JP2022057414A - Sound source position estimation device, sound source position estimation method and sound source position estimation program - Google Patents

Sound source position estimation device, sound source position estimation method and sound source position estimation program Download PDF

Info

Publication number
JP2022057414A
JP2022057414A JP2020165659A JP2020165659A JP2022057414A JP 2022057414 A JP2022057414 A JP 2022057414A JP 2020165659 A JP2020165659 A JP 2020165659A JP 2020165659 A JP2020165659 A JP 2020165659A JP 2022057414 A JP2022057414 A JP 2022057414A
Authority
JP
Japan
Prior art keywords
estimated
sound source
direction line
processing unit
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020165659A
Other languages
Japanese (ja)
Inventor
香津夫 森
Kazuo Mori
裕之 羽多野
Hiroyuki Hatano
耕輔 眞田
Kosuke Sanada
崇 笠島
Takashi Kasashima
明日香 辻井
Asuka Tsujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Mie University NUC filed Critical NGK Spark Plug Co Ltd
Priority to JP2020165659A priority Critical patent/JP2022057414A/en
Publication of JP2022057414A publication Critical patent/JP2022057414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

To provide a sound source position estimation device, a sound source position estimation method and a sound source position estimation program which facilitate estimation of a sound source direction and a sound source position of a true survey object sound source by performing proper processing for many obtained estimation directions.SOLUTION: Sound source position estimation devices 1, 21 for estimating positions U1 (x, y)...of survey object sound sources U1... by using reception signals R1 (t)... obtained from ultrasonic sensors S1... arranged on a first axial line X comprise: a starting point deflection angle acquisition unit 13 which obtains estimation deflection angles βmn1... heading toward estimation sound sources E1... estimated to be a survey object sound source by using an intermediate point between a pair of ultrasonic sensors Sm, Sn as a starting point Kmn using a pair of reception signals Rm(t), Rn(t); an estimation direction line generation unit 14 which generates estimation direction lines Lmn1... extending at the estimation deflection angles βmn1... from each starting point Kmn in an effective XY region RXY; and direction line selection processing units 15, 25 which select a true estimation direction line Lmnt or exclude an untrue estimation direction line Lmnf.SELECTED DRAWING: Figure 3

Description

本発明は、超音波センサの受信信号を用いて被探査音源の位置を推定する音源位置推定装置、音源位置推定方法、及び、音源位置推定プログラムに関する。 The present invention relates to a sound source position estimation device that estimates the position of a sound source to be explored using a received signal of an ultrasonic sensor, a sound source position estimation method, and a sound source position estimation program.

従来、複数の超音波センサからそれぞれ得た複数の受信信号を用いて、超音波を発する音源や超音波を反射する疑似音源(反射体、障害物)の方向や位置を推定する音源位置推定装置や障害物検知システムが知られている(例えば特許文献1参照)。
また、音源の方向推定の手法としては、例えば、特許文献2(図2参照)などに記載する手法が知られている。
Conventionally, a sound source position estimation device that estimates the direction and position of a sound source that emits ultrasonic waves and a pseudo sound source (reflector, obstacle) that reflects ultrasonic waves using multiple received signals obtained from each of multiple ultrasonic sensors. And obstacle detection systems are known (see, for example, Patent Document 1).
Further, as a method for estimating the direction of a sound source, for example, a method described in Patent Document 2 (see FIG. 2) is known.

特開2012-127863号公報Japanese Unexamined Patent Publication No. 2012-127863 特許第6413741号公報Japanese Patent No. 6413741

例えば、一列に並べた3つ以上の超音波センサでそれぞれ受信した受信信号を用い、ペアとした超音波センサの受信信号から相互相関関数を算出し、1又は複数個のピーク時間差を得て、ペアとした超音波センサの中間点を起点とする、1又は複数個の音源や疑似音源(以下、「被探査音源」という)の推定方向を得る。これをペアとする超音波センサの組合せ毎に行い、取得した多数の推定方向を用いて、各被探査音源の方向(偏角)や位置を推定する場合がある。 For example, using received signals received by three or more ultrasonic sensors arranged in a row, a cross-correlation function is calculated from the received signals of paired ultrasonic sensors, and one or more peak time differences are obtained. An estimation direction of one or a plurality of sound sources or pseudo sound sources (hereinafter referred to as “explored sound sources”) starting from an intermediate point of a pair of ultrasonic sensors is obtained. This may be performed for each combination of paired ultrasonic sensors, and the direction (argument) and position of each sound source to be explored may be estimated using a large number of acquired estimation directions.

しかるに、被探査音源が2体以上の存在する場合には、ペアとした超音波センサの一対の受信信号から得られる推定方向には、真正の被探査音源の方向を示す真正の推定方向のほかに、一対の受信信号に含まれる互いに異なる被探査音源からの信号について相互相関関数を求めたことに起因する、偽音源(偽像)の方向を示す不真正の推定方向も含まれてしまう。 However, when there are two or more sound sources to be explored, the estimation direction obtained from the pair of received signals of the paired ultrasonic sensors includes the true estimation direction indicating the direction of the genuine sound source to be searched. Also includes an untrue estimation direction indicating the direction of a false sound source (false image) due to the cross-correlation function obtained for signals from different sound sources to be explored contained in a pair of received signals.

ところが、得られた多数の推定方向のうちどれが真正の推定方向であり、どれが不真正の推定方向であるかを、適切に判別できなかった。
本発明は、かかる問題点に鑑みてなされたものであって、得られた多数の推定方向について適切な処理を行うことで、真正の被探査音源の音源方向や音源位置を推定し易くした音源位置推定装置、音源位置推定方法、及び、音源位置推定プログラムを提供する。
However, it was not possible to properly determine which of the many estimation directions obtained was the true estimation direction and which was the inauthentic estimation direction.
The present invention has been made in view of the above problems, and is a sound source that facilitates estimation of the sound source direction and sound source position of a genuine sound source to be explored by performing appropriate processing on a large number of obtained estimation directions. A position estimation device, a sound source position estimation method, and a sound source position estimation program are provided.

(1)その一態様は、第1軸線上に互いに間隔を空けて配置されたN個(Nは3以上の自然数)の超音波センサからそれぞれ得た受信信号を用いて、P個(Pは1以上の自然数)の被探査音源の位置を推定する音源位置推定装置であって、一対の上記超音波センサから得た一対の上記受信信号を用いて、上記一対の超音波センサ間の中間点を起点とし、上記起点から上記被探査音源であると推定される推定音源に向かう推定偏角を、上記超音波センサ同士の組合せについてそれぞれ取得する起点偏角取得部と、第1軸線と上記第1軸線からこの第1軸線に直交する方向に延びる第2軸線とがなす仮想のXY平面のうち、上記被探査音源の位置を有効に推定し得る有効XY領域に、各々の上記起点から推定偏角をなして上記推定音源に向けて延びる推定方向線を生成する推定方向線生成部と、上記有効XY領域に生成した上記推定方向線のうち、真正の上記被探査音源に向かう真正推定方向線であると推定される推定方向線を選抜する、又は、不真正の上記推定音源に向かう不真正推定方向線であると推定される推定方向線を除外する方向線選択処理部と、を備える音源位置推定装置である。 (1) In one embodiment, P (P is) using received signals obtained from N (N is a natural number of 3 or more) ultrasonic sensors arranged at intervals on the first axis. An intermediate point between the pair of ultrasonic sensors using the pair of received signals obtained from the pair of ultrasonic sensors in a sound source position estimation device that estimates the position of the probed sound source (1 or more natural numbers). The starting point declination acquisition unit that acquires the estimated declination from the starting point toward the estimated sound source estimated to be the probed sound source for each combination of the ultrasonic sensors, the first axis line, and the first axis. Of the virtual XY plane formed by the second axis extending from the first axis in the direction orthogonal to the first axis, the effective XY region where the position of the explored sound source can be effectively estimated is declined from each starting point. Of the estimation direction line generator that generates the estimation direction line that forms an angle and extends toward the estimation sound source and the estimation direction line generated in the effective XY region, the authentic estimation direction line toward the probed sound source is genuine. A sound source including a direction line selection processing unit that selects an estimated direction line presumed to be It is a position estimation device.

(2)また他の態様は、第1軸線上に互いに間隔を空けて配置されたN個(Nは3以上の自然数)の超音波センサからそれぞれ得た受信信号を用いて、P個(Pは1以上の自然数)の被探査音源の位置を推定する音源位置の推定方法であって、一対の上記超音波センサから得た一対の上記受信信号を用いて、上記一対の超音波センサ間の中間点を起点とし、上記起点から上記被探査音源であると推定される推定音源に向かう推定偏角を、上記超音波センサ同士の組合せについてそれぞれ取得する起点偏角取得ステップと、第1軸線と上記第1軸線からこの第1軸線に直交する方向に延びる第2軸線とがなす仮想のXY平面のうち、上記被探査音源の位置を有効に推定し得る有効XY領域に、各々の上記起点から推定偏角をなして上記推定音源に向けて延びる推定方向線を生成する推定方向線生成ステップと、上記有効XY領域に生成した上記推定方向線のうち、真正の上記被探査音源に向かう真正推定方向線であると推定される推定方向線を選抜する、又は、不真正の上記推定音源に向かう不真正推定方向線であると推定される推定方向線を除外する方向線選択ステップと、を備える音源位置推定方法である。 (2) In another embodiment, P (P) (P) are obtained by using received signals obtained from N (N is a natural number of 3 or more) ultrasonic sensors arranged at intervals on the first axis. Is a method of estimating the sound source position for estimating the position of the probed sound source (of 1 or more natural numbers), and is used between the pair of ultrasonic sensors using the pair of received signals obtained from the pair of the ultrasonic sensors. The starting point declination acquisition step for acquiring the estimated declination from the starting point toward the estimated sound source estimated to be the probed sound source for each combination of the ultrasonic sensors, starting from the intermediate point, and the first axis. Of the virtual XY plane formed by the second axis extending from the first axis in the direction orthogonal to the first axis, the effective XY region in which the position of the explored sound source can be effectively estimated is located in the effective XY region from each of the above starting points. Of the estimation direction line generation step of generating the estimation direction line extending toward the estimated sound source by making the estimation declination and the estimation direction line generated in the effective XY region, the authenticity estimation toward the probed sound source is genuine. It comprises a direction line selection step of selecting an estimated direction line presumed to be a direction line, or excluding an estimated direction line presumed to be an inauthentic estimated direction line toward the above-mentioned estimated sound source of inauthency. This is a sound source position estimation method.

(3)さらに他の態様は、第1軸線上に互いに間隔を空けて配置されたN個(Nは3以上の自然数)の超音波センサからそれぞれ得た受信信号を用いて、P個(Pは1以上の自然数)の被探査音源の位置を推定する音源位置推定プログラムであって、コンピュータを、一対の上記超音波センサから得た一対の上記受信信号を用いて、上記一対の超音波センサ間の中間点を起点とし、上記起点から上記被探査音源であると推定される推定音源に向かう推定偏角を、上記超音波センサ同士の組合せについてそれぞれ取得する起点偏角取得部と、第1軸線と上記第1軸線からこの第1軸線に直交する方向に延びる第2軸線とがなす仮想のXY平面のうち、上記被探査音源の位置を有効に推定し得る有効XY領域に、各々の上記起点から推定偏角をなして上記推定音源に向けて延びる推定方向線を生成する推定方向線生成部と、上記有効XY領域に生成した上記推定方向線のうち、真正の上記被探査音源に向かう真正推定方向線であると推定される推定方向線を選抜する、又は、不真正の上記推定音源に向かう不真正推定方向線であると推定される推定方向線を除外する方向線選択処理部と、して機能させる音源位置推定プログラムである。 (3) In yet another embodiment, P (P) (P) are obtained by using received signals obtained from N ultrasonic sensors (N is a natural number of 3 or more) arranged at intervals on the first axis. Is a sound source position estimation program that estimates the position of the probed sound source (of 1 or more natural numbers), and the computer uses the pair of received signals obtained from the pair of ultrasonic sensors to obtain the pair of ultrasonic sensors. The starting point declination acquisition unit that acquires the estimated declination from the starting point toward the estimated sound source presumed to be the probed sound source for each combination of the ultrasonic sensors, starting from the intermediate point between them, and the first Of the virtual XY plane formed by the axis and the second axis extending in the direction orthogonal to the first axis from the first axis, the above-mentioned effective XY regions in which the position of the explored sound source can be effectively estimated Of the estimated direction line generator that generates the estimated direction line extending from the starting point toward the estimated sound source and the estimated direction line generated in the effective XY region, the direction is toward the genuine probed sound source. With a direction line selection processing unit that selects an estimated direction line that is presumed to be a genuine estimated direction line, or excludes an estimated direction line that is presumed to be an untrue estimated direction line toward the above-mentioned estimated sound source of inauthency. It is a sound source position estimation program that works.

本装置では、起点偏角取得部において、一対の超音波センサSm,Snの一対の受信信号Rm(t),Rn(t)を用いて、一対の超音波センサ間の中間点を起点Kmnとし、推定音源E1,E2,…,に向かう推定偏角βmn1,βmn2,…,を、超音波センサS1,…,SN同士の組合せ(N2通りの組合せ)について得ることで、多数の起点Kmnと推定偏角βmn1,βmn2,…,との組を多数組取得する。 In this device, the starting point deviation angle acquisition unit uses a pair of received signals Rm (t) and Rn (t) of a pair of ultrasonic sensors Sm and Sn, and the intermediate point between the pair of ultrasonic sensors is set as the starting point Kmn. , Estimated deviation angles βmn1 , βmn2 , ... Toward the estimated sound sources E1, E2, ... And the estimated deviation angles βmn1, βmn2, ... Are acquired in large numbers.

本装置ではさらに、推定方向線生成部において、仮想のXY平面PXYのうち有効XY領域RXYに、先に取得した多数組の起点Kmnと推定偏角βmn1,βmn2,…,を用い、各々の起点Kmnから推定偏角βmn1,βmn2,…,をなして推定音源E1,E2,…,に向けて延びる推定方向線Lmn1,Lmn2,…,を生成する。
そして方向線選択処理部では、有効XY領域RXYに生成した推定方向線Lmn1,Lmn2,…,のうち、真正の被探査音源U1,…,UPに向かう真正推定方向線Lmntであると推定される推定方向線を選抜する、又は、不真正の推定音源Efに向かう不真正推定方向線Lmnfであると推定される推定方向線を除外する。
Further, in this apparatus, in the estimation direction line generation unit, a large number of previously acquired starting points Kmn and estimated declinations βmn1, βmn2, ... Are used for the effective XY region RXY of the virtual XY plane PXY, and each starting point is used. Estimated declinations βmn1, βmn2, ..., Are formed from Kmn to generate estimated direction lines Lmn1, Lmn2, ... Extending toward the estimated sound sources E1, E2, ....
Then, in the direction line selection processing unit, it is estimated that among the estimated direction lines Lmn1, Lmn2, ... Generated in the effective XY region RXY, the genuine estimated direction lines U1, ... The estimation direction line is selected, or the estimation direction line estimated to be the inauthenticity estimation direction line Lmnf toward the inauthentic estimated sound source Ef is excluded.

このように本装置では、一旦、有効XY領域RXYに推定方向線Lmn1,Lmn2,…,を生成するので、多数の推定方向線Lmn1,Lmn2,…,の関係を可視化できるなど、各推定方向線の相互の関係把握が容易になる。そして、真正推定方向線Lmntであると推定される推定方向線を選抜する、又は、不真正推定方向線Lmnfであると推定される推定方向線を除外するので、真正な被探査音源の音源方向や音源位置を推定し易くなる。
この利点は、上述の本方法においても、また、本プログラムで各処理部として機能するコンピュータにおいても、同様である。
As described above, in this apparatus, since the estimated direction lines Lmn1, Lmn2, ... It becomes easy to understand the mutual relationship between. Then, the estimated direction line estimated to be the genuine estimated direction line Lmnt is selected, or the estimated direction line estimated to be the untrue estimated direction line Lmnf is excluded, so that the sound source direction of the genuine explored sound source is obtained. And the sound source position can be easily estimated.
This advantage is the same in the above-mentioned method and also in the computer functioning as each processing unit in the program.

なお、本件において「超音波」とは、人が聞くこと以外の目的で利用される音を意味し、人間に聞こえるかどうかは問わない。
また、「被探査音源」は、音源位置推定装置で探査される、超音波センサに向けて超音波を発する音源を指し、自身が超音波を発する音源のほか、別途存在する超音波音源から放射された超音波を反射することで擬似的(二次的)に音源となる疑似音源(反射体)も含まれる。
In this case, "ultrasonic wave" means a sound used for a purpose other than human hearing, and it does not matter whether it is audible to humans or not.
In addition, the "explored sound wave" refers to a sound wave that emits ultrasonic waves toward an ultrasonic sensor, which is explored by a sound source position estimation device, and emits ultrasonic waves from a sound wave that emits ultrasonic waves by itself or from an ultrasonic sound wave that exists separately. A pseudo sound source (reflector) that becomes a pseudo (secondary) sound wave by reflecting the generated ultrasonic waves is also included.

また、一対の上記超音波センサSm,Snから得た一対の受信信号Rm(t),Rn(t)を用いると(この2つの受信信号から相互相関関数Cmn(τ)を算出すると)、P個の被探査音源U1,…,UPが存在する場合には、各被探査音源の配置に応じて、相互相関関数Cmn(τ)が局所的なピークを示す時間差τ(受波時間差τmn1,τmn2,…,)が最大でP2個得られる。これらの受波時間差τmn1等から推定偏角βmn1等が得られる。なお、異なる超音波センサ同士の組合せでは、得られる推定偏角βmn1等の個数も異なる場合が生じ得る。なお、推定偏角βmn1等は、起点Kmnから各推定音源E1等に向かう推定方向を示す、第1軸線(X軸)からの偏角(起点Kmnから各推定音源E1等に向かうベクトルと第1軸線(X軸)とがなす偏角)である。 Further, when a pair of received signals Rm (t) and Rn (t) obtained from the pair of ultrasonic sensors Sm and Sn are used (calculating the cross-correlation function Cmn (τ) from these two received signals), P. When there are multiple explored sound sources U1, ..., UP, the cross-correlation function Cmn (τ) shows a local peak time difference τ (received time difference τmn1, τmn2) according to the arrangement of each explored sound source. , ...,) can be obtained up to 2 Ps. The estimated declination βmn1 and the like can be obtained from these wave reception time differences τmn1 and the like. In addition, in the combination of different ultrasonic sensors, the number of obtained estimated declination βmn1 and the like may be different. The estimated declination βmn1 and the like are the declination from the first axis (X-axis) (the vector toward each estimated sound source E1 and the like from the starting point Kmn and the first one, which indicate the estimation direction from the starting point Kmn to each estimated sound source E1 and the like. The declination formed by the axis (X-axis).

また方向線選択処理部で、真正推定方向線であると推定される推定方向線を選抜する、又は、不真正推定方向線であると推定される推定方向線を除外するに当たっては、有効XY領域に生成した多数の推定方向線の分布状況(例えば、推定方向線分布の粗密の違い)に基づいて、選抜する又は除外する推定方向線を決定すると良い。
具体的には、推定方向線分布が粗である領域を通過している推定方向線を、不真正推定方向線であると推定して除外する決定手法が挙げられる。また、推定方向線分布が密である領域のみを通過している推定方向線を、真正推定方向線であると推定して選抜する決定手法も挙げられる。さらには、推定方向線の選抜あるいは推定方向線の除外に先立って、選抜する又は除外する推定方向線の決定を容易にすべく、推定方向線分布を超音波センサの平均位置からの距離に応じて補正するなどの事前処理を行うこともできる。
Further, in the direction line selection processing unit, an effective XY area is used when selecting an estimated direction line estimated to be a genuine estimated direction line or excluding an estimated direction line estimated to be an inauthentic estimated direction line. It is advisable to determine the estimated direction lines to be selected or excluded based on the distribution situation of a large number of estimated direction lines generated in (for example, the difference in the density of the estimated direction line distribution).
Specifically, there is a determination method in which the estimation direction line passing through the region where the estimation direction line distribution is coarse is estimated to be an inauthentic estimation direction line and excluded. Further, there is also a determination method in which an estimated direction line passing only through a region where the estimated direction line distribution is dense is estimated to be a genuine estimated direction line and selected. Furthermore, prior to the selection of the estimated direction line or the exclusion of the estimated direction line, the estimated direction line distribution is adjusted according to the distance from the average position of the ultrasonic sensor in order to facilitate the determination of the estimated direction line to be selected or excluded. It is also possible to perform pre-processing such as correction.

(4)さらに(1)の音源位置推定装置であって、前記方向線選択処理部は、前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、各格子領域内を通る前記推定方向線の本数を数える計数処理部と、上記推定方向線のうち、上記本数がしきい本数未満の上記格子領域内を通る推定方向線を、前記不真正推定方向線であると推定して除外する除外処理部と、を有する音源位置推定装置とすると良い。 (4) Further, in the sound source position estimation device of (1), the direction line selection processing unit includes a division processing unit that divides the effective XY region into a large number of grid regions having a predetermined grid spacing, and each grid. The counting processing unit that counts the number of the estimated direction lines passing through the region and the estimated direction line passing through the grid region in which the number of the estimated direction lines is less than the threshold number are the false estimation direction lines. It is preferable to use a sound source position estimation device having an exclusion processing unit that is presumed to exist and excluded.

(5)さらに(2)の音源位置推定方法であって、前記方向線選択ステップは、前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割ステップと、各格子領域内を通る前記推定方向線の本数を数える計数ステップと、上記推定方向線のうち、上記本数がしきい本数未満の上記格子領域内を通る推定方向線を、前記不真正推定方向線であると推定して除外する除外ステップと、を有する音源位置推定方法とすると良い。 (5) Further, in the sound source position estimation method of (2), the direction line selection step includes a division step of dividing the effective XY region into a large number of grid regions having a predetermined grid spacing, and within each grid region. It is estimated that the counting step for counting the number of the estimated direction lines passing through the grid and the estimated direction line passing through the grid region where the number of the estimated direction lines is less than the threshold is the false estimation direction line. It is preferable to use a sound source position estimation method having an exclusion step of exclusion.

(6)加えて(3)の音源位置推定プログラムであって、前記コンピュータを、前記方向線選択処理部として機能させるにあたり、前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、各格子領域内を通る前記推定方向線の本数を数える計数処理部と、上記推定方向線のうち、上記本数がしきい本数未満の上記格子領域内を通る推定方向線を、前記不真正推定方向線であると推定して除外する除外処理部と、して機能させる音源位置推定プログラムとすると良い。 (6) In addition, in the sound source position estimation program of (3), in order to make the computer function as the direction line selection processing unit, the effective XY region is divided into a large number of grid regions having a predetermined grid spacing. A division processing unit, a counting processing unit that counts the number of the estimated direction lines passing through each grid region, and an estimated direction line passing through the grid region in which the number of the estimated direction lines is less than the threshold number. It is preferable to use a sound source position estimation program that functions as an exclusion processing unit that estimates and excludes the false estimation direction line.

この音源位置推定装置では、方向線選択処理部は、上述の分割処理部と、計数処理部を有しており、有効XY領域を多数の格子領域RLxyに分割し、各格子領域RLxyを通る推定方向線の本数Qxyを数えるので、多数の推定方向線分布の粗密状態を、各々の格子領域RLxyに紐付けられた本数Qxyとして容易に理解することができる。 In this sound source position estimation device, the direction line selection processing unit has the above-mentioned division processing unit and the counting processing unit, divides the effective XY region into a large number of grid regions RLxy, and estimates through each grid region RLxy. Since the number Qxy of the direction lines is counted, the coarse and dense state of a large number of estimated direction line distributions can be easily understood as the number Qxy associated with each lattice region RLxy.

さらに、方向線選択処理部は、除外処理部において、本数Qxyがしきい本数QTh未満の格子領域内を通る推定方向線を除外する。真正の被探査音源には、多くの真正推定方向線が向かうので、或る推定方向線が真正の推定方向線であるならば、当該推定方向線は、本数Qxyが低い値を有する格子領域内を通らないと考えられる。逆に、しきい本数QThよりも少ない本数Qxyの格子領域内を通る推定方向線は、真正の推定方向線ではないと推定できるからである。かくして、真正の推定方向線を容易に選択することができる。
これらの利点は、上述の本方法においても、また、本プログラムで各処理部として機能するコンピュータにおいても、同様である。
Further, the direction line selection processing unit excludes the estimation direction line passing through the lattice region in which the number Qxy is less than the threshold QTh in the exclusion processing unit. Since many genuine estimation direction lines are directed to the genuine sound source to be searched, if a certain estimation direction line is a genuine estimation direction line, the estimated direction line is in the lattice region having a low number Qxy. It is thought that it will not pass. On the contrary, it can be estimated that the estimation direction line passing through the lattice region of the number Qxy less than the threshold number QTh is not the true estimation direction line. Thus, the genuine estimated direction line can be easily selected.
These advantages are the same in the above-mentioned method and also in the computer functioning as each processing unit in the program.

(7)あるいは(1)の音源位置推定装置であって、前記方向線選択処理部は、前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、各格子領域内を通る前記推定方向線の本数を数える計数処理部と、上記本数を、N個の前記超音波センサの前記XY平面における平均位置から上記格子領域までの距離が大きいほど重くなる重み付け補正により、補正本数に補正する重み付け処理部と、上記推定方向線のうち、上記補正本数がしきい補正本数を越える上記格子領域内を通る推定方向線を、前記真正推定方向線であると推定して選抜する選抜処理部と、を有する音源位置推定装置とすると良い。 In the sound source position estimation device of (7) or (1), the direction line selection processing unit includes a division processing unit that divides the effective XY region into a large number of grid regions having a predetermined grid spacing, and each grid. By a counting processing unit that counts the number of the estimated direction lines passing through the region, and by weighting correction that the number becomes heavier as the distance from the average position of the N ultrasonic sensors on the XY plane to the grid region increases. , The weighting processing unit that corrects to the number of corrections, and the estimation direction line that passes through the grid region where the number of corrections exceeds the threshold correction number among the estimation direction lines is estimated to be the genuine estimation direction line. It is preferable to use a sound source position estimation device having a selection processing unit for selection.

(8)あるいは(2)の音源位置推定方法であって、前記方向線選択ステップは、前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割ステップと、各格子領域内を通る前記推定方向線の本数を数える計数ステップと、上記本数を、N個の前記超音波センサの前記XY平面における平均位置から上記格子領域までの距離が大きいほど重くなる重み付け補正により、補正本数に補正する重み付けステップと、 上記推定方向線のうち、上記補正本数がしきい補正本数を越える上記格子領域内を通る推定方向線を、前記真正推定方向線であると推定して選抜する選抜ステップと、を有する音源位置推定方法とすると良い。 In the sound source position estimation method of (8) or (2), the direction line selection step includes a division step of dividing the effective XY region into a large number of grid regions having a predetermined grid spacing, and within each grid region. The number of corrections is made by a counting step for counting the number of the estimated direction lines passing through the above and a weighting correction in which the number becomes heavier as the distance from the average position of the N ultrasonic sensors on the XY plane to the grid region increases. A weighting step for correcting to It is preferable to use a sound source position estimation method having.

(9)あるいは(3)の音源位置推定プログラムであって、前記コンピュータを、前記方向線選択処理部として機能させるにあたり、前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、各格子領域内を通る前記推定方向線の本数を数える計数処理部と、上記本数を、N個の前記超音波センサの前記XY平面における平均位置から上記格子領域までの距離が大きいほど重くなる重み付け補正により、補正本数に補正する重み付け処理部と、上記推定方向線のうち、上記補正本数がしきい補正本数を越える上記格子領域内を通る推定方向線を、前記真正推定方向線であると推定して選抜する選抜処理部と、して機能させる音源位置推定プログラムとすると良い。 In the sound source position estimation program of (9) or (3), in order to make the computer function as the direction line selection processing unit, the effective XY region is divided into a large number of grid regions having a predetermined grid spacing. The division processing unit, the counting processing unit that counts the number of the estimated direction lines passing through each grid region, and the number of lines are the distances from the average position of the N ultrasonic sensors in the XY plane to the grid region. The weighting processing unit that corrects to the number of corrections by the weighting correction that becomes heavier as the size increases, and the estimation direction line that passes through the grid region in which the number of corrections exceeds the threshold correction number among the estimation direction lines is the authentic estimation direction. It is preferable to use a selection processing unit that estimates and selects a line and a sound source position estimation program that functions as a line.

この音源位置推定装置でも、方向線選択処理部は、上述の分割処理部と、計数処理部を有しており、有効XY領域を多数の格子領域RLxyに分割し、各格子領域RLxyを通る推定方向線の本数Qxyを数えるので、多数の推定方向線分布の粗密状態を、格子領域RLxyに紐付けられた本数Qxyとして容易に理解することができる。 Also in this sound source position estimation device, the direction line selection processing unit has the above-mentioned division processing unit and the counting processing unit, divides the effective XY region into a large number of grid regions RLxy, and estimates passing through each grid region RLxy. Since the number Qxy of the direction lines is counted, the coarse and dense state of a large number of estimated direction line distributions can be easily understood as the number Qxy associated with the lattice region RLxy.

さらに、方向線選択処理部は、本数Qxyを、平均位置から格子領域RLxyまでの距離Dxyが大きいほど重くなる重み付け補正によって、補正本数CQxyに補正する。平均位置付近の格子領域RLxyは各起点Kmnに近く、同じ格子領域RLxy内を、真正の推定方向線も不真正の推定方向線も通過している場合が多い。一方、平均位置から離れた(距離Dxyが大きい)範囲では、同じ格子領域RLxy内を、真正の推定方向線も不真正の推定方向線も通過している場合は少なく、真正の推定方向線のみが通過している場合や、不真正の推定方向線のみが通過している場合が多い。しかも、真正の被探査音源には多くの真正推定方向線が向かうので、平均位置から遠方の格子領域RLxyでも、多くの真正推定方向線が通る格子領域RLxyならば本数Qxyは大きな値を維持する。つまり、距離Dxyが大きい範囲に位置していながらも、多くの推定方向線が通過している格子領域RLxyならば、当該格子領域を通過している推定方向線は真正の推定方向線Lmntであると推定できる。このため、補正本数CQxyがしきい補正本数CQThを越える格子領域内を通る推定方向線を選抜することで、真正の推定方向線Lmntを容易に選択することができる。
これらの利点は、上述の本方法においても、また、本プログラムで各処理部として機能するコンピュータにおいても、同様である。
Further, the direction line selection processing unit corrects the number Qxy to the corrected number CQxy by a weighting correction that becomes heavier as the distance Dxy from the average position to the grid region RLxy increases. The grid region RLxy near the average position is close to each starting point Kmn, and in many cases, both the true estimation direction line and the inauthentic estimation direction line pass through the same grid region RLxy. On the other hand, in the range away from the average position (distance Dxy is large), there are few cases where both the true estimation direction line and the inauthentic estimation direction line pass through the same grid region RLxy, and only the genuine estimation direction line. Is often passed, or only the estimated inauthentic direction line is passed. Moreover, since many authentic estimation direction lines are directed to the genuine sound source to be explored, even in the lattice region RLxy far from the average position, if the lattice region RLxy through which many authentic estimation direction lines pass, the number Qxy maintains a large value. .. That is, if the grid region RLxy is located in a range where the distance Dxy is large but many estimation direction lines pass through, the estimation direction line passing through the grid region is the true estimation direction line Lmnt. Can be estimated. Therefore, the true estimated direction line Lmnt can be easily selected by selecting the estimated direction line passing through the lattice region where the corrected number CQxy exceeds the threshold correction number CQTh.
These advantages are the same in the above-mentioned method and also in the computer functioning as each processing unit in the program.

距離Dxyが大きいほど重くなる重み付け補正を行う重み付け処理部の補正の手法としては、例えば、平均位置(原点=(0,0))からの距離Dxy(=(x2+y2)1/2)に比例した補正係数Cxy=C・(x2+y2)1/2を、本数Qxyに乗じて、補正本数CQxy=C・(x2+y2)1/2・Qxyを得る補正が挙げられる。そのほか、距離Dxyが大きいほど重くなる補正係数Cxyとしては、しきい補正本数CQThによって、真正推定方向線と不真正推定方向線とを適切に区別できるように補正係数Cxyを定めるとよく、推定方向線の分布の状況によっては、例えば、距離Dxyの二乗に比例した補正係数Cxy=C・(x2+y2)を用い、これに本数Qxyに乗じる補正を採用できる場合もあり得る。 As a correction method of the weighting processing unit that performs weighting correction that becomes heavier as the distance Dxy increases, for example, the distance Dxy (= (x 2 + y 2 ) 1/2 ) from the average position (origin = (0,0)) The correction coefficient Cxy = C · (x 2 + y 2 ) 1/2 proportional to is multiplied by the number Qxy to obtain the correction number CQxy = C · (x 2 + y 2 ) 1/2 · Qxy. In addition, as the correction coefficient Cxy that becomes heavier as the distance Dxy increases, it is preferable to determine the correction coefficient Cxy so that the true estimation direction line and the inauthentic estimation direction line can be appropriately distinguished by the threshold correction number CQTh. Depending on the situation of the line distribution, for example, a correction coefficient Cxy = C · (x 2 + y 2 ) proportional to the square of the distance Dxy may be used, and a correction by multiplying this by the number Qxy may be adopted.

(10)さらに(1),(4),(7)のいずれかに記載の音源位置推定装置であって、N個の前記超音波センサは、前記XY平面における平均位置を中心に、前記第1軸線上に対称に配置されており、前記方向線選択処理部で選抜された又は除外を免れた前記推定方向線の前記推定偏角の大きさの度数分布において、度数が局所ピークを示す推定偏角の値を、上記平均位置から前記被探査音源に向かう偏角の値とする偏角取得部をも備える音源位置推定装置とすると良い。 (10) Further, the sound source position estimation device according to any one of (1), (4), and (7), wherein the N ultrasonic sensors have the first position centered on the average position in the XY plane. Estimated that the frequency indicates a local peak in the frequency distribution of the estimated declination of the estimated direction line that is symmetrically arranged on one axis and is selected or excluded by the direction line selection processing unit. It is preferable to use a sound source position estimation device including a declination acquisition unit in which the declination value is the value of the declination toward the probed sound source from the average position.

(11)さらに(2),(5),(8)のいずれかに記載の音源位置推定方法であって、N個の前記超音波センサは、前記XY平面における平均位置を中心に、前記第1軸線上に対称に配置されており、前記方向線選択ステップで、選抜された又は除外を免れた前記推定方向線の前記推定偏角の大きさの度数分布において、度数が局所ピークを示す推定偏角の値を、上記平均位置から前記被探査音源に向かう偏角の値とする偏角取得ステップをも備える音源位置推定方法とすると良い。 (11) Further, the sound source position estimation method according to any one of (2), (5), and (8), wherein the N ultrasonic sensors are the first, centering on the average position in the XY plane. Estimated that the frequency indicates a local peak in the frequency distribution of the estimated declination magnitude of the estimated argument line that is symmetrically arranged on one axis and is selected or excluded in the direction line selection step. It is preferable to use a sound source position estimation method including a declination acquisition step in which the declination value is set as the declination value from the average position toward the probed sound source.

(12)さらに(3),(6),(9)のいずれかに記載の音源位置推定プログラムであって、
N個の前記超音波センサは、前記XY平面における平均位置を中心に、前記第1軸線上に対称に配置されており、前記コンピュータを、前記方向線選択処理部で選抜された又は除外を免れた前記推定方向線の前記推定偏角の大きさの度数分布において、度数が局所ピークを示す推定偏角の値を、上記平均位置から前記被探査音源に向かう偏角の値とする偏角取得部としても機能させる音源位置推定プログラムとすると良い。
(12) Further, the sound source position estimation program according to any one of (3), (6), and (9).
The N ultrasonic sensors are arranged symmetrically on the first axis with the average position in the XY plane as the center, and the computer is selected or excluded from the direction line selection processing unit. Declination acquisition in which the value of the estimated declination at which the frequency indicates a local peak is the value of the declination from the average position toward the sound source to be explored in the frequency distribution of the magnitude of the estimated declination of the estimated direction line. It is good to use a sound source position estimation program that also functions as a unit.

この音源位置推定装置では、平均位置を中心に、第1軸線上に対称に配置されたN個の超音波センサの受信信号を用いる。そして、前述の方向線選択処理部で選抜された又は除外を免れた推定方向線の推定偏角の大きさの度数分布において、度数が局所ピークを示す推定偏角の値を、平均位置から被探査音源に向かう偏角α1,…,αPの値とする偏角取得部をも備える。このため、容易に平均位置から被探査音源に向かう偏角α1,…,αPの値を得ることができる。
これらの利点は、上述の本方法においても、また、本プログラムで各処理部として機能するコンピュータにおいても、同様である。
In this sound source position estimation device, the received signals of N ultrasonic sensors arranged symmetrically on the first axis with the average position as the center are used. Then, in the frequency distribution of the magnitude of the estimated declination of the estimated declination selected or excluded by the above-mentioned direction line selection processing unit, the value of the estimated declination at which the frequency indicates a local peak is applied from the average position. It also has a declination acquisition unit for the values of declinations α1, ..., αP toward the exploration sound source. Therefore, it is possible to easily obtain the values of the declinations α1, ..., αP from the average position toward the sound source to be explored.
These advantages are the same in the above-mentioned method and also in the computer functioning as each processing unit in the program.

送波機、超音波センサ、実施形態及び変形形態に係る音源位置推定装置、ディスプレイ部、音声部からなる、車載用の超音波システムの概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the ultrasonic system for vehicle which comprises a transmitter, an ultrasonic sensor, a sound source position estimation device which concerns on embodiment and a modified form, a display part, and a voice part. 原点OR00に配置した送波機TMから放射され、第2軸線Yの方向に離間した被探査音源Uで反射した超音波SGを、第1軸線X上に間隔を空けて配置した複数の超音波センサで受波する様子を示す説明図である。A plurality of ultrasonic waves radiated from a transmitter TM arranged at the origin OR00 and reflected by a probed sound wave U separated in the direction of the second axis Y are arranged at intervals on the first axis X. It is explanatory drawing which shows the state of receiving a wave by a sensor. 実施形態に係る音源位置推定装置で行う処理ステップを示すフローチャートである。It is a flowchart which shows the processing step performed by the sound source position estimation apparatus which concerns on embodiment. 超音波センサSm,Snに被探査音源Uからの超音波SGが届く様子を示す説明図である。It is explanatory drawing which shows the state that the ultrasonic wave SG from the exploration sound source U reaches the ultrasonic wave sensor Sm, Sn. 2つの被探査音源U1,U2が存在する場合に、超音波センサSm,Snで得られる受信信号Rn(t),Rn(t)と、これを用いて得られる相互相関関数Cmn(τ)を示す説明図であり、(a)欄は受信信号Rm(t)であり、(b)欄は受信信号Rn(t)であり、(c)欄は相互相関関数Cmn(τ)である。When two explored sound sources U1 and U2 are present, the received signals Rn (t) and Rn (t) obtained by ultrasonic sensors Sm and Sn and the cross-correlation function Cmn (τ) obtained by using them are obtained. In the explanatory diagram shown, the column (a) is the received signal Rm (t), the column (b) is the received signal Rn (t), and the column (c) is the cross-correlation function Cmn (τ). XY平面PXYのうち、原点近くの有効XY領域を含む領域において、2つの被探査音源U1,U2を配置した条件下で生成された、多数の推定方向線Lmnの配置状態を示す方向線配置図である。A direction line layout diagram showing the arrangement state of a large number of estimated direction lines Lmn generated under the condition that two sound sources U1 and U2 to be explored are arranged in the region including the effective XY region near the origin in the XY plane PXY. Is. 実施形態に係り、図6に示す方向線配置図に記載の推定方向線のうち、推定方向線の密度が低い領域を通る推定方向線を除去する処理を行った場合の、残余の多数の真正推定方向線Lmntの配置状態を示す方向線配置図である。According to the embodiment, among the estimated direction lines shown in the direction line layout diagram shown in FIG. 6, when the process of removing the estimated direction lines passing through the region where the density of the estimated direction lines is low is performed, a large number of residual authenticities are performed. It is a direction line arrangement diagram which shows the arrangement state of the estimated direction line Lmnt. 残余の多数の真正推定方向線Lmntの推定偏角βmnとその度数との関係を示す度数分布図である。It is a frequency distribution diagram which shows the relationship between the estimated declination βmn of a large number of residual authenticity estimation direction lines Lmnt and the frequency thereof. 変形形態に係り、図6に示す方向線配置図における推定方向線の密度を、原点OR00からの距離で重み付けした重み付け密度の分布を、重み付け密度の等しい領域を結んで得られる等高線処理を行って示す分布図である。Contour processing is performed to obtain a weighted density distribution in which the density of the estimated direction lines in the direction line layout diagram shown in FIG. 6 is weighted by the distance from the origin OR00, and the regions having the same weighted density are connected to each other. It is a distribution map shown. 変形形態に係り、図9の分布図において、しきい補正本数以上の値を示す領域を通る推定方向線を選択する処理を行った場合の、選択された多数の真正推定方向線Lmntの配置状態を示す方向線配置図である。Arrangement state of a large number of selected authentic estimation direction lines Lmnt when processing is performed to select an estimation direction line passing through a region showing a value equal to or larger than the number of threshold corrections in the distribution map of FIG. It is a direction line layout diagram which shows.

(実施形態)
以下、本発明の実施の形態である音源位置推定装置(以下、単に装置とも言う)1を含む超音波システムSYSの構成、装置1のうちコンピュータで構成された制御部10を各部として機能させるプログラムPG1、及び、各部における処理の方法について、図面を参照しつつ説明する。図1は、本実施形態に係り、音源位置推定装置1を含む超音波システムSYSの概略構成を示すブロック図であり、図3は、本実施形態における各処理の流れを示すフローチャートである。
(Embodiment)
Hereinafter, the configuration of the ultrasonic system SYS including the sound source position estimation device (hereinafter, also simply referred to as a device) 1 according to the embodiment of the present invention, and the program for functioning the control unit 10 configured by the computer in the device 1 as each unit. PG1 and the processing method in each part will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic system SYS including a sound source position estimation device 1 according to the present embodiment, and FIG. 3 is a flowchart showing a flow of each process in the present embodiment.

図1に示す超音波システムSYSは、図示しない車両に搭載されている。この超音波システムSYSは、送波機TM、複数の受波機である超音波センサS1~SN、音源位置推定装置1、この音源位置推定装置1のインターフェイス部18とCANバスCBを介して通信可能なディスプレイ部40及び警告音や合成音声を生成した音声を発する音声部50からなる。 The ultrasonic system SYS shown in FIG. 1 is mounted on a vehicle (not shown). This ultrasonic system SYS communicates with a transmitter TM, ultrasonic sensors S1 to SN which are a plurality of receivers, a sound source position estimation device 1, an interface unit 18 of the sound source position estimation device 1, and a CAN bus CB. It is composed of a possible display unit 40 and a voice unit 50 that emits a sound that generates a warning sound or a synthetic voice.

車両の前面部(図示しない)には、この車両の車幅方向に一致する第1軸線X(図1において上下方向に延びる軸線)のうち原点OR00に配置され、この第1軸線Xからこの第1軸線Xに直交する方向(本実施形態では、車両の幅方向に直交する前後方向のうち前方。図1において左方向)に延びる第2軸線Yに沿ってトーンバースト波をなす超音波SG(送信超音波SGT)を放射する送波機TMが配置されている。さらに、第1軸線X上に間隔を空けて配置され、超音波SG(受信超音波SGR)をそれぞれ受波する複数の超音波センサS1~SN(=S8)を備えている。なお、本実施形態では、SN=8であり、各超音波センサS1~S8(=SN)は、第1軸線X上に等間隔(0.15m間隔)に、かつ、原点OR00に対して対称に配置され、各超音波センサS1等の平均位置が原点OR00に一致している。但し、送波機TMを原点OR00に配置しなくとも良いし、各超音波センサS1~SNを等間隔に配置しなくともよく、平均位置に対して対称の配置としなくとも良い。 On the front surface of the vehicle (not shown), the first axis X (the axis extending in the vertical direction in FIG. 1) corresponding to the vehicle width direction of the vehicle is arranged at the origin OR00, and the first axis X to the first axis X. Ultrasonic SG that forms a tone burst wave along the second axis Y extending in the direction orthogonal to the one axis X (in the present embodiment, the front of the front-rear direction orthogonal to the width direction of the vehicle; the left direction in FIG. 1). A transmitter TM that emits transmission ultrasonic SGT) is arranged. Further, it is provided with a plurality of ultrasonic sensors S1 to SN (= S8) arranged at intervals on the first axis X and receiving ultrasonic waves SG (received ultrasonic SGR). In this embodiment, SN = 8, and the ultrasonic sensors S1 to S8 (= SN) are equidistant (0.15 m interval) on the first axis X and symmetrical with respect to the origin OR00. The average position of each ultrasonic sensor S1 or the like coincides with the origin OR00. However, the transmitter TM may not be arranged at the origin OR00, the ultrasonic sensors S1 to SN may not be arranged at equal intervals, and may not be arranged symmetrically with respect to the average position.

これにより、図2に示すように、超音波を反射する物体(人間や障害物など)を、擬似的に超音波を放射する被探査音源Uとして、送波機TMから放射され被探査音源Uで反射した超音波SG(受信超音波SGR)を、各超音波センサS1~SNで受波することができる。
なお、XY平面PXY(本実施形態では,水平面に一致する)のうち、被探査音源Uの位置U(x,y)や方位(原点OR00における第1軸線Xからの偏角α)を有効に推定し得る範囲を、有効XY領域RXYとする。本実施形態における有効XY領域RXYは、送波機TMから放射され、各超音波センサS1~SNで受波する超音波SG(トーンバースト信号)の周期50msec、バースト継続時間0.2msec、大気の音速Vなどを考慮すると、概ね、第1軸線XについてX=±4.0m、第2軸線YについてY=1.0~8.0mの範囲である。
As a result, as shown in FIG. 2, an object that reflects ultrasonic waves (human beings, obstacles, etc.) is radiated from the transmitter TM as an exploration sound source U that emits ultrasonic waves in a pseudo manner, and the exploration sound source U is emitted. The ultrasonic SG (received ultrasonic SGR) reflected by the above can be received by each ultrasonic sensor S1 to SN.
Of the XY plane PXY (corresponding to the horizontal plane in this embodiment), the position U (x, y) and the direction (argument α from the first axis X at the origin OR00) of the sound source U to be explored are effectively used. The range that can be estimated is defined as the effective XY region RXY. The effective XY region RXY in the present embodiment has an ultrasonic SG (tone burst signal) cycle of 50 msec, a burst duration of 0.2 msec, and an atmospheric atmosphere, which is emitted from the transmitter TM and received by each ultrasonic sensor S1 to SN. Considering the sound velocity V and the like, the range is generally X = ± 4.0 m for the first axis X and Y = 1.0 to 8.0 m for the second axis Y.

装置1は、各種の制御を行う制御部10のほか、送波機TMを駆動して、送波機TMから送信超音波SGTを放射させる発振回路2、受信超音波SGRを受波した超音波センサS1~S8からの信号を整えて制御部10に向けて受信信号R1(t)等として出力する受信回路3を備えている。 In the device 1, in addition to the control unit 10 that performs various controls, the oscillation circuit 2 that drives the transmitter TM to radiate the transmitted ultrasonic SGT from the transmitter TM, and the ultrasonic wave that receives the received ultrasonic SGR. A receiving circuit 3 that arranges signals from sensors S1 to S8 and outputs them as a received signal R1 (t) or the like to a control unit 10 is provided.

このうち、制御部10は、図示しないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、OS(Operating System)、音源位置推定プログラムPG1、各種データ等が格納されている。OSおよびプログラムPG1は、RAMに展開され、CPUによって実行される。 Of these, although not shown, the control unit 10 is equipped with general computer hardware such as a CPU (Central Processing Unit), RAM (Random Access Memory), and ROM (Read Only Memory), and the ROM has. , OS (Operating System), sound source position estimation program PG1, various data, and the like are stored. The OS and program PG1 are expanded in RAM and executed by the CPU.

なお、制御部10は、車両に搭載した複数のコンピュータをCANバスCBなど接続したものであってもよい。図2において、制御部10の内部は、音源位置推定プログラムPG1によって実現される機能を、ブロックとして示している。 The control unit 10 may be connected to a plurality of computers mounted on the vehicle, such as a CAN bus CB. In FIG. 2, the inside of the control unit 10 shows the function realized by the sound source position estimation program PG1 as a block.

即ち、本実施形態において、制御部10は、発振制御部11、信号受信部12、起点偏角取得部13、推定方向線生成部14、方向線選択処理部15、被探査音源偏角取得部16、被探査音源位置取得部17、及び、インターフェイス部18として機能し、被探査音源Uの偏角αや位置を推定する。
なお、方向線選択処理部15は、分割処理部15a、計数処理部15b、除外処理部15cを含んでいる。
That is, in the present embodiment, the control unit 10 includes the oscillation control unit 11, the signal receiving unit 12, the starting point declination acquisition unit 13, the estimation direction line generation unit 14, the direction line selection processing unit 15, and the sound source declination acquisition unit to be searched. 16. It functions as an explored sound source position acquisition unit 17 and an interface unit 18, and estimates the declination α and the position of the explored sound source U.
The direction line selection processing unit 15 includes a division processing unit 15a, a counting processing unit 15b, and an exclusion processing unit 15c.

加えて、本実施形態では、図3のフローチャートに示す手順(ステップST1~ステップST7)に従って各処理を行い、被探査音源Uの偏角αや位置を推定する。 In addition, in the present embodiment, each process is performed according to the procedure (step ST1 to step ST7) shown in the flowchart of FIG. 3, and the declination α and the position of the sound source U to be explored are estimated.

制御部10のうち、発振制御部11は、発振回路2を通じて送波機TMからの送信超音波SGTの放射を制御する(超音波放射ステップST1)。信号受信部12は、受信回路3を通じて、超音波センサS1等が受波した受信超音波SGRを、受信信号R1(t)等として取り入れる(受信ステップST2)。 Of the control units 10, the oscillation control unit 11 controls the radiation of the transmitted ultrasonic SGT from the transmitter TM through the oscillation circuit 2 (ultrasonic radiation step ST1). The signal receiving unit 12 takes in the received ultrasonic SGR received by the ultrasonic sensor S1 or the like as the received signal R1 (t) or the like through the receiving circuit 3 (reception step ST2).

また、制御部10のうち、起点偏角取得部13では、受信信号R1(t)等を用いて、被探査音源Uの方向を推定する(起点偏角取得ステップST3)。本実施形態では具体的には、図4に示すように、各超音波センサS1等から選んだ一対の超音波センサSm,Snで受波した受信超音波SGRに対応する受信信号Rm(t),Rn(t)間に生じる受波時間差τmnを用いて、この一対の超音波センサSm,Sn間の中間点を起点Kmnとし、この起点Kmnから推定音源Eに向かう方向の推定偏角βmnを取得する(1≦m<n≦N、m,nは自然数)。これを、各超音波センサS1~SN同士の組合せ(組合せ数N2、本実施形態では82=28通り)についてそれぞれ取得する。 Further, among the control units 10, the starting point declination acquisition unit 13 estimates the direction of the sound source U to be searched by using the received signal R1 (t) or the like (starting point declination acquisition step ST3). Specifically, in this embodiment, as shown in FIG. 4, a received signal Rm (t) corresponding to a received ultrasonic wave SGR received by a pair of ultrasonic sensors Sm and Sn selected from each ultrasonic sensor S1 and the like. Using the received wave reception time difference τmn generated between Rn (t), the intermediate point between the pair of ultrasonic sensors Sm and Sn is set as the starting point Kmn, and the estimated deviation angle βmn in the direction from this starting point Kmn toward the estimated sound wave E is set. Acquire (1 ≦ m <n ≦ N, m, n are natural numbers). This is acquired for each combination of ultrasonic sensors S1 to SN (number of combinations NC 2 , 8 C 2 = 28 ways in this embodiment).

さらに詳細に説明する。先ず前提として、被探査音源U(推定音源E)から一対の超音波センサSm,Snまでの距離が十分遠く、一対の超音波センサSm,Snに入射する受信超音波SGRが互いに平行であるとする。また、超音波センサSmの位置Sm(xm,0),超音波センサSnの位置Sn(xn,0)とする。すると、超音波センサSm,Sn間の間隔はxn-xmで与えられる。被探査音源U(推定音源E)から放射された受信超音波SGRが、超音波センサSm,Snにそれぞれ到達するのに受波時間差τmnが生じたとする。すると、図4に示すように、被探査音源U(推定音源E)から超音波センサSmまでの行程と、被探査音源U(推定音源E)から超音波センサSnまでの行程との行程差(xn-xm)cosβmnは、受波時間差τmnに音速Vを乗じたV・τmnに等しくなる((xn-xm)cosβmn=V・τmn)。
なお、推定偏角βmnは、第1軸線Xと超音波センサSm,Snに到来する受信超音波SGRとがなす角、即ち、超音波センサSm,Snの中間点である起点Kmn(起点Kmnの位置Kmn((xm+xn)/2,0))から、被探査音源U(推定音源E)に向かう方向の第1軸線Xからの偏角である。
This will be described in more detail. First, as a premise, the distance from the explored sound wave U (estimated sound wave E) to the pair of ultrasonic sensors Sm and Sn is sufficiently long, and the received ultrasonic SGRs incident on the pair of ultrasonic sensors Sm and Sn are parallel to each other. do. Further, the position Sm (xm, 0) of the ultrasonic sensor Sm and the position Sn (xn, 0) of the ultrasonic sensor Sn are set. Then, the distance between the ultrasonic sensors Sm and Sn is given by xn-xm. It is assumed that a received ultrasonic wave SGR radiated from the sound source U (estimated sound source E) reaches the ultrasonic sensors Sm and Sn, respectively, but a wave receiving time difference τmn occurs. Then, as shown in FIG. 4, the stroke difference between the stroke from the explored sound source U (estimated sound source E) to the ultrasonic sensor Sm and the stroke from the explored sound source U (estimated sound source E) to the ultrasonic sensor Sn (estimated sound source E). xn−xm) cosβmn is equal to V · τmn obtained by multiplying the received wave time difference τmn by the sound wave V ((xn−xm) cosβmn = V · τmn).
The estimated declination βmn is the angle formed by the first axis X and the received ultrasonic SGR arriving at the ultrasonic sensors Sm and Sn, that is, the starting point Kmn (starting point Kmn) which is an intermediate point between the ultrasonic sensors Sm and Sn. It is an argument from the first axis X in the direction from the position Kmn ((xm + xn) / 2,0)) toward the explored sound wave U (estimated sound wave E).

この関係から、推定偏角βmnは、下記(1)式で与えられる。
βmn=cos-1(V・τmn/(xn-xm)) …(1)
From this relationship, the estimated argument βmn is given by the following equation (1).
βmn = cos -1 (V · τmn / (xn-xm))… (1)

ここで、一対の受信信号Rm(t),Rn(t)から受波時間差τmnを得るには、2つの受信信号Rm(t),Rn(t)を用い、受信信号Rm(t)と受信信号Rn(t)との時間差τを変数として、相互相関関数Cmn(τ)を下記式(2)により算出する。
Cmn(τ)=∫Rm(t)・Rn(t+τ)dt …(2)
そして、相互相関関数Cmn(τ)の値が、相関しきい値Cmnthを越えたタイミングの時間差τを受波時間差τmn1,τmn2,…として得る。
Here, in order to obtain the received wave reception time difference τmn from the pair of received signals Rm (t) and Rn (t), the two received signals Rm (t) and Rn (t) are used, and the received signal Rm (t) and the received signal Rm (t) are received. The cross-correlation function Cmn (τ) is calculated by the following equation (2) with the time difference τ from the signal Rn (t) as a variable.
Cmn (τ) = ∫Rm (t) ・ Rn (t + τ) dt… (2)
Then, the time difference τ at the timing when the value of the cross-correlation function Cmn (τ) exceeds the correlation threshold value Cmnth is obtained as the received wave time difference τmn1, τmn2, ...

有効XY領域RXY内に、2つの被探査音源U1,U2が存在していた場合について、図5を用いて説明する。超音波センサSmからは図5(a)欄に示すパターンの受信信号Rm(t)が得られ、超音波センサSnからは図5(b)欄に示すパターンの受信信号Rn(t)が得られたとする。なお、受信信号Rm(t),Rn(t)には、それぞれ、被探査音源U1から時刻tm1,tn1付近に届いた受信信号(トーンバースト信号)と被探査音源U2から時刻tm2,tn2付近に届いた受信信号とが含まれている。そこで、この2つの受信信号Rm(t),Rn(t)を用いて相互相関関数Cmn(τ)を上記式(2)により算出すると、概ね、図5(c)欄に示す、局所的に大きな値が繰り返し現れる部分(極大部分)が複数(4山)生じたパターンの相互相関関数Cmn(τ)が得られる。そこで、図5(c)欄に一点鎖線で示す相関しきい値Cmnthを設定し、相互相関関数Cmn(τ)の値が、この相関しきい値Cmnthを越えたタイミングの時間差τを受波時間差τmn1,τmn2,…とする。なお本実施形態においては、相関しきい値Cmnthを図5(c)欄に示す大きさに設定したので、多数の受波時間差τmn1,τmn2,…が得られる。 The case where two sound sources U1 and U2 to be explored exist in the effective XY region RXY will be described with reference to FIG. A reception signal Rm (t) of the pattern shown in the column 5 (a) is obtained from the ultrasonic sensor Sm, and a reception signal Rn (t) of the pattern shown in the column 5 (b) is obtained from the ultrasonic sensor Sn. Suppose it was done. The received signals Rm (t) and Rn (t) are the received signal (tone burst signal) that arrived at the time tm1 and tun1 from the searched sound source U1 and the time tm2 and tun2 from the searched sound source U2, respectively. The received signal that arrived is included. Therefore, when the cross-correlation function Cmn (τ) is calculated by the above equation (2) using these two received signals Rm (t) and Rn (t), it is generally shown locally in the column of FIG. 5 (c). A cross-correlation function Cmn (τ) of a pattern in which a plurality (4 peaks) of parts (maximum parts) in which large values repeatedly appear can be obtained. Therefore, the correlation threshold value Cmnth shown by the alternate long and short dash line is set in the column of FIG. 5C, and the time difference τ at the timing when the value of the cross-correlation function Cmn (τ) exceeds the correlation threshold value Cmnth is the reception time difference. Let τmn1, τmn2, ... In this embodiment, since the correlation threshold value Cmnth is set to the size shown in the column of FIG. 5C, a large number of wave reception time differences τmn1, τmn2, ... Can be obtained.

得られた多数の受波時間差τmn1,τmn2,…から、前述の式(1)により、多数の推定音源E1,E2,…の推定偏角βmn1,βmn2,…が得られることになる。つまり、一対の受信信号Rm(t),Rn(t)からは、多数の推定音源E1,E2,…、即ち、実在する2つの(真正の)被探査音源U1,U2に対応する推定音源のほか、実在しない被探査音源に対応する多数の不真正推定音源Ef(いわゆる偽像)も検出されることとなる。 From the obtained large number of received wave time differences τmn1, τmn2, ..., The estimated declination βmn1, βmn2, ... Of the large number of estimated sound sources E1, E2, ... Can be obtained by the above equation (1). That is, from the pair of received signals Rm (t) and Rn (t), a large number of estimated sound sources E1, E2, ... In addition, a large number of untrue estimated sound sources Ef (so-called false images) corresponding to non-existent explored sound sources will be detected.

上述のように、有効XY領域RXY内に2つの被探査音源U1,U2のみ存在しているにも拘わらず、多数の推定音源E1,E2,…の推定偏角βmn1,βmn2,…が得られる理由の1つは、上述のように相互相関関数Cmn(τ)に極大部分が現れるためである。即ち、前述のように、相互相関関数Cmn(τ)の値が、この相関しきい値Cmnthを越えたタイミングの時間差τを受波時間差τmn1,τmn2,…とすると、極大部分において、相互相関関数Cmn(τ)の値がこの相関しきい値Cmnthを越える場合が、多数回生じるからである。 As described above, although only two sound sources U1 and U2 to be explored exist in the effective XY region RXY, the estimated declinations βmn1, βmn2 ... Of a large number of estimated sound sources E1, E2, ... Can be obtained. One of the reasons is that the maximum part appears in the cross-correlation function Cmn (τ) as described above. That is, as described above, assuming that the time difference τ at the timing when the value of the cross-correlation function Cmn (τ) exceeds the correlation threshold value Cmnth is the received wave time difference τmn1, τmn2, ... This is because there are many cases where the value of Cmn (τ) exceeds this correlation threshold value Cmnth.

理由の他の1つは、図5から理解できるように、算出された相互相関関数Cmn(τ)には、同じ被探査音源からの受信信号Rm(t)と受信信号Rn(t)との相互相関関数Cmn(τ)のみならず、或る被探査音源からの受信信号Rm(t)と別の被探査音源からの受信信号Rn(t)との相互相関関数Cmn(τ)をも含んでいるからである。即ち、受信信号Rm(t),Rn(t)のうち、時刻tm1及び時刻tn1付近で得られる被探査音源U1からの受信信号同士について相互相関関数Cmn(τ)を算出することで、相互相関関数Cmn(τ)には、局所的に大きな値が繰り返し現れる部分(極大部分)が生じる。そして、この極大部分から被探査音源U1についての1または複数の受波時間差τmnを得ることができる。また同様に、時刻tm2及び時刻tn2付近で得られる被探査音源U2からの受信信号同士について相互相関関数Cmn(τ)を算出することでも、相互相関関数Cmn(τ)に極大部分が生じ、被探査音源U2についての1または複数の受波時間差τmnを得ることができる。しかしこれらのみならず、被探査音源U1からの受信信号と被探査音源U2からの受信信号との相互相関関数Cmn(τ)を算出することによっても、相互相関関数Cmn(τ)に、2つの極大部分が生じるので、これらの極大部分から、存在しない音源についての1または複数の受波時間差τmnが得られるからである。なお、P個の被探査音源U1~UPが存在する場合には、各被探査音源U1等の配置に応じて、相互相関関数Cmn(τ)に、最大でP2個の極大部分が生じるが、その数は各障害物と超音波センサSm,Snの位置関係によって異なる。 Another reason is that, as can be understood from FIG. 5, the calculated cross-correlation function Cmn (τ) includes the received signal Rm (t) and the received signal Rn (t) from the same explored sound source. It includes not only the cross-correlation function Cmn (τ) but also the cross-correlation function Cmn (τ) between the received signal Rm (t) from one explored sound source and the received signal Rn (t) from another explored sound source. Because it is. That is, among the received signals Rm (t) and Rn (t), the cross-correlation function Cmn (τ) is calculated for the received signals from the explored sound source U1 obtained near the time tm1 and the time tun1 to correlate with each other. In the function Cmn (τ), there is a portion (maximum portion) in which a large value appears repeatedly locally. Then, one or a plurality of received wave reception time differences τmn for the sound source U1 to be explored can be obtained from this maximum portion. Similarly, by calculating the cross-correlation function Cmn (τ) for the signals received from the explored sound source U2 obtained near the time tm2 and the time tun2, a maximum part is generated in the cross-correlation function Cmn (τ), and the cross-correlation function Cmn (τ) is covered. It is possible to obtain one or more received time difference τmn for the exploration sound source U2. However, not only these, but also by calculating the cross-correlation function Cmn (τ) between the received signal from the explored sound source U1 and the received signal from the explored sound source U2, the cross-correlation function Cmn (τ) has two. This is because a maximum portion is generated, and one or a plurality of received wave time differences τmn for a non-existent sound source can be obtained from these maximum portions. When there are P explored sound sources U1 to UP, a maximum of P 2 is generated in the cross-correlation function Cmn (τ) depending on the arrangement of each explored sound source U1 and the like. , The number depends on the positional relationship between each obstacle and the ultrasonic sensors Sm and Sn.

以上で説明したように、受信信号Rm(t),Rn(t)の相互相関関数Cmn(τ)を利用して推定偏角βmn1等を得た場合、真正の被探査音源U1等に対応する推定偏角βmnのみならず、不真正推定音源Ef(偽像)に対応する推定偏角βmnも得られるので、被探査音源U1等の偏角α(α1,α2,…)や位置U(x,y)(U1(x,y),U2(x,y),…)を適切に推定するのに妨げとなる。 As described above, when the estimated argument βmn1 or the like is obtained by using the cross-correlation function Cmn (τ) of the received signals Rm (t) and Rn (t), it corresponds to the genuine sound source U1 or the like to be explored. Since not only the estimated declination βmn but also the estimated declination βmn corresponding to the inauthentic estimated sound source Ef (false image) can be obtained, the declination α (α1, α2, ...) And the position U (x) of the sound source U1 to be explored and the like can be obtained. , Y) (U1 (x, y), U2 (x, y), ...) Is an obstacle to proper estimation.

そこで、本実施形態では、推定方向線生成部14において、推定方向線Lmnを生成し、方向線選択処理部15で適切でない推定方向線Lmnを除外した上で、被探査音源偏角取得部16での被探査音源Uの偏角αの推定や、被探査音源位置取得部17での被探査音源Uの位置の推定を行う。 Therefore, in the present embodiment, the estimation direction line generation unit 14 generates the estimation direction line Lmn, the direction line selection processing unit 15 excludes the inappropriate estimation direction line Lmn, and then the probed sound source declination acquisition unit 16 The declination α of the sound source U to be searched is estimated, and the position of the sound source U to be searched is estimated by the sound source position acquisition unit 17 to be searched.

先ず、推定方向線生成部14(推定方向線生成ステップST4)における、推定方向線Lmnの生成について説明する。前述のように、推定偏角βmn(βmn1,βmn2…)は、超音波センサSm,Snの中間点である起点Kmnから、推定音源E(E1等)に向かう方向の第1軸線Xからの偏角である。従って、XY平面PXYにおいて、起点Kmnから推定偏角βmn(βmn1,βmn2…)を有し直線をなして延びる推定方向線Lmn(Lmn1,Lmn2…)を生成することができる。 First, the generation of the estimated direction line Lmn in the estimated direction line generation unit 14 (estimated direction line generation step ST4) will be described. As described above, the estimated declination βmn (βmn1, βmn2 ...) is a deviation from the first axis X in the direction from the starting point Kmn, which is an intermediate point between the ultrasonic sensors Sm and Sn, toward the estimated sound source E (E1 etc.). It is a horn. Therefore, in the XY plane PXY, it is possible to generate an estimated direction line Lmn (Lmn1, Lmn2 ...) Which has an estimated declination βmn (βmn1, βmn2 ...) And extends in a straight line from the starting point Kmn.

図6は、被探査音源U1が位置U1(0,7)に、被探査音源U2がU2(3,6)に配置されている場合に各超音波センサSm,Snのペアから得られる全ての推定方向線Lmnを、XY平面PXYのうち、有効XY領域RXYを含むX=±4.0m,Y=0~8.0mの範囲について記載して、各推定方向線Lmnの配置状態を示す方向線配置図である。本実施形態では、8個の超音波センサS1~S8が、互いに間隔0.15mを空けて等間隔で配置されており、これらの平均位置は原点OR00に一致し、4つの超音波センサ同士が、原点OR00を挟んで対称に配置されている。このため、各超音波センサSm,Sn同士の中間点である各起点Kmnは、X=±0.45mの範囲内に集まる。また、図6によれば、多数の推定方向線Lmnが、原点OR00付近の各起点Kmnから、位置U1(0,7)及び位置U2(3,6)に○印で示す被探査音源U1,U2あるいはその近傍に向けて延びていることが判る。これらの推定方向線Lmnは、真正の被探査音源U1,U2に向かう真正推定方向線Lmntである。但し、一部の推定方向線Lmnは、被探査音源U1,U2の位置とは全く異なる方向に向かって延びている。これらの推定方向線Lmnは、存在しない不真正の被探査音源(不真正推定音源Ef)に向けて延びる不真正推定方向線Lmnfである。 FIG. 6 shows all the obtained from each ultrasonic sensor Sm, Sn pair when the explored sound source U1 is located at the position U1 (0,7) and the explored sound source U2 is located at the U2 (3,6). The estimation direction line Lmn is described in the range of X = ± 4.0m and Y = 0 to 8.0m including the effective XY region RXY in the XY plane PXY, and the direction indicating the arrangement state of each estimation direction line Lmn. It is a line layout diagram. In the present embodiment, eight ultrasonic sensors S1 to S8 are arranged at equal intervals with an interval of 0.15 m from each other, and their average positions coincide with the origin OR00, and the four ultrasonic sensors are aligned with each other. , Are arranged symmetrically with the origin OR00 in between. Therefore, each starting point Kmn, which is an intermediate point between the ultrasonic sensors Sm and Sn, gathers within the range of X = ± 0.45 m. Further, according to FIG. 6, a large number of estimated direction lines Lmn are indicated by circles at positions U1 (0,7) and U2 (3,6) from each starting point Kmn near the origin OR00. It can be seen that it extends toward U2 or its vicinity. These estimated direction lines Lmn are genuine estimated direction lines Lmnt toward the genuine sound sources U1 and U2 to be explored. However, some of the estimated direction lines Lmn extend in a direction completely different from the positions of the sound sources U1 and U2 to be explored. These estimated direction lines Lmn are inauthentic estimated direction lines Lmnf extending toward the non-existent inauthentic explored sound source (inauthentic estimated sound source Ef).

図6を見れば理解できるように、起点偏角取得部13(起点偏角取得ステップST3)で取得した多数の推定偏角βmnには、不真正推定音源Efに向かう不真正推定方向線Lmnfとなるものも少なからず含んでいる。このため、得られた推定偏角βmnを用いて、図2に示す、原点OR00から真正の被探査音源Uに向かう偏角αや被探査音源Uの位置U(x,y)を推定する際に、誤って、不真正推定音源Efを被探査音源Uに含めてしまうなどの不具合が生じる虞がある。 As can be understood from FIG. 6, a large number of estimated declinations βmn acquired by the starting point declination acquisition unit 13 (starting point declination acquisition step ST3) include an inauthentic estimation direction line Lmnf toward the inauthentic estimation sound source Ef. It also includes not a few things. Therefore, when using the obtained estimated declination βmn to estimate the declination α from the origin OR00 toward the genuine probed sound source U and the position U (x, y) of the probed sound source U, as shown in FIG. In addition, there is a possibility that a problem may occur such that the false estimation sound source Ef is mistakenly included in the searched sound source U.

そこで本実施形態では、方向線選択処理部15において、適切でない推定方向線Lmnを除外する(方向線選択ステップST5)。具体的には、先ず分割処理部15a(分割ステップST5a)において、有効XY領域RXYを含むX=±4.0m,Y=0~8.0mの範囲を、X方向及びY方向に予め定めた格子間隔Ldで区切って、多数の格子領域RLxyに分割する(本実施形態では、X=±4.0m,Y=0~8.0mの範囲について、格子間隔Ldを0.05mとして、25600個(=160×160)の格子領域RLxyに分割した。)。 Therefore, in the present embodiment, the direction line selection processing unit 15 excludes an inappropriate estimated direction line Lmn (direction line selection step ST5). Specifically, first, in the division processing unit 15a (division step ST5a), the ranges of X = ± 4.0 m and Y = 0 to 8.0 m including the effective XY region RXY are predetermined in the X direction and the Y direction. It is divided by a grid spacing Ld and divided into a large number of grid regions RLxy (in this embodiment, 25,600 pieces with a grid spacing Ld of 0.05 m in the range of X = ± 4.0 m and Y = 0 to 8.0 m). (= 160 × 160) was divided into grid regions RLxy).

次いで、計数処理部15b(計数ステップST5b)において、各格子領域RLxyについて、当該領域RLxy内を通る推定方向線Lmnの本数Qxyを計数する。例えば、図6において右上部分に示す拡大して示す格子領域RLxyでは、本数Qxy=3である。 Next, in the counting processing unit 15b (counting step ST5b), the number Qxy of the estimated direction lines Lmn passing through the region RLxy is counted for each grid region RLxy. For example, in the enlarged lattice region RLxy shown in the upper right portion in FIG. 6, the number Qxy = 3.

このように分割処理部15aと計数処理部15bによって、有効XY領域RXYを多数の格子領域RLxyに分割し、各格子領域RLxyを通る推定方向線の本数Qxyを数えるので、多数の推定方向線Lmnの分布の粗密状態を、格子領域RLxyに紐付けられた本数Qxyとして容易に理解することができる。 In this way, the division processing unit 15a and the counting processing unit 15b divide the effective XY region RXY into a large number of grid regions RLxy, and count the number of estimation direction lines Qxy passing through each grid region RLxy. The coarse and dense state of the distribution of can be easily understood as the number Qxy associated with the lattice region RLxy.

さらに、除外処理部15c(除外ステップST5c)では、多数の推定方向線Lmnのうち、上記本数Qxyがしきい本数QTh未満の格子領域RLxy内を通る推定方向線を、不真正推定方向線Lmnfであると推定して除外する。本実施形態では、しきい本数QThを、QTh=21本に設定した。例えば図6において右上部分に拡大して例示した格子領域RLxyは、本数Qxy(Qxy=3)であり、しきい本数QTh未満である。このため、この格子領域RLxyを通る3本の推定方向線Lmnは、いずれも除外(消去)される。このような処理を各格子領域RLxyについて行うことにより、多数の推定方向線Lmnのうち、不真正推定方向線Lmnfであると推定されたものはいずれも除外(消去)され、図7に示すように、真正の被探査音源U1等に向かう真正推定方向線Lmntのみを残すことができる。真正の被探査音源U1等には、多くの真正推定方向線Lmntが向かう。従って、或る推定方向線Lmnが真正の推定方向線Lmntであるならば、当該推定方向線Lmnは、本数Qxyが低い値を有する格子領域RLxy内を通らないと考えられる。逆に、しきい本数QThよりも少ない本数Qxyの格子領域RLxy内を通る推定方向線Lmnは、真正の推定方向線Lmntではないと推定できるからである。かくして、真正の推定方向線Lmntを容易に選択することができる。 Further, in the exclusion processing unit 15c (exclusion step ST5c), among a large number of estimation direction lines Lmn, the estimation direction lines passing through the lattice region RLxy in which the number Qxy is less than the threshold QTh are drawn by the inauthentic estimation direction line Lmnf. Presumed to exist and excluded. In this embodiment, the threshold number QTh is set to QTh = 21. For example, in FIG. 6, the lattice region RLxy enlarged and illustrated in the upper right portion is the number Qxy (Qxy = 3), which is less than the threshold number QTh. Therefore, all three estimated direction lines Lmn passing through the grid region RLxy are excluded (erased). By performing such a process for each grid region RLxy, all of the presumed inauthentic estimated direction lines Lmnf are excluded (erased) from among a large number of estimated direction lines Lmn, as shown in FIG. In addition, only the authentic estimation direction line Lmnt toward the authentic explored sound source U1 or the like can be left. Many genuine estimation direction lines Lmnt are directed to the genuine sound source U1 and the like to be explored. Therefore, if a certain estimated direction line Lmn is a genuine estimated direction line Lmnt, it is considered that the estimated direction line Lmn does not pass through the lattice region RLxy having a low number Qxy. On the contrary, it can be estimated that the estimated direction line Lmn passing through the lattice region RLxy of the number Qxy less than the threshold number QTh is not the true estimated direction line Lmnt. Thus, the authentic estimated direction line Lmnt can be easily selected.

その後、被探査音源偏角取得部16(被探査音源偏角取得ステップST6)では、図7の方向線配置図に記載された推定方向線Lmn、即ち、除外処理部15cにおける除外処理によって、残された多数の真正推定方向線Lmntに対応する多数の推定偏差βmnの度数分布を調べる(図8参照)。この図8によれば、63度付近と90度付近の推定偏角βmnに度数のピークが存在することが判る。
そこで、度数がピークとなる推定偏角βmn(本実施形態では90度及び63度)を、原点OR00から被探査音源U1,U2に向かう方位の偏角α1,α2(α1=90度、α2=63度)とする。
After that, in the probed sound source declination acquisition unit 16 (explored sound source declination acquisition step ST6), the estimated direction line Lmn shown in the direction line layout diagram of FIG. 7, that is, the exclusion process in the exclusion process section 15c results in the remaining. The frequency distribution of a large number of estimated deviations βmn corresponding to the large number of authentic estimation direction lines Lmnt is examined (see FIG. 8). According to FIG. 8, it can be seen that the peak of the frequency exists at the estimated declination βmn near 63 degrees and around 90 degrees.
Therefore, the estimated declination βmn (90 degrees and 63 degrees in this embodiment) at which the frequency peaks is set as the declination α1, α2 (α1 = 90 degrees, α2 =) in the direction from the origin OR00 toward the sound sources U1 and U2 to be explored. 63 degrees).

なお、図8によれば、90度付近の度数のピークは、原点OR00から被探査音源U1(0,7)に向かう方位の偏角90度(=tan-1∞)の真値にほぼ一致している。また、63度付近の度数のピークは、原点OR00から被探査音源U2(3,6)に向かう方位の偏角63.4度(=tan-12)の真値にほぼ一致している。
このことから、被探査音源偏角取得部16において、偏角α1=90度、偏角α2=63度とすることが適切であることは、図8から確かめられる。
According to FIG. 8, the peak of the frequency near 90 degrees is almost one to the true value of the declination of 90 degrees (= tan -1 ∞) in the direction from the origin OR00 to the sound source U1 (0,7) to be explored. I am doing it. Further, the peak of the frequency near 63 degrees almost coincides with the true value of the declination of 63.4 degrees (= tan -1 2) in the direction from the origin OR00 toward the sound source U2 (3, 6) to be explored.
From this, it can be confirmed from FIG. 8 that it is appropriate to set the declination α1 = 90 degrees and the declination α2 = 63 degrees in the probed sound source declination acquisition unit 16.

さらに本実施形態の装置1では、被探査音源偏角取得部16で偏角α1等を得た各被探査音源U1等について、被探査音源位置取得部17(被探査音源位置取得ステップST7)において、その位置U1(x,y)等、あるいは、原点(平均位置)OR00からの距離Du1等と偏角α1等を得る(図2参照)。
距離Du1は、例えば、送波機TMから放射したトーンバースト波の超音波SGが、被探査音源U1で反射し、各超音波センサS1~S8(SN)に届くまでの時間差と大気の音速Vから推定することができる。被探査音源U1の位置U1(x,y)は、距離Du1と偏角α1から算出できる(x=Du1・cosα1、y=Du1・sinα1)。
Further, in the apparatus 1 of the present embodiment, for each of the explored sound source U1 and the like whose declination α1 and the like are obtained by the explored sound source declination acquisition unit 16, in the explored sound source position acquisition unit 17 (explored sound source position acquisition step ST7). , The position U1 (x, y) or the like, or the distance Du1 or the like from the origin (average position) OR00 and the argument α1 or the like are obtained (see FIG. 2).
The distance Du1 is, for example, the time difference between the ultrasonic SG of the tone burst wave radiated from the transmitter TM reflected by the probed sound wave U1 and reaching the ultrasonic sensors S1 to S8 (SN) and the sound wave V of the atmosphere. Can be estimated from. The position U1 (x, y) of the sound source U1 to be explored can be calculated from the distance Du1 and the declination α1 (x = Du1 · cosα1, y = Du1 · sinα1).

その後、被探査音源偏角取得部16で得た、被探査音源U1等に向かう方位の偏角α1等、被探査音源位置取得部17で取得した被探査音源U1等の位置U1(x,y)等、距離Du1等と偏角α1等)は、インターフェイス部18を通じて、装置1外のCANバスCBを通じて、ディスプレイ部40や音声部50に送信される。ディスプレイ部40では、例えば、取得した被探査音源U1等の位置や、この位置に応じた警告表示などを、運転者などに向けて表示する。また、音声部50では、例えば、取得した被探査音源U1等の位置や、この位置に応じた警告音や合成音声により生成した警告メッセージなどの音声を運転者などに向けて発する。 After that, the position U1 (x, y) of the explored sound source U1 or the like acquired by the explored sound source position acquisition unit 17, such as the declination α1 in the direction toward the explored sound source U1 or the like obtained by the explored sound source declination acquisition unit 16. ) Etc., the distance Du1 or the like and the argument α1 or the like) are transmitted to the display unit 40 and the voice unit 50 through the interface unit 18 and the CAN bus CB outside the device 1. The display unit 40 displays, for example, the position of the acquired sound source U1 or the like, a warning display corresponding to this position, or the like toward the driver or the like. Further, the voice unit 50 emits a voice such as a position of the acquired sound source U1 to be searched, a warning sound corresponding to this position, and a warning message generated by the synthetic voice to the driver or the like.

かくして本実施形態の音源位置推定装置1では、得られた多数の推定偏角βmnについて適切な処理を行うことで、真正の被探査音源U1等の方位(偏角α1等)や音源位置U1(x,y)等、距離Du1等と偏角α1等を容易に推定できる。これらの利点は、本実施形態において用いた音源位置推定方法においても、また、本実施形態において、プログラムPG1によって各種の処理を行う処理部(発振制御部11~インターフェイス部18)として機能させた制御部10(コンピュータ)においても、同様である。 Thus, in the sound source position estimation device 1 of the present embodiment, by performing appropriate processing on the obtained large number of estimated declinations βmn, the orientation (argument α1 etc.) of the genuine explored sound source U1 and the like and the sound source position U1 (the declination α1 etc.) and the sound source position U1 ( The distance Du1 and the like and the argument α1 and the like can be easily estimated such as x, y). These advantages are also in the sound source position estimation method used in the present embodiment, and in the present embodiment, the control is made to function as a processing unit (oscillation control unit 11 to interface unit 18) that performs various processes by the program PG1. The same applies to the unit 10 (computer).

(変形形態)
前述の実施形態においては、音源位置推定装置1の制御部10のうち、方向線選択処理部15において、分割処理部15a、計数処理部15bのほか、除外処理部15cを設けた例を示した。
(Deformed form)
In the above-described embodiment, among the control units 10 of the sound source position estimation device 1, an example in which the direction line selection processing unit 15 is provided with the division processing unit 15a, the counting processing unit 15b, and the exclusion processing unit 15c is shown. ..

これに対し本変形形態では、音源位置推定装置21の制御部20のうち、図1において破線で示す方向線選択処理部25に、実施形態と同様の分割処理部15a、計数処理部15bのほか、除外処理部15cに代えて、重み付け処理部25c、及び選抜処理部25dを設けた点で異なり、他は同様である。本変形形態において用いた音源位置推定方法、及び音源位置推定プログラムPG2についても、同様である。
そこで、異なる部分を中心に説明し、同様な部分については説明を省略あるいは簡略化する。
On the other hand, in the present modification, among the control units 20 of the sound source position estimation device 21, the direction line selection processing unit 25 shown by the broken line in FIG. 1 includes the division processing unit 15a and the counting processing unit 15b similar to those in the embodiment. , The difference is that the weighting processing unit 25c and the selection processing unit 25d are provided instead of the exclusion processing unit 15c, and the others are the same. The same applies to the sound source position estimation method and the sound source position estimation program PG2 used in this modification.
Therefore, different parts will be mainly explained, and similar parts will be omitted or simplified.

上述のように、本変形形態の装置21の制御部20うち、方向線選択処理部25(方向線選択ステップST15)は、実施形態と同様の分割処理部15a(分割ステップST5a)、計数処理部15b(計数ステップST5b)を有する。即ち、分割処理部15a(分割ステップST5a)では、有効XY領域RXYを含むX=±4.0m,Y=0~8.0mの範囲を、格子間隔Ldの多数の格子領域RLxyに分割する(本変形形態でも、X=±4.0m,Y=0~8.0mの範囲を、格子間隔Ld=0.05mとして、25600個の格子領域RLxyに分割した。)。そして、続く計数処理部15b(計数ステップST5b)でも、実施形態と同じく、各格子領域RLxy内を通る推定方向線Lmnの本数Qxyを計数する。例えば、図6において右上部分に示す拡大した格子領域RLxyでは本数Qxy=3である。 As described above, among the control units 20 of the apparatus 21 of the present modification, the direction line selection processing unit 25 (direction line selection step ST15) is the same division processing unit 15a (division step ST5a) and counting processing unit as in the embodiment. It has 15b (counting step ST5b). That is, the division processing unit 15a (division step ST5a) divides the range of X = ± 4.0 m and Y = 0 to 8.0 m including the effective XY region RXY into a large number of grid regions RLxy having a grid spacing Ld (that is, Also in this modified form, the range of X = ± 4.0 m and Y = 0 to 8.0 m is divided into 25,600 grid regions RLxy with the grid spacing Ld = 0.05 m). Then, the subsequent counting processing unit 15b (counting step ST5b) also counts the number Qxy of the estimated direction lines Lmn passing through each lattice region RLxy, as in the embodiment. For example, in the enlarged lattice region RLxy shown in the upper right portion in FIG. 6, the number Qxy = 3.

但し、本変形形態では、続く重み付け処理部25c(重み付けステップST15c)において、N個(本変形形態ではN=8)の超音波センサS1等のXY平面PXYにおける平均位置(本変形形態では、平均位置は原点OR00に一致する)から各々の格子領域RLxyまでの距離Dxy(=√(x2+y2))が大きいほど、本数Qxyを大きな値の補正本数CQxyに変更する重み付けを行う。具体的には、本変形形態では、本数Qxyに、距離Dxyに比例した補正係数Cxy(例えば、Dxy=1.5mの場合、補正係数を1.5とするなど、メートル単位で表示した距離Dxyに等しい補正係数Cxy=Dxy)を乗じて、補正本数CQxyを得る(例えば、CQxy=Dxy・Qxy)。 However, in this modified form, in the subsequent weighting processing unit 25c (weighting step ST15c), N (N = 8 in this modified form) average positions on the XY plane PXY such as ultrasonic sensors S1 (in this modified form, average). The larger the distance Dxy (= √ (x 2 + y 2 )) from each lattice region RLxy (the position corresponds to the origin OR00), the more weighting is performed to change the number Qxy to the correction number CQxy of a large value. Specifically, in this modified form, the distance Dxy displayed in meters, such as the correction coefficient Cxy proportional to the distance Dxy to the number Qxy (for example, when Dxy = 1.5 m, the correction coefficient is 1.5). The correction coefficient Cxy = Dxy) equal to is multiplied to obtain the correction number CQxy (for example, CQxy = Dxy · Qxy).

この重み付け処理により得られた補正本数CQxyの分布を、図9に示す。この図9においては、一部に、不真正推定音源Ef(偽像)を原因とした、補正本数CQxyの値がやや大きい格子領域RLxyの分布が確認できる。しかし、真正の被探査音源U1,U2付近、及び原点OR00から被探査音源U1,U2に向かう方位に、補正本数CQxyの値が特に大きい(CQxy≧80。図9では80+と表示した。)格子領域RLxyが分布していることが判る。 The distribution of the correction number CQxy obtained by this weighting process is shown in FIG. In FIG. 9, it can be confirmed that the distribution of the grid region RLxy in which the value of the corrected number CQxy is slightly large due to the untrue estimated sound source Ef (false image) is partially confirmed. However, the value of the corrected number CQxy is particularly large in the vicinity of the genuine explored sound sources U1 and U2 and in the direction from the origin OR00 toward the explored sound sources U1 and U2 (CQxy ≧ 80, which is indicated as 80+ in FIG. 9). It can be seen that the region RLxy is distributed.

そこで続く選抜処理部25d(選抜ステップST15d)では、多数の推定方向線Lmnのうち、補正本数CQxyがしきい補正本数CQThを越える格子領域RLxy内を通る推定方向線を、真正推定方向線Lmntであると推定して選抜する。本変形形態では、しきい補正本数CQThを、CQTh=50本に設定した。このため、例えば図6の右上部分に例示した格子領域RLxyでは、補正本数CQxyがしきい補正本数CQTh未満となる。この格子領域RLxyを通る推定方向線Lmnは、少なくともこの格子領域RLxyを通ることを理由として選抜されることは無い。このような処理を各格子領域RLxyについて行うことにより、多数の推定方向線Lmnのうち、いずれかの格子領域RLxyにおいて、真正推定方向線Lmntであると推定されたもののみを選抜する。これにより、図10に示すように、真正の被探査音源U1等に向かう真正推定方向線Lmntのみを残すことができる。 Then, in the selection processing unit 25d (selection step ST15d), among a large number of estimation direction lines Lmn, the estimation direction line passing through the lattice region RLxy where the correction number CQxy exceeds the threshold correction number CQTh is set by the authentic estimation direction line Lmnt. Presumed to exist and selected. In this modification, the threshold correction number CQTh is set to CQTh = 50. Therefore, for example, in the grid region RLxy illustrated in the upper right portion of FIG. 6, the correction number CQxy is less than the threshold correction number CQTh. The estimated direction line Lmn passing through this grid region RLxy is not selected at least because it passes through this grid region RLxy. By performing such processing for each lattice region RLxy, only those estimated to be the authentic estimation direction line Lmnt in any of the lattice regions RLxy are selected from among a large number of estimation direction lines Lmn. As a result, as shown in FIG. 10, only the authentic estimation direction line Lmnt toward the authentic explored sound source U1 or the like can be left.

その後は、実施形態と同様、被探査音源偏角取得部16で、図10の方向線配置図に記載された推定方向線Lmn、即ち、選抜処理部25dにおける選抜処理によって、選抜された多数の真正推定方向線Lmntに対応する多数の推定偏差βmnについて度数分布を調べる。これにより、図8と概ね同様の、63度付近と90度付近の推定偏角βmnに度数のピークが存在する度数分布が得られる(図示しない)。
そこで、実施形態と同じく、度数がピークとなる推定偏角βmn(本実施形態では90度及び63度)を、原点OR00から被探査音源U1,U2に向かう方位の偏角α1,α2(α1=90度、α2=63度)とする。
After that, as in the embodiment, the probed sound source declination acquisition unit 16 selects a large number of estimated direction lines Lmn shown in the direction line layout diagram of FIG. 10, that is, by the selection process in the selection process unit 25d. The frequency distribution is examined for a large number of estimated deviations βmn corresponding to the authentic estimation direction line Lmnt. As a result, a frequency distribution in which a frequency peak exists at the estimated declination βmn near 63 degrees and 90 degrees, which is substantially the same as in FIG. 8, can be obtained (not shown).
Therefore, as in the embodiment, the estimated declination βmn (90 degrees and 63 degrees in this embodiment) at which the frequency peaks is set as the declination α1, α2 (α1 =) in the direction from the origin OR00 toward the sound sources U1 and U2 to be explored. 90 degrees, α2 = 63 degrees).

さらに実施形態と同様、被探査音源位置取得部17において、その位置U1(x,y)等、あるいは、原点OR00からの距離Du1等と偏角α1等)を得る(図2参照)。これらは、インターフェイス部18を通じて、装置21外のCANバスCBを通じて、ディスプレイ部40や音声部50に送信される。 Further, as in the embodiment, the searched sound source position acquisition unit 17 obtains the position U1 (x, y) or the like, or the distance Du1 or the like from the origin OR00 and the declination α1 or the like (see FIG. 2). These are transmitted to the display unit 40 and the voice unit 50 through the interface unit 18 and the CAN bus CB outside the device 21.

かくして本変形形態の音源位置推定装置21でも、得られた多数の推定偏角βmnについて適切な処理を行うことで、真正の被探査音源U1等の方位(偏角α1等)や音源位置を容易に推定できる。これらの利点は、本変形形態において用いた音源位置推定方法においても、また、本変形形態において、プログラムPG2によって各種の処理を行う処理部(発振制御部11~インターフェイス部18)として機能させた制御部20(コンピュータ)においても、同様である。 Thus, even in the sound source position estimation device 21 of this modified form, the orientation (argument α1 etc.) and the sound source position of the genuine probed sound source U1 or the like can be easily determined by appropriately processing the obtained large number of estimated declination βmn. Can be estimated to. These advantages are also in the sound source position estimation method used in this modified form, and in this modified form, the control is made to function as a processing unit (oscillation control unit 11 to interface unit 18) that performs various processes by the program PG2. The same applies to the unit 20 (computer).

以上において、本発明を実施形態及び変形形態に即して説明したが、本発明は上記実施形態等に限定されるものではなく、種々の変形が可能である。上述した実施形態等は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態等の構成に他の構成を追加してもよく、構成の一部について他の構成に置換をすることも可能である。実施形態に対して可能な変形は、例えば以下のようなものである。 In the above, the present invention has been described according to the embodiment and the modified form, but the present invention is not limited to the above-described embodiment and the like, and various modifications are possible. The above-described embodiments and the like are exemplified for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, another configuration may be added to the configuration of the embodiment or the like, and a part of the configuration may be replaced with another configuration. Possible variants to the embodiment are, for example:

実施形態等における制御部10,20のハードウエアは一般的なコンピュータによって実現できるため、上述した各種処理を実行する音源位置推定プログラムPG1,PG2を予め記憶媒体に格納しておくこともできるし、伝送路を介して頒布してもよい。
また、制御部10,20における各種処理は、実施形態等では音源位置推定プログラムPG1,PG2を用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(Field Programmable Gate Array)等を用いたハードウエア的な処理に置き換えることもできる。
Since the hardware of the control units 10 and 20 in the embodiments and the like can be realized by a general computer, the sound source position estimation programs PG1 and PG2 that execute the above-mentioned various processes can be stored in the storage medium in advance. It may be distributed via a transmission line.
Further, various processes in the control units 10 and 20 have been described as software-like processes using the sound source position estimation programs PG1 and PG2 in the embodiments and the like, but some or all of them are specified by ASIC (Application Specific Integrated Circuit). It can also be replaced with hardware-like processing using an application-specific IC) or FPGA (Field Programmable Gate Array).

SG,SGT,SGR 超音波
S1,S2,…,SN,Sm,Sn 超音波センサ
N (超音波センサの)個数
m,n (超音波センサの順序を示す)序数
R1(t),R2(t),…,RN(t),Rm(t),Rn(t) (超音波センサからの)受信信号
Cmn(τ) (受信信号Rm(t)とRn(t)との)相互相関関数
Cmnth 相関しきい値
τmn,τmn1,τmn2,… 受波時間差
U,U1,U2,…,UP 被探査音源(真正被探査音源)
P (被探査音源の)個数
E,E1,…,Ef 推定音源
Ef 不真正推定音源
βmn,βmn1,βmn2,… (起点から推定音源に向かう)推定偏角
Lmn,Lmn1,Lmn2,… (起点から推定偏角をなして推定音源に向けて延びる)推定方向線
Lmnt (真正の被探査音源に向かう)真正推定方向線
Lmnf (不真正の推定音源に向かう)不真正推定方向線
α,α1,…,αP (原点から被探査音源に向かう)偏角
1,21 音源位置推定装置
10,20 制御部(コンピュータ)
PG1,PG2 音源位置推定プログラム
13 起点偏角取得部
14 推定方向線生成部
15,25 方向線選択処理部
15a 分割処理部
15b 計数処理部
15c 除外処理部
25c 重み付け処理部
25d 選抜処理部
16 被探査音源偏角取得部(偏角取得部)
17 被探査音源位置取得部
ST3 起点偏角取得ステップ
ST4 推定方向線生成ステップ
ST5,ST15 方向線選択ステップ
ST5a 分割ステップ
ST5b 計数ステップ
ST5c 除外ステップ
ST15c 重み付けステップ
ST15d 選抜ステップ
ST6 被探査音源偏角取得ステップ
X 第1軸線
Y 第2軸線
PXY XY平面
RXY 有効XY領域
RLxy 格子領域
Qxy (格子領域内を通る推定方向線の)本数
QTh しきい本数
OR00 原点(M個の超音波センサのXY平面における平均位置)
SG, SGT, SGR Ultrasonic S1, S2, ..., SN, Sm, Sn Number of ultrasonic sensors N (of ultrasonic sensors) m, n (indicating the order of ultrasonic sensors) Orders R1 (t), R2 (t) ), ..., RN (t), Rm (t), Rn (t) Received signal Cmn (τ) (received signal Rm (t) and Rn (t)) mutual correlation function Cmnth Correlation thresholds τmn, τmn1, τmn2, ... Received time difference U, U1, U2, ..., UP Searched sound source (genuine searched sound source)
P Number of (explored sound sources) E, E1, ..., Ef Estimated sound source Ef Inauthency Estimated sound source βmn, βmn1, βmn2 ... Estimated direction line Lmnt (toward the genuine sound source to be explored) Authentic estimated direction line Lmnf (toward the untrue estimated sound source) Inauthentic estimated direction line α, α1, ... , ΑP (From the origin to the sound source to be explored) Declination 1,21 Sound source position estimation device 10,20 Control unit (computer)
PG1, PG2 Sound source position estimation program 13 Origin argument acquisition unit 14 Estimated direction line generation unit 15, 25 Direction line selection processing unit 15a Division processing unit 15b Counting processing unit 15c Exclusion processing unit 25c Weighting processing unit 25d Selection processing unit 16 Searched Sound source declination acquisition unit (argument acquisition unit)
17 Searched sound source position acquisition unit ST3 Origin declination acquisition step ST4 Estimated direction line generation step ST5, ST15 Direction line selection step ST5a Division step ST5b Counting step ST5c Exclusion step ST15c Weighting step ST15d Selection step ST6 Exploration sound source declination acquisition step X 1st axis Y 2nd axis PXY XY plane RXY Effective XY area RLxy Lattice area Qxy Number of lines (estimated direction line passing through the lattice area) QTh Threshold number OR00 Origin (average position of M ultrasonic sensors in XY plane)

Claims (12)

第1軸線上に互いに間隔を空けて配置されたN個(Nは3以上の自然数)の超音波センサからそれぞれ得た受信信号を用いて、P個(Pは1以上の自然数)の被探査音源の位置を推定する音源位置推定装置であって、
一対の上記超音波センサから得た一対の上記受信信号を用いて、上記一対の超音波センサ間の中間点を起点とし、上記起点から上記被探査音源であると推定される推定音源に向かう推定偏角を、上記超音波センサ同士の組合せについてそれぞれ取得する起点偏角取得部と、
第1軸線と上記第1軸線からこの第1軸線に直交する方向に延びる第2軸線とがなす仮想のXY平面のうち、上記被探査音源の位置を有効に推定し得る有効XY領域に、各々の上記起点から推定偏角をなして上記推定音源に向けて延びる推定方向線を生成する推定方向線生成部と、
上記有効XY領域に生成した上記推定方向線のうち、真正の上記被探査音源に向かう真正推定方向線であると推定される推定方向線を選抜する、又は、不真正の上記推定音源に向かう不真正推定方向線であると推定される推定方向線を除外する方向線選択処理部と、を備える
音源位置推定装置。
Using received signals obtained from N ultrasonic sensors (N is a natural number of 3 or more) arranged at intervals on the first axis, P (P is a natural number of 1 or more) to be explored. A sound source position estimation device that estimates the position of a sound source.
Using the pair of received signals obtained from the pair of ultrasonic sensors, the estimation starts from the intermediate point between the pair of ultrasonic sensors and goes from the starting point to the estimated sound source estimated to be the probed sound source. A starting point deviation acquisition unit that acquires deviations for each combination of ultrasonic sensors, and
Of the virtual XY plane formed by the first axis and the second axis extending in the direction orthogonal to the first axis from the first axis, each of the effective XY regions where the position of the sound source to be explored can be effectively estimated. An estimated direction line generator that generates an estimated direction line extending from the above starting point to the estimated sound source by making an estimated argument.
From the estimated direction lines generated in the effective XY region, the estimated direction line estimated to be the genuine estimated direction line toward the genuine sound source to be searched is selected, or the estimated direction line toward the untrue estimated sound source is not selected. A sound source position estimation device including a direction line selection processing unit that excludes an estimation direction line estimated to be a genuine estimation direction line.
請求項1に記載の音源位置推定装置であって、
前記方向線選択処理部は、
前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、
各格子領域内を通る前記推定方向線の本数を数える計数処理部と、
上記推定方向線のうち、上記本数がしきい本数未満の上記格子領域内を通る推定方向線を、前記不真正推定方向線であると推定して除外する除外処理部と、を有する
音源位置推定装置。
The sound source position estimation device according to claim 1.
The direction line selection processing unit is
A division processing unit that divides the effective XY region into a large number of grid regions having a predetermined grid spacing, and a division processing unit.
A counting processing unit that counts the number of the estimated direction lines passing through each grid region,
A sound source position estimation having an exclusion processing unit that presumes that the estimated direction lines passing through the grid region in which the number of lines is less than the threshold line is excluded from the estimated direction lines. Device.
請求項1に記載の音源位置推定装置であって、
前記方向線選択処理部は、
前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、
各格子領域内を通る前記推定方向線の本数を数える計数処理部と、
上記本数を、N個の前記超音波センサの前記XY平面における平均位置から上記格子領域までの距離が大きいほど重くなる重み付け補正により、補正本数に補正する重み付け処理部と、
上記推定方向線のうち、上記補正本数がしきい補正本数を越える上記格子領域内を通る推定方向線を、前記真正推定方向線であると推定して選抜する選抜処理部と、を有する
音源位置推定装置。
The sound source position estimation device according to claim 1.
The direction line selection processing unit is
A division processing unit that divides the effective XY region into a large number of grid regions having a predetermined grid spacing, and a division processing unit.
A counting processing unit that counts the number of the estimated direction lines passing through each grid region,
A weighting processing unit that corrects the number of the above-mentioned number to the number of corrections by a weighting correction that becomes heavier as the distance from the average position of the N ultrasonic sensors on the XY plane to the lattice region increases.
A sound source position having a selection processing unit that estimates and selects an estimated direction line passing through the grid region in which the number of corrections exceeds the number of threshold corrections among the estimated direction lines. Estimator.
請求項1~請求項3のいずれか1項に記載の音源位置推定装置であって、
N個の前記超音波センサは、前記XY平面における平均位置を中心に、前記第1軸線上に対称に配置されており、
前記方向線選択処理部で選抜された又は除外を免れた前記推定方向線の前記推定偏角の大きさの度数分布において、度数が局所ピークを示す推定偏角の値を、上記平均位置から前記被探査音源に向かう偏角の値とする偏角取得部をも備える
音源位置推定装置。
The sound source position estimation device according to any one of claims 1 to 3.
The N ultrasonic sensors are arranged symmetrically on the first axis with the average position in the XY plane as the center.
In the frequency distribution of the magnitude of the estimated declination of the estimated declination line selected or excluded by the direction line selection processing unit, the value of the estimated declination at which the frequency indicates a local peak is calculated from the average position. A sound source position estimation device that also has a declination acquisition unit that sets the value of the declination toward the probed sound source.
第1軸線上に互いに間隔を空けて配置されたN個(Nは3以上の自然数)の超音波センサからそれぞれ得た受信信号を用いて、P個(Pは1以上の自然数)の被探査音源の位置を推定する音源位置の推定方法であって、
一対の上記超音波センサから得た一対の上記受信信号を用いて、上記一対の超音波センサ間の中間点を起点とし、上記起点から上記被探査音源であると推定される推定音源に向かう推定偏角を、上記超音波センサ同士の組合せについてそれぞれ取得する起点偏角取得ステップと、
第1軸線と上記第1軸線からこの第1軸線に直交する方向に延びる第2軸線とがなす仮想のXY平面のうち、上記被探査音源の位置を有効に推定し得る有効XY領域に、上各々の上記起点から推定偏角をなして上記推定音源に向けて延びる推定方向線を生成する推定方向線生成ステップと、
上記有効XY領域に生成した上記推定方向線のうち、真正の上記被探査音源に向かう真正推定方向線であると推定される推定方向線を選抜する、又は、不真正の上記推定音源に向かう不真正推定方向線であると推定される推定方向線を除外する方向線選択ステップと、を備える
音源位置推定方法。
Using received signals obtained from N ultrasonic sensors (N is a natural number of 3 or more) arranged at intervals on the first axis, P (P is a natural number of 1 or more) to be explored. A method for estimating the position of a sound source that estimates the position of a sound source.
Using the pair of received signals obtained from the pair of ultrasonic sensors, the estimation starts from the intermediate point between the pair of ultrasonic sensors and goes from the starting point to the estimated sound source estimated to be the probed sound source. The starting point deviation acquisition step for acquiring the deviation angle for each combination of the above ultrasonic sensors, and
In the virtual XY plane formed by the first axis and the second axis extending in the direction orthogonal to the first axis from the first axis, the effective XY region where the position of the sound source to be explored can be effectively estimated is above. An estimated direction line generation step that generates an estimated direction line extending from each of the above starting points to the estimated sound source by making an estimated argument.
From the estimated direction lines generated in the effective XY region, the estimated direction line estimated to be the genuine estimated direction line toward the genuine sound source to be searched is selected, or the estimated direction line toward the untrue estimated sound source is not selected. A sound source position estimation method comprising a direction line selection step that excludes an estimated direction line that is presumed to be a genuine estimated direction line.
請求項5に記載の音源位置推定方法であって、
前記方向線選択ステップは、
前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割ステップと、
各格子領域内を通る前記推定方向線の本数を数える計数ステップと、
上記推定方向線のうち、上記本数がしきい本数未満の上記格子領域内を通る推定方向線を、前記不真正推定方向線であると推定して除外する除外ステップと、を有する
音源位置推定方法。
The sound source position estimation method according to claim 5.
The direction line selection step is
A division step of dividing the effective XY region into a large number of grid regions having a predetermined grid spacing, and
A counting step that counts the number of the estimated direction lines passing through each grid region,
A sound source position estimation method including an exclusion step of presuming that the estimated direction lines passing through the grid region in which the number of lines is less than the threshold line are excluded from the estimated direction lines by presuming that they are the inauthentic estimated direction lines. ..
請求項5に記載の音源位置推定方法であって、
前記方向線選択ステップは、
前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割ステップと、
各格子領域内を通る前記推定方向線の本数を数える計数ステップと、
上記本数を、N個の前記超音波センサの前記XY平面における平均位置から上記格子領域までの距離が大きいほど重くなる重み付け補正により、補正本数に補正する重み付けステップと、
上記推定方向線のうち、上記補正本数がしきい補正本数を越える上記格子領域内を通る推定方向線を、前記真正推定方向線であると推定して選抜する選抜ステップと、を有する
音源位置推定方法。
The sound source position estimation method according to claim 5.
The direction line selection step is
A division step of dividing the effective XY region into a large number of grid regions having a predetermined grid spacing, and
A counting step that counts the number of the estimated direction lines passing through each grid region,
A weighting step of correcting the number of the above-mentioned number to the number of corrections by a weighting correction that becomes heavier as the distance from the average position of the N ultrasonic sensors on the XY plane to the grid region increases.
A sound source position estimation having a selection step of estimating and selecting an estimated direction line passing through the grid region in which the number of corrections exceeds the number of threshold corrections among the estimated direction lines is estimated to be the genuine estimation direction line. Method.
請求項5~請求項7のいずれか1項に記載の音源位置推定方法であって、
N個の前記超音波センサは、前記XY平面における平均位置を中心に、前記第1軸線上に対称に配置されており、
前記方向線選択ステップで選抜された又は除外を免れた前記推定方向線の前記推定偏角の大きさの度数分布において、度数が局所ピークを示す推定偏角の値を、上記平均位置から前記被探査音源に向かう偏角の値とする偏角取得ステップをも備える
音源位置推定方法。
The sound source position estimation method according to any one of claims 5 to 7.
The N ultrasonic sensors are arranged symmetrically on the first axis with the average position in the XY plane as the center.
In the frequency distribution of the magnitude of the estimated declination of the estimated declination line selected or excluded in the direction line selection step, the value of the estimated declination at which the frequency indicates a local peak is calculated from the average position. A sound source position estimation method that also includes a declination acquisition step that is the value of the declination toward the exploration sound source.
第1軸線上に互いに間隔を空けて配置されたN個(Nは3以上の自然数)の超音波センサからそれぞれ得た受信信号を用いて、P個(Pは1以上の自然数)の被探査音源の位置を推定する音源位置推定プログラムであって、
コンピュータを、
一対の上記超音波センサから得た一対の上記受信信号を用いて、上記一対の超音波センサ間の中間点を起点とし、上記起点から上記被探査音源であると推定される推定音源に向かう推定偏角を、上記超音波センサ同士の組合せについてそれぞれ取得する起点偏角取得部と、
第1軸線と上記第1軸線からこの第1軸線に直交する方向に延びる第2軸線とがなす仮想のXY平面のうち、上記被探査音源の位置を有効に推定し得る有効XY領域に、各々の上記起点から推定偏角をなして上記推定音源に向けて延びる推定方向線を生成する推定方向線生成部と、
上記有効XY領域に生成した上記推定方向線のうち、真正の上記被探査音源に向かう真正推定方向線であると推定される推定方向線を選抜する、又は、不真正の上記推定音源に向かう不真正推定方向線であると推定される推定方向線を除外する方向線選択処理部と、して機能させる
音源位置推定プログラム。
Using received signals obtained from N ultrasonic sensors (N is a natural number of 3 or more) arranged at intervals on the first axis, P (P is a natural number of 1 or more) to be explored. A sound source position estimation program that estimates the position of a sound source.
Computer,
Using the pair of received signals obtained from the pair of ultrasonic sensors, the estimation starts from the intermediate point between the pair of ultrasonic sensors and goes from the starting point to the estimated sound source estimated to be the probed sound source. A starting point deviation acquisition unit that acquires deviations for each combination of ultrasonic sensors, and
Of the virtual XY plane formed by the first axis and the second axis extending in the direction orthogonal to the first axis from the first axis, each of the effective XY regions where the position of the sound source to be explored can be effectively estimated. An estimated direction line generator that generates an estimated direction line extending from the above starting point to the estimated sound source by making an estimated argument.
From the estimated direction lines generated in the effective XY region, the estimated direction line estimated to be the genuine estimated direction line toward the genuine sound source to be searched is selected, or the estimated direction line toward the untrue estimated sound source is not selected. A sound source position estimation program that functions as a direction line selection processing unit that excludes the estimation direction line that is estimated to be the authentic estimation direction line.
請求項9に記載の音源位置推定プログラムであって、
前記コンピュータを、
前記方向線選択処理部として機能させるにあたり、
前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、
各格子領域内を通る前記推定方向線の本数を数える計数処理部と、
上記推定方向線のうち、上記本数がしきい本数未満の上記格子領域内を通る推定方向線を、前記不真正推定方向線であると推定して除外する除外処理部と、して機能させる
音源位置推定プログラム。
The sound source position estimation program according to claim 9.
The computer
In functioning as the direction line selection processing unit,
A division processing unit that divides the effective XY region into a large number of grid regions having a predetermined grid spacing, and a division processing unit.
A counting processing unit that counts the number of the estimated direction lines passing through each grid region,
Of the estimated direction lines, a sound source that functions as an exclusion processing unit that presumes that the estimated direction lines passing through the grid region in which the number is less than the threshold is excluded as the inauthentic estimated direction lines. Position estimation program.
請求項9に記載の音源位置推定プログラムであって、
前記コンピュータを、
前記方向線選択処理部として機能させるにあたり、
前記有効XY領域を予め定めた格子間隔を有する多数の格子領域に分割する分割処理部と、
各格子領域内を通る前記推定方向線の本数を数える計数処理部と、
上記本数を、N個の前記超音波センサの前記XY平面における平均位置から上記格子領域までの距離が大きいほど重くなる重み付け補正により、補正本数に補正する重み付け処理部と、
上記推定方向線のうち、上記補正本数がしきい補正本数を越える上記格子領域内を通る推定方向線を、前記真正推定方向線であると推定して選抜する選抜処理部と、して機能させる
音源位置推定プログラム。
The sound source position estimation program according to claim 9.
The computer
In functioning as the direction line selection processing unit,
A division processing unit that divides the effective XY region into a large number of grid regions having a predetermined grid spacing, and a division processing unit.
A counting processing unit that counts the number of the estimated direction lines passing through each grid region,
A weighting processing unit that corrects the number of the above-mentioned number to the number of corrections by a weighting correction that becomes heavier as the distance from the average position of the N ultrasonic sensors on the XY plane to the lattice region increases.
Among the estimated direction lines, the estimated direction lines passing through the grid region where the number of corrections exceeds the threshold correction number are presumed to be the genuine estimated direction lines and are selected as a selection processing unit. Sound source position estimation program.
請求項9~請求項11のいずれか1項に記載の音源位置推定プログラムであって、
N個の前記超音波センサは、前記XY平面における平均位置を中心に、前記第1軸線上に対称に配置されており、
前記コンピュータを、
前記方向線選択処理部で選抜された又は除外を免れた前記推定方向線の前記推定偏角の大きさの度数分布において、度数が局所ピークを示す推定偏角の値を、上記平均位置から前記被探査音源に向かう偏角の値とする偏角取得部としても機能させる
音源位置推定プログラム。
The sound source position estimation program according to any one of claims 9 to 11.
The N ultrasonic sensors are arranged symmetrically on the first axis with the average position in the XY plane as the center.
The computer
In the frequency distribution of the magnitude of the estimated declination of the estimated declination line selected or excluded by the direction line selection processing unit, the value of the estimated declination at which the frequency indicates a local peak is calculated from the average position. A sound source position estimation program that also functions as a declination acquisition unit that sets the value of the declination toward the probed sound source.
JP2020165659A 2020-09-30 2020-09-30 Sound source position estimation device, sound source position estimation method and sound source position estimation program Pending JP2022057414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165659A JP2022057414A (en) 2020-09-30 2020-09-30 Sound source position estimation device, sound source position estimation method and sound source position estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165659A JP2022057414A (en) 2020-09-30 2020-09-30 Sound source position estimation device, sound source position estimation method and sound source position estimation program

Publications (1)

Publication Number Publication Date
JP2022057414A true JP2022057414A (en) 2022-04-11

Family

ID=81110433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165659A Pending JP2022057414A (en) 2020-09-30 2020-09-30 Sound source position estimation device, sound source position estimation method and sound source position estimation program

Country Status (1)

Country Link
JP (1) JP2022057414A (en)

Similar Documents

Publication Publication Date Title
JP6333412B2 (en) Obstacle detection device
US10690743B2 (en) Doppler measurements to resolve angle of arrival ambiguity of wide aperture radar
JP2006234513A (en) Obstruction detection system
CN106662637A (en) Radar apparatus
JP5853489B2 (en) Target motion estimation system and method
US11835544B2 (en) Wind speed measuring device and wind speed measuring method
JP2009079917A (en) Method and apparatus for detecting vehicle width, and device for controlling vehicle
KR20170118878A (en) Coherence assurance system and method
EP3893239B1 (en) Surgical system control based on voice commands
EP0614095B1 (en) Dipole detection and localization method
JP2015210143A (en) Underwater detection device, underwater detection method and underwater detection program
JP5812397B2 (en) Underwater detection device, underwater detection method, and underwater detection program
JP2022057414A (en) Sound source position estimation device, sound source position estimation method and sound source position estimation program
JP5730083B2 (en) Signal processing device, exploration device, signal processing program, and signal processing method
CN116299156B (en) Hydrophone vertical array element position estimation method and optimization strategy thereof
KR20120005464A (en) Apparatus and method for the binaural reproduction of audio sonar signals
CN114556146A (en) Method and device for classifying objects, in particular in the context of a motor vehicle
CN103926580B (en) System for environmental sensing mechanism
JP2020165858A (en) Object detector
JP2020165857A (en) Object detector
JP3573090B2 (en) Underwater target position detecting device and method
JP3541889B2 (en) Target tracking device
US6661740B1 (en) Multi-static, opportune-source-exploiting, passive sonar processing
JP5991599B2 (en) Target detection device
JP5625771B2 (en) Underwater target detection apparatus, target detection method and target detection program used in the detection apparatus