JP2022057756A - Sustainable network structure - Google Patents

Sustainable network structure Download PDF

Info

Publication number
JP2022057756A
JP2022057756A JP2020166163A JP2020166163A JP2022057756A JP 2022057756 A JP2022057756 A JP 2022057756A JP 2020166163 A JP2020166163 A JP 2020166163A JP 2020166163 A JP2020166163 A JP 2020166163A JP 2022057756 A JP2022057756 A JP 2022057756A
Authority
JP
Japan
Prior art keywords
network structure
poly
succinate
continuous linear
linear body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020166163A
Other languages
Japanese (ja)
Other versions
JP7452364B2 (en
Inventor
輝之 谷中
Teruyuki Yanaka
大介 佐倉
Daisuke Sakura
佳祐 谷口
Keisuke Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2020166163A priority Critical patent/JP7452364B2/en
Publication of JP2022057756A publication Critical patent/JP2022057756A/en
Application granted granted Critical
Publication of JP7452364B2 publication Critical patent/JP7452364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

To provide a network structure that has low environmental load and excellent dewatering property and allows contaminations adhering to the network structure to be easily removed.SOLUTION: A network structure has a three-dimensional random loop joint structure formed of a continuous linear body and has apparent density of 0.005 g/cm3 to 0.30 g/cm3 and thickness of 10 mm to 100 mm. The continuous linear body has a melting point of 80 to 180°C and MFR of 6 to 60 g/10 min. The network structure contains at least one type of biodegradable thermoplastic resin (a) selected from polybutylene succinate, poly(butylene succinate/adipate), and poly(butylene adipate/terephthalate). The network structure has the 70°C-compression residual strain of 35% or less.SELECTED DRAWING: None

Description

本発明は、たわし、ブラシなどの比較的使い捨て頻度の高い日用衛生品や水切り用品、などに好適な網状構造体に関するものである。 The present invention relates to a reticulated structure suitable for daily sanitary products such as scrubs and brushes, which are relatively frequently disposable, and draining products.

現在、たわし、スポンジ、ブラシなどの日用衛生品には、ヤシ繊維を利用した“たわし”、ポリプロピレンやポリエチレンなどのモノフィラメントを束ねた“ブラシ”、ポリウレタン製やセルロース製の“スポンジ”、などが広く使用されている。 Currently, daily sanitary products such as scrubbing brushes, sponges, and brushes include scrubbing brushes made of coconut fiber, brushes made by bundling monofilaments such as polypropylene and polyethylene, and sponges made of polyurethane or cellulose. Widely used.

ヤシ繊維を利用した“たわし”は、天然素材を利用しているため環境負荷が小さい。しかしながら、ヤシ繊維を束ねて卵円形に曲げて固定した典型的な“たわし”は、形状を固定するために金属が編み混まれている。そのため、廃棄する際には金属の分別が必要となる。また、前記の”たわし“は、洗浄効果は優れているものの、除去した汚れがたわしの繊維間に挟まりやすく、この転写した汚れを取り除くことが必要になる場合がある。 "Tawashi" made from palm fiber has a small environmental load because it uses natural materials. However, a typical "sawashi" made by bundling palm fibers and bending them into an oval shape is knitted with metal to fix the shape. Therefore, it is necessary to separate the metal when disposing of it. Further, although the scrubbing brush has an excellent cleaning effect, the removed stains are likely to be caught between the fibers of the scrubbing brush, and it may be necessary to remove the transferred stains.

一方、ポリプロピレンなどのモノフィラメントを束ねた“ブラシ”は、生分解性を有していないため、海洋マイクロプラスチックの原因になる場合がある。また、ヤシ繊維を利用した“たわし”と同様に、洗浄効果は優れているものの、除去した汚れがたわしの繊維間に挟まりやすく、この転写した汚れを取り除くことが必要になる場合がある。 On the other hand, a "brush" in which monofilaments such as polypropylene are bundled does not have biodegradability and may cause marine microplastics. Further, although the cleaning effect is excellent as in the case of the scrubbing brush using palm fibers, the removed stains are easily caught between the scrubbing brush fibers, and it may be necessary to remove the transferred stains.

スポンジとは、ゴムに発泡剤を配合し、発泡剤の熱分解により生ずるガスによってゴムを多孔性の構造にしたものである。発泡体を構成している気泡構造の単位をセルという。
ポリウレタンのスポンジは、生分解性を有さず、海洋マイクロプラスチックになる危険性を有している。また、ヤシの繊維を利用したたわしと同様に、洗浄効果は優れているものの、取れた汚れがセルの内部に挟まってしまい、この転写した汚れを取り除くのに時間を有することがある。
The sponge is a rubber in which a foaming agent is mixed and the rubber is made into a porous structure by a gas generated by thermal decomposition of the foaming agent. The unit of the bubble structure that constitutes the foam is called a cell.
Polyurethane sponges are not biodegradable and have the risk of becoming marine microplastics. Further, although the cleaning effect is excellent as in the case of scrubbing brush using palm fiber, the removed dirt may be caught inside the cell and it may take time to remove the transferred dirt.

さらに、セルの内部は比較的長時間保水しているため、この水を基点に大腸菌やカビが繁殖するなど、衛生上の問題点をはらんでいる。これらを防ぐために、一般的に塩素などの薬剤で滅菌するが、耐性菌の増殖問題もあり、衛生面から問題が生じていた。
このセルの保水を減らすために、セルのサイズを大きくする検討がなされ、製品化されている。しかしながら、水切れ性は良くなっているが、保水問題を解決するには至っていない。また、セルサイズを大きくすると、スポンジの剛性が低下して洗浄効果が低下する場合もある。
Furthermore, since the inside of the cell retains water for a relatively long time, there are hygienic problems such as Escherichia coli and mold growing from this water. In order to prevent these, it is generally sterilized with a chemical such as chlorine, but there is also a problem of growth of resistant bacteria, which causes a problem in terms of hygiene.
In order to reduce the water retention of this cell, consideration has been made to increase the size of the cell and it has been commercialized. However, although the drainage property has improved, the water retention problem has not been solved yet. Further, when the cell size is increased, the rigidity of the sponge may be lowered and the cleaning effect may be lowered.

さらに、ポリウレタンは、一般にリサイクルが困難である。そのため、焼却処分時に、焼却炉の損傷が大きくなったり、有毒ガス除去に経費が掛かかったりするなどの問題点が指摘されている。そこで、埋め立て処分されることが多いが、地盤の安定化が困難なため埋め立て場所が限定され、経費も高くなる問題点もある。また、加工性は優れるが製造中に使用される薬品の公害問題やフォーム後の残留薬品やそれに伴う臭気など種々の問題が指摘されている。 In addition, polyurethane is generally difficult to recycle. Therefore, it has been pointed out that there are problems such as large damage to the incinerator and costly removal of toxic gas during incineration. Therefore, it is often disposed of in landfills, but there is also the problem that the landfill site is limited and the cost is high because it is difficult to stabilize the ground. In addition, although it is excellent in processability, various problems such as pollution problems of chemicals used during manufacturing, residual chemicals after foaming, and odors associated therewith have been pointed out.

特許文献1および2には、熱可塑性エラストマー系からなる網状構造体が開示されている。前記の網状構造体は、水切り性、へたりにくさ、転写した汚れが簡便に洗い流すことが出来、これらの観点では優れている。しかしながら、繊維径が比較的大きいため、隅に入りこんだ汚れを落とすことが難しい。また、前記の熱可塑性エラストマーは生分解性を有していない。 Patent Documents 1 and 2 disclose a network structure made of a thermoplastic elastomer system. The above-mentioned network structure is excellent in terms of drainability, resistance to settling, and transferable stains can be easily washed away. However, since the fiber diameter is relatively large, it is difficult to remove dirt that has entered the corners. Moreover, the above-mentioned thermoplastic elastomer does not have biodegradability.

特許文献3には、ポリオレフィン系からなる網状構造体が開示されている。これは、上述した水切り性、適度な硬さを有し、転写した汚れが簡便に洗い流すことが出来、これらの観点では優れている。しかしながら、耐へたり性という点では十分ではなく、生分解性も有していない。 Patent Document 3 discloses a network structure made of a polyolefin. This has the above-mentioned drainability and appropriate hardness, and the transferred stains can be easily washed away, which is excellent from these viewpoints. However, it is not sufficient in terms of settling resistance and does not have biodegradability.

特許文献4には、緑化用生分解性水生植物支持体、それを用いた水生植物構造体及び浮島用構造体が開示されている。この網状構造体は、ポリ乳酸が用いられており生分解を有するが、硬くて脆いため本用途には適していなかった。 Patent Document 4 discloses a biodegradable aquatic plant support for greening, an aquatic plant structure using the same, and a structure for floating islands. This reticulated structure uses polylactic acid and has biodegradation, but it is hard and brittle, so it is not suitable for this application.

こうした背景から、水切り性、へたりにくさ、転写した汚れが簡便に洗い流すことが出来る利便性、また生分解性を有する、環境にやさしい網状構造体が要望されていた。 Against this background, there has been a demand for an environment-friendly network structure having drainage property, resistance to settling, convenience in which transferred stains can be easily washed away, and biodegradability.

特開2004-313323号公報Japanese Unexamined Patent Publication No. 2004-313323 特開2014-194099号公報Japanese Unexamined Patent Publication No. 2014-194099 特開2015-067932号公報JP-A-2015-067932 特開2001-32236号公報Japanese Unexamined Patent Publication No. 2001-322236

本発明の課題は、環境負荷が小さく、水切り性に優れ、転写した汚れを除去しやすい網状構造体を提供することである。 An object of the present invention is to provide a network structure having a small environmental load, excellent drainage property, and easy removal of transferred stains.

前記課題を解決することができる本発明は、以下の通りである。
1.連続線状体から構成される三次元ランダムループ接合構造体を有し、見かけ密度が0.005g/cm~0.30g/cmで、厚みが10mm~100mmである網状構造体であって、
前記連続線状体は、融点が80~180℃であり、MFRが6~60g/10minであり、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)から選ばれる、少なくとも1種の生分解性熱可塑性樹脂(a)を含有し、
前記網状構造体は70℃圧縮残留歪が35%以下である、網状構造体。
2.ポリ乳酸、(ポリ乳酸/ポリブチレンサクシネート系)ブロックコポリマー、ポリカプロラクトン、ポリ(カプロラクトン/ブチレンサクシネート)、ポリ(ブチレンサクシネート/カーボネート)、ポリ(エチレンテレフタレート/サクシネート)、ポリ(テトラメチレンアジペート/テレフタレート)、ポリエチレンサクシネート、ポリビニルアルコール、ポリグリコール酸から選ばれる、少なくとも1種の生分解性熱可塑性樹脂(b)を含有し、前記の生分解性樹脂(a)及び生分解性樹脂(b)の混合物を、熱可塑性樹脂組成物に対し質量基準で80質量%以上含む、前記1記載の網状構造体。
3.前記連続線状体は、断面形状が円であり、繊維径が0.1mm~0.8mmである、前記1または2に記載の網状構造体。
4.前記連続線状体は、断面形状が異型であり、少なくとも3つ以上の同等の曲率を外周部に有し、その繊維径もしくは曲率半径の2倍が0.1mm以上0.8mm以下である、前記1または2に記載の網状構造体。
5.前記連続線状体は、断面形状が三葉形状または三角形状である、前記4に記載の網状構造体。
6.日用衛生品、水切り用品に使用される、前記1~5のいずれかに記載の網状構造体。
The present invention that can solve the above problems is as follows.
1. 1. It is a network structure having a three-dimensional random loop joint structure composed of continuous linear bodies, having an apparent density of 0.005 g / cm 3 to 0.30 g / cm 3 , and a thickness of 10 mm to 100 mm. ,
The continuous striatum has a melting point of 80 to 180 ° C., an MFR of 6 to 60 g / 10 min, and is selected from polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate). , Containing at least one biodegradable thermoplastic resin (a),
The network structure is a network structure having a 70 ° C. compression residual strain of 35% or less.
2. 2. Polylactic acid, (polylactic acid / polybutylene succinate) block copolymer, polycaprolactone, poly (caprolactone / butylene succinate), poly (butylene succinate / carbonate), poly (ethylene terephthalate / succinate), poly (tetramethylene adipate) / Telephthalate), polyethylene succinate, polyvinyl alcohol, polyglycolic acid, which contains at least one biodegradable thermoplastic resin (b), and the biodegradable resin (a) and the biodegradable resin (a). The network structure according to 1 above, which contains 80% by mass or more of the mixture of b) with respect to the thermoplastic resin composition on a mass basis.
3. 3. The reticulated structure according to 1 or 2, wherein the continuous linear body has a circular cross-sectional shape and a fiber diameter of 0.1 mm to 0.8 mm.
4. The continuous linear body has an irregular cross-sectional shape, has at least three or more equivalent curvatures on the outer peripheral portion, and has a fiber diameter or twice the radius of curvature thereof of 0.1 mm or more and 0.8 mm or less. The network structure according to 1 or 2 above.
5. The reticulated structure according to 4 above, wherein the continuous linear body has a trilobal shape or a triangular cross section.
6. The network structure according to any one of 1 to 5 above, which is used for daily hygiene products and draining products.

本発明の網状構造体は、生分解性を有する熱可塑性樹脂を用いているため環境負荷が小さい。また、適度な硬さを有する網状構造体であるため、水切り性が良く衛生的であり、転写した汚れを洗い流しやすい。そのため、たわし、ブラシなどの比較的使い捨て頻度の高い日用衛生品、水切り用品に特に好適であり、緩衝材、クッションなどにも使用することができる。 Since the network structure of the present invention uses a biodegradable thermoplastic resin, the environmental load is small. Further, since it is a net-like structure having an appropriate hardness, it has good drainability and is hygienic, and it is easy to wash away the transferred stains. Therefore, it is particularly suitable for daily hygiene products such as scrubs and brushes, which are relatively frequently disposable, and draining products, and can also be used as cushioning materials, cushions, and the like.

以下、本発明を詳細に説明する。
本発明の網状構造体は、連続線状体から構成される三次元ランダムループ接合構造体を有し、見かけ密度が0.005g/cm~0.30g/cmで、厚みが10mm~100mmであり、前記連続線状体は、融点が80~180℃であり、MFRが6~60g/10minである、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)から選ばれる、少なくとも1種の生分解性熱可塑性樹脂からなり、前記網状構造体は70℃圧縮残留歪が35%以下である。
Hereinafter, the present invention will be described in detail.
The network structure of the present invention has a three-dimensional random loop joint structure composed of continuous linear bodies, has an apparent density of 0.005 g / cm 3 to 0.30 g / cm 3 , and a thickness of 10 mm to 100 mm. The continuous linear body has a melting point of 80 to 180 ° C. and an MFR of 6 to 60 g / 10 min, polybutylene succinate, poly (butylene succinate / adipate), poly (butylene adipate / terephthalate). It is made of at least one biodegradable thermoplastic resin selected from the above, and the network structure has a 70 ° C. compression residual strain of 35% or less.

本発明の網状構造体は、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)から選ばれる、少なくとも1種の生分解性熱可塑性樹脂を使用する。前記の生分解性熱可塑性樹脂は、公知の重合方法で得ることが出来る。 The reticulated structure of the present invention uses at least one biodegradable thermoplastic resin selected from polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate). The biodegradable thermoplastic resin can be obtained by a known polymerization method.

ポリブチレンサクシネートは、コハク酸とブタンジオールを原料として公知の方法で重合される。ポリブチレンサクシネートアジペートはコハク酸、アジピン酸、ブタンジオールを原料として公知の方法で重合される。ポリ(ブチレンアジペート/テレフタレート)は、アジピン酸、テレフタル酸、ブタンジオールを原料として公知の方法で重合される。また、必要に応じて鎖延長剤、末端封鎖剤、酸化防止剤などが適宜使用される。
これらの原料は石油由来のモノマーを使用することも出来るが、バイオマス由来のモノマーを使用することが環境負荷低減の点から好ましい。具体的には、日本バイオプラスチック協会の分類番号A(バイオマスプラスチック)のポジティブリストに記載された樹脂が特に好ましい。
Polybutylene succinate is polymerized by a known method using succinic acid and butanediol as raw materials. Polybutylene succinate adipate is polymerized by a known method using succinic acid, adipic acid and butanediol as raw materials. Poly (butylene adipate / terephthalate) is polymerized by a known method using adipic acid, terephthalic acid, and butanediol as raw materials. Further, if necessary, a chain extender, a terminal blocker, an antioxidant and the like are appropriately used.
Although petroleum-derived monomers can be used as these raw materials, it is preferable to use biomass-derived monomers from the viewpoint of reducing the environmental load. Specifically, the resin listed in the positive list of the classification number A (biomass plastic) of the Japan Bioplastics Association is particularly preferable.

必要に応じて、前記の生分解性熱可塑性樹脂を二種以上ブレンドすることができる。
また、生分解性を損なわない程度で、前記の生分解性熱可塑性樹脂(a)以外に、生分解性を有さないポリエステル系エラストマー、または生分解性を有するポリ乳酸、ポリカプロラクトン、などの他の熱可塑性樹脂を熱可塑性樹脂組成物に対し質量基準で10質量%以下含有させることで、硬さなどの物性を調整することが出来る。
他の熱可塑性樹脂の含有量が、熱可塑性樹脂組成物に対し質量基準で10質量%よりも多いと、ダイスウェルが劣悪となり、品位に優れる網状構造体を形成することが困難となり好ましくない。他の熱可塑性樹脂としては、ブレンド時の混合性の点から、脂肪族系ポリエステルが好ましい。
If necessary, two or more of the above biodegradable thermoplastic resins can be blended.
In addition to the above-mentioned biodegradable thermoplastic resin (a), a polyester-based elastomer having no biodegradability, polylactic acid having biodegradability, polycaprolactone, etc. may be used to the extent that the biodegradability is not impaired. By containing 10% by mass or less of another thermoplastic resin in the thermoplastic resin composition on a mass basis, physical properties such as hardness can be adjusted.
If the content of the other thermoplastic resin is more than 10% by mass on a mass basis with respect to the thermoplastic resin composition, the die well becomes poor and it becomes difficult to form a network structure having excellent quality, which is not preferable. As the other thermoplastic resin, an aliphatic polyester is preferable from the viewpoint of mixing property at the time of blending.

本発明に記載の熱可塑性樹脂組成物とは、1種又は2種以上の熱可塑性樹脂、及び必要に応じて機能性付与材(酸化防止剤、耐侯剤、難燃剤、滑剤、粒子など)を構成成分と含む組成物を意味する。 The thermoplastic resin composition described in the present invention includes one or more types of thermoplastic resins and, if necessary, functional imparting materials (antioxidants, heat resistant agents, flame retardants, lubricants, particles, etc.). It means a composition containing a constituent component.

本発明の網状構造体とは、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)から選ばれる、少なくとも1種の生分解性熱可塑性樹脂(a)を必須として含み、その他の任意の生分解性熱可塑性樹脂(b)として、ポリ乳酸、(ポリ乳酸/ポリブチレンサクシネート系)ブロックコポリマー、ポリカプロラクトン、ポリ(カプロラクトン/ブチレンサクシネート)、ポリ(ブチレンサクシネート/カーボネート)、ポリ(エチレンテレフタレート/サクシネート)、ポリ(テトラメチレンアジペート/テレフタレート)、ポリエチレンサクシネート、ポリビニルアルコール、ポリグリコール酸などを、生分解性熱可塑性樹脂(a)単独、あるいは生分解性熱可塑性樹脂(a)及び生分解性熱可塑性樹脂(b)の混合物として、熱可塑性樹脂組成物に対し質量基準で少なくとも80質量%以上含む連続線状体からなる三次元ランダムループ接合構造体を有する網状構造体である。 The network structure of the present invention requires at least one biodegradable thermoplastic resin (a) selected from polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate). As any other biodegradable thermoplastic resin (b), including, polylactic acid, (polylactic acid / polybutylene succinate) block copolymer, polycaprolactone, poly (caprolactone / butylene succinate), poly (butylene succinate). / Carbonate), poly (ethylene terephthalate / succinate), poly (tetramethylene adipate / terephthalate), polyethylene succinate, polyvinyl alcohol, polyglycolic acid, etc., biodegradable thermoplastic resin (a) alone or biodegradable heat As a mixture of the thermoplastic resin (a) and the biodegradable thermoplastic resin (b), it has a three-dimensional random loop bonding structure composed of a continuous linear body containing at least 80% by mass with respect to the thermoplastic resin composition. It is a network structure.

前記の生分解性熱可塑性樹脂の比率は、連続線条体を構成する熱可塑性樹脂組成物に対して質量基準で、より好ましくは85質量%以上、さらに好ましくは95質量%以上、より一層好ましくは98質量%以上、最も好ましくは99質量%以上である。 The ratio of the biodegradable thermoplastic resin is more preferably 85% by mass or more, still more preferably 95% by mass or more, still more preferably 95% by mass or more, based on the mass of the thermoplastic resin composition constituting the continuous linear body. Is 98% by mass or more, most preferably 99% by mass or more.

本発明で使用する生分解性熱可塑性樹脂として、日本バイオプラスチック協会のグリーンプラ(生分解性プラスチック)の分類番号A-1のポジティブリストに記載された生分解性合成高分子化合物が特に好ましい。 As the biodegradable thermoplastic resin used in the present invention, a biodegradable synthetic polymer compound listed in the positive list of classification number A-1 of green plastic (biodegradable plastic) of the Japan Bioplastics Association is particularly preferable.

本発明の網状構造体を構成する連続線条体に用いる、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)から選ばれる、少なくとも1種の生分解性熱可塑性樹脂(a)を含む熱可塑性樹脂組成物は、MFRが6~60g/10minである。MFRが6g/10min未満の場合は、溶融粘度が高くなりすぎて、連続線条体の繊維径を小さくしにくくなる。その結果、汚れを除去しにくくなる。 At least one biodegradable thermoplastic selected from polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate) used for the continuous striatum constituting the network structure of the present invention. The thermoplastic resin composition containing the resin (a) has an MFR of 6 to 60 g / 10 min. When the MFR is less than 6 g / 10 min, the melt viscosity becomes too high and it becomes difficult to reduce the fiber diameter of the continuous striatum. As a result, it becomes difficult to remove dirt.

一方、MFRが60g/10minを超えると、耐熱耐久性の尺度である圧縮残留歪が悪化しやすくなる。そうした観点から、MFRは6g/10min以上が好ましく、8g/10min以上がより好ましく、10g/10min以上がさらに好ましい。また、MFRは60g/10min以下が好ましく、50g/10min以下がより好ましく、40g/10min以下がさらに好ましく、30g/10min以下が最も好ましい。 On the other hand, when the MFR exceeds 60 g / 10 min, the compression residual strain, which is a measure of heat resistance, tends to deteriorate. From such a viewpoint, the MFR is preferably 6 g / 10 min or more, more preferably 8 g / 10 min or more, still more preferably 10 g / 10 min or more. The MFR is preferably 60 g / 10 min or less, more preferably 50 g / 10 min or less, further preferably 40 g / 10 min or less, and most preferably 30 g / 10 min or less.

しかしながら、市販の生分解性樹脂は、本発明で規定するMFRの範囲を満足する樹脂ばかりでない。この場合は、生分解性樹脂の水分率を調整し、溶融押出し時に樹脂を加水分解させることで、樹脂のMFRを任意に調整することが出来る。 However, commercially available biodegradable resins are not limited to resins that satisfy the range of MFR specified in the present invention. In this case, the MFR of the resin can be arbitrarily adjusted by adjusting the water content of the biodegradable resin and hydrolyzing the resin during melt extrusion.

本発明の網状構造体を構成する連続線条体に用いる、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)から選ばれる、少なくとも1種の生分解性熱可塑性樹脂(a)は、融点が80~180℃であることが好ましい。前記樹脂の融点が80℃未満であると、お湯などの高温の液体に接触した際、あるいは乾燥機などの温風による乾燥によって、網状構造体が変形してしまう恐れがある。従って、前記樹脂の融点は80℃以上が好ましく、85℃以上がより好ましく、90℃以上がさらに好ましく、100℃以上が最も好ましい。本発明の網状構造体を日用衛生品や、水切り用品に使用する場合、前記樹脂の融点は180℃以下であれば十分である。 At least one biodegradable thermoplastic selected from polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate) used for the continuous striatum constituting the network structure of the present invention. The resin (a) preferably has a melting point of 80 to 180 ° C. If the melting point of the resin is less than 80 ° C., the network structure may be deformed when it comes into contact with a high-temperature liquid such as hot water or when it is dried by warm air from a dryer or the like. Therefore, the melting point of the resin is preferably 80 ° C. or higher, more preferably 85 ° C. or higher, further preferably 90 ° C. or higher, and most preferably 100 ° C. or higher. When the network structure of the present invention is used for daily hygiene products and draining products, it is sufficient that the melting point of the resin is 180 ° C. or lower.

本発明の網状構造体を構成する連続線条体は、示差走査型熱量計にて測定した融解曲線において、融点以下に吸熱ピークを有することが好ましい。融点以下に吸熱ピークを有するものは、吸熱ピークを有しないものに比べて、連続線条体の硬度と耐熱耐へたり性が向上する。例えば、本発明で用いる、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)樹脂は、溶融熱接着後さらに融点より少なくとも10℃以上低い温度でアニーリング処理すると、連続線条体の硬度がより向上する。アニーリング処理は、樹脂の融点より少なくとも10℃以上低い温度でサンプルを熱処理すれば良く、三次元網状構造体に成形後にアニーリング処理をすることもできる。このような熱処理をした網状構造体は、示差走査型熱量計で測定した融解曲線に、室温以上融点以下の温度で吸熱ピークをより明確に発現する。なお、アニーリング処理をしない場合は、融解曲線に室温以上融点以下に吸熱ピークが明確に発現しない。このことから類推すると、アニーリング処理によってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる。本発明における耐へたり性向上効果の活用方法としては、必要な耐久性を有する日用衛生品や緩衝材を実現させるために有用である。 The continuous striatum constituting the network structure of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have improved hardness and heat resistance and sag resistance of the continuous striatum as compared with those having no endothermic peak. For example, the polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate) resins used in the present invention are continuously subjected to annealing treatment at a temperature at least 10 ° C. lower than the melting point after fusion heat bonding. The hardness of the striatum is further improved. The annealing treatment may be performed by heat-treating the sample at a temperature at least 10 ° C. lower than the melting point of the resin, and the annealing treatment can be performed after molding into a three-dimensional network structure. The reticulated structure subjected to such heat treatment more clearly develops an endothermic peak at a temperature of room temperature or higher and lower than the melting point on the melting curve measured by a differential scanning calorimeter. If the annealing treatment is not performed, the endothermic peak does not clearly appear on the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing treatment forms a metastable intermediate phase in which the hard segments are rearranged, and the heat resistance and sag resistance are improved. As a method of utilizing the effect of improving the sag resistance in the present invention, it is useful for realizing a daily hygiene product or a cushioning material having the required durability.

本発明の網状構造体を構成する連続線状体は、Dデュロメータ硬さが30~80であることが好ましい。前記のDデュロメータ硬さを30以上に調整することで、適切な硬さとなり、掻き落としによる洗浄機能が向上する。連続線状体のDデュロメータ硬さは、35以上がより好ましく、40以上がさらに好ましく、45以上が特に好ましい。
また、Dデュロメータ硬さを80以下に調整することで、硬くなり過ぎるのを抑制でき、脆くなりにくくなる。前記のDデュロメータ硬さは、75以下がより好ましく、70以下が特に好ましい。
The continuous linear body constituting the network structure of the present invention preferably has a D durometer hardness of 30 to 80. By adjusting the D durometer hardness to 30 or more, the hardness becomes appropriate and the cleaning function by scraping is improved. The D durometer hardness of the continuous linear body is more preferably 35 or more, further preferably 40 or more, and particularly preferably 45 or more.
Further, by adjusting the hardness of the D durometer to 80 or less, it is possible to suppress the hardness from becoming too hard, and the hardness becomes less likely to become brittle. The D durometer hardness is more preferably 75 or less, and particularly preferably 70 or less.

本発明の網状構造体は、70℃圧縮残留歪みが35%以下であり、好ましくは30%以下、さらに好ましくは25%以下である。また、70℃圧縮残留歪みは実用上1%以上有れば良い。70℃圧縮残留歪が35%以下であることで、耐久性と耐熱性を満足することができる。 The reticulated structure of the present invention has a 70 ° C. compression residual strain of 35% or less, preferably 30% or less, and more preferably 25% or less. Further, the 70 ° C. compression residual strain may be practically 1% or more. When the 70 ° C. compression residual strain is 35% or less, durability and heat resistance can be satisfied.

前記の70℃圧縮残留歪みは、耐久性を表す指標として広く用いられている。熱可塑樹脂、特にエラストマーにおいては、硬さと耐久性を両立することは、従来技術では困難であった。これは、エラストマーの構造に起因する根本的な課題である。一般的に、エラストマーの構造は、ソフトセグメントとハードセグメントからなり、この両者のバランスによって硬さと耐久性が発現すると考えられる。「硬い」ということは、ハードセグメントが強固である、もしくはその比率が多いことを意味する。すなわち、硬い熱可塑性樹脂エラストマーのソフトセグメントは比率が相対的に低い、もしくは弱くなる。その結果、得られた連続線状体から構成された網状構造体は耐久性が不十分となると考えられる。一方、この逆の場合は、柔らかく耐久性に優れることを意味する。 The 70 ° C. compression residual strain is widely used as an index showing durability. With thermoplastic resins, especially elastomers, it has been difficult with conventional techniques to achieve both hardness and durability. This is a fundamental challenge due to the structure of the elastomer. Generally, the structure of an elastomer consists of a soft segment and a hard segment, and it is considered that hardness and durability are exhibited by the balance between the two. "Hard" means that the hard segment is strong or has a high proportion. That is, the ratio of the soft segment of the hard thermoplastic resin elastomer is relatively low or weak. As a result, it is considered that the durability of the reticulated structure composed of the obtained continuous linear body is insufficient. On the other hand, the opposite case means that it is soft and has excellent durability.

硬さを表す指標の一つとして、Dデュロメータ硬さが挙げられる。また、このDデュロメータ硬さとへたりを表す指標の一つが、70℃圧縮残留歪みである。これらの両立を満たす方法は見出されていない。特に、生分解樹脂はその低い耐久性から、この両立は非常に困難であった。これらを両立する方法として、そのメカニズムはいまだに明らかになっていないが、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)樹脂から選ばれる、少なくとも1種の生分解性熱可塑性樹脂を含有する連続線条体を、網状構造体の構成材料として用いることで達成できることを見出した。 As one of the indexes showing the hardness, D durometer hardness can be mentioned. Further, one of the indexes representing the D durometer hardness and sagging is the 70 ° C. compression residual strain. No method has been found to satisfy both of these requirements. In particular, due to the low durability of the biodegradable resin, it is very difficult to achieve both. As a method for achieving both of these, the mechanism has not yet been clarified, but at least one biodegradation selected from polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate) resin. It has been found that this can be achieved by using a continuous striatum containing a sex thermoplastic resin as a constituent material of a network structure.

本発明の網状構造体は、例えば次のようにして得られる。網状構造体は特開平7-68061号公報等に記載された公知の方法に準じて得られる。例えば、複数のオリフィスを持つ多列ノズルより、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)樹脂をノズルオリフィスに分配し、該樹脂の(融点+20℃)以上~(融点+180℃)未満の紡糸温度で、該ノズルより下方に向け吐出させる。次いで、溶融状態で互いに連続線状体を接触させて融着させ3次元網状構造を形成しつつ、引取りコンベアネットで挟み込み、冷却槽中の冷却水で冷却する。その後、固化した網状構造体を引出し、水切り後または乾燥して、両面または片面が平滑化した網状構造体を得る。
片面のみを平滑化させる場合は、傾斜を持つ引取ネット上に連続線状体を吐出させて、溶融状態で互いに接触させて融着させる。その際、3次元網状構造を形成しつつ、引取ネット面のみ形態を緩和させつつ冷却すると良い。得られた網状構造体をアニーリング処理することもできる。なお、網状構造体の乾燥処理をアニーリング処理としても良い。
The network structure of the present invention can be obtained, for example, as follows. The network structure can be obtained according to a known method described in JP-A-7-68061 and the like. For example, polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate) resins are distributed to the nozzle orifices from a multi-row nozzle having multiple orifices, and the resin (melting point + 20 ° C.) or higher. At a spinning temperature of less than (melting point + 180 ° C.), the resin is discharged downward from the nozzle. Next, in the molten state, the continuous linear bodies are brought into contact with each other and fused to form a three-dimensional network structure, sandwiched between the take-up conveyor nets, and cooled by the cooling water in the cooling tank. Then, the solidified reticular structure is drawn out and drained or dried to obtain a reticular structure having smoothed both sides or one side.
When smoothing only one side, a continuous linear body is discharged onto a take-up net having an inclination, and the continuous linear bodies are brought into contact with each other in a molten state and fused. At that time, it is preferable to cool only the take-up net surface while relaxing the morphology while forming a three-dimensional network structure. The obtained network structure can also be annealed. The drying treatment of the reticulated structure may be an annealing treatment.

本発明の網状構造体を得るためには、原料として用いる生分解性樹脂に、酸化防止剤、滑剤などの機能付与材を含有させても良い。また、樹脂自体に含まれている場合は、溶融後の色調や品位に応じて、溶融押出し時に各種の機能付与材を樹脂に混練りして含有量を調整することが好ましい。 In order to obtain the network structure of the present invention, the biodegradable resin used as a raw material may contain a function-imparting material such as an antioxidant or a lubricant. When it is contained in the resin itself, it is preferable to knead various function-imparting materials into the resin at the time of melt extrusion to adjust the content according to the color tone and quality after melting.

酸化防止剤としては、公知のフェノール系酸化防止剤、ホスファイト系酸化防止剤、チオエーテル系酸化防止剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、N-H型ヒンダードアミン系光安定剤、N-CH型ヒンダードアミン系光安定剤が挙げられ、それらの少なくとも1種類以上を含有させることが望ましい。 Examples of the antioxidant include known phenol-based antioxidants, phosphite-based antioxidants, thioether-based antioxidants, benzotriazole-based UV absorbers, triazine-based UV absorbers, benzophenone-based UV absorbers, and NH-type. Examples thereof include hindered amine-based light stabilizers and N-CH type 3 hindered amine-based light stabilizers, and it is desirable to contain at least one of them.

フェノール系酸化防止剤としては、1,3,5-トリス[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、4,4‘-ブチリデンビス(6-tert-ブチル-m-クレゾール)、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、Sumilizer AG 80、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4‘-ヒドロキシベンジル)メシチレンなどが挙げられる。 Phenolic antioxidants include 1,3,5-tris [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] -1,3,5-triazine-2,4. , 6 (1H, 3H, 5H) -trione, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4'-butylidenebis (6-tert-butyl-) m-cresol), 3- (3,5-di-tert-butyl-4-hydroxyphenyl) stearyl propionate, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate ], Sumilizer AG 80, 2,4,6-tris (3', 5'-di-tert-butyl-4'-hydroxybenzyl) mecitylene and the like.

ホスファイト系酸化防止剤としては、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g]「1,3,2」ジオキサホスホシン、亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)、亜リン酸トリス(4-ノニルフェニル)、4,4‘-Isopropylidenediphenol C12-15 alcohol phosphite、亜リン酸ジフェニル(2-エチルヘキシル)、ジフェニルイソデシルホスファイト、トリイソデシル ホスファイト、亜リン酸トリフェニルなどが挙げられる。 Phosphite-based antioxidants include 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane and 3,9-bis (2,6). -Di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 2,4,8,10-tetrakis (1,1-dimethyl) Ethyl) -6-[(2-ethylhexyl) oxy] -12H-dibenzo [d, g] "1,3,2" dioxaphosphosin, tris phosphite (2,4-di-tert-butylphenyl) , Tris (4-nonylphenyl) phosphite, 4,4'-Isopropylidenediphenyl C12-15 alcohol phosphite, diphenyl phosphite (2-ethylhexyl), diphenylisodecylphosphite, triisodecylphosphite, triphenyl phosphite, etc. Can be mentioned.

チオエーテル系酸化防止剤としては、ビス[3-(ドデシルチオ)プロピオン酸]2,2-ビス[「3-(ドデシルチオ)-1-オキソプロピルオキシ」メチル]-1,3-プロパンジイル、3,3‘-チオビスプロピオン酸ジトリデシルなどが挙げられる。 As thioether-based antioxidants, bis [3- (dodecylthio) propionic acid] 2,2-bis ["3- (dodecylthio) -1-oxopropyloxy" methyl] -1,3-propanediyl, 3,3 '-Ditridecylthiobispropionate and the like.

樹脂の熱劣化を防ぐためには、フェノール系酸化防止剤とホスファイト系酸化防止剤を混合して使用することが望ましい。これらの2種の酸化防止剤の含有量は樹脂に対して質量基準で0.05質量%以上、1.0質量%以下が好ましい。 In order to prevent thermal deterioration of the resin, it is desirable to use a mixture of a phenolic antioxidant and a phosphite-based antioxidant. The content of these two types of antioxidants is preferably 0.05% by mass or more and 1.0% by mass or less based on the mass of the resin.

滑剤は、炭化水素系ワックス、高級アルコール系ワックス、アミド系ワックス、エステル系ワックス、金属石鹸系等が挙げられる。必要に応じて、樹脂に対して滑剤を質量基準で0.5質量%以下含有させれば良い。 Examples of the lubricant include hydrocarbon waxes, higher alcohol waxes, amide waxes, ester waxes, metal soap waxes and the like. If necessary, the lubricant may be contained in an amount of 0.5% by mass or less based on the mass of the resin.

本発明の網状構造体は、洗浄力を向上させるために、必要に応じて、樹脂に研磨材を含有させても良い。研磨材は、無機物や有機物など公知のものを用いることが出来る。例えば、研磨材の材質としては、二酸化珪素、酸化アルミナ、酸化クロム、酸化セリウム、ガラス、活性炭粒子、ポリエチレン、超高分子量ポリエチレン、ポリプロピレンなどが挙げられる。樹脂に研磨材を含有させる方法は、樹脂と研磨材を溶融押出し時に混合させる方法、得られた網状構造体を構成する連続線状体に浸漬や塗布などの公知の方法で、研磨材を含むバインダーを被覆させることができる。 In the network structure of the present invention, an abrasive may be contained in the resin, if necessary, in order to improve the detergency. As the abrasive, a known material such as an inorganic substance or an organic substance can be used. For example, examples of the material of the abrasive include silicon dioxide, alumina oxide, chromium oxide, cerium oxide, glass, activated carbon particles, polyethylene, ultra-high molecular weight polyethylene, polypropylene and the like. The method of containing the abrasive in the resin is a known method such as mixing the resin and the abrasive at the time of melt extrusion, dipping or coating in the continuous linear body constituting the obtained network structure, and including the abrasive. The binder can be coated.

また、本発明の網状構造体は、必要に応じて着色させることが出来る。着色は、顔料や染料を用いることが出来る。また、それらを溶融紡糸前に含有させても良いし、得られた網状構造体を構成する連続線状体に浸漬や塗布して被覆させても良い。 Further, the network structure of the present invention can be colored as needed. Pigments and dyes can be used for coloring. Further, they may be contained before melt spinning, or may be dipped or applied to a continuous linear body constituting the obtained network structure to cover it.

本発明の網状構造体を構成する連続線状体は、本発明の目的を損なわない範囲で、他の熱可塑性樹脂と組み合わせた複合線状としても良い。複合形態としては、線状体自身を複合化した場合として、シース・コア型、サイドバイサイド型、偏芯シース・コア型等の複合線状体が挙げられる。 The continuous linear body constituting the network structure of the present invention may be a composite linear body in combination with another thermoplastic resin as long as the object of the present invention is not impaired. Examples of the composite form include a composite linear body such as a sheath-core type, a side-by-side type, and an eccentric sheath-core type when the linear body itself is composited.

本発明の網状構造体は、本発明の目的を損なわない範囲で、多層構造化しても良い。多層構造としては、表層と裏層を異なった繊度の線状体で構成することや、表層と裏層で異なった見掛け密度を持つ構造体で構成することや、長繊維不織布や短繊維不織布等と多層化することが挙げられる。多層化方法としては、加熱により溶融固着する方法、接着剤で接着させる方法、縫製やバンド等で拘束する方法等が挙げられる。 The network structure of the present invention may be multi-layered as long as the object of the present invention is not impaired. As a multi-layer structure, the surface layer and the back layer may be composed of linear bodies having different fineness, the surface layer and the back layer may be composed of structures having different apparent densities, long-fiber non-woven fabric, short-fiber non-woven fabric, etc. And multi-layered. Examples of the multi-layering method include a method of melting and fixing by heating, a method of adhering with an adhesive, a method of restraining with sewing or a band, and the like.

本発明の網状構造体を構成する連続線状体の断面形状は特に限定されないが、中実断面、あるいは中空を含む異型断面とすることにより、好ましい硬さとハンドリング性を付与することが出来る。特に、洗浄力と水切り性を重視する場合は、例えば、三葉形状であるY型あるいはs+型などの端面がエッジ形状であり、且つ断面二次モーメントが円対称となる異型断面を有する連続線状体が好ましい。 The cross-sectional shape of the continuous linear body constituting the reticulated structure of the present invention is not particularly limited, but a solid cross section or a modified cross section including a hollow can be used to impart preferable hardness and handleability. In particular, when detergency and drainability are emphasized, for example, a continuous line having a deformed cross section in which the end face of a three-leaf shape such as Y-shaped or s + -shaped has an edge shape and the moment of inertia of area is circularly symmetric. The shape is preferable.

本発明の網状構造体は、性能を低下させない範囲で樹脂製造過程から成形体に加工し、製品化する任意の段階で、公知の方法を用いて、防臭抗菌性、防カビ性、防ダニ性、消臭性、防黴性、芳香性、難燃性、吸放湿性等の機能付与を行うことができる。 The reticulated structure of the present invention is processed into a molded body from the resin manufacturing process to the extent that the performance is not deteriorated, and at any stage of commercialization, using a known method, deodorant antibacterial property, mildew proof property, and mite proof property. , Deodorant, antibacterial, aromatic, flame-retardant, moisture-absorbing and desorbing, etc. can be imparted.

本発明の網状構造体は、あらゆる形状に成型したものを含む。例えば、板状、三角柱、多角体、円柱、球状やこれらを多数含む構造体も含まれる。これらの成型方法は、押し出し時に規制板を用いて成型しても良いし、カット、熱プレスなどの公知な方法で行うことが出来る。 The reticulated structure of the present invention includes those molded into any shape. For example, plate-shaped, triangular prisms, polygons, cylinders, spheres and structures containing many of them are also included. These molding methods may be molded using a regulating plate at the time of extrusion, or may be performed by a known method such as cutting or heat pressing.

本発明の網状構造体を構成する連続線状体は、汚れをくまなく除去できる点から繊維径が小さい方が望ましい。しかしながら、繊維が細すぎると、連続線状体の硬さが不十分となり、汚れを除去する洗浄力が低下しやすくなる。また、繊維が太すぎると、網状構造が疎となり、泡立ち性が低下したり、隅にある汚れを除去することが困難であったり、繊維端面が指に当たり痛みを感じる場合がある。そのため、繊維径は適正な範囲に設定することが好ましい。
連続線状体の断面形状が円である場合、汚れの除去性の点から、連続線状体の繊維径は0.1mm以上が好ましく、より好ましくは0.2mm以上であり、特に好ましくは0.25mm以上である。一方、泡立ち性、済にある汚れの除去などの点から、連続線状体の繊維径は0.8mm以下が好ましく、さらに好ましくは0.7mm以下、特に好ましくは0.6mm以下である。
It is desirable that the continuous linear body constituting the network structure of the present invention has a small fiber diameter from the viewpoint of being able to remove all the stains. However, if the fibers are too thin, the hardness of the continuous striatum becomes insufficient, and the detergency for removing stains tends to decrease. Further, if the fiber is too thick, the network structure becomes sparse, the foaming property is lowered, it is difficult to remove the dirt in the corner, and the fiber end face may hit the finger and cause pain. Therefore, it is preferable to set the fiber diameter in an appropriate range.
When the cross-sectional shape of the continuous linear body is a circle, the fiber diameter of the continuous linear body is preferably 0.1 mm or more, more preferably 0.2 mm or more, and particularly preferably 0, from the viewpoint of stain removal property. It is .25 mm or more. On the other hand, the fiber diameter of the continuous linear body is preferably 0.8 mm or less, more preferably 0.7 mm or less, and particularly preferably 0.6 mm or less from the viewpoints of foaming property and removal of existing stains.

上述した通り、汚れを除去するためには、連続線状体の断面に細かいエッジ形状を有することが好適であるが、連続線状体自体が細すぎると必要な硬さが不足してしまう恐れがある。この問題を解決する方策のひとつとして、連続線状体の断面を異型にすることが挙げられる。即ち、細かいエッジ形状を有する断面を形成させることで、このエッジ部分で、付着した細かい汚れを除去することが出来る。
さらに、連続線状体自体をある程度太くすることが出来るため、所望の硬さに調整することが可能となる。繊維の断面形状が異型断面である場合は、繊維断面の外側に少なくとも同等の3つ以上の曲率を有するエッジを有し、それぞれの曲率を有する構造体が繊維断面の重心に対して均等かつ回転対称であり、その曲率半径の2倍が0.1mm以上0.8mm以下であることが好ましい。その曲率半径の2倍が0.8mm以下に調整することで、細かい溝に入りこんだ部分の汚れを落としやすくなる。前記の曲率半径は、より好ましくは0.7mm以下、さらに好ましくは0.6mm以下、特に好ましくは0.5mm以下である。一方、前記の曲率半径は、実用上0.1mm以上であれば良い。
As described above, in order to remove dirt, it is preferable to have a fine edge shape in the cross section of the continuous linear body, but if the continuous linear body itself is too thin, the required hardness may be insufficient. There is. One of the measures to solve this problem is to make the cross section of the continuous linear body atypical. That is, by forming a cross section having a fine edge shape, it is possible to remove fine dirt adhering to the edge portion.
Further, since the continuous linear body itself can be thickened to some extent, it is possible to adjust the hardness to a desired level. When the cross-sectional shape of the fiber is atypical cross-section, the structure having at least three or more equal curvature edges on the outside of the fiber cross-section, and the structures having each curvature rotate evenly and with respect to the center of gravity of the fiber cross-section. It is symmetric, and it is preferable that twice the radius of curvature is 0.1 mm or more and 0.8 mm or less. By adjusting twice the radius of curvature to 0.8 mm or less, it becomes easier to remove dirt from the portion that has entered the fine groove. The radius of curvature is more preferably 0.7 mm or less, still more preferably 0.6 mm or less, and particularly preferably 0.5 mm or less. On the other hand, the radius of curvature may be 0.1 mm or more in practice.

連続線状体の繊維断面は、ループ形状を描くことが出来る断面形状であることが好ましい。ループを描くことが出来る断面形状とは、最も単純なもので、円形状や中空構造などが挙げられる。異型断面では、繊維断面の外側に少なくとも同等の3つ以上の曲率を有するエッジを有し、それぞれの曲率を有する構造体が繊維断面の重心に対して均等かつ回転対称である。より一般化して記述するならば、繊維断面の重心を中心として、任意のいずれの点を取り重心と結んだ直線に対して、重心を中心としてこの直線方向と垂直方向のそれぞれのモーメントが釣り合っていることが好ましい。これらの具体的として、三葉形状であるY断面、三角形状、四葉形状である+断面などが挙げられる。 The fiber cross section of the continuous linear body is preferably a cross-sectional shape capable of drawing a loop shape. The cross-sectional shape in which a loop can be drawn is the simplest, and includes a circular shape and a hollow structure. In the modified cross section, the outer side of the fiber cross section has edges having at least three or more equal curvatures, and the structure having each curvature is uniform and rotationally symmetric with respect to the center of gravity of the fiber cross section. To describe it in a more general way, with respect to a straight line that is connected to the center of gravity by taking any point around the center of gravity of the fiber cross section, the moments in the straight line direction and the vertical direction are balanced around the center of gravity. It is preferable to have. Specific examples of these include a Y cross section having a three-leaf shape, a triangular shape, and a + cross section having a four-leaf shape.

本発明の網状構造体の見かけ密度は、0.005g/cm~0.30g/cmであり、好ましくは0.01g/cm~0.20g/cm、より好ましくは0.02g/cm~0.15g/cmの範囲である。見かけ密度が、0.005g/cmより小さいと、汚れを除去するのに必要な硬度が不十分となる。一方、見かけ密度が、0.30g/cmを越えると、硬くなり過ぎて、たわしとして不適なものとなる場合がある。 The apparent density of the reticulated structure of the present invention is 0.005 g / cm 3 to 0.30 g / cm 3 , preferably 0.01 g / cm 3 to 0.20 g / cm 3 , and more preferably 0.02 g / cm. It is in the range of cm 3 to 0.15 g / cm 3 . If the apparent density is less than 0.005 g / cm 3 , the hardness required to remove dirt will be insufficient. On the other hand, if the apparent density exceeds 0.30 g / cm 3 , it may become too hard and unsuitable as a scrubbing brush.

本発明の網状構造体の厚みは、好ましくは10mm以上であり、より好ましくは15mm以上であり、さらに好ましくは20mm以上である。厚みが10mm未満ではクッション材に使用すると薄すぎて扱いづらい場合がある。厚みの上限は製造装置の関係から、好ましくは100mm以下であり、より好ましくは80mm以下、さらに好ましくは60mm以下である。 The thickness of the network structure of the present invention is preferably 10 mm or more, more preferably 15 mm or more, still more preferably 20 mm or more. If the thickness is less than 10 mm, it may be too thin to handle when used as a cushioning material. The upper limit of the thickness is preferably 100 mm or less, more preferably 80 mm or less, still more preferably 60 mm or less in view of the manufacturing apparatus.

かくして得られた本発明の網状構造体は、生分解を有し、且つ良好な硬さとへたりにくさ、ハンドリング性を兼ね備えた優れた網状構造体となる。例えば、たわしとして使用する際に、使用時に生じるマイクロプラスチックも生分解を有しておりマイクロプラスチック問題になりにくく、さらに製品寿命が来て埋め立て処理がされた際も、生分解性によりマイクロプラスチック問題を起こしにくいことが期待される。本発明の範囲であれば、これらの問題を解決することが可能となる。 The network structure of the present invention thus obtained is an excellent network structure having biodegradation, good hardness, resistance to settling, and handleability. For example, when used as a shaving, the microplastic generated during use also has biodegradation and is less likely to cause a microplastic problem, and even when the product has reached the end of its life and is landfilled, the biodegradability causes a microplastic problem. Is expected to be less likely to occur. Within the scope of the present invention, these problems can be solved.

以下に、実施例を例示し、本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。実施例中における特性値の測定及び評価は下記のように行った。なお、試料の大きさは以下に記載の大きさを標準とするが、試料が不足する場合は可能な大きさの試料サイズを用いて測定を行った。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The measurement and evaluation of the characteristic values in the examples were performed as follows. The standard size of the sample is as described below, but when the sample is insufficient, the measurement was performed using the sample size of the possible size.

(1)繊維径
試料を8cm×10cmの大きさに切断し、網状構造体からそれぞれ10箇所から線状体を約5mmの長さで採集する。採集した線状体の繊維径は、光学顕微鏡を適当な倍率で繊維径測定箇所にピントを合わせて測定する。(n=10の平均値)
(1) Fiber diameter A sample is cut into a size of 8 cm × 10 cm, and linear bodies are collected from each of the reticulated structures at a length of about 5 mm from 10 points. The fiber diameter of the collected linear body is measured by focusing on the fiber diameter measurement point with an optical microscope at an appropriate magnification. (Mean value of n = 10)

(2)Dデュロメータ硬さ
網状構造体の繊維中央にD型デュロメータを押し当て1秒以内の数値を読み取った。試験場所は20±2℃、相対湿度65±4%であり、サンプルは少なくとも1時間以上、この試験環境に置き、温度が安定した後に測定した。但し、繊維径が0.4mm以下で針が押し当てられない場合や、異型断面で針が異型断面の窪みにはまって正確に測定できない場合や、繊維径が細すぎて針が繊維を貫通して机の硬さを拾ってしまう際は、2~3mm厚みの平滑なプレートを作成してその硬さを読み取った。(それぞれn=5の平均値)
(2) D-durometer hardness A D-type durometer was pressed against the center of the fiber of the reticulated structure, and the value within 1 second was read. The test site was 20 ± 2 ° C. and the relative humidity was 65 ± 4%, and the sample was placed in this test environment for at least 1 hour and measured after the temperature became stable. However, if the fiber diameter is 0.4 mm or less and the needle cannot be pressed, or if the needle is stuck in a recess in the irregular cross section and cannot be measured accurately, or if the fiber diameter is too small and the needle penetrates the fiber. When I picked up the hardness of the desk, I made a smooth plate with a thickness of 2 to 3 mm and read the hardness. (Mean value of n = 5 respectively)

(3)試料厚み及び見掛け密度
試料を8cm×10cmの大きさに切断し、無荷重で24時間放置した後、高分子計器製FD-80N型測厚器にて中心1か所の高さを測定して試料厚みとする。試料重さは、上記試料を電子天秤に載せて計測する。また見掛け密度は、試料厚みから体積を求め、試料の重さを体積で除した値で示す。(それぞれn=3の平均値)
(3) Sample thickness and apparent density After cutting the sample into a size of 8 cm x 10 cm and leaving it for 24 hours with no load, use an FD-80N type thickener manufactured by Polymer Meter to measure the height at one center. Measure to obtain the sample thickness. The sample weight is measured by placing the above sample on an electronic balance. The apparent density is obtained by determining the volume from the sample thickness and dividing the weight of the sample by the volume. (Mean value of n = 3 respectively)

(4)融点(Tm)
TAインスツルメント社製 示差走査熱量計Discovery DSC25を使用し、サンプル重量は2.0mg±0.1mgに秤量し、昇温速度20℃/分、窒素雰囲気下で測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求めた。
(4) Melting point (Tm)
Using the differential scanning calorimeter Discovery DSC25 manufactured by TA Instruments, the sample weight was weighed to 2.0 mg ± 0.1 mg, and the endothermic peak was measured from the endothermic heat absorption curve measured at a temperature rise rate of 20 ° C./min under a nitrogen atmosphere. The (melting peak) temperature was determined.

(5)MFR(メルトフローレート)
測定は、網状構造体を細かく切り刻んで原料として80℃で2時間以上真空乾燥した後に、空気中の水分を出来るだけ含まないように、手早くメルトフローレート(MFR)測定を実施した。測定方法は、ISO1133に準拠して行った。測定温度は190℃、荷重は2.16kgとした。
(5) MFR (melt flow rate)
The measurement was carried out by chopping the network structure into small pieces and vacuum-drying the raw material at 80 ° C. for 2 hours or more, and then quickly measuring the melt flow rate (MFR) so as not to contain as much moisture in the air as possible. The measurement method was performed in accordance with ISO1133. The measurement temperature was 190 ° C. and the load was 2.16 kg.

(6)70℃圧縮残留歪み
試料を10cm×8cmの大きさに切断し、(2)に記載の方法で処理前の厚み(c)を測定する。厚みを測定したサンプルを50%圧縮状態に保持できる冶具に挟み、70℃に設定した乾燥機に入れ、22時間放置する。その後サンプルを取り出し、冷却して圧縮歪みを除き30分放置後の厚み(d)を求め、処理前の厚み(c)とから、式{(c)-(d)}/(c)×100より算出する:単位%(n=3の平均値)。
(6) 70 ° C. compression residual strain A sample is cut into a size of 10 cm × 8 cm, and the thickness (c) before treatment is measured by the method described in (2). The sample whose thickness has been measured is sandwiched between jigs that can be held in a 50% compressed state, placed in a dryer set at 70 ° C., and left to stand for 22 hours. After that, the sample was taken out, cooled to remove the compression strain, and the thickness (d) after being left for 30 minutes was obtained. Calculated by: Unit% (mean value of n = 3).

(7)泡立ち評価
5人のモニターに対して、網状構造体に洗剤を付けて泡立ち易いか評価した。5人のモニターの平均点を評価点とした。
3点・・・泡立ち易く、現状のスポンジたわしと同等に使用できる。
2点・・・泡立ち易いが、不快ではない。
1点・・・泡立ちにくく、少し不快に感じる。
0点・・・泡立たない。
平均点が2.5点以上の場合は◎、2点以上の場合は〇、1.5点以上の場合は△、1.5点未満の場合は×とした。なお、平均点が2点以上であれば、実用上問題ない。
(7) Foaming evaluation Five monitors were evaluated by applying detergent to the reticulated structure to see if it was easy to foam. The average score of the five monitors was used as the evaluation score.
3 points: Easy to foam and can be used in the same way as the current sponges scrubbing brush.
2 points: Easy to foam, but not unpleasant.
1 point: It is hard to foam and feels a little uncomfortable.
0 points ... No foaming.
When the average score was 2.5 points or more, it was marked as ⊚, when it was 2 points or more, it was rated as 〇, when it was 1.5 points or more, it was rated as Δ, and when it was less than 1.5 points, it was rated as ×. If the average score is 2 or more, there is no problem in practical use.

(8)汚れ落とし評価
5人のモニターに対して、網状構造体に洗剤を付けてガラスビーカーとシンクを洗い評価した。5人のモニターの平均点を評価点とした。網状構造体を素手で触った際の感覚を下記記載の4段階の点数で評価した。5人のモニターの平均点を評価点とした。
3点・・・現行スポンジたわしと同等以上に汚れが落ちると感じる。
2点・・・汚れは問題なく落とすことが出来ると感じる。
1点・・・汚れがやや落としにくいと感じる。
0点・・・汚れが落としにくいと感じる。
平均点が2.5点以上の場合は◎、2点以上の場合は〇、1.5点以上の場合は△、1.5点未満の場合は×とした。なお、平均点が2点以上であれば、実用上問題ない。
(8) Stain removal evaluation Five monitors were evaluated by washing the glass beaker and sink with detergent on the net-like structure. The average score of the five monitors was used as the evaluation score. The sensation when the reticulated structure was touched with bare hands was evaluated on the following four-point scale. The average score of the five monitors was used as the evaluation score.
3 points ... I feel that the dirt is removed more than the current sponges scrubbing brush.
2 points ... I feel that dirt can be removed without any problems.
1 point ... I feel that dirt is a little difficult to remove.
0 points ... I feel that it is difficult to remove dirt.
When the average score was 2.5 points or more, it was marked as ⊚, when it was 2 points or more, it was rated as 〇, when it was 1.5 points or more, it was rated as Δ, and when it was less than 1.5 points, it was rated as ×. If the average score is 2 or more, there is no problem in practical use.

(9)転写汚れの洗い流し性評価
上述した(8)の試験後に網状構造体に付着した汚れを流水で洗い、転写した汚れの洗い流し性を評価した。5人のモニターの平均点を評価点とした。網状構造体を素手で触った際の感覚を下記記載の4段階の点数で評価した。5人のモニターの平均点を評価点とした。
3点・・・現行スポンジたわしよりも優れた転写汚れの洗い流し性と感じる。
2点・・・現行スポンジたわしよりも比較的良い転写汚れの洗い流し性と感じる。
1点・・・現行スポンジたわしと同等の転写汚れの洗い流し性と感じる。
0点・・・現行スポンジたわしよりも転写汚れの洗い流し性は悪いと感じる。
平均点が2.5点以上の場合は◎、2点以上の場合は〇、1.5点以上の場合は△、1.5点未満の場合は×とした。なお、平均点が2点以上であれば、実用上問題ない。
(9) Evaluation of wash-off property of transfer stains After the test of (8) described above, the dirt adhering to the network structure was washed with running water, and the wash-out property of the transferred stains was evaluated. The average score of the five monitors was used as the evaluation score. The sensation when the reticulated structure was touched with bare hands was evaluated on the following four-point scale. The average score of the five monitors was used as the evaluation score.
3 points: I feel that the transfer stains are better washed away than the current sponge scrubbing brush.
2 points: I feel that the transfer stains are relatively better than the current sponge scrubbing brush.
1 point: I feel that it has the same washability of transfer stains as the current sponges scrubbing brush.
0 points: I feel that the transfer stains are less washable than the current sponge scrubbing brush.
When the average score was 2.5 points or more, it was marked as ⊚, when it was 2 points or more, it was rated as 〇, when it was 1.5 points or more, it was rated as Δ, and when it was less than 1.5 points, it was rated as ×. If the average score is 2 or more, there is no problem in practical use.

(10)水切り性評価
上述した(9)の試験後に網状構造体を水切りした後に網状体に残存した水切り性を評価した。5人のモニターの平均点を評価点とした。網状構造体を素手で触った際の感覚を下記記載の4段階の点数で評価した。5人のモニターの平均点を評価点とした。
3点・・・現行スポンジたわしよりも優れた水切り性だと感じる。
2点・・・現行スポンジたわしよりも比較的良い水切り性だと感じる。
1点・・・現行スポンジたわしと同程度の水切り性だと感じる。
0点・・・現行スポンジたわしよりも水切り性が悪いと感じる。
平均点が2.5点以上の場合は◎、2点以上の場合は〇、1.5点以上の場合は△、1.5点未満の場合は×とした。なお、平均点が2点以上であれば、実用上問題ない。
(10) Evaluation of drainage property The drainage property remaining in the network after draining the network structure after the test of (9) described above was evaluated. The average score of the five monitors was used as the evaluation score. The sensation when the reticulated structure was touched with bare hands was evaluated on the following four-point scale. The average score of the five monitors was used as the evaluation score.
3 points ... I feel that it has better draining properties than the current sponge scrubbing brush.
2 points ... I feel that it has a relatively better draining property than the current sponge scrubbing brush.
1 point ... I feel that it has the same draining property as the current sponges scrubbing brush.
0 points ... I feel that the draining property is worse than the current sponge scrubbing brush.
When the average score was 2.5 points or more, it was marked as ⊚, when it was 2 points or more, it was rated as 〇, when it was 1.5 points or more, it was rated as Δ, and when it was less than 1.5 points, it was rated as ×. If the average score is 2 or more, there is no problem in practical use.

(実施例及び比較例で使用した熱可塑性樹脂)
1)ポリブチレンサクシネート高MFR品
PTT MCC BIOCHEM COMPANY LIMITED社製 BioPBSTM FZ71を用いた。このBioPBSTM FZ71は密度が1.26g/cmであり、MFRが22g/10min、融点が115℃であった。
2)ポリブチレンサクシネート低MFR品
PTT MCC BIOCHEM COMPANY LIMITED社製 BioPBSTM FZ91を用いた。このBioPBSTM FZ91は密度が1.26g/cmであり、MFRが5g/10min、融点が115℃であった。
3)ポリ(ブチレンサクシネート/アジペート)
PTT MCC BIOCHEM COMPANY LIMITED社製 BioPBSTM FD92を用いた。このBioPBSTM FD92は密度が1.24g/cmであり、MFRが4g/10min、融点が84℃であった。
4)ポリ(ブチレンアジペート/テレフタレート)
BASF社製 エコフレックス(R)を用いた。このエコフレックス(R)は密度が1.26g/cmであり、MFRが3g/10min、融点が115℃であった。
5)ポリ乳酸
Corbion社製Luminy(R)L130を用いた。このLuminy(R)L130は密度が1.24g/cmであり、MFRが10g/10min、融点が175℃であった。
6)ポリεカプロラクトン
Perstorp社製CapaTM6500を用いた。このCapaTM6500は、融点が58℃であった。それぞれのポリマーならびに混合物の特性を表1に示す。
(Thermoplastic resin used in Examples and Comparative Examples)
1) Polybutylene succinate high MFR product PTT MCC BIOCHANY LIMITED BioPBS TM FZ71 manufactured by LIMITED was used. The BioPBS TM FZ71 had a density of 1.26 g / cm 3 , an MFR of 22 g / 10 min, and a melting point of 115 ° C.
2) Polybutylene succinate low MFR product PTT MCC BIOCHEM COMPANY LIMITED BioPBS TM FZ91 manufactured by LIMITED was used. The BioPBS TM FZ91 had a density of 1.26 g / cm 3 , an MFR of 5 g / 10 min, and a melting point of 115 ° C.
3) Poly (butylene succinate / adipate)
BioPBS TM FD92 manufactured by PTT MCC BIOCHEM COMPANY LIMITED was used. The BioPBS TM FD92 had a density of 1.24 g / cm 3 , an MFR of 4 g / 10 min, and a melting point of 84 ° C.
4) Poly (butylene adipate / terephthalate)
Ecoflex (R) manufactured by BASF was used. This Ecoflex (R) had a density of 1.26 g / cm 3 , an MFR of 3 g / 10 min, and a melting point of 115 ° C.
5) Polylactic acid Luminy (R) L130 manufactured by Corbion was used. The Luminy (R) L130 had a density of 1.24 g / cm 3 , an MFR of 10 g / 10 min, and a melting point of 175 ° C.
6) Polyεcaprolactone Capa TM 6500 manufactured by Perstop was used. The Capa TM 6500 had a melting point of 58 ° C. The properties of each polymer and mixture are shown in Table 1.

Figure 2022057756000001
Figure 2022057756000001

[実施例1]
幅方向96mm、厚み方向の幅31mmのノズル有効面にオリフィスの外径0.5mmで丸孔形状のオリフィスを孔間ピッチ6mmの千鳥配列としたノズルを用いた。樹脂Aを絶乾状態で用い、紡糸温度230℃にて、単孔吐出量1.0g/minの速度でノズル下方に吐出させた。
ノズル面20cm下に冷却水面が来る位置に水槽を調整し、その水槽内に一対の引取りコンベアを水面上に一部出るように配した。
コンベアは幅20cmのステンレス製エンドレスネットを有しており、ノズル面の幅方向とコンベアを平行に配置し、エンドレスネットの開口幅を30mm間とし、側面部を成形するためにアルミ板をネット方向に対して90度の向きで配置させ水を2.0L/minの速度で流し側面部分を成形させた。
該コンベアネットの開口部、コンベアネット上、並びに側面部を成形するアルミ板に、該溶融状態の吐出線状を落下させることで曲がりくねらせル-プを形成し、接触部分を融着させつつ3次元網状構造を形成した。
該溶融状態の網状構造体の両面を引取りコンベアで挟み込みつつ0.96m/minの速度で冷却水中へ引込み、固化させることで厚み方向と側面方向のそれぞれ両面をフラット化した後、所定の大きさに切断後、80℃熱風にて20分間乾燥熱処理して、網状構造体を得た。得られた網状構造体の特性を表2に示す。
[Example 1]
A nozzle having a round hole-shaped orifice with an outer diameter of 0.5 mm and a staggered arrangement with a hole pitch of 6 mm was used on the effective surface of the nozzle having a width of 96 mm in the width direction and a width of 31 mm in the thickness direction. Resin A was used in an absolutely dry state, and was discharged below the nozzle at a spinning temperature of 230 ° C. and a single-hole discharge rate of 1.0 g / min.
The water tank was adjusted to a position where the cooling water surface came 20 cm below the nozzle surface, and a pair of take-up conveyors were arranged in the water tank so as to partially protrude above the water surface.
The conveyor has a stainless steel endless net with a width of 20 cm, the width direction of the nozzle surface and the conveyor are arranged parallel to each other, the opening width of the endless net is 30 mm, and the aluminum plate is placed in the net direction to form the side surface. The side surface portion was formed by flowing water at a speed of 2.0 L / min.
By dropping the discharge line in the molten state on the aluminum plate that forms the opening, on the conveyor net, and the side surface of the conveyor net, a winding loop is formed, and the contact parts are fused. A three-dimensional network structure was formed.
While sandwiching both sides of the molten network structure with a take-up conveyor, it is drawn into cooling water at a speed of 0.96 m / min and solidified to flatten both sides in the thickness direction and the side surface direction, and then to a predetermined size. After cutting, it was dried and heat-treated with hot air at 80 ° C. for 20 minutes to obtain a network structure. The characteristics of the obtained network structure are shown in Table 2.

得られた網状構造体は、断面形状が丸断面、繊維径が0.39mmの連続線状体から構成され、見かけ密度が0.044g/cm、表面が平坦化された状態での厚みが27.0mm、幅が80mm、Dデュロメータ硬さが61、網状構造体のMFRが24g/10min、融点が112.9℃、70℃圧縮残留歪みが22.5%であった。得られた網状構造体は、泡立ち性に優れ、適度な硬さを有し、汚れ落とし性、転写汚れの洗い流し性、水切り性、耐久性に優れていた。 The obtained network structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.39 mm, an apparent density of 0.044 g / cm 3 , and a thickness with a flat surface. The width was 27.0 mm, the width was 80 mm, the D durometer hardness was 61, the MFR of the network structure was 24 g / 10 min, the melting point was 112.9 ° C., and the compression residual strain at 70 ° C. was 22.5%. The obtained net-like structure was excellent in foaming property, had an appropriate hardness, and was excellent in dirt removing property, transfer dirt washing property, draining property, and durability.

[実施例2]
樹脂Bを含水率0.01%に調整して用い、紡糸温度を255℃、ノズル面-冷却水距離を30cmにしたこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で繊維径が0.69mmの連続線状体から構成され、見かけ密度が0.050g/cm、表面が平坦化された状態での厚みが29.4mm、Dデュロメータ硬さが68、網状構造体のMFRが8g/10min、融点が114.0℃、70℃圧縮残留歪みが17.5%であった。得られた網状構造体の特性を表2に示す。得られた網状構造体は、泡立ち性に優れ、適度な硬さを有し、汚れ落とし性、転写汚れの洗い流し性、水切り性、耐久性に優れていた。
[Example 2]
A reticulated structure was obtained in the same manner as in Example 1 except that the resin B was adjusted to have a water content of 0.01% and the spinning temperature was 255 ° C. and the nozzle surface-cooling water distance was 30 cm.
The obtained network structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.69 mm, an apparent density of 0.050 g / cm 3 , and a thickness with a flat surface. The hardness was 29.4 mm, the D durometer hardness was 68, the MFR of the network structure was 8 g / 10 min, the melting point was 114.0 ° C., and the compression residual strain at 70 ° C. was 17.5%. The characteristics of the obtained network structure are shown in Table 2. The obtained net-like structure was excellent in foaming property, had an appropriate hardness, and was excellent in dirt removing property, transfer dirt washing property, draining property, and durability.

[実施例3]
樹脂Cを含水率0.01%に調整して用い、紡糸温度を260℃、ノズル面-冷却水距離を25cm、引き取り速度を0.76m/minにした以外、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で繊維径が0.69mmの連続線状体から構成され、見かけ密度が0.070g/cm、表面が平坦化された状態での厚みが27.5mm、Dデュロメータ硬さが58、網状構造体のMFRが7g/10min、融点が87.5℃、70℃圧縮残留歪みが20.4%であった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性に優れ、適度な硬さを有し、汚れ落とし性、転写汚れの洗い流し性、水切り性、耐久性に優れていた。
[Example 3]
Resin C was adjusted to a water content of 0.01% and used, and the spinning temperature was 260 ° C., the nozzle surface-cooling water distance was 25 cm, and the take-up speed was 0.76 m / min. Obtained a structure.
The obtained network structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.69 mm, an apparent density of 0.070 g / cm 3 , and a thickness with a flat surface. The hardness was 27.5 mm, the D durometer hardness was 58, the MFR of the network structure was 7 g / 10 min, the melting point was 87.5 ° C., and the compression residual strain at 70 ° C. was 20.4%. The characteristics of the obtained network structure are shown in Table 2.
The obtained net-like structure was excellent in foaming property, had an appropriate hardness, and was excellent in dirt removing property, transfer dirt washing property, draining property, and durability.

[実施例4]
樹脂Dを含水率0.02%に調整して用い、紡糸温度を260℃、単孔吐出量を0.6g/min、ノズル面-冷却水距離を17cm、引き取り速度を0.52m/minにしたこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で、繊維径が0.57mmの連続線状体から構成され、見かけ密度が0.061g/cm、表面が平坦化された状態での厚みが27.6mm、Dデュロメータ硬さが49、網状構造体のMFRが8g/10min、融点が116.8℃、70℃圧縮残留歪みが19.3%であった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性に優れ、適度な硬さを有し、汚れ落とし性、転写汚れの洗い流し性、水切り性、耐久性に優れていた。
[Example 4]
Using resin D adjusted to a water content of 0.02%, the spinning temperature is 260 ° C, the single-hole discharge amount is 0.6 g / min, the nozzle surface-cooling water distance is 17 cm, and the take-up speed is 0.52 m / min. A network structure was obtained in the same manner as in Example 1 except for the above.
The obtained reticulated structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.57 mm, an apparent density of 0.061 g / cm 3 , and a thickness with a flat surface. The D durometer hardness was 49, the MFR of the network structure was 8 g / 10 min, the melting point was 116.8 ° C., and the compression residual strain at 70 ° C. was 19.3%. The characteristics of the obtained network structure are shown in Table 2.
The obtained net-like structure was excellent in foaming property, had an appropriate hardness, and was excellent in dirt removing property, transfer dirt washing property, draining property, and durability.

[実施例5]
オリフィスの外径1.0mmで丸孔形状のオリフィスを孔間ピッチ8mmの千鳥配列としたノズルを用い、樹脂としてEを含水率0.01%に調整して用い、紡糸温度を210℃、ノズル面-冷却水距離を22cm、引き取り速度を0.74m/minにしたこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で繊維径が0.59mmの連続線状体から構成され、見かけ密度が0.040g/cm、表面が平坦化された状態での厚みが29.3mm、Dデュロメータ硬さが59、網状構造体のMFRが28g/10min、融点が115.0℃、70℃圧縮残留歪みが15.7%であった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性に優れ、適度な硬さを有し、汚れ落とし性、転写汚れの洗い流し性、水切り性、耐久性に優れていた。
[Example 5]
Using a nozzle with an orifice outer diameter of 1.0 mm and a round hole-shaped orifice arranged in a staggered arrangement with a hole pitch of 8 mm, E was adjusted to a water content of 0.01% as a resin, the spinning temperature was 210 ° C, and the nozzle was used. A network structure was obtained in the same manner as in Example 1 except that the surface-cooling water distance was 22 cm and the take-up speed was 0.74 m / min.
The obtained network structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.59 mm, an apparent density of 0.040 g / cm 3 , and a thickness with a flat surface. The hardness was 59 at 29.3 mm, the D durometer hardness was 59, the MFR of the network structure was 28 g / 10 min, the melting point was 115.0 ° C., and the compression residual strain at 70 ° C. was 15.7%. The characteristics of the obtained network structure are shown in Table 2.
The obtained net-like structure was excellent in foaming property, had an appropriate hardness, and was excellent in dirt removing property, transfer dirt washing property, draining property, and durability.

[実施例6]
幅方向112mm、厚み方向の幅43mmのノズル有効面にオリフィスの外径3.6mmでスリット幅0.3mm且つスリット長さ1.8mmがオリフィス中心から均等な間隔で3本のスリットが配置された三葉形状のオリフィスを孔間ピッチ8mmの千鳥配列としたノズルを用いた。樹脂Dを含水率0.2%に調整して用い、紡糸温度260℃、単孔吐出量1.5g/min、ノズル面-冷却水距離を28cm、引き取り速度を1.28m/minにしたこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が三葉形状を有するY断面であり、繊維径の外径が0.8mmであり、3つの曲率を有するエッジが均等に配置され、それぞれのエッジの曲率半径の2倍が0.3mmである連続線状体から構成され、見かけ密度が0.060g/cm、表面が平坦化された状態での厚みが30.2mm、Dデュロメータ硬さが38、網状構造体のMFRが40g/10min、融点が117.0℃、70℃圧縮残留歪みが18.5%であった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性に優れ、適度な硬さを有し、汚れ落とし性、転写汚れの洗い流し性、水切り性、耐久性に優れていた。
[Example 6]
Three slits with an outer diameter of 3.6 mm, a slit width of 0.3 mm and a slit length of 1.8 mm were arranged at equal intervals from the center of the orifice on the effective surface of the nozzle with a width of 112 mm and a width of 43 mm in the thickness direction. A nozzle in which the three-leaf-shaped orifice was arranged in a staggered manner with a hole pitch of 8 mm was used. Resin D was used with the water content adjusted to 0.2%, the spinning temperature was 260 ° C., the single-hole discharge amount was 1.5 g / min, the nozzle surface-cooling water distance was 28 cm, and the take-up speed was 1.28 m / min. A network structure was obtained in the same manner as in Example 1 except for the above.
The obtained net-like structure has a Y cross section having a trilobal shape, an outer diameter of a fiber diameter of 0.8 mm, edges having three curvatures are evenly arranged, and the curvatures of the respective edges. It is composed of a continuous linear body with twice the radius of 0.3 mm, an apparent density of 0.060 g / cm 3 , a thickness of 30.2 mm when the surface is flattened, and a D durometer hardness of 38. The MFR of the reticulated structure was 40 g / 10 min, the melting point was 117.0 ° C., and the compression residual strain at 70 ° C. was 18.5%. The characteristics of the obtained network structure are shown in Table 2.
The obtained net-like structure was excellent in foaming property, had an appropriate hardness, and was excellent in dirt removing property, transfer dirt washing property, draining property, and durability.

[実施例7]
樹脂Aを絶乾状態で用い、紡糸温度220℃、単孔吐出量1.4g/min、ノズル面-冷却水距離を25cm、引き取り速度を1.07m/minにしたこと以外は、実施例6と同様にして網状構造体を得た
得られた網状構造体は、断面形状が三葉形状を有するY断面であり、繊維径の外径が1.0mmであり、3つの曲率を有するエッジが均等に配置されており、それぞれのエッジの曲率半径の2倍が0.4mmである連続線状体から構成され、見かけ密度が0.049g/cm、表面が平坦化された状態での厚みが30.4mm、Dデュロメータ硬さが65、網状構造体のMFRが23g/10min、融点が113.6℃、70℃圧縮残留歪みが19.6%であった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性に優れ、適度な硬さを有し、汚れ落とし性、転写汚れの洗い流し性、水切り性、耐久性に優れていた。なお、汚れ落とし性について実施例1と比べて同等の効果であったことは、実施例1の繊維径が本実施例の曲率半径の2倍と同等であったためであると考える。
[Example 7]
Example 6 except that the resin A was used in an absolutely dry state, the spinning temperature was 220 ° C., the discharge rate of a single hole was 1.4 g / min, the distance between the nozzle surface and the cooling water was 25 cm, and the take-up speed was 1.07 m / min. The obtained reticular structure obtained in the same manner as above has a Y cross section having a trilobal cross section, an outer diameter of fiber diameter of 1.0 mm, and edges having three curvatures. It is composed of continuous linear bodies that are evenly distributed and have a radius of curvature twice the radius of curvature of each edge of 0.4 mm, an apparent density of 0.049 g / cm 3 , and a thickness with a flat surface. The D durometer hardness was 65, the MFR of the network structure was 23 g / 10 min, the melting point was 113.6 ° C., and the compression residual strain at 70 ° C. was 19.6%. The characteristics of the obtained network structure are shown in Table 2.
The obtained net-like structure was excellent in foaming property, had an appropriate hardness, and was excellent in dirt removing property, transfer dirt washing property, draining property, and durability. It is considered that the reason why the stain removing property was the same as that of Example 1 was that the fiber diameter of Example 1 was equivalent to twice the radius of curvature of this example.

[比較例1]
樹脂Fを絶乾状態で用い、紡糸温度を247℃、ノズル面-冷却水距離を17cm、引き取り速度を1.07m/minにしたこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で、繊維径が0.28mmの連続線状体から構成され、線条で形成しており、見かけ密度が0.050g/cm、表面が平坦化された状態での厚みが28.1mm、Dデュロメータ硬さが99、網状構造体のMFRが12g/10min、融点が171.0℃であった。なお、70℃圧縮残留歪みは、脆性破壊して測定することが出来なかった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性、転写汚れの洗い流し性、水切り性に優れていた。しかしながら、Dデューロ硬度が高く、硬過ぎるため、容易に脆性破壊して、握った箇所から繊維が破壊した。その結果、汚れ落とし性と耐久性に劣っていた。
[Comparative Example 1]
A network structure was obtained in the same manner as in Example 1 except that the resin F was used in an absolutely dry state, the spinning temperature was 247 ° C, the nozzle surface-cooling water distance was 17 cm, and the take-up speed was 1.07 m / min. rice field.
The obtained reticulated structure has a round cross section, is composed of continuous linear bodies having a fiber diameter of 0.28 mm, is formed of streaks, has an apparent density of 0.050 g / cm 3 , and has a surface. The thickness in the flattened state was 28.1 mm, the D durometer hardness was 99, the MFR of the network structure was 12 g / 10 min, and the melting point was 171.0 ° C. The 70 ° C. compression residual strain could not be measured due to brittle fracture. The characteristics of the obtained network structure are shown in Table 2.
The obtained network structure was excellent in foaming property, washing property of transfer stains, and draining property. However, since the D-duro hardness was high and too hard, the brittle fracture was easily caused and the fiber was fractured from the gripped portion. As a result, it was inferior in dirt removal and durability.

[比較例2]
樹脂Hを用い、紡糸温度を210℃、ノズル面-冷却水距離を22cm、引き取り速度を0.44m/minにしたこと以外は、実施例1と同様にした。
しかしながら、ノズル直下でのダイスウェルが酷く、良好な網状構造体を形成することが出来なかった。
[Comparative Example 2]
The same procedure as in Example 1 was carried out except that the spinning temperature was 210 ° C., the nozzle surface-cooling water distance was 22 cm, and the take-up speed was 0.44 m / min using the resin H.
However, the dice well directly under the nozzle was severe, and a good network structure could not be formed.

[比較例3]
樹脂Gを絶乾状態で用い、紡糸温度を210℃、単孔吐出量を0.5g/min、ノズル面-冷却水距離を17cm、引き取り速度を0.54m/minにしたこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で、繊維径が0.47mmの連続線状体から構成され、見かけ密度が0.048g/cm、表面が平坦化された状態での厚みが29.9mm、Dデュロメータ硬さが48、網状構造体のMFRが62g/10min、融点が58.0℃であった。なお、70℃圧縮残留歪みは、溶融して測定することが出来なかった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性、転写汚れの洗い流し性、水切り性に優れていた。しかしながら、適度な硬さが無く汚れ落とし性に劣っていた。さらに、約40℃のお湯で洗うと容易に変形し、耐久性に劣っていた。
[Comparative Example 3]
It was carried out except that the resin G was used in an absolutely dry state, the spinning temperature was 210 ° C., the single-hole discharge amount was 0.5 g / min, the nozzle surface-cooling water distance was 17 cm, and the take-up speed was 0.54 m / min. A network structure was obtained in the same manner as in Example 1.
The obtained reticulated structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.47 mm, an apparent density of 0.048 g / cm 3 , and a thickness with a flat surface. The hardness was 29.9 mm, the hardness of the D durometer was 48, the MFR of the network structure was 62 g / 10 min, and the melting point was 58.0 ° C. The 70 ° C. compression residual strain could not be measured by melting. The characteristics of the obtained network structure are shown in Table 2.
The obtained network structure was excellent in foaming property, washing property of transfer stains, and draining property. However, it did not have an appropriate hardness and was inferior in stain removing property. Furthermore, when washed with hot water at about 40 ° C., it was easily deformed and was inferior in durability.

[比較例4]
樹脂Eを絶乾状態で用い、紡糸温度を210℃、ノズル面-冷却水距離を22cm、引き取り速度を0.74m/minとした。網状構造体を形成後に熱風乾燥せずに自然乾燥したこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で、繊維径が0.59mmの連続線状体から構成され、見かけ密度が0.040g/cm、表面が平坦化された状態での厚みが29.3mm、Dデュロメータ硬さが53、網状構造体体のMFRが27g/10min、融点が114.0℃、70℃圧縮残留歪みは39.0%であった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、泡立ち性、転写汚れの洗い流し性、水切り性に優れ、適度な硬さを有し汚れ落とし性に優れていたが、耐久性に劣っていた。
[Comparative Example 4]
Resin E was used in an absolutely dry state, the spinning temperature was 210 ° C., the nozzle surface-cooling water distance was 22 cm, and the take-up speed was 0.74 m / min. A reticular structure was obtained in the same manner as in Example 1 except that the reticular structure was naturally dried without being dried with hot air after being formed.
The obtained reticulated structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.59 mm, an apparent density of 0.040 g / cm 3 , and a thickness with a flat surface. The D durometer hardness was 53, the MFR of the network structure was 27 g / 10 min, the melting point was 114.0 ° C., and the compression residual strain at 70 ° C. was 39.0%. The characteristics of the obtained network structure are shown in Table 2.
The obtained net-like structure was excellent in foaming property, wash-out property of transfer stains, drainage property, moderate hardness and excellent dirt removal property, but was inferior in durability.

[比較例5]
樹脂Dを絶乾状態で用い、紡糸温度を260℃、ノズル面-冷却水距離を30cm、引き取り速度を0.74m/min、網状構造体を形成後に熱風乾燥せずに自然乾燥したこと以外は、実施例1と同様にして網状構造体を得た。
得られた網状構造体は、断面形状が丸断面で、繊維径が0.90mmの連続線状体から構成され、見かけ密度が0.041g/cm、表面が平坦化された状態での厚みが29.3mm、Dデュロメータ硬さが46、網状構造体のMFRが4g/10min、融点が115.0℃、70℃圧縮残留歪みが19.2%であった。得られた網状構造体の特性を表2に示す。
得られた網状構造体は、適度な硬さを有し汚れ落とし性、転写汚れの洗い流し性、水切り性と耐久性に優れるものの、泡立ち性に劣っていた。
[Comparative Example 5]
Except for the fact that the resin D was used in an absolutely dry state, the spinning temperature was 260 ° C., the nozzle surface-cooling water distance was 30 cm, the take-up speed was 0.74 m / min, and after the network structure was formed, it was naturally dried without hot air drying. , A network structure was obtained in the same manner as in Example 1.
The obtained reticulated structure is composed of a continuous linear body having a round cross section and a fiber diameter of 0.90 mm, an apparent density of 0.041 g / cm 3 , and a thickness with a flat surface. The hardness was 29.3 mm, the D durometer hardness was 46, the MFR of the network structure was 4 g / 10 min, the melting point was 115.0 ° C., and the compression residual strain at 70 ° C. was 19.2%. The characteristics of the obtained network structure are shown in Table 2.
The obtained reticulated structure had an appropriate hardness and was excellent in stain removing property, washing property of transfer stains, draining property and durability, but was inferior in foaming property.

Figure 2022057756000002
Figure 2022057756000002

本発明の網状構造体は、生分解性を有し、水切り性、へたりにくさ、転写した汚れが簡便に洗い流すことが出来る利便性を兼ね備えた環境にやさしい網状構造体であり、従来品の課題であった、不十分な水切り性、へたり易さ、転写した汚れが容易に洗い流すことが出来ない、生分解性を有さず環境にやさしくない点などを改良したものであり、たわし、ブラシなどの比較的使い捨て頻度の高い日用衛生品、水切り用品、緩衝材、クッションなどに好適な網状構造体を提供できるため、産業界に寄与すること大である。 The network structure of the present invention is an environment-friendly network structure that has biodegradability, drainage property, resistance to settling, and convenience that transferred stains can be easily washed away. It is an improvement of the problems such as insufficient drainage, easy settling, transfer of dirt cannot be easily washed away, non-biodegradable and not environmentally friendly. It is a great contribution to the industry because it can provide a mesh structure suitable for daily sanitary goods such as brushes, drainers, cushioning materials, cushions, etc., which are relatively disposable.

Claims (6)

連続線状体から構成される三次元ランダムループ接合構造体を有し、見かけ密度が0.005g/cm~0.30g/cmで、厚みが10mm~100mmである網状構造体であって、
前記連続線状体は、融点が80~180℃であり、MFRが6~60g/10minであり、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンアジペート/テレフタレート)から選ばれる、少なくとも1種の生分解性熱可塑性樹脂(a)を含有し、
前記網状構造体は70℃圧縮残留歪が35%以下である、網状構造体。
It is a network structure having a three-dimensional random loop joint structure composed of continuous linear bodies, having an apparent density of 0.005 g / cm 3 to 0.30 g / cm 3 , and a thickness of 10 mm to 100 mm. ,
The continuous striatum has a melting point of 80 to 180 ° C., an MFR of 6 to 60 g / 10 min, and is selected from polybutylene succinate, poly (butylene succinate / adipate), and poly (butylene adipate / terephthalate). , Containing at least one biodegradable thermoplastic resin (a),
The network structure is a network structure having a 70 ° C. compression residual strain of 35% or less.
ポリ乳酸、(ポリ乳酸/ポリブチレンサクシネート系)ブロックコポリマー、ポリカプロラクトン、ポリ(カプロラクトン/ブチレンサクシネート)、ポリ(ブチレンサクシネート/カーボネート)、ポリ(エチレンテレフタレート/サクシネート)、ポリ(テトラメチレンアジペート/テレフタレート)、ポリエチレンサクシネート、ポリビニルアルコール、ポリグリコール酸から選ばれる、少なくとも1種の生分解性熱可塑性樹脂(c)を含有し、前記の生分解性樹脂(a)及び生分解性樹脂(c)の混合物を、熱可塑性樹脂組成物に対し質量基準で80質量%以上含む、請求項1記載の網状構造体。 Polylactic acid, (polylactic acid / polybutylene succinate) block copolymer, polycaprolactone, poly (caprolactone / butylene succinate), poly (butylene succinate / carbonate), poly (ethylene terephthalate / succinate), poly (tetramethylene adipate) / Telephthalate), polyethylene succinate, polyvinyl alcohol, polyglycolic acid, which contains at least one biodegradable thermoplastic resin (c), and the biodegradable resin (a) and the biodegradable resin (a). The network structure according to claim 1, wherein the mixture of c) is contained in an amount of 80% by mass or more on a mass basis with respect to the thermoplastic resin composition. 前記連続線状体は、断面形状が円であり、繊維径が0.1mm~0.8mmである、請求項1または2に記載の網状構造体。 The network structure according to claim 1 or 2, wherein the continuous linear body has a circular cross-sectional shape and a fiber diameter of 0.1 mm to 0.8 mm. 前記連続線状体は、断面形状が異型であり、少なくとも3つ以上の同等の曲率を外周部に有し、その繊維径もしくは曲率半径の2倍が0.1mm以上0.8mm以下である請求項1または2に記載の網状構造体。 The continuous linear body has an irregular cross-sectional shape, has at least three or more equivalent curvatures on the outer peripheral portion, and has a fiber diameter or twice the radius of curvature thereof of 0.1 mm or more and 0.8 mm or less. Item 2. The reticulated structure according to Item 1 or 2. 前記連続線状体は、断面形状が三葉形状または三角形状である請求項4に記載の網状構造体。 The reticulated structure according to claim 4, wherein the continuous linear body has a trilobal shape or a triangular cross-sectional shape. 日用衛生品、水切り用品に使用される請求項1~5のいずれかに記載の網状構造体。
The network structure according to any one of claims 1 to 5, which is used for daily hygiene products and draining products.
JP2020166163A 2020-09-30 2020-09-30 sustainable reticular structure Active JP7452364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020166163A JP7452364B2 (en) 2020-09-30 2020-09-30 sustainable reticular structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020166163A JP7452364B2 (en) 2020-09-30 2020-09-30 sustainable reticular structure

Publications (2)

Publication Number Publication Date
JP2022057756A true JP2022057756A (en) 2022-04-11
JP7452364B2 JP7452364B2 (en) 2024-03-19

Family

ID=81111296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020166163A Active JP7452364B2 (en) 2020-09-30 2020-09-30 sustainable reticular structure

Country Status (1)

Country Link
JP (1) JP7452364B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238456A (en) * 1994-02-23 1995-09-12 Toyobo Co Ltd Network structure for cushion, its production and cushion product
JPH08158154A (en) * 1994-11-29 1996-06-18 Unitika Ltd Biodegradable filament and its production
JP2000096802A (en) * 1998-09-25 2000-04-04 Toray Ind Inc Net for directly laying tile as well as tile with net and its manufacture
JP2000328423A (en) * 1999-05-18 2000-11-28 Kurabo Ind Ltd Adhesive base fabric and its production
JP2001181954A (en) * 1999-12-21 2001-07-03 Nitto Boseki Co Ltd Nonwoven fabric and unit tile
JP2006045970A (en) * 2004-08-06 2006-02-16 Inax Corp Tile unit, net for tile unit, and structure and method for constructing tile unit
JP2007056582A (en) * 2005-08-25 2007-03-08 Inax Corp Tile unit and its construction method
JP2020049160A (en) * 2018-09-28 2020-04-02 スリーエム イノベイティブ プロパティズ カンパニー Washing tool
JP2020128608A (en) * 2019-02-08 2020-08-27 パネフリ工業株式会社 Biodegradable three-dimensional net-like fiber material aggregate
WO2021241630A1 (en) * 2020-05-29 2021-12-02 日東紡績株式会社 Multiaxial nonwoven fabric and tile unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339107B1 (en) 2013-02-27 2013-11-13 東洋紡株式会社 Network structure with excellent compression durability

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238456A (en) * 1994-02-23 1995-09-12 Toyobo Co Ltd Network structure for cushion, its production and cushion product
JPH08158154A (en) * 1994-11-29 1996-06-18 Unitika Ltd Biodegradable filament and its production
JP2000096802A (en) * 1998-09-25 2000-04-04 Toray Ind Inc Net for directly laying tile as well as tile with net and its manufacture
JP2000328423A (en) * 1999-05-18 2000-11-28 Kurabo Ind Ltd Adhesive base fabric and its production
JP2001181954A (en) * 1999-12-21 2001-07-03 Nitto Boseki Co Ltd Nonwoven fabric and unit tile
JP2006045970A (en) * 2004-08-06 2006-02-16 Inax Corp Tile unit, net for tile unit, and structure and method for constructing tile unit
JP2007056582A (en) * 2005-08-25 2007-03-08 Inax Corp Tile unit and its construction method
JP2020049160A (en) * 2018-09-28 2020-04-02 スリーエム イノベイティブ プロパティズ カンパニー Washing tool
JP2020128608A (en) * 2019-02-08 2020-08-27 パネフリ工業株式会社 Biodegradable three-dimensional net-like fiber material aggregate
WO2021241630A1 (en) * 2020-05-29 2021-12-02 日東紡績株式会社 Multiaxial nonwoven fabric and tile unit

Also Published As

Publication number Publication date
JP7452364B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
TW561211B (en) Non-woven fabric, process for producing the same, sanitary material and sanitary supply
US6794023B1 (en) Polymer products comprising soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of preparing such polymer products
CN1092676C (en) Thermplastic polyurethanes and molded articles comprising them
KR101519689B1 (en) Film formed from a blend of biodegradable aliphatic-aromatic copolyesters
CN104114621B (en) The ventilated membrane formed by renewable polyester
JP2017519122A (en) Hollow porous fiber
MX2014009542A (en) Renewable polyester fibers having a low density.
KR100712041B1 (en) Porous film
US20060258833A1 (en) Aqueous Dispersion Of Biodegradable Polyester and Process For Preparing The Same
JP2017214662A (en) Heat-fusible composite fiber and method for producing the same, and nonwoven fabric using the same
KR102516342B1 (en) Copolymer membranes, fibers, products and methods
JP2022057756A (en) Sustainable network structure
WO2001030893A1 (en) Methods for preparing soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and polymer products comprising such compositions
WO2015178423A1 (en) Non-woven fabric laminate, and sanitary supplies
CA2387073C (en) Polymer products comprising soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of preparing such polymer products
JP2009256815A (en) Anti-static filament nonwoven fabric
KR20010012600A (en) Unstretched polypropylene molding
JP7259851B2 (en) spunbond nonwoven fabric
JP2013095853A (en) Thermoplastic elastomer composition
JP5013857B2 (en) Moisture permeable sheet and method for producing the same
JP3864119B2 (en) Vacuum cleaner dust bag filter having pressure loss adjustment function and vacuum cleaner dust bag using the same
JP2004099665A (en) Moisture-permeable sheet
JP6786774B2 (en) Reticulated structure with excellent moldability
JP2023002366A (en) continuous wire
WO2018158724A1 (en) Wipes having high sustainable content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7452364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150