the upper limit of the conditional expression (2) is exceeded and the lower limit of the conditional expression (3) is exceeded, the Abbe number increases and the anomalous dispersibility decreases, the correction of chromatic aberration of magnification becomes insufficient.

なお、条件式(2)の上限値を22.00、条件式(3)の下限値を0.0250とすることで前述の効果をより確実にすることができる。 By setting the upper limit value of the conditional expression (2) to 22.00 and the lower limit value of the conditional expression (3) to 0.0250, the above-mentioned effect can be further ensured.

さらに、前記第1レンズ群G1が物体側から順に負レンズL1m、負レンズL2m、正レンズL1pの並びを有し、前記正レンズL1pが以下の条件式(4)を満たすことを特徴とする。
(4) NdL1p > 1.85
NdL1p:前記正レンズL1pの屈折率
Further, the first lens group G1 has an arrangement of a negative lens L1m, a negative lens L2m, and a positive lens L1p in order from the object side, and the positive lens L1p satisfies the following conditional expression (4).
(4) NdL1p> 1.85
NdL1p: Refractive index of the positive lens L1p

第1レンズ群G1内に物体側から負レンズL1m、負レンズL2m、正レンズL1pの並びを有することで、第1レンズ群G1を物体側に負の屈折力、像側に正の屈折力を配置するレトロフォーカスタイプの構成とし、広角化に有利となる。 By having the negative lens L1m, the negative lens L2m, and the positive lens L1p arranged in the first lens group G1 from the object side, the first lens group G1 has a negative refractive power on the object side and a positive refractive power on the image side. It has a retrofocus type configuration to be placed, which is advantageous for widening the angle.

条件式(4)は第1レンズ群G1内の正レンズL1pの屈折率を規定し、小型化と像面湾曲を良好に補正するための条件である。 The conditional expression (4) defines the refractive index of the positive lens L1p in the first lens group G1 and is a condition for miniaturization and good correction of curvature of field.

条件式(4)の下限値を超えて、屈折率が低くなると、ペッツバール和が増加することで像面湾曲の補正が不十分となる。また、屈折率が低い場合に同じ屈折力を得ようとすると、曲率半径が小さくなり、レンズの周辺部の厚みを確保する必要が出てくるため、レンズの中肉を増やすことになるために小型化に不利となる。 When the refractive index becomes low beyond the lower limit of the conditional expression (4), the Petzval sum increases and the curvature of field is insufficiently corrected. Also, if the same refractive power is to be obtained when the refractive index is low, the radius of curvature becomes smaller and it becomes necessary to secure the thickness of the peripheral portion of the lens, which increases the inner thickness of the lens. It is disadvantageous for miniaturization.

なお、条件式(4)の下限値を1.90とすることで、前述の効果をより確実にすることができる。 By setting the lower limit of the conditional expression (4) to 1.90, the above-mentioned effect can be further ensured.

また、第1レンズ群G1の物体側から順に負レンズL1m、負レンズL2m、正レンズL1pの並びを、最も物体側に配置することで、後側主点の位置をより像側に移動させることができ、その効果を確実とすることができる。 Further, by arranging the negative lens L1m, the negative lens L2m, and the positive lens L1p in order from the object side of the first lens group G1 on the object side, the position of the rear principal point can be moved closer to the image side. And the effect can be assured.

さらに以下の条件式(5)を満足することを特徴とする。
(5) 1.25 < β3 < 2.33
β3:無限遠状態における前記第3レンズ群G3の横倍率
Further, it is characterized by satisfying the following conditional expression (5).
(5) 1.25 <β3 <2.33
β3: Lateral magnification of the third lens group G3 in the infinity state

条件式(5)は第1レンズ群G1と第2レンズ群G2の合成焦点距離と全系の焦点距離の比を規定するものであり、小型化と高性能化を達成するための条件である。 Conditional expression (5) defines the ratio of the combined focal length of the first lens group G1 and the second lens group G2 to the focal length of the entire system, and is a condition for achieving miniaturization and high performance. ..

条件式(5)の上限値を超えて、第3レンズ群G3の横倍率が高くなると、第1レンズ群G1と第2レンズ群G2の残存収差が拡大されることになるため、高性能化に不利となる。 If the lateral magnification of the third lens group G3 exceeds the upper limit of the conditional expression (5), the residual aberrations of the first lens group G1 and the second lens group G2 will be expanded, and thus the performance will be improved. It will be disadvantageous to.

条件式(5)の下限値を超えて、第3レンズ群G3の横倍率が低くなると、至近への合焦時のフォーカス群移動量が大きくなるため、レンズの小型化が困難となる。 If the lateral magnification of the third lens group G3 exceeds the lower limit of the conditional expression (5) and the lateral magnification of the third lens group G3 becomes low, the amount of movement of the focus group at the time of focusing to a close distance becomes large, and it becomes difficult to reduce the size of the lens.

なお、条件式(5)の上限値を2.00、下限値を1.47とすることで、前述の効果をより確実にすることができる。 By setting the upper limit value of the conditional expression (5) to 2.00 and the lower limit value to 1.47, the above-mentioned effect can be further ensured.

さらに以下の条件式(6)を満足することを特徴とする。
(6) 2.50 < LT/Ymax < 3.30
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:結像光学系の最大像高
Further, it is characterized by satisfying the following conditional expression (6).
(6) 2.50 <LT / Ymax <3.30
LT: Surface spacing from the most object-side surface of the first lens group G1 to the image plane in the infinity-focused state Ymax: Maximum image height of the imaging optical system

条件式(6)は光学全長と最大像高の関係を規定し、小型化と収差補正を両立するための条件である。 The conditional expression (6) defines the relationship between the total optical length and the maximum image height, and is a condition for achieving both miniaturization and aberration correction.

条件式(6)の上限値を超えて、イメージャーサイズに対して光学全長が長くなると、小型とは言えなくなる。 If the upper limit of the conditional expression (6) is exceeded and the total optical length is longer than the imager size, it cannot be said that the size is small.

条件式(6)の下限値を超えて、光学全長が短くなると、諸収差の補正、特にサジタルコマの補正が不十分となる。 If the lower limit of the conditional expression (6) is exceeded and the total optical length is shortened, the correction of various aberrations, particularly the correction of the sagittal coma, becomes insufficient.

なお、条件式(6)の上限値3.15を、下限値2.80をとすることで、前述の効果をより確実にすることができる。 By setting the upper limit value 3.15 of the conditional expression (6) to the lower limit value 2.80, the above-mentioned effect can be further ensured.

さらに以下の条件式(7)を満足することを特徴とする。
(7) 2.50 < β3^2*(1-β2^2) < 3.50
β3:無限遠状態における前記第3レンズ群G3の横倍率
β2:無限遠状態における前記第2レンズ群G2の横倍率
Further, it is characterized by satisfying the following conditional expression (7).
(7) 2.50 <β3 ^ 2 * (1-β2 ^ 2) <3.50
β3: Lateral magnification of the third lens group G3 in the infinity state β2: Lateral magnification of the second lens group G2 in the infinity state

条件式(7)は第2レンズ群G2のフォーカス敏感度を規定し、小型化と高い撮影倍率を達成するものである。 The conditional expression (7) defines the focus sensitivity of the second lens group G2, and achieves miniaturization and a high shooting magnification.

条件式(7)の上限値を超えて、フォーカス敏感度が高くなると、合焦時のフォーカス群停止位置精度の確保が難しくなる。 If the upper limit of the conditional expression (7) is exceeded and the focus sensitivity becomes high, it becomes difficult to secure the focus group stop position accuracy at the time of focusing.

条件式(7)の下限値を超えて、フォーカス敏感度が低くなると、高い撮影倍率を得るためのフォーカス移動量が大きくなり、光軸方向により広いスペースを確保する必要があるため、小型化と高い撮影倍率の両立が困難となる。 If the lower limit of the conditional expression (7) is exceeded and the focus sensitivity becomes low, the amount of focus movement to obtain a high shooting magnification becomes large, and it is necessary to secure a wider space in the optical axis direction. It is difficult to achieve both high shooting magnification.

なお、条件式(7)の上限値を3.30、下限値2.70をとすることで、前述の効果をより確実にすることができる。 By setting the upper limit value of the conditional expression (7) to 3.30 and the lower limit value of 2.70, the above-mentioned effect can be further ensured.

第3レンズ群G3に両凹で少なくとも片面が周辺に向かって負の屈折力が強くなるような形状とする非球面レンズを有することが望ましい。このような形状の非球面レンズを第3レンズ群のG3に配置することで、主に像面湾曲の効果を効果的に補正することができる。 It is desirable that the third lens group G3 has an aspherical lens having a shape such that at least one side of the third lens group G3 is concave and has a shape in which a negative refractive power becomes stronger toward the periphery. By arranging an aspherical lens having such a shape in G3 of the third lens group, it is possible to effectively correct the effect of mainly curvature of field.

次に、本発明の結像光学系に係る実施例のレンズ構成について説明する。
なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。
Next, the lens configuration of the embodiment according to the imaging optical system of the present invention will be described.
In the following description, the lens configuration will be described in order from the object side to the image side.

[面データ]において、面番号は物体側から数えたレンズ面又は開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線に対するアッベ数、ΔPgFは異常分散性を示している。 In [plane data], the surface number is the number of the lens surface or aperture aperture counted from the object side, r is the radius of curvature of each surface, d is the distance between each surface, and nd is the d line (wavelength λ = 587.56 nm). The refractive index, νd is the Abbe number with respect to the d line, and ΔPgF is the anomalous dispersibility.

面番号に付した*(アスタリスク)は、そのレンズ面形状が非球面であることを示している。また、BFはバックフォーカスを表す。 * (Asterisk) attached to the surface number indicates that the lens surface shape is aspherical. In addition, BF represents back focus.

面番号を付した(絞り)には、平面または開口絞りに対する曲率半径∞(無限大)を記入している。 The radius of curvature ∞ (infinity) with respect to a flat surface or an aperture stop is entered in the area numbered (aperture).

[非球面データ]には[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直交する方向への変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、コーニック係数をK、4、6、8、10、12、14、16、18、20次の非球面係数をそれぞれA4、A6、A8、A10、A12、A14、A16、A18、A20と置くとき、非球面の座標が以下の式で表わされるものとする。
z=(y2/r)/[1+{1-(1+K)(y/r)2}1/2]+A4y4+A6y6+A8y8+A10y10+A12y12+A14y14+A16y16+A18y18+A20y20
In [Aspherical surface data], each coefficient value that gives the aspherical surface shape of the lens surface marked with * in [Surface data] is shown. The shape of the aspherical surface is y for the displacement in the direction orthogonal to the optical axis, z for the displacement (sag amount) in the optical axis direction from the intersection of the aspherical surface and the optical axis, and K, 4, 6, 8 for the conic coefficient. When the 10th, 12th, 14th, 16th, 18th, and 20th order aspherical coefficients are set as A4, A6, A8, A10, A12, A14, A16, A18, and A20, respectively, the aspherical coordinates are expressed by the following equations. It shall be.
z = (y2 / r) / [1 + {1- (1 + K) (y / r) 2} 1/2] + A4y4 + A6y6 + A8y8 + A10y10 + A12y12 + A14y14 + A16y16 + A18y18 + A20y20

[各種データ]には、撮影距離がINFと撮影倍率が-0.5倍のときの焦点距離等の値を示している。 [Various data] shows values such as the focal length when the shooting distance is INF and the shooting magnification is −0.5 times.

[可変間隔データ]には撮影距離がINFと撮影倍率が-0.5倍における可変間隔及びBF(バックフォーカス)の値を示している。 [Variable interval data] shows the values of the variable interval and BF (back focus) when the shooting distance is INF and the shooting magnification is −0.5 times.

[レンズ群データ]には、各レンズ群を構成する最も物体側の面番号及び群全体の合成焦点距離と屈折力を示している。なお、以下の全ての諸元の値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。 [Lens group data] shows the surface number on the most object side constituting each lens group, and the combined focal length and refractive power of the entire group. In all the following specification values, the focal length f, the radius of curvature r, the lens surface spacing d, and other length units are described in millimeters (mm) unless otherwise specified, but optics. The system is not limited to this because the same optical performance can be obtained in both proportional expansion and proportional reduction.

また、各実施例に対応する収差図において、d、g、Cはそれぞれd線、g線、C線を表しており、ΔS、ΔMはそれぞれサジタル像面、メリジオナル像面を表している。
さらに図1、6、11、16、21、26に示すレンズ構成図において、Sは開口絞り、中心を通る一点鎖線は光軸である。
Further, in the aberration diagram corresponding to each embodiment, d, g, and C represent the d-line, g-line, and C-line, respectively, and ΔS and ΔM represent the sagittal image plane and the meridional image plane, respectively.
Further, in the lens configuration diagram shown in FIGS. 1, 6, 11, 16, 21, and 26, S is an aperture diaphragm, and the alternate long and short dash line passing through the center is the optical axis.

図1は、本発明の実施例1の結像光学系の無限遠合焦時のレンズ構成図である。実施例1の結像光学系は物体側から順に正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなる。無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、第2レンズ群G2が光軸に沿って物体側へ移動する。 FIG. 1 is a lens configuration diagram of the imaging optical system according to the first embodiment of the present invention when the lens is in focus at infinity. The imaging optical system of the first embodiment has a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power in order from the object side. It consists of group G3. When focusing from an infinite object to a short-range object, the first lens group G1, the aperture stop S, and the third lens group G3 are fixed to the image plane, and the second lens group G2 is along the optical axis. Move to the object side.

第1レンズ群G1は、物体側の面が非球面で凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、物体側に凹面を向けた形状の正メニスカスレンズL13と、物体側に凸面を向けた形状の正メニスカスレンズL14と物体側に凸面を向けた形状の負メニスカスレンズL15からなる接合レンズとにより構成されている。 The first lens group G1 includes a negative meniscus lens L11 having an aspherical surface on the object side and a convex surface, a negative meniscus lens L12 having a concave surface on the object side, and a positive meniscus lens L12 having a concave surface on the object side. It is composed of L13, a junction lens composed of a positive meniscus lens L14 having a convex surface facing the object side and a negative meniscus lens L15 having a convex surface facing the object side.

なお、第1レンズ群G1の負メニスカスレンズL11は負レンズL1mに、負メニスカスレンズL12は負レンズL2mに、正メニスカスレンズL13は正レンズL1pにそれぞれ該当する。 The negative meniscus lens L11 of the first lens group G1 corresponds to the negative lens L1m, the negative meniscus lens L12 corresponds to the negative lens L2m, and the positive meniscus lens L13 corresponds to the positive lens L1p.

第2レンズ群G2は、両凸レンズL21と物体側に凹面を向けた負メニスカスレンズL22からなる接合レンズと、両面が非球面の両凸レンズL23により構成されている。 The second lens group G2 is composed of a junction lens composed of a biconvex lens L21, a negative meniscus lens L22 with a concave surface facing the object side, and a biconvex lens L23 having aspherical surfaces on both sides.

第3レンズ群G3は、像面側の面が非球面の両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とにより構成されている。 The third lens group G3 is composed of a biconcave lens L31 having an aspherical surface on the image plane side and a negative meniscus lens L32 with the concave surface facing the object side.

以下に実施例1に係る結像光学系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd ΔPgF
物面 ∞ (d0)
1* 22.3254 1.2000 1.59271 66.97
2 10.3967 8.0142
3 -18.8622 0.8000 1.98613 16.48 0.0469
4 -47.0701 0.1500
5 -393.9653 2.6943 2.05090 26.94
6 -24.8351 0.1500
7 19.1582 2.2297 2.05090 26.94
8 46.2374 0.8000 1.54072 47.20
9 15.3402 3.3618
10(絞り) ∞ (d10)
11 76.8877 4.1964 1.49700 81.61
12 -11.2104 0.8000 1.84666 23.78
13 -36.9349 1.2958
14* 132.5036 5.2747 1.85135 40.10
15* -15.6964 (d15)
16 -565.0813 1.1700 1.69350 53.20
17* 34.3585 3.2592
18 -31.8250 1.5989 1.51680 64.20
19 -99.3133 (BF)
像面 ∞

[非球面データ]
1面 14面
K 0.00000 -1.00000
A4 2.22205E-05 -5.06066E-06
A6 -4.69259E-08 3.02711E-07
A8 8.56143E-10 -5.62626E-09
A10 -2.54125E-12 6.54011E-11
A12 3.90193E-15 -1.85433E-13
A14 0.00000E+00 -2.87753E-15
A16 0.00000E+00 2.20828E-17
A18 0.00000E+00 -4.32346E-20
A20 0.00000E+00 0.00000E+00

15面 17面
K 0.00000 0.00000
A4 5.59739E-05 1.07013E-05
A6 -1.09750E-08 -2.50582E-07
A8 2.66207E-09 1.44276E-08
A10 -8.42405E-11 -2.35199E-10
A12 1.45129E-12 1.81668E-12
A14 -1.07799E-14 -4.10422E-15
A16 2.85320E-17 -3.03923E-17
A18 0.00000E+00 1.99913E-19
A20 0.00000E+00 -3.19756E-22

[各種データ]
INF -0.5倍
焦点距離 24.00 19.45
Fナンバー 3.62 3.92
全画角2ω 81.27 78.13
像高Y 21.63 21.63
レンズ全長 65.22 65.22

[可変間隔データ]
INF -0.5倍
d0 ∞ 40.0680
d10 7.0307 3.1949
d15 1.5000 5.3358
BF 19.6941 19.6941

[レンズ群データ]
群 始面 焦点距離
G1 1 340.56
G2 11 17.20
G3 16 -30.27
The specification values of the imaging optical system according to the first embodiment are shown below.
Numerical Example 1
Unit: mm
[Surface data]
Surface number rd nd vd ΔPgF
Physical surface ∞ (d0)
1 * 22.3254 1.2000 1.59271 66.97
2 10.3967 8.0142
3 -18.8622 0.8000 1.98613 16.48 0.0469
4 -47.0701 0.1500
5 -393.9653 2.6943 2.05090 26.94
6 -24.8351 0.1500
7 19.1582 2.2297 2.05090 26.94
8 46.2374 0.8000 1.54072 47.20
9 15.3402 3.3618
10 (aperture) ∞ (d10)
11 76.8877 4.1964 1.49700 81.61
12 -11.2104 0.8000 1.84666 23.78
13 -36.9349 1.2958
14 * 132.5036 5.2747 1.85135 40.10
15 * -15.6964 (d15)
16 -565.0813 1.1700 1.69350 53.20
17 * 34.3585 3.2592
18 -31.8250 1.5989 1.51680 64.20
19 -99.3133 (BF)
Image plane ∞

[Aspherical data]
1 side 14 sides
K 0.00000 -1.00000
A4 2.22205E-05 -5.06066E-06
A6 -4.69259E-08 3.02711E-07
A8 8.56143E-10 -5.62626E-09
A10 -2.54125E-12 6.54011E-11
A12 3.90193E-15 -1.85433E-13
A14 0.00000E + 00 -2.87753E-15
A16 0.00000E + 00 2.20828E-17
A18 0.00000E + 00 -4.32346E-20
A20 0.00000E + 00 0.00000E + 00

15 sides 17 sides
K 0.00000 0.00000
A4 5.59739E-05 1.07013E-05
A6 -1.09750E-08 -2.50582E-07
A8 2.66207E-09 1.44276E-08
A10 -8.42405E-11 -2.35199E-10
A12 1.45129E-12 1.81668E-12
A14 -1.07799E-14 -4.10422E-15
A16 2.85320E-17 -3.03923E-17
A18 0.00000E + 00 1.99913E-19
A20 0.00000E + 00 -3.19756E-22

[Various data]
INF -0.5x Focal length 24.00 19.45
F number 3.62 3.92
Full angle of view 2ω 81.27 78.13
Image height Y 21.63 21.63
Lens total length 65.22 65.22

[Variable interval data]
INF -0.5 times
d0 ∞ 40.0680
d10 7.0307 3.1949
d15 1.5000 5.3358
BF 19.6941 19.6941

[Lens group data]
Focal length of group origin
G1 1 340.56
G2 11 17.20
G3 16 -30.27

図6は、本発明の実施例2の結像光学系の無限遠合焦時のレンズ構成図である。実施例2の結像光学系は物体側から順に正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなる。無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りSと第3レンズ群G3は像面に対し固定であり、第2レンズ群G2が光軸に沿って物体側へ移動する。 FIG. 6 is a lens configuration diagram of the imaging optical system according to the second embodiment of the present invention when the lens is focused at infinity. The imaging optical system of the second embodiment has a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power in order from the object side. It consists of group G3. When focusing from an infinite object to a short-range object, the first lens group G1, the aperture stop S, and the third lens group G3 are fixed to the image plane, and the second lens group G2 is along the optical axis. Move to the object side.

第1レンズ群G1は、物体側の面が非球面で凸面を向けた負メニスカスレンズL11と、両凹レンズL12と、両凸レンズL13と、物体側に凸面を向けた形状の正メニスカスレンズL14と物体側に凸面を向けた形状の負メニスカスレンズL15からなる接合レンズとにより構成されている。 The first lens group G1 includes a negative meniscus lens L11 having an aspherical surface on the object side and a convex surface, a biconcave lens L12, a biconvex lens L13, and a positive meniscus lens L14 having a convex surface on the object side. It is composed of a bonded lens made of a negative meniscus lens L15 having a shape with a convex surface facing to the side.

なお、第1レンズ群G1の負メニスカスレンズL11は負レンズL1mに、両凹レンズL12は負レンズL2mに、両凸レンズL13は正レンズL1pにそれぞれ該当する。 The negative meniscus lens L11 of the first lens group G1 corresponds to the negative lens L1m, the biconcave lens L12 corresponds to the negative lens L2m, and the biconvex lens L13 corresponds to the positive lens L1p.

第2レンズ群G2は、両凸レンズL21と物体側に凹面を向けた負メニスカスレンズL22からなる接合レンズと、両面が非球面の両凸レンズL23により構成されている。 The second lens group G2 is composed of a junction lens composed of a biconvex lens L21, a negative meniscus lens L22 with a concave surface facing the object side, and a biconvex lens L23 having aspherical surfaces on both sides.

第3レンズ群G3は、像面側の面が非球面の両凹レンズL31と、両凹レンズL32とにより構成されている The third lens group G3 is composed of a biconcave lens L31 having an aspherical surface on the image plane side and a biconcave lens L32.

以下に実施例2に係る結像光学系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd ΔPgF
物面 ∞ (d0)
1* 37.1707 1.2000 1.59271 66.97
2 11.9708 4.6706
3 -90.1757 0.8000 1.86966 20.02 0.0312
4 18.0508 0.5946
5 19.3238 4.1893 2.05090 26.94
6 -86.3596 0.1500
7 32.4873 2.2096 2.05090 26.94
8 219.5183 0.8000 1.49700 81.61
9 35.0382 4.7859
10(絞り) ∞ (d10)
11 80.0108 4.2725 1.49700 81.61
12 -10.7816 0.8000 1.84666 23.78
13 -32.1745 1.6687
14* 123.4622 5.4645 1.85108 40.12
15* -15.7000 (d15)
16 -101.3685 1.1700 1.69350 53.20
17* 51.2172 2.5377
18 -39.5716 0.8000 1.51680 64.20
19 193.3971 (BF)
像面 ∞

[非球面データ]
1面 14面
K 0.00000 -1.00000
A4 1.12761E-05 -8.73607E-06
A6 -7.31857E-08 2.30362E-07
A8 1.14060E-09 -4.79714E-09
A10 -6.34786E-12 3.67455E-11
A12 1.46137E-14 -2.67385E-14
A14 0.00000E+00 -8.73714E-16
A16 0.00000E+00 -1.63768E-18
A18 0.00000E+00 2.62737E-20
A20 0.00000E+00 0.00000E+00

15面 17面
K 0.00000 0.00000
A4 5.82134E-05 1.63614E-06
A6 -3.31395E-08 -1.27731E-07
A8 1.91909E-09 9.89556E-09
A10 -9.21090E-11 -1.23776E-10
A12 1.49754E-12 6.35230E-13
A14 -1.03775E-14 -4.80713E-16
A16 2.62651E-17 5.32540E-18
A18 0.00000E+00 -1.72839E-19
A20 0.00000E+00 7.96866E-22

[各種データ]
INF -0.5倍
焦点距離 24.15 19.22
Fナンバー 3.61 3.88
全画角2ω 80.93 78.73
像高Y 21.63 21.63
レンズ全長 64.56 64.56

[可変間隔データ]
INF -0.5倍
d0 ∞ 40.5284
d10 6.9039 3.2274
d15 1.8460 5.5225
BF 19.7011 19.7011

[レンズ群データ]
群 始面 焦点距離
G1 1 342.89
G2 11 16.68
G3 16 -26.94
The specification values of the imaging optical system according to the second embodiment are shown below.
Numerical Example 2
Unit: mm
[Surface data]
Surface number rd nd vd ΔPgF
Physical surface ∞ (d0)
1 * 37.1707 1.2000 1.59271 66.97
2 11.9708 4.6706
3 -90.1757 0.8000 1.86966 20.02 0.0312
4 18.0508 0.5946
5 19.3238 4.1893 2.05090 26.94
6 -86.3596 0.1500
7 32.4873 2.2096 2.05090 26.94
8 219.5183 0.8000 1.49700 81.61
9 35.0382 4.7859
10 (aperture) ∞ (d10)
11 80.0108 4.2725 1.49700 81.61
12 -10.7816 0.8000 1.84666 23.78
13 -32.1745 1.6687
14 * 123.4622 5.4645 1.85108 40.12
15 * -15.7000 (d15)
16 -101.3685 1.1700 1.69350 53.20
17 * 51.2172 2.5377
18 -39.5716 0.8000 1.51680 64.20
19 193.3971 (BF)
Image plane ∞

[Aspherical data]
1 side 14 sides
K 0.00000 -1.00000
A4 1.12761E-05 -8.73607E-06
A6 -7.31857E-08 2.30362E-07
A8 1.14060E-09 -4.79714E-09
A10 -6.34786E-12 3.67455E-11
A12 1.46137E-14 -2.67385E-14
A14 0.00000E + 00 -8.73714E-16
A16 0.00000E + 00 -1.63768E-18
A18 0.00000E + 00 2.62737E-20
A20 0.00000E + 00 0.00000E + 00

15 sides 17 sides
K 0.00000 0.00000
A4 5.82134E-05 1.63614E-06
A6 -3.31395E-08 -1.27731E-07
A8 1.91909E-09 9.89556E-09
A10 -9.21090E-11 -1.23776E-10
A12 1.49754E-12 6.35230E-13
A14 -1.03775E-14 -4.80713E-16
A16 2.62651E-17 5.32540E-18
A18 0.00000E + 00 -1.72839E-19
A20 0.00000E + 00 7.96866E-22

[Various data]
INF -0.5x Focal length 24.15 19.22
F number 3.61 3.88
Full angle of view 2ω 80.93 78.73
Image height Y 21.63 21.63
Lens total length 64.56 64.56

[Variable interval data]
INF -0.5 times
d0 ∞ 40.5284
d10 6.9039 3.2274
d15 1.8460 5.5225
BF 19.7011 19.7011

[Lens group data]
Focal length of group origin
G1 1 342.89
G2 11 16.68
G3 16 -26.94

図11は、本発明の実施例3の結像光学系の無限遠合焦時のレンズ構成図である。実施例3の結像光学系は物体側から順に正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなる。無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りS、第3レンズ群G3は像面に対し固定であり、第2レンズ群G2が光軸に沿って物体側へ移動する。 FIG. 11 is a lens configuration diagram of the imaging optical system according to the third embodiment of the present invention when the lens is focused at infinity. The imaging optical system of the third embodiment has a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power in order from the object side. It consists of group G3. When focusing from an infinite object to a short-range object, the first lens group G1 and the aperture stop S, the third lens group G3 are fixed to the image plane, and the second lens group G2 is along the optical axis. Move to the object side.

第1レンズ群G1は、物体側の面が非球面で凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、物体側に凹面を向けた形状の正メニスカスレンズL13と、物体側に凸面を向けた形状の正メニスカスレンズL14と物体側に凸面を向けた形状の負メニスカスレンズL15からなる接合レンズとにより構成されている。 The first lens group G1 includes a negative meniscus lens L11 having an aspherical surface on the object side and a convex surface, a negative meniscus lens L12 having a concave surface on the object side, and a positive meniscus lens L12 having a concave surface on the object side. It is composed of L13, a junction lens composed of a positive meniscus lens L14 having a convex surface facing the object side and a negative meniscus lens L15 having a convex surface facing the object side.

なお、第1レンズ群G1の負メニスカスレンズL11は負レンズL1mに、負メニスカスレンズL12は負レンズL2mに、正メニスカスレンズL13は正レンズL1pにそれぞれ該当する。 The negative meniscus lens L11 of the first lens group G1 corresponds to the negative lens L1m, the negative meniscus lens L12 corresponds to the negative lens L2m, and the positive meniscus lens L13 corresponds to the positive lens L1p.

第2レンズ群G2は、両凸レンズL21と物体側に凹面を向けた負メニスカスレンズL22からなる接合レンズと、両面が非球面の両凸レンズL23により構成されている。 The second lens group G2 is composed of a junction lens composed of a biconvex lens L21, a negative meniscus lens L22 with a concave surface facing the object side, and a biconvex lens L23 having aspherical surfaces on both sides.

第3レンズ群G3は、像面側の面が非球面の両凹レンズL31により構成されている。 The third lens group G3 is composed of a biconcave lens L31 whose surface on the image plane side is an aspherical surface.

以下に実施例3に係る結像光学系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd ΔPgF
物面 ∞ (d0)
1* 19.3403 1.2000 1.59271 66.97
2 10.0501 8.2793
3 -19.0892 0.8000 1.98613 16.48 0.0469
4 -57.5124 0.1500
5 -982.0122 2.6517 2.05090 26.94
6 -25.1961 0.1500
7 20.5762 2.4078 2.05090 26.94
8 85.7147 0.8000 1.54072 47.20
9 15.2057 2.9612
10(絞り) ∞ (d10)
11 91.7895 4.2738 1.49700 81.61
12 -11.4949 0.8000 1.84666 23.78
13 -40.6182 0.8850
14* 116.2318 5.6655 1.85135 40.10
15* -15.7000 (d15)
16 -44.5697 1.1700 1.69350 53.20
17* 44.1440 (BF)
像面 ∞

[非球面データ]
1面 14面
K 0.00000 -1.00000
A4 2.38338E-05 -4.93365E-06
A6 -9.25570E-08 3.33208E-07
A8 1.95066E-09 -5.94861E-09
A10 -1.00902E-11 4.75144E-11
A12 3.10366E-14 -1.17585E-14
A14 0.00000E+00 -1.76473E-15
A16 0.00000E+00 2.56093E-18
A18 0.00000E+00 3.67331E-20
A20 0.00000E+00 0.00000E+00

15面 17面
K 0.00000 0.00000
A4 5.32969E-05 9.69161E-06
A6 -4.54691E-09 -2.95553E-07
A8 4.00931E-09 1.15376E-08
A10 -1.14359E-10 -1.46162E-10
A12 1.52261E-12 7.42590E-13
A14 -9.31630E-15 4.35612E-16
A16 2.19663E-17 -5.70815E-18
A18 0.00000E+00 -1.49263E-19
A20 0.00000E+00 8.13616E-22

[各種データ]
INF -0.5倍
焦点距離 24.00 19.51
Fナンバー 3.61 3.94
全画角2ω 81.28 77.53
像高Y 21.63 21.63
レンズ全長 64.78 64.78

[可変間隔データ]
INF -0.5倍
d0 ∞ 40.1457
d10 7.2895 3.2229
d15 3.0184 7.0850
BF 22.2762 22.2762

[レンズ群データ]
群 始面 焦点距離
G1 1 340.79
G2 11 17.52
G3 16 -31.81
The specification values of the imaging optical system according to the third embodiment are shown below.
Numerical Example 3
Unit: mm
[Surface data]
Surface number rd nd vd ΔPgF
Physical surface ∞ (d0)
1 * 19.3403 1.2000 1.59271 66.97
2 10.0501 8.2793
3 -19.0892 0.8000 1.98613 16.48 0.0469
4 -57.5124 0.1500
5 -982.0122 2.6517 2.05090 26.94
6 -25.1961 0.1500
7 20.5762 2.4078 2.05090 26.94
8 85.7147 0.8000 1.54072 47.20
9 15.2057 2.9612
10 (aperture) ∞ (d10)
11 91.7895 4.2738 1.49700 81.61
12 -11.4949 0.8000 1.84666 23.78
13 -40.6182 0.8850
14 * 116.2318 5.6655 1.85135 40.10
15 * -15.7000 (d15)
16 -44.5697 1.1700 1.69350 53.20
17 * 44.1440 (BF)
Image plane ∞

[Aspherical data]
1 side 14 sides
K 0.00000 -1.00000
A4 2.38338E-05 -4.93365E-06
A6 -9.25570E-08 3.33208E-07
A8 1.95066E-09 -5.94861E-09
A10 -1.00902E-11 4.75144E-11
A12 3.10366E-14 -1.17585E-14
A14 0.00000E + 00 -1.76473E-15
A16 0.00000E + 00 2.56093E-18
A18 0.00000E + 00 3.67331E-20
A20 0.00000E + 00 0.00000E + 00

15 sides 17 sides
K 0.00000 0.00000
A4 5.32969E-05 9.69161E-06
A6 -4.54691E-09 -2.95553E-07
A8 4.00931E-09 1.15376E-08
A10 -1.14359E-10 -1.46162E-10
A12 1.52261E-12 7.42590E-13
A14 -9.31630E-15 4.35612E-16
A16 2.19663E-17 -5.70815E-18
A18 0.00000E + 00 -1.49263E-19
A20 0.00000E + 00 8.13616E-22

[Various data]
INF -0.5x Focal length 24.00 19.51
F number 3.61 3.94
Full angle of view 2ω 81.28 77.53
Image height Y 21.63 21.63
Lens total length 64.78 64.78

[Variable interval data]
INF -0.5 times
d0 ∞ 40.1457
d10 7.2895 3.2229
d15 3.0184 7.0850
BF 22.2762 22.2762

[Lens group data]
Focal length of group origin
G1 1 340.79
G2 11 17.52
G3 16 -31.81

図16は、本発明の実施例4の結像光学系の無限遠合焦時のレンズ構成図である。実施例4の結像光学系は物体側から順に正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなる。無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りS、第3レンズ群G3は像面に対し固定であり、第2レンズ群G2が光軸に沿って物体側へ移動する。 FIG. 16 is a lens configuration diagram of the imaging optical system according to the fourth embodiment of the present invention when the lens is focused at infinity. The imaging optical system of the fourth embodiment has a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power in order from the object side. It consists of group G3. When focusing from an infinite object to a short-range object, the first lens group G1 and the aperture stop S, the third lens group G3 are fixed to the image plane, and the second lens group G2 is along the optical axis. Move to the object side.

第1レンズ群G1は、物体側の面が非球面で凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、両凸レンズL13と、両凸レンズL14と両凹レンズL15からなる接合レンズとにより構成されている。 The first lens group G1 includes a negative meniscus lens L11 having an aspherical surface on the object side and facing a convex surface, a negative meniscus lens L12 having a concave surface facing the object side, a biconvex lens L13, a biconvex lens L14, and a biconcave lens L15. It is composed of a bonded lens made of.

なお、第1レンズ群G1の負メニスカスレンズL11は負レンズL1mに、負メニスカスレンズL12は負レンズL2mに、両凸レンズL13は正レンズL1pにそれぞれ該当する。 The negative meniscus lens L11 of the first lens group G1 corresponds to the negative lens L1m, the negative meniscus lens L12 corresponds to the negative lens L2m, and the biconvex lens L13 corresponds to the positive lens L1p.

第2レンズ群G2は、両凸レンズL21と物体側に凹面を向けた負メニスカスレンズL22からなる接合レンズと、両面が非球面の両凸レンズL23により構成されている。 The second lens group G2 is composed of a junction lens composed of a biconvex lens L21, a negative meniscus lens L22 with a concave surface facing the object side, and a biconvex lens L23 having aspherical surfaces on both sides.

第3レンズ群G3は、像面側の面が非球面の両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32とにより構成されている。 The third lens group G3 is composed of a biconcave lens L31 having an aspherical surface on the image plane side and a negative meniscus lens L32 with the concave surface facing the object side.

以下に実施例4に係る結像光学系の諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd ΔPgF
物面 ∞ (d0)
1* 22.7288 1.2000 1.59271 66.97
2 10.3746 6.6313
3 -19.3202 0.8000 1.98613 16.48 0.0469
4 -71.1259 0.1500
5 530.3897 2.5801 2.05090 26.94
6 -25.9928 0.1500
7 26.1508 2.4646 2.05090 26.94
8 -476.9596 0.8000 1.54072 47.20
9 23.6409 2.7503
10(絞り) ∞ (d10)
11 76.9533 3.7681 1.49700 81.61
12 -13.3024 0.8000 1.84666 23.78
13 -116.0370 1.2382
14* 81.5067 5.6667 1.85135 40.10
15* -15.7000 (d15)
16 -89.3952 1.1700 1.69350 53.20
17* 56.9079 3.7384
18 -21.8172 0.8000 1.51680 64.20
19 -33.2026 (BF)
像面 ∞

[非球面データ]
1面 14面
K 0.00000 -1.00000
A4 2.37229E-05 -1.25375E-05
A6 -1.73149E-07 6.01878E-07
A8 2.87882E-09 -8.10717E-09
A10 -1.87176E-11 5.33151E-11
A12 5.08950E-14 9.02453E-14
A14 0.00000E+00 -2.18577E-15
A16 0.00000E+00 6.91343E-18
A18 0.00000E+00 -9.36600E-21
A20 0.00000E+00 0.00000E+00

15面 17面
K 0.00000 0.00000
A4 5.08564E-05 6.90067E-06
A6 9.14727E-08 -2.15542E-07
A8 5.46549E-09 8.76352E-09
A10 -1.35814E-10 -1.11219E-10
A12 1.49854E-12 7.43289E-13
A14 -6.62382E-15 -2.52714E-15
A16 9.57636E-18 1.09020E-17
A18 0.00000E+00 -1.31489E-19
A20 0.00000E+00 5.84423E-22

[各種データ]
INF -0.5倍
焦点距離 24.72 19.96
Fナンバー 3.58 3.88
全画角2ω 80.74 78.79
像高Y 21.63 21.63
レンズ全長 63.50 63.50

[可変間隔データ]
INF -0.5倍
d0 ∞ 42.6065
d10 7.5916 3.1877
d15 1.5000 5.9039
BF 19.7007 19.7007

[レンズ群データ]
群 始面 焦点距離
G1 1 125.97
G2 11 18.78
G3 16 -35.20
The specification values of the imaging optical system according to the fourth embodiment are shown below.
Numerical Example 4
Unit: mm
[Surface data]
Surface number rd nd vd ΔPgF
Physical surface ∞ (d0)
1 * 22.7288 1.2000 1.59271 66.97
2 10.3746 6.6313
3 -19.3202 0.8000 1.98613 16.48 0.0469
4 -71.1259 0.1500
5 530.3897 2.5801 2.05090 26.94
6 -25.9928 0.1500
7 26.1508 2.4646 2.05090 26.94
8-476.9596 0.8000 1.54072 47.20
9 23.6409 2.7503
10 (aperture) ∞ (d10)
11 76.9533 3.7681 1.49700 81.61
12 -13.3024 0.8000 1.84666 23.78
13 -116.0370 1.2382
14 * 81.5067 5.6667 1.85135 40.10
15 * -15.7000 (d15)
16 -89.3952 1.1700 1.69350 53.20
17 * 56.9079 3.7384
18 -21.8172 0.8000 1.51680 64.20
19 -33.2026 (BF)
Image plane ∞

[Aspherical data]
1 side 14 sides
K 0.00000 -1.00000
A4 2.37229E-05 -1.25375E-05
A6 -1.73149E-07 6.01878E-07
A8 2.87882E-09 -8.10717E-09
A10 -1.87176E-11 5.33151E-11
A12 5.08950E-14 9.02453E-14
A14 0.00000E + 00 -2.18577E-15
A16 0.00000E + 00 6.91343E-18
A18 0.00000E + 00 -9.36600E-21
A20 0.00000E + 00 0.00000E + 00

15 sides 17 sides
K 0.00000 0.00000
A4 5.08564E-05 6.90067E-06
A6 9.14727E-08 -2.15542E-07
A8 5.46549E-09 8.76352E-09
A10 -1.35814E-10 -1.11219E-10
A12 1.49854E-12 7.43289E-13
A14 -6.62382E-15 -2.52714E-15
A16 9.57636E-18 1.09020E-17
A18 0.00000E + 00 -1.31489E-19
A20 0.00000E + 00 5.84423E-22

[Various data]
INF -0.5x Focal length 24.72 19.96
F number 3.58 3.88
Full angle of view 2ω 80.74 78.79
Image height Y 21.63 21.63
Lens total length 63.50 63.50

[Variable interval data]
INF -0.5 times
d0 ∞ 42.6065
d10 7.5916 3.1877
d15 1.5000 5.9039
BF 19.7007 19.7007

[Lens group data]
Focal length of group origin
G1 1 125.97
G2 11 18.78
G3 16 -35.20

図21は、本発明の実施例5の結像光学系の無限遠合焦時のレンズ構成図である。実施例5の結像光学系は物体側から順に正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなる。無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りS、第3レンズ群G3は像面に対し固定であり、第2レンズ群G2が光軸に沿って物体側へ移動する。 FIG. 21 is a lens configuration diagram of the imaging optical system according to the fifth embodiment of the present invention when the lens is focused at infinity. The imaging optical system of the fifth embodiment has a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power in order from the object side. It consists of group G3. When focusing from an infinite object to a short-range object, the first lens group G1 and the aperture stop S, the third lens group G3 are fixed to the image plane, and the second lens group G2 is along the optical axis. Move to the object side.

第1レンズ群G1は、物体側の面が非球面で凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、物体側に凹面を向けた形状の正メニスカスレンズL13と、両凸レンズL14と両凹レンズL15からなる接合レンズとにより構成されている。 The first lens group G1 includes a negative meniscus lens L11 having an aspherical surface on the object side and a convex surface, a negative meniscus lens L12 having a concave surface on the object side, and a positive meniscus lens L12 having a concave surface on the object side. It is composed of L13, a junction lens composed of a biconvex lens L14 and a biconcave lens L15.

なお、第1レンズ群G1の負メニスカスレンズL11は負レンズL1mに、負メニスカスレンズL12は負レンズL2mに、正メニスカスレンズL13は正レンズL1pにそれぞれ該当する。 The negative meniscus lens L11 of the first lens group G1 corresponds to the negative lens L1m, the negative meniscus lens L12 corresponds to the negative lens L2m, and the positive meniscus lens L13 corresponds to the positive lens L1p.

第2レンズ群G2は、両凸レンズL21と物体側に凹面を向けた負メニスカスレンズL22からなる接合レンズと、両面が非球面の両凸レンズL23により構成されている。 The second lens group G2 is composed of a junction lens composed of a biconvex lens L21, a negative meniscus lens L22 with a concave surface facing the object side, and a biconvex lens L23 having aspherical surfaces on both sides.

第3レンズ群G3は、像面側の面が非球面の両凹レンズL31と、両凹レンズL32とにより構成されている。 The third lens group G3 is composed of a biconcave lens L31 having an aspherical surface on the image plane side and a biconcave lens L32.

以下に実施例5に係る結像光学系の諸元値を示す。
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd ΔPgF
物面 ∞ (d0)
1* 25.6184 1.2000 1.59271 66.97
2 11.4333 8.0123
3 -18.1129 0.8000 1.98613 16.48 0.0469
4 -44.1159 0.1971
5 -147.1051 2.6311 1.91082 35.25
6 -22.7900 0.1500
7 31.1944 2.9595 2.05090 26.94
8 -53.7634 0.8000 1.51742 52.15
9 26.1741 2.6500
10(絞り) ∞ (d10)
11 109.2546 3.6930 1.49700 81.61
12 -12.2532 0.8000 1.84666 23.78
13 -100.9833 1.5488
14* 77.4354 5.7994 1.85135 40.10
15* -15.7000 (d15)
16 -160.8924 1.1700 1.69350 53.20
17* 52.6581 2.3949
18 -47.2602 0.8000 1.51680 64.20
19 177.5154 (BF)
像面 ∞

[非球面データ]
1面 14面
K 0.00000 -1.00000
A4 9.06338E-06 -1.01897E-05
A6 -1.12275E-07 4.93656E-07
A8 1.32780E-09 -7.20364E-09
A10 -7.04619E-12 5.54057E-11
A12 1.39247E-14 -5.99477E-15
A14 0.00000E+00 -1.70460E-15
A16 0.00000E+00 3.36146E-19
A18 0.00000E+00 3.83291E-20
A20 0.00000E+00 0.00000E+00

15面 17面
K 0.00000 0.00000
A4 5.53058E-05 1.08652E-05
A6 6.74321E-08 -2.28202E-07
A8 4.13057E-09 1.06980E-08
A10 -1.21125E-10 -1.42735E-10
A12 1.60787E-12 8.63381E-13
A14 -9.27863E-15 -1.83718E-16
A16 1.98182E-17 -1.91254E-17
A18 0.00000E+00 -1.80352E-20
A20 0.00000E+00 5.29014E-22

[各種データ]
INF -0.5倍
焦点距離 24.72 19.31
Fナンバー 3.58 3.77
全画角2ω 79.61 79.32
像高Y 21.63 21.63
レンズ全長 64.38 64.38

[可変間隔データ]
INF -0.5倍
d0 ∞ 40.2578
d10 7.5717 3.2675
d15 1.5000 5.8043
BF 19.7000 19.7000

[レンズ群データ]
群 始面 焦点距離
G1 1 71.26
G2 11 19.19
G3 16 -31.22
The specification values of the imaging optical system according to the fifth embodiment are shown below.
Numerical Example 5
Unit: mm
[Surface data]
Surface number rd nd vd ΔPgF
Physical surface ∞ (d0)
1 * 25.6184 1.2000 1.59271 66.97
2 11.4333 8.0123
3 -18.1129 0.8000 1.98613 16.48 0.0469
4 -44.1159 0.1971
5 -147.1051 2.6311 1.91082 35.25
6 -22.7900 0.1500
7 31.1944 2.9595 2.05090 26.94
8 -53.7634 0.8000 1.51742 52.15
9 26.1741 2.6500
10 (aperture) ∞ (d10)
11 109.2546 3.6930 1.49700 81.61
12 -12.2532 0.8000 1.84666 23.78
13 -100.9833 1.5488
14 * 77.4354 5.7994 1.85135 40.10
15 * -15.7000 (d15)
16 -160.8924 1.1700 1.69350 53.20
17 * 52.6581 2.3949
18 -47.2602 0.8000 1.51680 64.20
19 177.5154 (BF)
Image plane ∞

[Aspherical data]
1 side 14 sides
K 0.00000 -1.00000
A4 9.06338E-06 -1.01897E-05
A6 -1.12275E-07 4.93656E-07
A8 1.32780E-09 -7.20364E-09
A10 -7.04619E-12 5.54057E-11
A12 1.39247E-14 -5.99477E-15
A14 0.00000E + 00 -1.70460E-15
A16 0.00000E + 00 3.36146E-19
A18 0.00000E + 00 3.83291E-20
A20 0.00000E + 00 0.00000E + 00

15 sides 17 sides
K 0.00000 0.00000
A4 5.53058E-05 1.08652E-05
A6 6.74321E-08 -2.28202E-07
A8 4.13057E-09 1.06980E-08
A10 -1.21125E-10 -1.42735E-10
A12 1.60787E-12 8.63381E-13
A14 -9.27863E-15 -1.83718E-16
A16 1.98182E-17 -1.91254E-17
A18 0.00000E + 00 -1.80352E-20
A20 0.00000E + 00 5.29014E-22

[Various data]
INF -0.5x Focal length 24.72 19.31
F number 3.58 3.77
Full angle of view 2ω 79.61 79.32
Image height Y 21.63 21.63
Lens total length 64.38 64.38

[Variable interval data]
INF -0.5 times
d0 ∞ 40.2578
d10 7.5717 3.2675
d15 1.5000 5.8043
BF 19.7000 19.7000

[Lens group data]
Focal length of group origin
G1 1 71.26
G2 11 19.19
G3 16 -31.22

図26は、本発明の実施例6の結像光学系の無限遠合焦時のレンズ構成図である。実施例6の結像光学系は物体側から順に正の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3からなる。無限遠物体から近距離物体への合焦の際に、第1レンズ群G1と開口絞りS、第3レンズ群G3は像面に対し固定であり、第2レンズ群G2が光軸に沿って物体側へ移動する。 FIG. 26 is a lens configuration diagram of the imaging optical system according to the sixth embodiment of the present invention when the lens is focused at infinity. The imaging optical system of Example 6 has a first lens group G1 having a positive refractive power, an aperture aperture S, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power in order from the object side. It consists of group G3. When focusing from an infinite object to a short-range object, the first lens group G1 and the aperture stop S, the third lens group G3 are fixed to the image plane, and the second lens group G2 is along the optical axis. Move to the object side.

第1レンズ群G1は、物体側の面が非球面で凸面を向けた負メニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、物体側に凹面を向けた形状の正メニスカスレンズL13と、両凸レンズL14と両凹レンズL15からなる接合レンズとにより構成されている。 The first lens group G1 includes a negative meniscus lens L11 having an aspherical surface on the object side and a convex surface, a negative meniscus lens L12 having a concave surface on the object side, and a positive meniscus lens L12 having a concave surface on the object side. It is composed of L13, a junction lens composed of a biconvex lens L14 and a biconcave lens L15.

なお、第1レンズ群G1の負メニスカスレンズL11は負レンズL1mに、負メニスカスレンズL12は負レンズL2mに、正メニスカスレンズL13は正レンズL1pにそれぞれ該当する。 The negative meniscus lens L11 of the first lens group G1 corresponds to the negative lens L1m, the negative meniscus lens L12 corresponds to the negative lens L2m, and the positive meniscus lens L13 corresponds to the positive lens L1p.

第2レンズ群G2は、両凸レンズL21と物体側に凹面を向けた負メニスカスレンズL22からなる接合レンズと、両面が非球面の両凸レンズL23により構成されている。 The second lens group G2 is composed of a junction lens composed of a biconvex lens L21, a negative meniscus lens L22 with a concave surface facing the object side, and a biconvex lens L23 having aspherical surfaces on both sides.

第3レンズ群G3は、像面側の面が非球面の両凹レンズL31と、両凹レンズL32とにより構成されている。 The third lens group G3 is composed of a biconcave lens L31 having an aspherical surface on the image plane side and a biconcave lens L32.

以下に実施例6に係る結像光学系の諸元値を示す。 The specification values of the imaging optical system according to the sixth embodiment are shown below.

以下に上記の各実施例に対応する条件式対応値を示す。
数値実施例6
単位:mm
[面データ]
面番号 r d nd vd ΔPgF
物面 ∞ (d0)
1* 22.7667 1.2000 1.59271 66.97
2 10.6074 9.2705
3 -17.9907 0.8000 1.98613 16.48 0.0469
4 -41.5064 0.1500
5 -112.4554 2.2169 2.05090 26.94
6 -23.5811 0.1500
7 29.9060 2.1656 2.05090 26.94
8 -1274.6856 0.8000 1.54072 47.20
9 24.7640 2.6470
10(絞り) ∞ (d10)
11 215.5201 4.3408 1.43700 95.10
12 -10.4430 0.8000 1.77047 29.74
13 -32.6126 0.6724
14* 84.9777 6.7381 1.63858 55.18
15* -12.8792 (d15)
16 -145.6860 1.1700 1.69350 53.20
17* 200.0000 2.0402
18 -36.1124 0.8000 1.51680 64.20
19 62.2874 (BF)
像面 ∞

[非球面データ]
1面 14面
K 0.00000 -1.00000
A4 1.98159E-05 -7.00733E-06
A6 -5.76599E-08 2.44079E-07
A8 1.25984E-09 -8.49429E-09
A10 -6.54968E-12 1.02991E-10
A12 1.90833E-14 -2.77954E-13
A14 0.00000E+00 -8.37375E-15
A16 0.00000E+00 8.67837E-17
A18 0.00000E+00 -2.37525E-19
A20 0.00000E+00 0.00000E+00

15面 17面
K 0.00000 0.00000
A4 8.51517E-05 -3.26971E-06
A6 1.39981E-07 -2.42596E-07
A8 -2.23789E-09 1.49012E-08
A10 -2.27896E-11 -2.11588E-10
A12 1.18935E-12 1.30844E-12
A14 -1.18526E-14 -1.35166E-16
A16 3.95162E-17 -3.83081E-17
A18 0.00000E+00 1.14364E-19
A20 0.00000E+00 1.45352E-22

[各種データ]
INF -0.5倍
焦点距離 24.00 19.39
Fナンバー 3.61 3.93
全画角2ω 81.28 78.03
像高Y 21.63 21.63
レンズ全長 67.30 67.30

[可変間隔データ]
INF -0.5倍
d0 ∞ 40.1817
d10 7.7041 3.3343
d15 3.9344 8.3042
BF 19.6990 19.6990

[レンズ群データ]
群 始面 焦点距離
G1 1 341.01
G2 11 19.42
G3 16 -31.85
The values corresponding to the conditional expressions corresponding to each of the above embodiments are shown below.
Numerical Example 6
Unit: mm
[Surface data]
Surface number rd nd vd ΔPgF
Physical surface ∞ (d0)
1 * 22.7667 1.2000 1.59271 66.97
2 10.6074 9.2705
3 -17.9907 0.8000 1.98613 16.48 0.0469
4-41.5064 0.1500
5 -112.4554 2.2169 2.05090 26.94
6 -23.5811 0.1500
7 29.9060 2.1656 2.05090 26.94
8-1274.6856 0.8000 1.54072 47.20
9 24.7640 2.6470
10 (aperture) ∞ (d10)
11 215.5201 4.3408 1.43700 95.10
12 -10.4430 0.8000 1.77047 29.74
13 -32.6126 0.6724
14 * 84.9777 6.7381 1.63858 55.18
15 * -12.8792 (d15)
16 -145.6860 1.1700 1.69350 53.20
17 * 200.0000 2.0402
18 -36.1124 0.8000 1.51680 64.20
19 62.2874 (BF)
Image plane ∞

[Aspherical data]
1 side 14 sides
K 0.00000 -1.00000
A4 1.98159E-05 -7.00733E-06
A6 -5.76599E-08 2.44079E-07
A8 1.25984E-09 -8.49429E-09
A10 -6.54968E-12 1.02991E-10
A12 1.90833E-14 -2.77954E-13
A14 0.00000E + 00 -8.37375E-15
A16 0.00000E + 00 8.67837E-17
A18 0.00000E + 00 -2.37525E-19
A20 0.00000E + 00 0.00000E + 00

15 sides 17 sides
K 0.00000 0.00000
A4 8.51517E-05 -3.26971E-06
A6 1.39981E-07 -2.42596E-07
A8 -2.23789E-09 1.49012E-08
A10 -2.27896E-11 -2.11588E-10
A12 1.18935E-12 1.30844E-12
A14 -1.18526E-14 -1.35166E-16
A16 3.95162E-17 -3.83081E-17
A18 0.00000E + 00 1.14364E-19
A20 0.00000E + 00 1.45352E-22

[Various data]
INF -0.5x Focal length 24.00 19.39
F number 3.61 3.93
Full angle of view 2ω 81.28 78.03
Image height Y 21.63 21.63
Lens total length 67.30 67.30

[Variable interval data]
INF -0.5 times
d0 ∞ 40.1817
d10 7.7041 3.3343
d15 3.9344 8.3042
BF 19.6990 19.6990

[Lens group data]
Focal length of group origin
G1 1 341.01
G2 11 19.42
G3 16 -31.85

以下に上記の各実施例に対応する条件式対応値を示す。
[条件式対応値]
条件式 実施例1 実施例2 実施例3
[1] -0.70<f2/f3<-0.30 -0.57 -0.62 -0.55
[2] νd1m<25.00 16.48 20.02 16.48
[3] ΔPgF1m>0.0150 0.0469 0.0312 0.0469
[4] NdL1p>1.85 2.05 2.05 2.05
[5] 1.25<β3<2.33 1.76 1.81 1.71
[6] 2.50<LT/Ymax<3.30 3.02 2.98 2.99
[7] 2.50<β3^2*(1-β2^2)<3.50 3.10 3.26 2.92

条件式 実施例4 実施例5 実施例6
[1] -0.70<f2/f3<-0.30 -0.53 -0.61 -0.61
[2] νd1m<25.00 16.48 16.48 16.48
[3] ΔPgF1m>0.0150 0.0469 0.0469 0.0469
[4] NdL1p>1.85 2.05 1.91 2.05
[5] 1.25<β3<2.33 1.66 1.69 1.65
[6] 2.50<LT/Ymax<3.30 2.94 2.98 3.11
[7] 2.50<β3^2*(1-β2^2)<3.50 2.73 2.74 2.72
The values corresponding to the conditional expressions corresponding to each of the above embodiments are shown below.
[Conditional expression correspondence value]
Conditional expression Example 1 Example 2 Example 3
[1] -0.70 <f2 / f3 <-0.30 -0.57 -0.62 -0.55
[2] νd1m <25.00 16.48 20.02 16.48
[3] ΔPgF1m> 0.0150 0.0469 0.0312 0.0469
[4] NdL1p> 1.85 2.05 2.05 2.05
[5] 1.25 <β3 <2.33 1.76 1.81 1.71
[6] 2.50 <LT / Ymax <3.30 3.02 2.98 2.99
[7] 2.50 <β3 ^ 2 * (1-β2 ^ 2) <3.50 3.10 3.26 2.92

Conditional expression Example 4 Example 5 Example 6
[1] -0.70 <f2 / f3 <-0.30 -0.53 -0.61 -0.61
[2] νd1m <25.00 16.48 16.48 16.48
[3] ΔPgF1m> 0.0150 0.0469 0.0469 0.0469
[4] NdL1p> 1.85 2.05 1.91 2.05
[5] 1.25 <β3 <2.33 1.66 1.69 1.65
[6] 2.50 <LT / Ymax <3.30 2.94 2.98 3.11
[7] 2.50 <β3 ^ 2 * (1-β2 ^ 2) <3.50 2.73 2.74 2.72

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
S 開口絞り
L1m 負レンズL1m
L2m 負レンズL2m
L1p 正レンズL1p
G1 1st lens group G2 2nd lens group G3 3rd lens group S Aperture aperture L1m Negative lens L1m
L2m Negative lens L2m
L1p Positive lens L1p

Claims (6)

物体側から順に、正の屈折率を有する第1レンズ群G1と、開口絞りS、正の屈折力を有する第2レンズ群G2、負の屈折力を有する第3レンズ群G3から構成され、前記第1レンズ群G1は最も物体側に、物体側に凸を向けた負のメニスカスレンズを有し、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群G1と前記開口絞りSと前記第3レンズG3は固定であり、前記第2レンズ群G2が光軸に沿って物体側へ移動し、以下の条件式を満たすことを特徴とする結像光学系。
(1) -0.70 < f2/f3 < -0.30
f2:前記第2レンズ群G2の焦点距離
f3:前記第3レンズ群G3の焦点距離
From the object side, it is composed of a first lens group G1 having a positive refractive index, an aperture aperture S, a second lens group G2 having a positive refractive force, and a third lens group G3 having a negative refractive force. The first lens group G1 has a negative meniscus lens with a convex on the object side on the most object side, and the first lens group G1 and the aperture when focusing from an infinity object to a short-range object. An imaging optical system characterized in that the aperture S and the third lens G3 are fixed, and the second lens group G2 moves toward an object along an optical axis to satisfy the following conditional expression.
(1) -0.70 <f2 / f3 <-0.30
f2: Focal length of the second lens group G2 f3: Focal length of the third lens group G3
前記第1レンズ群G1は、以下の条件式を満たす負レンズを有することを特徴とする請求項1に記載の結像光学系。
(2) νd1m < 25.00
(3) ΔPgF1m > 0.0150
νd1m:前記負レンズのアッベ数
ΔPgF1m:前記負レンズの異常分散性
ΔPgF1m = PgF1m + 0.0018 × νd1m ― 0.64833
PgF1mは前記負レンズのg線とF線に関する部分分散比PgFである。
The imaging optical system according to claim 1, wherein the first lens group G1 has a negative lens satisfying the following conditional expression.
(2) νd1m <25.00
(3) ΔPgF1m> 0.0150
νd1m: Abbe number of the negative lens ΔPgF1m: Abnormal dispersibility of the negative lens ΔPgF1m = PgF1m + 0.0018 × νd1m ― 0.64833
PgF1m is a partial dispersion ratio PgF with respect to the g-line and F-line of the negative lens.
前記第1レンズ群G1が物体側から順に負レンズL1m、負レンズL2m、正レンズL1pの並びを有し、前記正レンズL1pが以下の条件式を満たすことを特徴とする請求項1または2に記載の結像光学系。
(4) NdL1p > 1.85
NdL1p:前記正レンズL1pの屈折率
Claim 1 or 2, wherein the first lens group G1 has an arrangement of a negative lens L1m, a negative lens L2m, and a positive lens L1p in order from the object side, and the positive lens L1p satisfies the following conditional expression. The imaging optical system described.
(4) NdL1p> 1.85
NdL1p: Refractive index of the positive lens L1p
以下の条件式を満たすことを特徴とする請求項1から3のいずれかに記載の結像光学系。
(5) 1.25 < β3 < 2.33
β3:無限遠状態における前記第3レンズ群G3の横倍率
The imaging optical system according to any one of claims 1 to 3, wherein the imaging optical system satisfies the following conditional expression.
(5) 1.25 <β3 <2.33
β3: Lateral magnification of the third lens group G3 in the infinity state
以下の条件を満足することを特徴とする請求項1から4のいずれかに記載の結像光学系。
(6) 2.50 < LT/Ymax <3.30
LT:無限遠合焦状態における前記第1レンズ群G1の最も物体側の面から像面までの面間隔
Ymax:結像光学系の最大像高
The imaging optical system according to any one of claims 1 to 4, wherein the imaging optical system satisfies the following conditions.
(6) 2.50 <LT / Ymax <3.30
LT: Surface spacing from the most object-side surface of the first lens group G1 to the image plane in the infinity-focused state Ymax: Maximum image height of the imaging optical system
以下の条件を満足することを特徴とする請求項1から5のいずれかに記載の結像光学系。
(7) 2.50 < β3^2*(1-β2^2)< 3.50
β3:無限遠状態における前記第3レンズ群G3の横倍率
β2:無限遠状態における前記第2レンズ群G2の横倍率
The imaging optical system according to any one of claims 1 to 5, wherein the imaging optical system satisfies the following conditions.
(7) 2.50 <β3 ^ 2 * (1-β2 ^ 2) <3.50
β3: Lateral magnification of the third lens group G3 in the infinity state β2: Lateral magnification of the second lens group G2 in the infinity state
JP2020175981A 2020-10-20 2020-10-20 Image forming optical system Pending JP2022067328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020175981A JP2022067328A (en) 2020-10-20 2020-10-20 Image forming optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020175981A JP2022067328A (en) 2020-10-20 2020-10-20 Image forming optical system

Publications (1)

Publication Number Publication Date
JP2022067328A true JP2022067328A (en) 2022-05-06

Family

ID=81390494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020175981A Pending JP2022067328A (en) 2020-10-20 2020-10-20 Image forming optical system

Country Status (1)

Country Link
JP (1) JP2022067328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095091A1 (en) 2022-11-04 2024-05-10 Ricoh Company, Ltd. Image-forming lens, interchangeable lens, image-capturing apparatus, and information processing apparatus
WO2024095097A1 (en) 2022-11-04 2024-05-10 Ricoh Company, Ltd. Image-forming lens, interchangeable lens, image-capturing apparatus, and information processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095091A1 (en) 2022-11-04 2024-05-10 Ricoh Company, Ltd. Image-forming lens, interchangeable lens, image-capturing apparatus, and information processing apparatus
WO2024095097A1 (en) 2022-11-04 2024-05-10 Ricoh Company, Ltd. Image-forming lens, interchangeable lens, image-capturing apparatus, and information processing apparatus

Similar Documents

Publication Publication Date Title
US7336429B2 (en) Zoom lens system
US7599127B2 (en) Zoom lens system
JP2001042218A (en) Zoom lens
JPH0354325B2 (en)
JP6105301B2 (en) Imaging optics
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
US8040613B2 (en) Zoom lens, optical apparatus, and method for forming an image of an object
JP2012242472A (en) Image forming optical system
JP3988214B2 (en) Zoom lens
JP2008203471A (en) Zoom lens, optical equipment and imaging method
JP4687937B2 (en) Zoom lens
JP3698134B2 (en) Zoom lens
JP2002267930A (en) Zoom lens
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
JP2022067328A (en) Image forming optical system
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP3085823B2 (en) Aspherical zoom lens and video camera using it
JP3441958B2 (en) 3-group zoom lens
JP4817551B2 (en) Zoom lens
JP6881603B2 (en) Optical system and optical equipment
JP2004258511A (en) Zoom lens
WO2006025130A1 (en) Zoom lens with high zoom ratio
JP4799210B2 (en) Zoom lens system and camera system including the same
JP4807611B2 (en) Zoom lens
JP4333151B2 (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240404