JP2022057001A - Pretreatment method for measuring concentration of mercury contained in hydrocarbon mixture, and method of measuring concentration of mercury contained in hydrocarbon mixture - Google Patents

Pretreatment method for measuring concentration of mercury contained in hydrocarbon mixture, and method of measuring concentration of mercury contained in hydrocarbon mixture Download PDF

Info

Publication number
JP2022057001A
JP2022057001A JP2020165031A JP2020165031A JP2022057001A JP 2022057001 A JP2022057001 A JP 2022057001A JP 2020165031 A JP2020165031 A JP 2020165031A JP 2020165031 A JP2020165031 A JP 2020165031A JP 2022057001 A JP2022057001 A JP 2022057001A
Authority
JP
Japan
Prior art keywords
mercury
hydrocarbon mixture
concentration
fraction
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020165031A
Other languages
Japanese (ja)
Inventor
満 正能
Mitsuru Masano
保 田中
Tamotsu Tanaka
嘉朗 江頭
Yoshiaki Egashira
航太朗 岩谷
Kotaro IWATANI
正樹 阿部
Masaki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2020165031A priority Critical patent/JP2022057001A/en
Publication of JP2022057001A publication Critical patent/JP2022057001A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a pretreatment method for measuring concentration of mercury contained in a hydrocarbon mixture, which allows for making appropriate and simple measurement of mercury concentration in a hydrocarbon mixture even after the hydrocarbon mixture with a wide boiling point range is fractionated.SOLUTION: A pretreatment method for measuring concentration of mercury contained in a hydrocarbon mixture is provided, the method comprising fractionating the hydrocarbon mixture under normal pressure to separate the mixture into multiple fractions, and cooling the obtained fractions to 0°C or below.SELECTED DRAWING: None

Description

本発明は、炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法および炭化水素類混合物に含まれる水銀の濃度測定方法に関する。 The present invention relates to a pretreatment method for measuring the concentration of mercury contained in a hydrocarbon mixture and a method for measuring the concentration of mercury contained in a hydrocarbon mixture.

従来より、試料中の水銀の濃度を測定する装置として、原子吸光分析法を用いた水銀濃度測定装置が利用されている(例えば、特許文献1および特許文献2参照)。
係る水銀濃度測定装置は、測定セルへ導入した試料ガス(試料が液体または固体の場合は、この試料を気化したガス)に光を照射して特定波長の光の吸収量を検出し、試料ガスに含まれる水銀の濃度を求めるものである。
Conventionally, as a device for measuring the concentration of mercury in a sample, a mercury concentration measuring device using an atomic absorption spectrometry method has been used (see, for example, Patent Document 1 and Patent Document 2).
The mercury concentration measuring device irradiates the sample gas introduced into the measuring cell (in the case where the sample is a liquid or solid, the gas obtained by vaporizing this sample) with light to detect the absorption amount of light of a specific wavelength, and detects the sample gas. The concentration of mercury contained in the sample is calculated.

また、試料中の水銀の濃度を測定する装置として、試料をプラズマ化して発生したプラズマ光を分光器で分光し、微量成分の水銀を分析する装置も知られている(例えば、特許文献3および特許文献4参照)。 Further, as an apparatus for measuring the concentration of mercury in a sample, there is also known an apparatus for analyzing plasma light generated by converting a sample into plasma with a spectroscope and analyzing mercury as a trace component (for example, Patent Document 3 and Patent Document 3). See Patent Document 4).

さらに、試料中の水銀の濃度を測定する装置として、原子蛍光分析法を用いた水銀濃度測定装置が提案されるようになっており、係る水銀濃度測定装置においては、測定セルへ導入した試料ガス(試料が液体または固体の場合は、この試料を気化したガス)に特定波長の光を照射して放射される蛍光強度を測定することで試料ガスに含まれる水銀の濃度を算出する。 Further, as a device for measuring the concentration of mercury in a sample, a mercury concentration measuring device using an atomic fluorescence analysis method has been proposed. In such a mercury concentration measuring device, a sample gas introduced into a measurement cell has been proposed. The concentration of mercury contained in the sample gas is calculated by irradiating (when the sample is a liquid or solid, the gas vaporized from this sample) with light of a specific wavelength and measuring the emission intensity.

このような水銀濃度測定装置としては、試料ガス中の水銀を捕集する水銀捕集剤が充填された水銀捕集管と、前記水銀捕集管を加熱して水銀を気化させる加熱気化手段と、前記加熱気化手段で加熱気化された水銀を定量する水銀測定器と、キャリアガスが流れるキャリアガス流路に設けられたバルブと、前記加熱気化手段および前記バルブを制御する制御手段と、を備え、前記制御手段に設定されたパージ設定時に、前記制御手段が、前記加熱気化手段と前記バルブとを制御して、前記水銀捕集管を300℃~800℃に加熱するとともに、前記水銀捕集管にキャリアガスを流して前記水銀捕集管をパージする水銀原子蛍光分析装置が提案されている(特許文献5参照)。 Such a mercury concentration measuring device includes a mercury collecting tube filled with a mercury collecting agent for collecting mercury in a sample gas, and a heating vaporization means for heating the mercury collecting tube to vaporize mercury. A mercury measuring device for quantifying mercury heated and vaporized by the heated vaporizing means, a valve provided in a carrier gas flow path through which a carrier gas flows, and a heating vaporizing means and a control means for controlling the valve are provided. At the time of the purge setting set in the control means, the control means controls the heating vaporization means and the valve to heat the mercury collection tube to 300 ° C. to 800 ° C. and collect the mercury. A mercury atomic fluorescence analyzer has been proposed in which a carrier gas is passed through a tube to purge the mercury collection tube (see Patent Document 5).

特開平6-241990号公報Japanese Unexamined Patent Publication No. 6-241990 特開2002-168773号公報Japanese Unexamined Patent Publication No. 2002-168773 特開2004-53294号公報Japanese Unexamined Patent Publication No. 2004-53294 特開2003-202290号公報Japanese Patent Application Laid-Open No. 2003-202290 特開2015-161636号公報Japanese Unexamined Patent Publication No. 2015-161636

上記水銀濃度測定装置のうち、特に特許文献5に示される水銀原子蛍光分析装置により、水銀濃度の高精度な分析が可能になるとされている。 Among the above-mentioned mercury concentration measuring devices, the mercury atom fluorescence analyzer shown in Patent Document 5 is said to enable highly accurate analysis of the mercury concentration.

ところで、原油等の炭化水素類混合物に含まれる水銀の濃度を測定する場合、上述した方法を用いて原油中の水銀をそのまま分析することも可能であるが、原油は通常各石油留分に分留されることから、各留分に分留した上で各々の留分中の水銀濃度を測定する場合が考えられる。
しかしながら、本発明者等が検討したところ、原油中の水銀をそのまま分析して得られた水銀量と、原油を分留し、各留分中の水銀量に基づいて算出される原油中の水銀量とが必ずしも整合しないことが判明した。
また、そもそも、従来より、原油を分留して得られる各留分中にどのように水銀が分布しているかを測定する方法は知られていなかった。
By the way, when measuring the concentration of mercury contained in a mixture of hydrocarbons such as crude oil, it is possible to analyze the mercury in the crude oil as it is by using the above-mentioned method, but the crude oil is usually divided into each petroleum fraction. Since it is fractionated, it is conceivable to fractionate into each fraction and then measure the mercury concentration in each fraction.
However, as a result of examination by the present inventors, the amount of mercury obtained by analyzing the mercury in the crude oil as it is and the amount of mercury in the crude oil calculated based on the amount of mercury in each fractional distillation obtained by fractionating the crude oil. It turned out that the quantity was not always consistent.
Further, in the first place, conventionally, a method for measuring how mercury is distributed in each fraction obtained by fractionating crude oil has not been known.

このような状況下、本発明は沸点範囲の広い炭化水素混合物を分留処理した場合において、炭化水素混合物中の水銀濃度を適切かつ簡便に測定することができる、炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法および炭化水素類混合物に含まれる水銀の濃度測定方法を提供することを目的とするものである。 Under such circumstances, the present invention can appropriately and easily measure the mercury concentration in a hydrocarbon mixture when a hydrocarbon mixture having a wide boiling point range is fractionated, and the mercury contained in the hydrocarbon mixture can be measured appropriately and easily. It is an object of the present invention to provide a pretreatment method for measuring the concentration of a hydrocarbon and a method for measuring the concentration of mercury contained in a hydrocarbon mixture.

上記目的を達するために本発明者等が鋭意検討したところ、炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法であって、前記炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、得られた各留分を0℃以下の温度条件下で冷却することを特徴とする炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法により上記目的を達成し得ることを見出し、本知見に基づいて本発明を完成するに至ったものである。 As a result of diligent studies by the present inventors in order to achieve the above object, it is a pretreatment method for measuring the concentration of mercury contained in the hydrocarbon mixture, and the hydrocarbon mixture is fractionated under normal pressure. Pretreatment for measuring the concentration of mercury contained in a hydrocarbon mixture, which is characterized by being separated into a plurality of fractions and each of the obtained fractions is cooled under a temperature condition of 0 ° C. or lower. It has been found that the above object can be achieved by the method, and the present invention has been completed based on this finding.

すなわち、本発明は、
(1)炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法であって、
前記炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、
得られた各留分を0℃以下に冷却する
ことを特徴とする炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法、
(2)前記分留処理を、炭化水素類混合物と接触する部分が全てガラス製の部材で構成された蒸留装置により行う上記(1)に記載の前処理方法、
(3)前記留分として、分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有し、留出温度の最低温度と最高温度の差が5~150℃である留分を得る上記(1)または(2)に記載の前処理方法、
(4)炭化水素類混合物に含まれる水銀の濃度測定方法であって、
前記炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、
得られた各留分を0℃以下に冷却した状態で、
各留分中の水銀の濃度を水銀濃度測定装置により測定し、
得られた各留分中の水銀の濃度と前記分留時における各留分の蒸留収率に基づいて、炭化水素類混合物中の水銀の濃度を算出する
ことを特徴とする炭化水素類混合物に含まれる水銀の濃度測定方法、
(5)前記分留処理を、炭化水素類混合物と接触する部分が全てガラス製の部材で構成された蒸留装置により行う上記(4)に記載の測定方法、および
(6)前記留分として、分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有し、留出温度の最低温度と最高温度の差が5~150℃である留分を得る上記(4)または(5)に記載の測定方法
を提供するものである。
That is, the present invention
(1) A pretreatment method for measuring the concentration of mercury contained in a hydrocarbon mixture.
The hydrocarbon mixture is subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions.
A pretreatment method for measuring the concentration of mercury contained in a hydrocarbon mixture, which comprises cooling each of the obtained fractions to 0 ° C. or lower.
(2) The pretreatment method according to (1) above, wherein the fractional distillation treatment is carried out by a distillation apparatus in which the portion in contact with the hydrocarbon mixture is entirely made of a glass member.
(3) The distillate contains at least a part of the components whose distilling temperature at the time of fractionation is 30 ° C. to 140 ° C., and the difference between the minimum temperature and the maximum distilling temperature is 5 to 150 ° C. The pretreatment method according to (1) or (2) above, which obtains a certain fraction.
(4) A method for measuring the concentration of mercury contained in a hydrocarbon mixture.
The hydrocarbon mixture is subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions.
With each fraction obtained cooled to 0 ° C or lower,
The concentration of mercury in each fraction is measured with a mercury concentration measuring device,
A hydrocarbon mixture characterized by calculating the concentration of mercury in the hydrocarbon mixture based on the concentration of mercury in each of the obtained fractions and the distillation yield of each fraction at the time of the fractional distillation. Method for measuring the concentration of contained mercury,
(5) The measuring method according to (4) above, and (6) the fraction. The above (4) for obtaining a fraction containing at least a part of the components having a distillation temperature of 30 ° C. to 140 ° C. and having a difference between the minimum temperature and the maximum temperature of the distillation temperature of 5 to 150 ° C. ) Or (5).

本発明によれば、沸点範囲の広い炭化水素混合物を分留処理した場合において、炭化水素混合物中の水銀濃度を適切かつ簡便に測定することができる、炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法および炭化水素類混合物に含まれる水銀の濃度測定方法を提供することができる。 According to the present invention, when a hydrocarbon mixture having a wide boiling point range is fractionated, the concentration of mercury in the hydrocarbon mixture can be appropriately and easily measured, and the concentration of mercury contained in the hydrocarbon mixture can be determined. A pretreatment method for measurement and a method for measuring the concentration of mercury contained in a hydrocarbon mixture can be provided.

本発明で使用する蒸留装置の形態例を示す概略図である。It is a schematic diagram which shows the morphological example of the distillation apparatus used in this invention.

先ず、本発明に係る炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法について説明する。
本発明に係る前処理方法は、炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法であって、
前記炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、
得られた各留分を0℃以下の温度条件下で冷却する
ことを特徴とするものである。
First, a pretreatment method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention will be described.
The pretreatment method according to the present invention is a pretreatment method for measuring the concentration of mercury contained in a hydrocarbon mixture.
The hydrocarbon mixture is subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions.
It is characterized in that each of the obtained fractions is cooled under a temperature condition of 0 ° C. or lower.

本発明に係る前処理方法において、前処理対象となる炭化水素類混合物としては、原油、コンデンセート、ナフサ、ガソリン組成物、灯油組成物、軽油組成物、軽質分を含む重油組成物、石油精製装置で得られる中間油等が挙げられる。
上記石油精製装置で得られる中間油としては、具体的には、水素化生成装置で得られるナフサや軽油、コーカー装置や流動接触分解装置で得られる分解ナフサや分解軽油等を挙げることができる。
In the pretreatment method according to the present invention, the hydrocarbon mixture to be pretreated includes crude oil, condensate, naphtha, gasoline composition, kerosene composition, light oil composition, heavy oil composition containing light components, and petroleum refining equipment. Examples thereof include intermediate oil obtained in.
Specific examples of the intermediate oil obtained by the petroleum refining apparatus include naphtha and gas oil obtained by a hydrogenation generator, cracked naphtha and cracked gas oil obtained by a coker device and a fluidized catalytic cracking device, and the like.

本発明に係る前処理方法において、前処理対象となる炭化水素類混合物の構成成分としては、特に制限されないが、各種炭化水素化合物の他、含酸素炭化水素化合物、含窒素炭化水素化合物、含硫黄炭化水素化合物等から選ばれる一種以上を挙げることができる。 In the pretreatment method according to the present invention, the constituent components of the hydrogen mixture to be pretreated are not particularly limited, but in addition to various hydrogen compounds, oxygen-containing hydrocarbon compounds, nitrogen-containing hydrocarbon compounds, and sulfur-containing compounds are not particularly limited. One or more selected from hydrocarbon compounds and the like can be mentioned.

本発明に係る前処理方法において、前処理対象となる炭化水素類混合物は、常圧蒸留における初留点(IBP)が、特に制限されないが、-40~180℃であるものが好ましく、-30~160℃であるものがより好ましく、-20~140℃であるものがさらに好ましい。
なお、初留点(IBP)が250℃を超える炭化水素類混合物については、常圧蒸留にて留出させることが困難になるため、本発明における前処理対象としては適し難い。
In the pretreatment method according to the present invention, the hydrocarbon mixture to be pretreated is preferably -40 to 180 ° C., although the initial distillation point (IBP) in atmospheric distillation is not particularly limited. The temperature of about 160 ° C. is more preferable, and the temperature of −20 to 140 ° C. is even more preferable.
A hydrocarbon mixture having an initial distillation point (IBP) of more than 250 ° C. is difficult to distill by atmospheric distillation, and is therefore not suitable as a pretreatment target in the present invention.

本発明に係る前処理方法において、前処理対象となる炭化水素類混合物は、常圧蒸留における終点(EP)が、特に制限されないが、30℃以上であるものが好ましく、50℃以上であるものがより好ましく、70℃以上であるものがさらに好ましい。
常圧蒸留における終点(EP)の上限は特に制限されないが、炭化水素混合物をガスクロ蒸留した場合の測定限界値が750℃であることから、通常、常圧蒸留における終点(EP)は750℃以下となる。
In the pretreatment method according to the present invention, the hydrocarbon mixture to be pretreated has an end point (EP) in atmospheric distillation, which is not particularly limited, but is preferably 30 ° C. or higher, preferably 50 ° C. or higher. Is more preferable, and those having a temperature of 70 ° C. or higher are even more preferable.
The upper limit of the end point (EP) in atmospheric distillation is not particularly limited, but since the measurement limit value when the hydrocarbon mixture is gas chromatographed is 750 ° C, the end point (EP) in atmospheric distillation is usually 750 ° C or lower. Will be.

なお、本出願書類において、IBPおよびEPは、JIS K2254:1998「石油製品-蒸留試験方法」により測定される常圧蒸留における留出温度を意味する。 In addition, in this application document, IBP and EP mean the distillation temperature in atmospheric distillation measured by JIS K2254: 1998 "petroleum product-distillation test method".

本発明に係る前処理方法において、前処理対象となる炭化水素類混合物は、金属水銀(水銀原子)換算での水銀濃度は特に制限はされないが、0.005~3000ng/mlであるものが適当であり、0.01~2000ng/mlであるものがより適当であり、0.05~1500ng/mlであるものがさらに適当である。 In the pretreatment method according to the present invention, the hydrocarbon mixture to be pretreated is not particularly limited in mercury concentration in terms of metallic mercury (mercury atom), but is preferably 0.005 to 3000 ng / ml. It is more suitable that it is 0.01 to 2000 ng / ml, and more suitable that it is 0.05 to 1500 ng / ml.

本発明に係る前処理方法においては、炭化水素類混合物に分留処理を施して複数の留分に分離する。 In the pretreatment method according to the present invention, the hydrocarbon mixture is subjected to a fractional distillation treatment to separate it into a plurality of fractions.

本発明に係る前処理方法においては、炭化水素類混合物に分留処理を施して複数の留分に分離する場合、合計で、2~10の留分に分留することが好ましく、3~10の留分に分留することがより好ましく、4~10の留分に分留することがより好ましい。
上記留分数は、炭化水素類混合物の沸点範囲により規定することが好ましく、具体的には、以下に記載する最低温度と最高温度の差の範囲内となるように各留分を規定した結果、決定される留分数であることが好ましい。
In the pretreatment method according to the present invention, when a hydrocarbon mixture is subjected to a fractional distillation treatment and separated into a plurality of fractions, it is preferable to fractionate into a total of 2 to 10 fractions and 3 to 10 fractions. It is more preferable to fractionate into the distillate of 4 to 10, and it is more preferable to distill into the distillate of 4 to 10.
The above fraction is preferably defined by the boiling point range of the hydrocarbon mixture, and specifically, as a result of defining each fraction so as to be within the range of the difference between the minimum temperature and the maximum temperature described below. It is preferably a determined fraction.

本発明に係る前処理方法においては、炭化水素類混合物に分留処理を施して複数の留分に分離する場合、得られる各留分の蒸留時における留出温度の最低温度と最高温度の差は、5~150℃であることが好ましく、10~100℃であることがより好ましく、20~80℃であることがさらに好ましい。 In the pretreatment method according to the present invention, when a hydrocarbon mixture is subjected to a fractional distillation treatment and separated into a plurality of fractions, the difference between the minimum temperature and the maximum temperature of the distilling temperature at the time of distillation of each obtained fraction is obtained. Is preferably 5 to 150 ° C, more preferably 10 to 100 ° C, and even more preferably 20 to 80 ° C.

本発明に係る前処理方法においては、炭化水素類混合物に分留処理を施して複数の留分に分離する場合、得られる留分として、分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有するものが好ましく、分留時の留出温度が50℃~120℃である成分のうち少なくとも一部を含有するものがより好ましい。 In the pretreatment method according to the present invention, when a hydrocarbon mixture is subjected to a fractional distillation treatment and separated into a plurality of fractions, the resulting distillate has a distillation temperature of 30 ° C. to 140 ° C. at the time of fractional distillation. Those containing at least a part of a certain component are preferable, and those containing at least a part of the components having a distillation temperature of 50 ° C. to 120 ° C. at the time of fractional distillation are more preferable.

本発明に係る前処理方法においては、分留時の分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有し、留出温度の最低温度と最高温度の差が5~150℃である留分を得ることが好ましい。 In the pretreatment method according to the present invention, at least a part of the components whose distilling temperature at the time of fractional distillation is 30 ° C. to 140 ° C. is contained, and the difference between the minimum temperature and the maximum distilling temperature is contained. It is preferable to obtain a fraction having a temperature of 5 to 150 ° C.

水銀の沸点は357℃であることが知られているが、本発明者等が検討したところ、分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有する留分は、構成成分の留出温度が上記沸点とは大幅に異なるにも拘わらず、炭化水素類混合物中の水銀を高濃度に含有することが判明した。
このため、本発明に係る前処理方法において、炭化水素類混合物に分留処理を施して複数の留分に分離する際に、少なくとも留出温度の下限値および上限値が各々上記温度範囲内にある留分分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有する留分を得、係る留分中の水銀の濃度(測定値)と分留時における蒸留収率、さらに必要に応じ各留分の密度および分留対象である炭化水素類混合物の密度を用いて水銀濃度を算出することにより、炭化水素類混合物中の水銀の濃度(概算値)を簡便に算出することができる。
It is known that the boiling point of mercury is 357 ° C, but as a result of examination by the present inventors, a distillate containing at least a part of a component having a distilling temperature of 30 ° C to 140 ° C at the time of fractional distillation is known. Fractional distillation was found to contain a high concentration of mercury in the hydrocarbon mixture, even though the distilling temperature of the constituents was significantly different from the boiling point.
Therefore, in the pretreatment method according to the present invention, at least the lower limit value and the upper limit value of the distilling temperature are within the above temperature range when the fractional distillation treatment is performed on the hydrocarbon mixture to separate them into a plurality of fractions. A fraction containing at least a part of the components whose distilling temperature is 30 ° C to 140 ° C at the time of fractional distillation is obtained, and the concentration (measured value) of mercury in the fraction and the distillation at the time of fractionation are obtained. By calculating the mercury concentration using the yield, and if necessary, the density of each fraction and the density of the fractional distillation target, the concentration of mercury in the fractional distillation mixture (approximate value) can be easily obtained. Can be calculated in.

本発明に係る前処理方法においては、沸点範囲の広い炭化水素混合物を分留処理しても各留分中の水銀濃度を適切に測定することができる。
例えば、炭化水素類混合物を複数の留分に分留したときに、留出温度が30℃~140℃である成分のうち少なくとも一部を含有する留分Fの収率(分留対象となった炭化水素類混合物量に対する質量割合)をa(質量%)とし、上記留分F中の水銀濃度(測定値)をb(ng/ml)とする。また、炭化水素混合物の密度をd(g/ml 15℃)、上記留分Fの密度をd(g/ml 15℃)とする。
この場合、留分Fに含まれる水銀の濃度A(ng/ml)は、下記算出式により算出される。
(ng/ml)={(a/100)×b×(1/d)}×d
留分F以外に留出温度が30℃~140℃である成分を含む留分が存在しない場合は、上記水銀の濃度A(ng/ml)を炭化水素類混合物中の水銀の濃度として概算することができる。
留分F以外にも留出温度が30℃~140℃である成分のうち少なくとも一部を含有する留分が存在する場合は、同様に留分中の水銀の濃度を算出することにより、各留分中の水銀の濃度の和を炭化水素類混合物中の水銀の濃度として概算することができる。
こうして求めた炭化水素類混合物の水銀濃度と蒸留せずに測定した炭化水素類混合物の水銀濃度と比較することで、各留分の水銀濃度が適切に測定できているか、簡便に確認することができる。
In the pretreatment method according to the present invention, the mercury concentration in each fraction can be appropriately measured even if a hydrocarbon mixture having a wide boiling point range is fractionated.
For example, when a hydrocarbon mixture is fractionated into a plurality of fractions, the yield of fraction F1 containing at least a part of the components having a distillation temperature of 30 ° C. to 140 ° C. The mass ratio to the amount of the obtained hydrocarbon mixture is a 1 (mass%), and the mercury concentration (measured value) in the fraction F 1 is b 1 (ng / ml). Further, the density of the hydrocarbon mixture is d 0 (g / ml 15 ° C.), and the density of the fraction F 1 is d 1 (g / ml 15 ° C.).
In this case, the concentration A 1 (ng / ml) of mercury contained in the fraction F 1 is calculated by the following formula.
A 1 (ng / ml) = {(a 1/100 ) x b 1 x (1 / d 1 )} x d 0
When there is no fraction containing a component having a distillation temperature of 30 ° C to 140 ° C other than the fraction F 1 , the above-mentioned mercury concentration A 1 (ng / ml) is used as the concentration of mercury in the hydrocarbon mixture. Can be estimated.
If there is a distillate containing at least a part of the components having a distilling temperature of 30 ° C. to 140 ° C. other than the distillate F1, the concentration of mercury in the distillate can be calculated in the same manner. The sum of the concentrations of mercury in each fraction can be estimated as the concentration of mercury in the hydrocarbon mixture.
By comparing the mercury concentration of the hydrocarbon mixture thus obtained with the mercury concentration of the hydrocarbon mixture measured without distillation, it is possible to easily confirm whether the mercury concentration of each distillate can be appropriately measured. can.

なお、本発明に係る前処理方法において、前処理対象となる炭化水素類混合物中に含有される水銀成分が、ジメチル水銀やジエチル水銀等の有機水銀である場合、これ等は分留時に加熱されて金属水銀(水銀原子)を生成する。
このため、炭化水素類混合物中に含有される水銀の化合物形態に拘わらず、得られる各留分中においては、専ら金属水銀(水銀原子)として含有されると考えられる。
In the pretreatment method according to the present invention, when the mercury component contained in the hydrocarbon mixture to be pretreated is organic mercury such as dimethylmercury or diethylmercury, these are heated during fractional distillation. Generates metallic mercury (mercury atom).
Therefore, regardless of the compound form of mercury contained in the hydrocarbon mixture, it is considered that it is contained exclusively as metallic mercury (mercury atom) in each of the obtained fractions.

本発明に係る前処理方法において、分留処理する際の蒸留装置の種類には特に制限はなく、回分式(バッチ式)蒸留装置、連続式蒸留装置等を用いることができる。 In the pretreatment method according to the present invention, the type of distillation apparatus for fractional distillation treatment is not particularly limited, and batch type (batch type) distillation apparatus, continuous distillation apparatus and the like can be used.

本発明に係る前処理方法においては、前記分留処理を、炭化水素類混合物と接触する部分が全てガラス製の部材で構成された蒸留装置により行うことが好ましい。 In the pretreatment method according to the present invention, it is preferable that the fractional distillation treatment is carried out by a distillation apparatus in which the portion in contact with the hydrocarbon mixture is entirely made of a glass member.

図1は、上記蒸留装置の一例を示す概略図である。
図1に示す蒸留装置1は、内部に炭化水素類混合物が装入された温度センサー付フラスコFと、フラスコFの下部に配置されフラスコFを加熱する温度センサー付マントルヒーターHと、マントルヒーターHにより加熱され、気化された炭化水素類を分留処理する温度センサー付精留カラムRと、精留カラムRから留出する留分を冷却する冷却循環器CYを備えたコンデンサーCと、コンデンサーCで冷却されたガス状の留分が流入するコールドトラップTと、同じくコンデンサーCで冷却された液状の留分がバッファ容器Bを介して流下し、保持する受器Iとを有している。
FIG. 1 is a schematic view showing an example of the distillation apparatus.
The distillation apparatus 1 shown in FIG. 1 includes a flask F with a temperature sensor in which a hydrocarbon mixture is charged, a mantle heater H with a temperature sensor arranged below the flask F to heat the flask F, and a mantle heater H. A rectifying column R with a temperature sensor that fractionates the vaporized hydrocarbons, a condenser C equipped with a cooling circulator CY that cools the distillate distilled from the rectifying column R, and a condenser C. It has a cold trap T into which the gaseous fraction cooled in the above flow flows in, and a receiver I in which the liquid fraction also cooled by the condenser C flows down through the buffer container B and is held.

図1に示す蒸留装置1を構成する各部材において、炭化水素類混合物と接触する部材(フラスコF、精留カラムR、コンデンサーC、コールドトラップT、バッファ容器B、受器I)は全てガラス製部材からなり、各部材間は摺り合わせジョイントにより構成され、精留カラムRとコンデンサーC間に配置される留出弁VやコックK等もガラス製のもので構成されている。 In each member constituting the distillation apparatus 1 shown in FIG. 1, the members (flask F, rectification column R, condenser C, cold trap T, buffer container B, receiver I) that come into contact with the hydrocarbon mixture are all made of glass. It is made of members, and each member is formed of a ground joint, and the distillation valve V, the cock K, and the like arranged between the rectification column R and the condenser C are also made of glass.

このように、本発明に係る前処理方法において、炭化水素類混合物と接触する部分が全てガラス製の部材で構成された蒸留装置を用いて分留処理することにより、水銀成分の吸着を抑制し、得られる各留分中における水銀のロス(減損)を低減しつつ好適に分留処理することができる。 As described above, in the pretreatment method according to the present invention, the adsorption of mercury components is suppressed by fractional distillation using a distillation apparatus in which all the portions in contact with the hydrocarbon mixture are made of glass members. The fractional distillation treatment can be suitably performed while reducing the loss (impairment) of mercury in each of the obtained fractions.

本発明に係る前処理方法においては、炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、各留分中における水銀の濃度を適切かつ簡便に測定することができる。 In the pretreatment method according to the present invention, the hydrocarbon mixture is subjected to fractional distillation treatment under normal pressure to separate it into a plurality of fractions, and the concentration of mercury in each fraction can be appropriately and easily measured. ..

本発明に係る前処理方法においては、分留処理して得られた各留分を0℃以下に冷却する。 In the pretreatment method according to the present invention, each fraction obtained by fractional distillation is cooled to 0 ° C. or lower.

本発明に係る前処理方法において、分留処理して得られた各留分は、0℃以下、好ましく-100~0℃、より好ましくは-80~0℃に冷却する。 In the pretreatment method according to the present invention, each fraction obtained by fractional distillation is cooled to 0 ° C. or lower, preferably -100 to 0 ° C., more preferably -80 to 0 ° C.

本発明に係る前処理方法において、分留処理して得られた各留分を冷却する方法は特に制限されない。 In the pretreatment method according to the present invention, the method for cooling each fraction obtained by the fractional distillation treatment is not particularly limited.

例えば、図1に示す蒸留装置を用いて分留処理する場合、分留処理して得られた各留分を収容するコールドトラップTや受器Iを、冷却剤を収容したデュワー瓶D中に浸漬することで、留出する各留分を好適に冷却することができる。 For example, in the case of fractional distillation using the distillation apparatus shown in FIG. 1, a cold trap T or a receiver I containing each fraction obtained by the fractional distillation is placed in a dewar bottle D containing a coolant. By immersing, each distillate can be suitably cooled.

上記冷却剤としては特に制限されず、例えばドライアイスや、エタノール等の各種有機溶媒にドライアイスを加えたもの等を挙げることができる。 The cooling agent is not particularly limited, and examples thereof include dry ice and those obtained by adding dry ice to various organic solvents such as ethanol.

上述したように、水銀の沸点は357℃であることが知られているが、本発明者等が検討したところ、実際には上記沸点よりも大幅に低い温度で水銀を含む留分が留出することが判明した。
本発明においては、分留処理して得られた各留分を0℃以下に冷却することにより、得られた各留分からの水銀の揮散を好適に抑制し、水銀濃度の測定時における分析誤差を好適に抑制することができる。
As described above, the boiling point of mercury is known to be 357 ° C., but as a result of examination by the present inventors, a distillate containing mercury is actually distilled at a temperature significantly lower than the above boiling point. It turned out to be.
In the present invention, by cooling each fraction obtained by the fractional distillation treatment to 0 ° C. or lower, the volatilization of mercury from each obtained fraction is suitably suppressed, and an analysis error at the time of measuring the mercury concentration is obtained. Can be suitably suppressed.

本発明によれば、沸点範囲の広い炭化水素混合物を分留処理した場合において、炭化水素混合物中の水銀濃度を適切かつ簡便に測定することができる、炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法を提供することができる。 According to the present invention, when a hydrocarbon mixture having a wide boiling point range is fractionated, the concentration of mercury in the hydrocarbon mixture can be appropriately and easily measured, and the concentration of mercury contained in the hydrocarbon mixture can be determined. A pretreatment method for measurement can be provided.

次に、本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法について説明する。
本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法は、
前記炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、
得られた各留分を0℃以下に冷却した状態で、
各留分中の水銀の濃度を水銀濃度測定装置により測定し、
得られた各留分中の水銀の濃度と前記分留時における各留分の蒸留収率に基づいて、炭化水素類混合物中の水銀の濃度を算出する
ことを特徴とするものである。
Next, a method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention will be described.
The method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention is as follows.
The hydrocarbon mixture is subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions.
With each fraction obtained cooled to 0 ° C or lower,
The concentration of mercury in each fraction is measured with a mercury concentration measuring device,
It is characterized in that the concentration of mercury in a hydrocarbon mixture is calculated based on the concentration of mercury in each of the obtained fractions and the distillation yield of each fraction at the time of the fractional distillation.

本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法において、炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離する工程と、得られた各留分を0℃以下に冷却する工程の詳細は、本発明に係る炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法で説明したとおりである。 In the method for measuring the concentration of mercury contained in a hydrocarbon mixture according to the present invention, a step of performing a fractional distillation treatment on a hydrocarbon mixture under normal pressure to separate it into a plurality of fractions, and 0 for each obtained fraction. The details of the step of cooling to ℃ or less are as described in the pretreatment method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention.

本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法においては、分留処理して得られた各留分を0℃以下に冷却した状態で、各留分中の水銀の濃度を水銀濃度測定装置により測定する。 In the method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention, the concentration of mercury in each fraction is measured in a state where each fraction obtained by fractional distillation is cooled to 0 ° C. or lower. Measure with a concentration measuring device.

本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法において、各留分中の水銀の濃度を水銀濃度測定装置により測定する方法は、特に制限されず、公知の方法を採用することができる。 In the method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention, the method for measuring the concentration of mercury in each fraction with a mercury concentration measuring device is not particularly limited, and a known method may be adopted. can.

本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法において、各留分中の水銀の濃度を測定する水銀濃度測定装置としては、原子蛍光分析法を用いた水銀濃度測定装置が好ましい。 In the method for measuring the concentration of mercury contained in a hydrocarbon mixture according to the present invention, a mercury concentration measuring device using an atomic fluorescence analysis method is preferable as the mercury concentration measuring device for measuring the concentration of mercury in each fraction.

本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法において、原子蛍光分析法を用いた水銀濃度測定装置を用いて各留分中の水銀濃度を測定する場合、ASTM規格:UOP938-10(Total Mercury and Mercury Species in Liquid Hydrocarbons)に規定する方法により測定することが好ましい。 In the method for measuring the concentration of mercury contained in a hydrocarbon mixture according to the present invention, when the mercury concentration in each distillate is measured using a mercury concentration measuring device using an atomic fluorescence analysis method, ASTM standard: UOP938-10. It is preferable to measure by the method specified in (Total Mercury and Mercury Species in Liquid Hydrocarbons).

本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法においては、上記測定により得られた各留分中の水銀濃度と上記分留時における各留分の蒸留収率に基づき、さらに必要に応じ各留分の密度および分留対象である炭化水素類混合物の密度を用いて、炭化水素類混合物中の水銀の濃度を算出する。 In the method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention, it is further necessary based on the concentration of mercury in each fraction obtained by the above measurement and the distillation yield of each fraction at the time of the above fractional distillation. The concentration of mercury in the hydrocarbon mixture is calculated using the density of each fraction and the density of the hydrocarbon mixture to be fractionated.

例えば、炭化水素類混合物を4つの留分に分留したときの各留分の収率(分留対象となった炭化水素類混合物量に対する質量割合)を、各々、a(質量%)、a(質量%)、a(質量%)およびa(質量%)とし(ただし、a+a+a+a=100質量%)、また、各留分中の水銀濃度(測定値)を、各々、b(ng/ml)、b(ng/ml)、b(ng/ml)およびb(ng/ml)とする。また、炭化水素混合物の密度をd(g/ml 15℃)、上記各留分の密度を、各々、d(g/ml 15℃)、d(g/ml 15℃)、d(g/ml 15℃)、およびd(g/ml 15℃)とする。
この場合、炭化水素類混合物に含まれる水銀の濃度A(ng/ml)は、下記算出式により算出される。
A(ng/ml)={(a/100)×b×(1/d)+(a/100)×b×(1/d)+(a/100)×b×(1/d)+(a/100)×b×(1/d)}×d
For example, the yield of each fraction (mass ratio to the amount of the hydrocarbon mixture to be fractionated) when the hydrocarbon mixture is fractionated into four fractions is a 1 (mass%), respectively. a 2 (% by mass), a 3 (% by mass) and a 4 (% by mass) (however, a 1 + a 2 + a 3 + a 4 = 100% by mass), and the mercury concentration in each fraction (measured value). ) Are b 1 (ng / ml), b 2 (ng / ml), b 3 (ng / ml) and b 4 (ng / ml), respectively. The density of the hydrocarbon mixture was d 0 (g / ml 15 ° C), and the density of each of the above fractions was d 1 (g / ml 15 ° C), d 2 (g / ml 15 ° C), d 3 respectively. (G / ml 15 ° C.) and d 4 (g / ml 15 ° C.).
In this case, the concentration A (ng / ml) of mercury contained in the hydrocarbon mixture is calculated by the following formula.
A (ng / ml) = {(a 1/100 ) x b 1 x (1 / d 1 ) + (a 2/100 ) x b 2 x (1 / d 2 ) + (a 3/100 ) x b 3 x (1 / d 3 ) + (a 4/100) x b 4 x (1 / d 4 )} x d 0

本発明においては、このようにして炭化水素類混合物に含まれる水銀の濃度を測定することができる。 In the present invention, the concentration of mercury contained in the hydrocarbon mixture can be measured in this way.

本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法においては、炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、得られた各留分を0℃以下に冷却することにより、得られた各留分からの水銀の揮散を好適に抑制し、水銀の濃度測定時における分析誤差を好適に抑制することができる。
このため、本発明に係る炭化水素類混合物に含まれる水銀の濃度測定方法においては、沸点範囲の広い炭化水素混合物を分留処理した場合においても、炭化水素混合物中の水銀濃度を適切かつ簡便に測定することができる。
In the method for measuring the concentration of mercury contained in a hydrocarbon mixture according to the present invention, the hydrocarbon mixture is subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions, and each fraction obtained is separated into a plurality of fractions at 0 ° C. By cooling to the following, the volatilization of mercury from each of the obtained fractions can be suitably suppressed, and the analysis error at the time of measuring the concentration of mercury can be suitably suppressed.
Therefore, in the method for measuring the concentration of mercury contained in the hydrocarbon mixture according to the present invention, the concentration of mercury in the hydrocarbon mixture can be appropriately and easily adjusted even when the hydrocarbon mixture having a wide boiling point range is fractionated. Can be measured.

以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれに制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

(実施例1)
炭化水素類混合物としてサンプルA(15℃密度0.7979g/cm)を用い、図1に示す形態を有するガラス製オルダーショウ蒸留装置(精留カラムの理論段数5段)を用いて、留分1(留出温度:初留点以上30℃未満)、留分2(留出温度:30℃~80℃)、留分3(留出温度:80℃を超え140℃以下)に蒸留分離し、フラスコに残る残渣をフラスコ残渣として、各留分を収容する受器ないしコールドトラップを、冷却剤としてドライアイスを投入したエタノールを収容したデュアー瓶内(温度:-66.5℃)で冷却保管した。
蒸留終了後、冷却保管した各留分を各々デュアー瓶から取り出し、水銀濃度測定装置(日本インスツルメンツ社製PE-1000)を用い、ASTM規格 UOP938:10により各留分中の水銀の濃度を測定した。
その結果、留分1およびフラスコ残渣においては、水銀濃度はいずれも定量下限値以下であることから、水銀濃度が0.00ng/mlであるとみなした。留分2および3においては、水銀濃度がそれぞれ7ng/mlおよび9ng/mlであった。また、留分2および留分3の15℃密度は、それぞれ0.6629g/mlおよび0.7366g/mlであった。
留分3およびフラスコ残渣の収率は、仕込み試料(蒸留処理に供したサンプルA量)に対して、それぞれ8.4質量%、15.9質量%であることから、蒸留処理に供したサンプルA中の水銀濃度は2.3ng/ml{0.00(ng/g)+7(ng/ml)×(1/0.6629(ml/g))×0.084×0.7979(g/ml)+9ng/ml×(1/0.7366(ml/g))×0.159×0.7979(g/ml)+0.00(ng/g)}と算出された。結果を表1に示す。
(Example 1)
Using sample A (15 ° C. density 0.7979 g / cm 3 ) as a hydrocarbon mixture and using a glass older-show distillation apparatus having the form shown in FIG. 1 (the number of theoretical stages of a rectification column is 5), fraction 1 Distillation separation into (distillation temperature: above the initial distillation point and below 30 ° C.), fraction 2 (distillation temperature: 30 ° C. to 80 ° C.), and fraction 3 (distillation temperature: over 80 ° C. and below 140 ° C.). The residue remaining in the flask was used as the flask residue, and the receiver or cold trap containing each fraction was cooled and stored in a dual bottle (temperature: -66.5 ° C.) containing ethanol containing dry ice as a coolant. ..
After the distillation was completed, each fraction that had been cooled and stored was taken out from the Dewar bottle, and the concentration of mercury in each fraction was measured according to the ATM standard UOP938: 10 using a mercury concentration measuring device (PE-1000 manufactured by Nippon Instruments Co., Ltd.). ..
As a result, since the mercury concentration in the fraction 1 and the flask residue was below the lower limit of quantification, the mercury concentration was considered to be 0.00 ng / ml. In fractions 2 and 3, the mercury concentrations were 7 ng / ml and 9 ng / ml, respectively. The 15 ° C. densities of fraction 2 and fraction 3 were 0.6629 g / ml and 0.7366 g / ml, respectively.
Since the yields of the distillate 3 and the flask residue were 8.4% by mass and 15.9% by mass, respectively, with respect to the charged sample (the amount of sample A subjected to the distillation treatment), the samples subjected to the distillation treatment were used. The mercury concentration in A is 2.3 ng / ml {0.00 (ng / g) + 7 (ng / ml) × (1 / 0.6629 (ml / g)) × 0.084 × 0.7979 (g / g / It was calculated as (ml) + 9 ng / ml x (1 / 0.7366 (ml / g)) x 0.159 x 0.7979 (g / ml) + 0.00 (ng / g)}. The results are shown in Table 1.

(実施例2)
炭化水素類混合物としてサンプルB(15℃密度0.9207g/cm)を用い、ドライアイスの投入量を調整して温度制御したデュアー瓶(温度―75.3℃)を用いて冷却保管した以外は、実施例1と同様の方法で炭化水素類混合物に含まれる水銀の濃度を測定した。
その結果、留分1(留出温度:初留点以上30℃未満)およびフラスコ残渣においては、水銀濃度はいずれも定量下限値以下であることから、水銀濃度が0.00ng/mlであるとみなした。また、留分2および3においては、水銀濃度がそれぞれ27ng/ml、70ng/mlであった。また留分3およびフラスコ残渣の15℃密度は、それぞれ0.6555g/mlおよび0.7362g/mlであった。
留分3およびフラスコ残渣の収率は、仕込み試料(蒸留処理に供したサンプルB量)に対して、それぞれ7.4質量%、5.3質量%であることから、蒸留処理に供したサンプルB中の水銀濃度は7.4ng/ml{(0.00(ng/g)+27(ng/ml)×(1/0.6555(ml/g))×0.074×0.9207(g/ml)+70(ng/ml)×(1/0.7362(ml/g))×0.053×0.9207(g/ml)+0.00(ng/g)}と算出された。結果を表1に示す。
(Example 2)
Except for using sample B (15 ° C. density 0.9207 g / cm 3 ) as a hydrocarbon mixture and cooling and storing using a dual bottle (temperature -75.3 ° C.) whose temperature was controlled by adjusting the amount of dry ice input. Measured the concentration of mercury contained in the hydrocarbon mixture by the same method as in Example 1.
As a result, the mercury concentration in the distillate 1 (distillation temperature: above the initial distillate point and below 30 ° C.) and the flask residue are both below the lower limit of quantification, so that the mercury concentration is 0.00 ng / ml. I considered it. In the fractions 2 and 3, the mercury concentrations were 27 ng / ml and 70 ng / ml, respectively. The 15 ° C. densities of the fraction 3 and the flask residue were 0.6555 g / ml and 0.7362 g / ml, respectively.
Since the yields of the distillate 3 and the flask residue were 7.4% by mass and 5.3% by mass, respectively, with respect to the charged sample (the amount of sample B subjected to the distillation treatment), the samples subjected to the distillation treatment were used. The mercury concentration in B is 7.4 ng / ml {(0.00 (ng / g) +27 (ng / ml) × (1 / 0.6555 (ml / g)) × 0.074 × 0.9207 (g). It was calculated as / ml) +70 (ng / ml) × (1 / 0.7362 (ml / g)) × 0.053 × 0.9207 (g / ml) +0.00 (ng / g)}. Is shown in Table 1.

(比較例1)
実施例1において、分留処理して得られた各留分をデュアー瓶内で-66.5℃で冷却保管することに代えて、冷蔵庫(温度:3.0℃)で冷却保管した以外は、実施例1と同様にして炭化水素類混合物中の水銀の濃度を測定した。
しかしながら、分留処理して得られた留分1~フラスコ残渣の水銀濃度はいずれも定量下限以下となり、水銀濃度を求めることはできなかった。結果を表1に示す。
(Comparative Example 1)
In Example 1, each fraction obtained by the fractional distillation treatment was cooled and stored in a refrigerator (temperature: 3.0 ° C.) instead of being cooled and stored in a Dewar bottle at -66.5 ° C. , The concentration of mercury in the hydrocarbon mixture was measured in the same manner as in Example 1.
However, the mercury concentration of the fraction 1 to the flask residue obtained by the fractional distillation treatment was below the lower limit of quantification, and the mercury concentration could not be determined. The results are shown in Table 1.

(比較例2)
実施例2において、分留処理して得られた各留分をデュアー瓶内で―75.3℃で冷却保管することに代えて、冷蔵庫(温度:3.0℃)で冷却保管した以外は、実施例2と同様にして炭化水素類混合物中の水銀の濃度を測定した。
しかしながら、分留処理して得られた留分1~フラスコ残渣の水銀濃度はいずれも定量下限以下となり、水銀濃度を求めることはできなかった。結果を表1に示す。
(Comparative Example 2)
In Example 2, except that each fraction obtained by the fractional distillation treatment was cooled and stored in a refrigerator (temperature: 3.0 ° C) instead of being cooled and stored in a Dewar bottle at −75.3 ° C. , The concentration of mercury in the hydrocarbon mixture was measured in the same manner as in Example 2.
However, the mercury concentration of the fraction 1 to the flask residue obtained by the fractional distillation treatment was below the lower limit of quantification, and the mercury concentration could not be determined. The results are shown in Table 1.

なお、実施例1および比較例1で用いたサンプルAを分留処理および冷却処理する前処理を施すことなくそのまま水銀濃度測定装置(日本インスツルメンツ社製PE-1000)を用い、ASTM規格 UOP938:10により水銀濃度を測定したところ、2.6ng/mlであった。
また、実施例2および比較例2で用いたサンプルBを分留処理および冷却処理する前処理を施すことなくそのまま水銀濃度測定装置(日本インスツルメンツ社製PE-1000)を用い、ASTM規格 UOP938:10により水銀濃度を測定したところ、8.9ng/mlであった。
結果を表1に併記する。
In addition, the mercury concentration measuring device (PE-1000 manufactured by Nippon Instruments Co., Ltd.) was used as it was without performing the pretreatment for fractional distillation and cooling treatment of the sample A used in Example 1 and Comparative Example 1, and the ASTM standard UOP938: 10 was used. The mercury concentration was measured by 2.6 ng / ml.
Further, the mercury concentration measuring device (PE-1000 manufactured by Nippon Instruments Co., Ltd.) was used as it was without performing the pretreatment for fractional distillation and cooling treatment of the sample B used in Example 2 and Comparative Example 2, and the ATM standard UOP938: 10 was used. When the mercury concentration was measured with 8.9 ng / ml.
The results are also shown in Table 1.

Figure 2022057001000001
Figure 2022057001000001

表1より、実施例1および実施例2においては、炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、得られた各留分を0℃以下に冷却する前処理を施している。係る前処理を施した各留分の水銀濃度から算出した全水銀濃度は、上記前処理を施すことなく測定された全水銀濃度と、ほぼ一致していることから、沸点範囲の広い炭化水素混合物を分留処理した場合においても、炭化水素類混合物中に含まれる水銀濃度を適切かつ簡便に測定できていることが分かる。 From Table 1, in Examples 1 and 2, the hydrocarbon mixture was subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions, and each of the obtained fractions was cooled to 0 ° C. or lower. It has been processed. Since the total mercury concentration calculated from the mercury concentration of each fraction subjected to the pretreatment is almost the same as the total mercury concentration measured without the pretreatment, it is a hydrocarbon mixture having a wide boiling point range. It can be seen that the concentration of mercury contained in the hydrocarbon mixture can be appropriately and easily measured even when the fractional distillation treatment is performed.

一方、表1より、比較例1~比較例2においては、分留処理および得られた各留分を0℃以下に冷却する前処理を施していないことから、各分留の水銀濃度が適切に測定できないことが分かる。 On the other hand, from Table 1, in Comparative Examples 1 and 2, since the fractional distillation treatment and the pretreatment for cooling the obtained fractions to 0 ° C. or lower were not performed, the mercury concentration of each fractional distillation was appropriate. It turns out that it cannot be measured.

本発明によれば、沸点範囲の広い炭化水素混合物を分留処理した場合においても、炭化水素混合物中の水銀濃度を適切かつ簡便に測定することができる、炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法および炭化水素類混合物に含まれる水銀の濃度測定方法を提供することができる。 According to the present invention, the concentration of mercury contained in a hydrocarbon mixture can be appropriately and easily measured even when a hydrocarbon mixture having a wide boiling point range is fractionated. A pretreatment method for measuring a hydrocarbon and a method for measuring the concentration of mercury contained in a hydrocarbon mixture can be provided.

F:温度センサー付フラスコ
H:温度センサー付マントルヒーター
R:温度センサー付精留カラム
C:コンデンサー
T:コールドトラップ
B:バッファ容器B
I:受器
V:留出弁
K:コック
F: Flask with temperature sensor H: Mantle heater with temperature sensor R: Tightening column with temperature sensor C: Condenser T: Cold trap B: Buffer container B
I: Receiver V: Distillation valve K: Cock

Claims (6)

炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法であって、
前記炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、
得られた各留分を0℃以下に冷却する
ことを特徴とする炭化水素類混合物に含まれる水銀の濃度を測定するための前処理方法。
A pretreatment method for measuring the concentration of mercury contained in a hydrocarbon mixture.
The hydrocarbon mixture is subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions.
A pretreatment method for measuring the concentration of mercury contained in a hydrocarbon mixture, which comprises cooling each of the obtained fractions to 0 ° C. or lower.
前記分留処理を、炭化水素類混合物と接触する部分が全てガラス製の部材で構成された蒸留装置により行う請求項1に記載の前処理方法。 The pretreatment method according to claim 1, wherein the fractional distillation treatment is carried out by a distillation apparatus in which the portion in contact with the hydrocarbon mixture is entirely made of a glass member. 前記留分として、分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有し、留出温度の最低温度と最高温度の差が5~150℃である留分を得る請求項1または請求項2に記載の前処理方法。 The fraction contains at least a part of the components whose distilling temperature is 30 ° C. to 140 ° C. at the time of fractional distillation, and the difference between the minimum temperature and the maximum distilling temperature is 5 to 150 ° C. The pretreatment method according to claim 1 or 2. 炭化水素類混合物に含まれる水銀の濃度測定方法であって、
前記炭化水素類混合物に常圧下で分留処理を施して複数の留分に分離し、
得られた各留分を0℃以下に冷却した状態で、
各留分中の水銀の濃度を水銀濃度測定装置により測定し、
得られた各留分中の水銀の濃度と前記分留時における各留分の蒸留収率から、炭化水素類混合物中の水銀の濃度を算出する
ことを特徴とする炭化水素類混合物に含まれる水銀の濃度測定方法。
A method for measuring the concentration of mercury contained in a hydrocarbon mixture.
The hydrocarbon mixture is subjected to a fractional distillation treatment under normal pressure to separate it into a plurality of fractions.
With each fraction obtained cooled to 0 ° C or lower,
The concentration of mercury in each fraction is measured with a mercury concentration measuring device,
It is contained in a hydrocarbon mixture characterized by calculating the concentration of mercury in the hydrocarbon mixture from the concentration of mercury in each of the obtained fractions and the distillation yield of each fraction at the time of the fractional distillation. Method for measuring the concentration of mercury.
前記分留処理を、炭化水素類混合物と接触する部分が全てガラス製の部材で構成された蒸留装置により行う請求項4に記載の測定方法。 The measuring method according to claim 4, wherein the fractional distillation treatment is carried out by a distillation apparatus in which the portion in contact with the hydrocarbon mixture is entirely made of a glass member. 前記留分として、分留時の留出温度が30℃~140℃である成分のうち少なくとも一部を含有し、留出温度の最低温度と最高温度の差が5~150℃である留分を得る請求項4または請求項5に記載の測定方法。 The fraction contains at least a part of the components whose distilling temperature is 30 ° C. to 140 ° C. at the time of fractional distillation, and the difference between the minimum temperature and the maximum distilling temperature is 5 to 150 ° C. The measuring method according to claim 4 or 5.
JP2020165031A 2020-09-30 2020-09-30 Pretreatment method for measuring concentration of mercury contained in hydrocarbon mixture, and method of measuring concentration of mercury contained in hydrocarbon mixture Pending JP2022057001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165031A JP2022057001A (en) 2020-09-30 2020-09-30 Pretreatment method for measuring concentration of mercury contained in hydrocarbon mixture, and method of measuring concentration of mercury contained in hydrocarbon mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165031A JP2022057001A (en) 2020-09-30 2020-09-30 Pretreatment method for measuring concentration of mercury contained in hydrocarbon mixture, and method of measuring concentration of mercury contained in hydrocarbon mixture

Publications (1)

Publication Number Publication Date
JP2022057001A true JP2022057001A (en) 2022-04-11

Family

ID=81110231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165031A Pending JP2022057001A (en) 2020-09-30 2020-09-30 Pretreatment method for measuring concentration of mercury contained in hydrocarbon mixture, and method of measuring concentration of mercury contained in hydrocarbon mixture

Country Status (1)

Country Link
JP (1) JP2022057001A (en)

Similar Documents

Publication Publication Date Title
US20200088709A1 (en) Volatile Hydrocarbon Separation and Analysis Methods
JP3878686B2 (en) Method for characterizing raw materials for catalytic cracking process equipment
US5602755A (en) Method for predicting chemical or physical properties of complex mixtures
NO322581B1 (en) Procedure for preparing lubricating oils
NO320623B1 (en) Process for preparing blend products
WO2000039561A1 (en) Automatic analysis method of crude petroleum oils using spectroscopy
Gazulla et al. High precision measurement of silicon in naphthas by ICP-OES using isooctane as diluent
Chainet et al. Characterization of silicon species issued from PDMS degradation under thermal cracking of hydrocarbons: Part 1–Gas samples analysis by gas chromatography-time of flight mass spectrometry
KR20180114898A (en) Method for detecting and quantifying oxygen in oxidizing compounds
US3861874A (en) Total recovery thermal analysis system
JP2022057001A (en) Pretreatment method for measuring concentration of mercury contained in hydrocarbon mixture, and method of measuring concentration of mercury contained in hydrocarbon mixture
Muller et al. Narrow distillation cuts for an improved characterisation of crude oil: an insight on heteroatoms in heavy fraction molecules
Shishkin A new quick method of determining the group hydrocarbon composition of crude oils and oil heavy residues based on their oxidative distillation (cracking) as monitored by differential scanning calorimetry and thermogravimetry
US5644129A (en) Direct analysis of paraffin and naphthene types in hydrocarbon
Sánchez et al. Silicon speciation in light petroleum products using gas chromatography coupled to ICP-MS/MS
Lavrova et al. Comparison of the coking products from heavy petroleum tars and heavy catalytic-cracking gas-oil
JPH0750101B2 (en) Method and apparatus for measuring cetane number or cetane index
US2009814A (en) Method and apparatus for analyzing liquid and gas
Buteyn et al. Multielement simulated distillation by capillary GC-MED
EP0248694B1 (en) Method for determining the composition of a mixture of hydrocarbons in dependence upon the boiling point of its constituents
RU2005123379A (en) DEVICE AND METHOD FOR DETERMINING AND REGULATING THE RELATIONSHIP OF HYDROGEN TO CARBON IN A LIQUID FRACTION OF THE PYROLYSIS PRODUCT
Srića et al. Determination of hydrocarbon type distribution of coking gasolines by nmr spectrometry
Skakovskii et al. Application of NMR spectroscopy for analysis of the composition of pine needle essential oil
Arnold et al. Unusual multilayer relaxation of the Mo (111) surface induced by hydrogen
JP3445957B2 (en) Residue analysis in liquefied gas