JP2022056565A - Arc-welding control method - Google Patents

Arc-welding control method Download PDF

Info

Publication number
JP2022056565A
JP2022056565A JP2020164377A JP2020164377A JP2022056565A JP 2022056565 A JP2022056565 A JP 2022056565A JP 2020164377 A JP2020164377 A JP 2020164377A JP 2020164377 A JP2020164377 A JP 2020164377A JP 2022056565 A JP2022056565 A JP 2022056565A
Authority
JP
Japan
Prior art keywords
feed
period
signal
setting signal
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020164377A
Other languages
Japanese (ja)
Inventor
賢人 高田
Kento Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2020164377A priority Critical patent/JP2022056565A/en
Publication of JP2022056565A publication Critical patent/JP2022056565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

To make it possible to achieve high-quality welding when performing semi-automatic welding in forward/reverse feed arc-welding.SOLUTION: According to arc-welding control method, a welding wire is fed by push-pull feed control by a push side feed motor which performs forward rotation Fwp and a pull side feed motor which repeats forward rotation and reverse rotation, an intermediate wire storage part, which temporally accommodates the welding wire, is provided between feed routes of the push side feed motor and the pull side feed motor, a pull feed speed Fw of the pull side feed motor is corrected on the basis of a capacity of the intermediate wire storage part, and welding is performed. In the arc-welding control method, a forward feed deceleration period Tsd and/or a reverse feed deceleration period Trd of the pull feed speed Fw is corrected and controlled on the basis of the capacity of the intermediate wire storage part. By this, even if semi-automatic welding is performed, a push feed speed Fwp and the pull feed speed Fw become substantially equal, and therefore, high-quality welding can be achieved.SELECTED DRAWING: Figure 2

Description

本発明は、正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給して溶接するアーク溶接制御方法に関するものである。 The present invention relates to an arc welding control method in which a welding wire is fed and welded by push-pull feed control by a push-side feed motor that rotates forward and a pull-side feed motor that repeats forward rotation and reverse rotation. It is a thing.

一般的な消耗電極式アーク溶接では、消耗電極である溶接ワイヤを一定速度で送給し、溶接ワイヤと母材との間にアークを発生させて溶接が行なわれる。消耗電極式アーク溶接では、溶接ワイヤと母材とが短絡期間とアーク期間とを交互に繰り返す溶接状態になることが多い。 In general consumable electrode type arc welding, a welding wire, which is a consumable electrode, is fed at a constant speed, and an arc is generated between the welding wire and the base metal to perform welding. In consumable electrode type arc welding, the welding wire and the base metal are often in a welded state in which short-circuit periods and arc periods are alternately repeated.

溶接品質をさらに向上させるために、溶接ワイヤの送給を正送と逆送とに交互に切り換えて溶接する正逆送給アーク溶接方法が提案されている。この正逆送給アーク溶接方法では、一定の送給速度の従来技術に比べて、短絡とアークとの繰り返しの周期を安定化することができるので、スパッタ発生量の削減、ビード外観の改善等の溶接品質の向上を図ることができる。 In order to further improve the welding quality, a forward / reverse feed arc welding method has been proposed in which the feed of the welding wire is alternately switched between normal feed and reverse feed for welding. In this forward / reverse feed arc welding method, the cycle of repeating short circuit and arc can be stabilized as compared with the conventional technique of constant feed rate, so that the amount of spatter generated can be reduced and the bead appearance can be improved. Welding quality can be improved.

正逆送給アーク溶接方法では、溶接ワイヤの正送及び逆送を100Hz程度で高速・高精度に切り換える必要がある。このために、送給方式としてプッシュプル送給方式を採用することが多い。さらに、プッシュ側送給モータとプル側送給モータとの送給経路の間に溶接ワイヤを一時的に収容する中間ワイヤ収容部を設けることも多い。 In the forward / reverse feed arc welding method, it is necessary to switch between the forward feed and the reverse feed of the welding wire at high speed and high accuracy at about 100 Hz. For this reason, the push-pull feeding method is often adopted as the feeding method. Further, it is often the case that an intermediate wire accommodating portion for temporarily accommodating the welded wire is provided between the feeding path between the push side feeding motor and the pull side feeding motor.

正逆送給アーク溶接方法においては、短絡期間及びアーク期間の発生タイミングに同期して、正送期間と逆送期間とが切り換えられる。このために、溶接電圧の設定値、突き出し長さ等の溶接条件が変化して短絡期間とアーク期間との時間比率が変化すると、正送期間と逆送期間との時間比率も変化するので溶接ワイヤの平均送給速度が変化する。平均送給速度が変化すると、溶着量が変化するので、溶接品質が悪くなる。この問題に対処するために、特許文献1及び2の発明では、プッシュ側モータによって一定速度で正送送給し、中間ワイヤ収容部の収容量を検出し、この収容量に基づいてプル側モータのプル送給速度を補正制御している。この補正制御によって、平均送給速度が変化することを抑制している。 In the forward / reverse feed arc welding method, the forward feed period and the reverse feed period are switched in synchronization with the occurrence timing of the short circuit period and the arc period. For this reason, when the welding conditions such as the set value of the welding voltage and the protrusion length change and the time ratio between the short circuit period and the arc period changes, the time ratio between the normal feed period and the reverse feed period also changes, so welding is performed. The average feed rate of the wire changes. When the average feeding rate changes, the amount of welding changes, so the welding quality deteriorates. In order to deal with this problem, in the inventions of Patent Documents 1 and 2, the push-side motor is used to positively feed and feed at a constant speed, the capacity of the intermediate wire accommodating portion is detected, and the pull-side motor is based on this accommodating capacity. The pull feed rate is corrected and controlled. This correction control suppresses the change in the average feeding speed.

特開2017-94380号公報Japanese Unexamined Patent Publication No. 2017-94380 特開2020-99945号公報Japanese Unexamined Patent Publication No. 2020-99945

従来技術の補正制御では、中間ワイヤ収容部の収容量に基づいてプル送給速度の正送ピーク値及び/又は逆送ピーク値を変化させている。しかし、溶接作業者が手動て溶接トーチを操作して溶接する半自動溶接において、この補正制御を行うと、溶接作業者の手振れによるワイヤ突き出し長さ、前進角、溶接速度等の変動に起因してアーク長が大きく変動し、溶接状態が不安定になりやすいという問題が発生する。 In the correction control of the prior art, the forward feed peak value and / or the reverse feed peak value of the pull feed rate is changed based on the capacity of the intermediate wire accommodating portion. However, in semi-automatic welding in which the welding operator manually operates the welding torch to weld, if this correction control is performed, it is caused by fluctuations in the wire protrusion length, advance angle, welding speed, etc. due to the welding operator's camera shake. There is a problem that the arc length fluctuates greatly and the welded state tends to become unstable.

そこで、本発明では、中間ワイヤ収容部の収容量に基づいてプル送給速度を補正制御する正逆送給アーク溶接方法において、溶接作業者の手振れに起因して溶接状態が不安定になることを抑制することができるアーク溶接制御方法を提供することを目的とする。 Therefore, in the present invention, in the forward / reverse feed arc welding method in which the pull feed rate is corrected and controlled based on the capacity of the intermediate wire accommodating portion, the welding state becomes unstable due to the camera shake of the welder. It is an object of the present invention to provide an arc welding control method capable of suppressing.

上述した課題を解決するために、請求項1の発明は、
正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給し、
前記プッシュ側送給モータと前記プル側送給モータとの送給経路の間に前記溶接ワイヤを一時的に収容する中間ワイヤ収容部を設け、前記中間ワイヤ収容部の収容量に基づいて前記プル側送給モータのプル送給速度を補正し、
短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
前記収容量に基づいて、前記プル送給速度の正送減速期間及び/又は逆送減速期間を補正制御する、
ことを特徴とするアーク溶接制御方法である。
In order to solve the above-mentioned problems, the invention of claim 1 is
Welding wire is fed by push-pull feed control by a push-side feed motor that rotates forward and a pull-side feed motor that repeats forward rotation and reverse rotation.
An intermediate wire accommodating portion for temporarily accommodating the welded wire is provided between the feeding path between the push-side feeding motor and the pull-side feeding motor, and the pull is based on the accommodating capacity of the intermediate wire accommodating portion. Correct the pull feed speed of the side feed motor and
In the arc welding control method in which short-circuit period and arc period are repeatedly welded,
Based on the capacity, the normal feed deceleration period and / or the reverse feed deceleration period of the pull feed rate is corrected and controlled.
This is an arc welding control method characterized by this.

請求項2の発明は、
前記正送減速期間の開始時点における前記収容量に基づいて前記正送減速期間の前記補正制御を行い、前記逆送減速期間の開始時点における前記収容量に基づいて前記逆送減速期間の前記補正制御を行う、
ことを特徴とする請求項1に記載のアーク溶接制御方法である。
The invention of claim 2 is
The correction control of the forward deceleration period is performed based on the capacity at the start of the forward deceleration period, and the correction of the reverse deceleration period is performed based on the capacity at the start of the reverse deceleration period. To control,
The arc welding control method according to claim 1, wherein the arc welding is controlled.

請求項3の発明は、
前記正送減速期間の前記補正制御を行ったときは前記正送減速期間と逆送加速期間との合算値が一定になるように前記逆送加速期間を前記補正制御し、前記逆送減速期間の前記補正制御を行ったときは前記逆送減速期間と正送加速期間との合算値が一定になるように前記正送加速期間を前記補正制御する、
ことを特徴とする請求項1又は2に記載のアーク溶接制御方法である。
The invention of claim 3 is
When the correction control of the forward feed deceleration period is performed, the reverse feed acceleration period is corrected and controlled so that the total value of the forward feed deceleration period and the reverse feed acceleration period becomes constant, and the reverse feed deceleration period is performed. When the correction control of the above is performed, the correction control of the forward feed acceleration period is performed so that the total value of the reverse feed deceleration period and the forward feed acceleration period becomes constant.
The arc welding control method according to claim 1 or 2, wherein the method is characterized by the above.

本発明によれば、中間ワイヤ収容部の収容量に基づいてプル送給速度を補正制御する正逆送給アーク溶接方法において、溶接作業者の手振れに起因して溶接状態が不安定になることを抑制することができる。 According to the present invention, in the forward / reverse feed arc welding method in which the pull feed rate is corrected and controlled based on the capacity of the intermediate wire accommodating portion, the welding state becomes unstable due to the camera shake of the welder. Can be suppressed.

本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。It is a block diagram of the welding power source for carrying out the arc welding control method which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るアーク溶接制御方法を示す図1の溶接電源における各信号のタイミングチャートである。It is a timing chart of each signal in the welding power source of FIG. 1 which shows the arc welding control method which concerns on Embodiment 1 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[実施の形態1]
図1は、本発明の実施の形態1に係るアーク溶接制御方法を実施するための溶接電源のブロック図である。以下、同図を参照して各ブロックについて説明する。
[Embodiment 1]
FIG. 1 is a block diagram of a welding power source for carrying out the arc welding control method according to the first embodiment of the present invention. Hereinafter, each block will be described with reference to the figure.

電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御等による出力制御を行い、出力電圧Eを出力する。この電源主回路PMは、図示は省略するが、商用電源を整流する1次整流器、整流された直流を平滑する平滑コンデンサ、平滑された直流を高周波交流に変換する上記の誤差増幅信号Eaによって駆動されるインバータ回路、高周波交流を溶接に適した電圧値に降圧する高周波変圧器、降圧された高周波交流を直流に整流する2次整流器を備えている。 The power supply main circuit PM receives a commercial power supply (not shown) such as three-phase 200V as an input, performs output control by inverter control or the like according to an error amplification signal Ea described later, and outputs an output voltage E. Although not shown, this power supply main circuit PM is driven by a primary rectifier that rectifies a commercial power supply, a smoothing capacitor that smoothes the rectified direct current, and the above-mentioned error amplification signal Ea that converts the smoothed direct current into high-frequency alternating current. It is equipped with an inverter circuit, a high-frequency transformer that steps down high-frequency alternating current to a voltage value suitable for welding, and a secondary rectifier that rectifies the stepped-down high-frequency alternating current to direct current.

リアクトルWLは、上記の出力電圧Eを平滑する。このリアクトルWLのインダクタンス値は、例えば100μHである。 The reactor WL smoothes the output voltage E described above. The inductance value of this reactor WL is, for example, 100 μH.

プッシュ側送給モータWMPは、後述するプッシュ送給制御信号Fcpを入力として、正送回転して一定速度のプッシュ送給速度Fwpで溶接ワイヤ1を送給する。プル側送給モータWMは、後述するプル送給制御信号Fcを入力として、正送回転と逆送回転とを交互に繰り返して溶接ワイヤ1を送給速度Fwで送給する。プッシュ側送給モータWMPが送給経路の上流側に設けられており、プル側送給モータWMは下流側に設けられている。両送給モータともに速度制御されている。両送給モータでプッシュプル送給制御系を構成している。 The push-side feed motor WMP receives the push feed control signal Fcp, which will be described later, as an input, rotates normally, and feeds the welding wire 1 at a push feed rate Fwp of a constant speed. The pull-side feed motor WM receives the pull feed control signal Fc, which will be described later, as an input, and alternately repeats forward feed rotation and reverse feed rotation to feed the weld wire 1 at the feed speed Fw. The push-side feed motor WMP is provided on the upstream side of the feed path, and the pull-side feed motor WM is provided on the downstream side. Both feed motors are speed controlled. Both feed motors make up a push-pull feed control system.

中間ワイヤ収容部WBは、プッシュ側送給モータWMPとプル側送給モータWMとの間の送給経路に設けられ、溶接ワイヤ1を一時的に収容し、収容量に応じた収容量信号Wbを出力する。中間ワイヤ収容部WBは、特許文献1等の従来技術で慣用されているので、詳細な構造については省略する。溶接ワイヤ1の収容量の検出は、機械的原理、電気的原理、光学的原理、磁気的原理、又はこれらの原理の組合せによって行う。 The intermediate wire accommodating portion WB is provided in the feeding path between the push-side feeding motor WMP and the pull-side feeding motor WM, temporarily accommodates the welded wire 1, and accommodates the accommodating amount signal Wb according to the accommodating amount. Is output. Since the intermediate wire accommodating portion WB is commonly used in the prior art such as Patent Document 1, the detailed structure will be omitted. The capacity of the weld wire 1 is detected by a mechanical principle, an electrical principle, an optical principle, a magnetic principle, or a combination of these principles.

溶接ワイヤ1は、上記のプル側送給モータWMに結合された送給ロール5の回転によって溶接トーチ4内を送給されて、母材2との間にアーク3が発生する。溶接トーチ4内の給電チップ(図示は省略)と母材2との間には溶接電圧Vwが印加し、溶接電流Iwが通電する。溶接トーチ4の先端からはシールドガス(図示は省略)が噴出して、アーク3を大気から遮蔽する。 The welding wire 1 is fed in the welding torch 4 by the rotation of the feeding roll 5 coupled to the pull-side feeding motor WM, and an arc 3 is generated between the welding wire 1 and the base metal 2. A welding voltage Vw is applied between the feeding tip (not shown) in the welding torch 4 and the base metal 2, and the welding current Iw is energized. Shielding gas (not shown) is ejected from the tip of the welding torch 4 to shield the arc 3 from the atmosphere.

出力電圧設定回路ERは、予め定めた出力電圧設定信号Erを出力する。出力電圧検出回路EDは、上記の出力電圧Eを検出し平滑して、出力電圧検出信号Edを出力する。 The output voltage setting circuit ER outputs a predetermined output voltage setting signal Er. The output voltage detection circuit ED detects and smoothes the output voltage E, and outputs an output voltage detection signal Ed.

電圧誤差増幅回路EVは、上記の出力電圧設定信号Er及び上記の出力電圧検出信号Edを入力として、出力電圧設定信号Er(+)と出力電圧検出信号Ed(-)との誤差を増幅して、電圧誤差増幅信号Evを出力する。 The voltage error amplification circuit EV takes the above-mentioned output voltage setting signal Er and the above-mentioned output voltage detection signal Ed as inputs, and amplifies the error between the output voltage setting signal Er (+) and the output voltage detection signal Ed (-). , The voltage error amplification signal Ev is output.

電流検出回路IDは、上記の溶接電流Iwを検出して、電流検出信号Idを出力する。電圧検出回路VDは、上記の溶接電圧Vwを検出して、電圧検出信号Vdを出力する。短絡判別回路SDは、上記の電圧検出信号Vdを入力として、この値が予め定めた短絡判別値(10V程度)未満のときは短絡期間にあると判別してHighレベルになり、以上のときはアーク期間にあると判別してLowレベルになる短絡判別信号Sdを出力する。 The current detection circuit ID detects the above welding current Iw and outputs a current detection signal Id. The voltage detection circuit VD detects the above welding voltage Vw and outputs a voltage detection signal Vd. The short-circuit discrimination circuit SD takes the above voltage detection signal Vd as an input, and when this value is less than the predetermined short-circuit discrimination value (about 10V), it determines that it is in the short-circuit period and reaches the High level. The short-circuit discrimination signal Sd, which is determined to be in the arc period and becomes the Low level, is output.

正送加速期間初期値設定回路TSUSは、予め定めた正送加速期間初期値設定信号Tsusを出力する。 The normal feed acceleration period initial value setting circuit TSUS outputs a predetermined forward feed acceleration period initial value setting signal Tsus.

正送減速期間初期値設定回路TSDSは、予め定めた正送減速期間初期値設定信号Tsdsを出力する。 The forward deceleration period initial value setting circuit TSDS outputs a predetermined normal feed deceleration period initial value setting signal Tsds.

逆送加速期間初期値設定回路TRUSは、予め定めた逆送加速期間初期値設定信号Trusを出力する。 The reverse feed acceleration period initial value setting circuit TRUS outputs a predetermined reverse feed acceleration period initial value setting signal Trus.

逆送減速期間初期値設定回路TRDSは、予め定めた逆送減速期間初期値設定信号Trdsを出力する。 The reverse feed deceleration period initial value setting circuit TRDS outputs a predetermined reverse feed deceleration period initial value setting signal Trds.

正送ピーク値設定回路WSRは、予め定めた正送ピーク値設定信号Wsrを出力する。 The normal feed peak value setting circuit WSR outputs a predetermined normal feed peak value setting signal Wsr.

逆送ピーク値設定回路WRRは、予め定めた逆送ピーク値設定信号Wrrを出力する。 The reverse feed peak value setting circuit WRR outputs a predetermined reverse feed peak value setting signal Wrr.

収容量設定回路WBRは、目標値となる予め定めた収容量設定信号Wbrを出力する。収容量誤差増幅回路EWは、上記の収容量設定信号Wbr及び上記の収容量信号Wbを入力として、収容量設定信号Wbr(-)と収容量信号Wb(+)との誤差を増幅して、収容量誤差増幅信号Ewを出力する。Ew=G・(Wb-Wbr)であり、Gは正の値の増幅率である。したがって、収容量信号Wbが目標値の収容量設定信号Wbrよりも大のときは収容量誤差増幅信号Ewは正の値となり、収容量信号Wbが目標値の収容量設定信号Wbrよりも小のときは収容量誤差増幅信号Ewは負の値となる。 The accommodation amount setting circuit WBR outputs a predetermined accommodation amount setting signal Wbr which is a target value. The capacity error amplification circuit EW amplifies the error between the capacity setting signal Wbr (-) and the capacity signal Wb (+) by using the above capacity setting signal Wbr and the above capacity signal Wb as inputs. The accommodation error amplification signal Ew is output. Ew = G · (Wb—Wbr), where G is a positive amplification factor. Therefore, when the accommodation signal Wb is larger than the accommodation setting signal Wbr of the target value, the accommodation error amplification signal Ew becomes a positive value, and the accommodation signal Wb is smaller than the accommodation setting signal Wbr of the target value. In some cases, the accommodation error amplification signal Ew becomes a negative value.

プル送給速度補正回路FHは、上記の短絡判別信号Sd、上記の正送加速期間初期値設定信号Tsus、上記の正送減速期間初期値設定信号Tsds、上記の逆送加速期間初期値設定信号Trus、上記の逆送減速期間初期値設定信号Trds、及び上記の収容量誤差増幅信号Ewを入力として、以下に示す処理1)~6)の中から一つを選択して補正制御を行い、正送加速期間設定信号Tsur、正送減速期間設定信号Tsdr、逆送加速期間設定信号Trur及び逆送減速期間設定信号Trdrを出力する。以下に示す補正制御(変調制御)は、正送期間と逆送期間との1周期ごとに行われる。1周期は、10ms程度である。以下に示す補正制御はP制御の場合であるが、PI制御、PID制御であっても良い。 The pull feed rate correction circuit FH has the above-mentioned short-circuit determination signal Sd, the above-mentioned forward feed acceleration period initial value setting signal Tsus, the above-mentioned forward feed deceleration period initial value setting signal Tsds, and the above-mentioned reverse feed acceleration period initial value setting signal. Using Trus, the above-mentioned reverse feed deceleration period initial value setting signal Trds, and the above-mentioned capacity error amplification signal Ew as inputs, one of the following processes 1) to 6) is selected and correction control is performed. The forward feed acceleration period setting signal Tsur, the forward feed deceleration period setting signal Tsdr, the reverse feed acceleration period setting signal Trur, and the reverse feed deceleration period setting signal Trdr are output. The correction control (modulation control) shown below is performed every one cycle of the normal feed period and the reverse feed period. One cycle is about 10 ms. The correction control shown below is the case of P control, but may be PI control or PID control.

処理1)正送減速期間設定信号Tsdrのみを補正制御する場合
短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。そして、その他の信号は入力信号のまま、Tsur=Tsus、Trur=Trus及びTrdr=Trdsとして出力する。
Process 1) When only the forward deceleration period setting signal Tsdr is corrected and controlled When the short-circuit discrimination signal Sd changes to the High level (short-circuit period) and the forward deceleration period starts, the capacity error amplification signal Ew at that time is positive. The feed / deceleration period initial value setting signal Tsds is corrected and controlled (modulation control), and the normal feed / deceleration period setting signal Tsdr = Tsds + Ew is output. When the accommodating amount signal Wb is larger than the accommodating amount setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, and the accommodating amount signal Wb decreases and approaches the set value. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr becomes shorter than the initial value, and the accommodation signal Wb increases and approaches the set value. .. Then, the other signals are output as Tsur = Tsus, Trur = Trus, and Trdr = Trds as input signals.

処理2)逆送減速期間設定信号Trdrのみを補正制御する場合
短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。そして、その他の信号は入力信号のまま、Tsur=Tsus、Tsdr=Tsds及びTrur=Trusとして出力する。
Process 2) When only the reverse feed deceleration period setting signal Trdr is corrected and controlled When the short circuit discrimination signal Sd changes to the Low level (arc period) and the reverse feed deceleration period starts, it is reversed by the accommodation error amplification signal Ew at that time. The feed / deceleration period initial value setting signal Trds is corrected and controlled (modulation control), and the reverse feed / deceleration period setting signal Trdr = Trds-Ew is output. When the accommodating amount signal Wb is larger than the accommodating amount setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, and the accommodating amount signal Wb decreases and approaches the set value. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, and the accommodation signal Wb increases and approaches the set value. .. Then, the other signals are output as Tsur = Tsus, Tsdr = Tsds and Trur = Trus as input signals.

処理3)正送減速期間設定信号Tsdr及び逆送減速期間設定信号Trdrの2つを補正制御する場合
上記の処理1)及び処理2)の両方を行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。そして、その他の信号は入力信号のまま、Tsur=Tsus及びTrur=Trusとして出力する。
Process 3) When correcting and controlling both the forward deceleration period setting signal Tsdr and the reverse deceleration period setting signal Trdr Both the above processes 1) and 2) are performed. When the accommodation signal Wb is larger than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, and the accommodation signal Wb. Will decrease and approach the set value. On the contrary, when the accommodation amount signal Wb is smaller than the accommodation amount setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, and the reverse feed deceleration period setting signal Trdr becomes longer than the initial value and accommodates. The quantity signal Wb increases and approaches the set value. Then, the other signals are output as Tsur = Tsus and Trur = Trus as input signals.

処理4)正送減速期間設定信号Tsdr及び逆送加速期間設定信号Trurの2つを補正制御する場合
短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって逆送加速期間初期値設定信号Trusを補正制御(変調制御)して逆送加速期間設定信号Trur=Trus-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理4)では、Tsdr+Trurは一定値となるので、補正制御を行っても短絡期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。そして、その他の信号は入力信号のまま、Tsur=Tsus及びTrdr=Trdsとして出力する。
Process 4) When the forward deceleration period setting signal Tsdr and the reverse feed acceleration period setting signal Trur are corrected and controlled When the short-circuit discrimination signal Sd changes to the High level (short-circuit period) and the forward deceleration period starts, that The positive feed deceleration period initial value setting signal Tsds is corrected and controlled (modulation control) by the accommodation error amplification signal Ew at the time point, and the normal feed deceleration period setting signal Tsdr = Tsds + Ew is output. At the same time, the reverse feed acceleration period initial value setting signal Trus is corrected and controlled (modulation control) by the capacity error amplification signal Ew, and the reverse feed acceleration period setting signal Trur = Trus-Ew is output. When the accommodation signal Wb is larger than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, the reverse acceleration period setting signal Trur becomes shorter than the initial value, and the accommodation signal Wb. Will decrease and approach the set value. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr is shorter than the initial value, and the reverse acceleration period setting signal Trur is longer than the initial value and is accommodated. The quantity signal Wb increases and approaches the set value. Here, in the process 4), since Tsdr + Trur becomes a constant value, the short-circuit period can be maintained at a substantially constant value even if correction control is performed, and the welded state can be stabilized. Then, the other signals are output as Tsur = Tsus and Trdr = Trds as input signals.

処理5)逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの2つを補正制御する場合
短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間が開始すると、その時点における収容量誤差増幅信号Ewによって逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって正送加速期間初期値設定信号Tsusを補正制御(変調制御)して正送加速期間設定信号Tsur=Tsus+Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理5)では、Trdr+Tsurは一定値となるので、補正制御を行ってもアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。そして、その他の信号は入力信号のまま、Tsdr=Tsds及びTrur=Trusとして出力する。
Process 5) When the reverse feed deceleration period setting signal Trdr and the forward feed acceleration period setting signal Tsur are corrected and controlled When the short circuit discrimination signal Sd changes to the Low level (arc period) and the reverse feed deceleration period starts, that The reverse feed deceleration period initial value setting signal Trds is corrected and controlled (modulation control) by the accommodation error amplification signal Ew at the time point, and the reverse feed deceleration period setting signal Trdr = Trds-Ew is output. At the same time, the positive feed acceleration period initial value setting signal Tsus is corrected and controlled (modulation controlled) by the above-mentioned capacity error amplification signal Ew, and the normal feed acceleration period setting signal Tsur = Tsus + Ew is output. When the accommodation signal Wb is larger than the accommodation setting signal Wbr, the reverse feed deceleration period setting signal Trdr is shorter than the initial value, the forward acceleration period setting signal Tsur is longer than the initial value, and the accommodation signal Wb. Will decrease and approach the set value. On the contrary, when the accommodating amount signal Wb is smaller than the accommodating amount setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, and the forward feed acceleration period setting signal Tsur becomes shorter than the initial value and accommodates. The quantity signal Wb increases and approaches the set value. Here, in the process 5), since Trdr + Tsur becomes a constant value, the arc period can be maintained at a substantially constant value even if correction control is performed, and the welded state can be stabilized. Then, the other signals are output as Tsdr = Tsds and Trur = Trus as input signals.

処理6)正送減速期間設定信号Tsdr、逆送加速期間設定信号Trur、逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの4つを補正制御する場合
上記の処理4)及び処理5)を両方行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理6)では、Tsdr+Trur及びTrdr+Tsurはそれぞれ一定値となるので、補正制御を行っても短絡期間及びアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 6) When correcting and controlling four of the forward feed deceleration period setting signal Tsdr, the reverse feed acceleration period setting signal Trur, the reverse feed deceleration period setting signal Trdr, and the forward feed acceleration period setting signal Tsur. ) Do both. When the accommodation amount signal Wb is larger than the accommodation amount setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes longer than the initial value, the reverse feed acceleration period setting signal Trur becomes shorter than the initial value, and the reverse feed deceleration period. The setting signal Trdr becomes shorter than the initial value, the normal feed acceleration period setting signal Tsur becomes longer than the initial value, and the accommodation signal Wb decreases and approaches the set value. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr is shorter than the initial value, and the reverse acceleration period setting signal Trur is longer than the initial value, and vice versa. The feed / deceleration period setting signal Trdr becomes longer than the initial value, the forward acceleration period setting signal Tsur becomes shorter than the initial value, and the capacity signal Wb increases to approach the set value. Here, in the process 6), since Tsdr + Trur and Trdr + Tsur each have constant values, the short-circuit period and the arc period can be maintained at substantially constant values even if correction control is performed, and the welded state can be stabilized. ..

プル送給速度設定回路FRは、上記の正送加速期間設定信号Tsur、上記の正送減速期間設定信号Tsdr、上記の逆送加速期間設定信号Trur、上記の逆送減速期間設定信号Trdr、上記の正送ピーク値設定信号Wsr、上記の逆送ピーク値設定信号Wrr及び上記の短絡判別信号Sdを入力として、以下の処理によって生成されたプル送給速度パターンをプル送給速度設定信号Frとして出力する。このプル送給速度設定信号Frが0以上のときは正送期間となり、0未満のときは逆送期間となる。
1)正送加速期間設定信号Tsurによって定まる正送加速期間Tsu中は0から正送ピーク値設定信号Wsrによって定まる正の値の正送ピーク値Wspまで直線状に加速するプル送給速度設定信号Frを出力する。
2)続いて、正送ピーク期間Tsp中は、上記の正送ピーク値Wspを維持するプル送給速度設定信号Frを出力する。
3)短絡判別信号SdがLowレベル(アーク期間)からHighレベル(短絡期間)に変化すると、正送減速期間設定信号Tsdrによって定まる正送減速期間Tsdに移行し、上記の正送ピーク値Wspから0まで直線状に減速するプル送給速度設定信号Frを出力する。
4)続いて、逆送加速期間設定信号Trurによって定まる逆送加速期間Tru中は0から逆送ピーク値設定信号Wrrによって定まる負の値の逆送ピーク値Wrpまで直線状に加速するプル送給速度設定信号Frを出力する。
5)続いて、逆送ピーク期間Trp中は、上記の逆送ピーク値Wrpを維持するプル送給速度設定信号Frを出力する。
6)短絡判別信号SdがHighレベル(短絡期間)からLowレベル(アーク期間)に変化すると、逆送減速期間設定信号Trdrによって定まる逆送減速期間Trdに移行し、上記の逆送ピーク値Wrpから0まで直線状に減速するプル送給速度設定信号Frを出力する。
7)上記の1)~6)を繰り返すことによって正負の台形波状に変化する送給パターンのプル送給速度設定信号Frが生成される。
The pull feed rate setting circuit FR includes the forward feed acceleration period setting signal Tsur, the forward feed deceleration period setting signal Tsdr, the reverse feed acceleration period setting signal Trur, the reverse feed deceleration period setting signal Trdr, and the above. With the normal feed peak value setting signal Wsr, the above-mentioned reverse feed peak value setting signal Wrr, and the above-mentioned short-circuit discrimination signal Sd as inputs, the pull feed rate pattern generated by the following processing is used as the pull feed rate setting signal Fr. Output. When the pull feed rate setting signal Fr is 0 or more, the normal feed period is set, and when it is less than 0, the reverse feed period is set.
1) Positive feed acceleration period setting signal During the normal feed acceleration period Tsur, the pull feed rate setting signal that accelerates linearly from 0 to the positive normal feed peak value Wsp determined by the positive feed peak value setting signal Wsr. Output Fr.
2) Subsequently, during the normal feed peak period Tsp, the pull feed rate setting signal Fr that maintains the above normal feed peak value Wsp is output.
3) When the short-circuit discrimination signal Sd changes from the Low level (arc period) to the High level (short-circuit period), it shifts to the forward deceleration period Tsd determined by the forward deceleration period setting signal Tsdr, and from the above normal feed peak value Wsp. The pull feed rate setting signal Fr that decelerates linearly to 0 is output.
4) Subsequently, during the reverse feed acceleration period Tru determined by the reverse feed acceleration period setting signal Trur, the pull feed linearly accelerates from 0 to the negative reverse feed peak value Wrp determined by the reverse feed peak value setting signal Wrr. The speed setting signal Fr is output.
5) Subsequently, during the reverse feed peak period Trp, the pull feed rate setting signal Fr that maintains the above reverse feed peak value Wrp is output.
6) When the short-circuit discrimination signal Sd changes from the High level (short-circuit period) to the Low level (arc period), it shifts to the reverse feed deceleration period Trd determined by the reverse feed deceleration period setting signal Trdr, and from the above-mentioned reverse feed peak value Wrp. The pull feed rate setting signal Fr that decelerates linearly to 0 is output.
7) By repeating the above 1) to 6), a pull feed rate setting signal Fr of a feed pattern that changes in a positive or negative trapezoidal wave shape is generated.

プル送給制御回路FCは、上記のプル送給速度設定信号Frを入力として、プル送給速度設定信号Frの値に相当するプル送給速度Fwで溶接ワイヤ1を送給するためのプル送給制御信号Fcを上記のプル側送給モータWMに出力する。 The pull feed control circuit FC receives the above pull feed rate setting signal Fr as an input, and pull feed for feeding the weld wire 1 at a pull feed rate Fw corresponding to the value of the pull feed rate setting signal Fr. The feed control signal Fc is output to the pull-side feed motor WM.

プッシュ送給速度設定回路FRPは、正の値の予め定めたプッシュ送給速度設定信号Frpを出力する。プッシュ送給制御回路FCPは、上記のプッシュ送給速度設定信号Frpを入力として、プッシュ送給速度設定信号Frpの値に相当するプッシュ送給速度Fwpで溶接ワイヤ1を送給するためのプッシュ送給制御信号Fcpを上記のプッシュ側送給モータWMPに出力する。 The push feed rate setting circuit FRP outputs a predetermined push feed rate setting signal Frp having a positive value. The push feed control circuit FCP receives the above push feed rate setting signal Frp as an input, and push feed for feeding the welded wire 1 at a push feed rate Fwp corresponding to the value of the push feed rate setting signal Frp. The feed control signal Fcp is output to the push-side feed motor WMP described above.

減流抵抗器Rは、上記のリアクトルWLと溶接トーチ4との間に挿入される。この減流抵抗器Rの値は、短絡負荷(0.01~0.03Ω程度)の50倍以上大きな値(0.5~3Ω程度)に設定される。この減流抵抗器Rが通電路に挿入されると、リアクトルWL及び外部ケーブルのリアクトルに蓄積されたエネルギーが急放電される。 The current reduction resistor R is inserted between the reactor WL and the welding torch 4. The value of the current reduction resistor R is set to a value (about 0.5 to 3Ω) that is 50 times or more larger than the short-circuit load (about 0.01 to 0.03Ω). When the current-reducing resistor R is inserted into the current-carrying path, the energy stored in the reactor WL and the reactor of the external cable is suddenly discharged.

トランジスタTRは、上記の減流抵抗器Rと並列に接続されて、後述する駆動信号Drに従ってオン又はオフ制御される。 The transistor TR is connected in parallel with the current-reducing resistor R described above, and is controlled on or off according to a drive signal Dr described later.

くびれ検出回路NDは、上記の短絡判別信号Sd、上記の電圧検出信号Vd及び上記の電流検出信号Idを入力として、短絡判別信号SdがHighレベル(短絡期間)であるときの電圧検出信号Vdの電圧上昇値が基準値に達した時点でくびれの形成状態が基準状態になったと判別してHighレベルとなり、短絡判別信号SdがLowレベル(アーク期間)に変化した時点でLowレベルになるくびれ検出信号Ndを出力する。また、短絡期間中の電圧検出信号Vdの微分値がそれに対応した基準値に達した時点でくびれ検出信号NdをHighレベルに変化させるようにしても良い。さらに、電圧検出信号Vdの値を電流検出信号Idの値で除算して溶滴の抵抗値を算出し、この抵抗値の微分値がそれに対応する基準値に達した時点でくびれ検出信号NdをHighレベルに変化させるようにしても良い。 The constriction detection circuit ND receives the above-mentioned short-circuit discrimination signal Sd, the above-mentioned voltage detection signal Vd, and the above-mentioned current detection signal Id as inputs, and is a voltage detection signal Vd when the short-circuit discrimination signal Sd is at the High level (short-circuit period). When the voltage rise value reaches the reference value, it is determined that the constriction formation state has reached the reference state and becomes the High level, and when the short-circuit discrimination signal Sd changes to the Low level (arc period), the constriction detection becomes the Low level. The signal Nd is output. Further, the constriction detection signal Nd may be changed to the High level when the differential value of the voltage detection signal Vd during the short-circuit period reaches the corresponding reference value. Further, the value of the voltage detection signal Vd is divided by the value of the current detection signal Id to calculate the resistance value of the droplet, and when the differential value of this resistance value reaches the corresponding reference value, the constriction detection signal Nd is obtained. It may be changed to a high level.

低レベル電流設定回路ILRは、予め定めた低レベル電流設定信号Ilrを出力する。電流比較回路CMは、この低レベル電流設定信号Ilr及び上記の電流検出信号Idを入力として、Id<IlrのときはHighレベルになり、Id≧IlrのときはLowレベルになる電流比較信号Cmを出力する。 The low level current setting circuit ILR outputs a predetermined low level current setting signal Ilr. The current comparison circuit CM receives the low-level current setting signal Ilr and the above-mentioned current detection signal Id as inputs, and outputs a current comparison signal Cm that becomes High level when Id <Ilr and Low level when Id ≧ Ilr. Output.

駆動回路DRは、上記の電流比較信号Cm及び上記のくびれ検出信号Ndを入力として、くびれ検出信号NdがHighレベルに変化するとLowレベルに変化し、その後に電流比較信号CmがHighレベルに変化するとHighレベルに変化する駆動信号Drを上記のトランジスタTRのベース端子に出力する。したがって、この駆動信号Drはくびれが検出されるとLowレベルになり、トランジスタTRがオフ状態になり通電路に減流抵抗器Rが挿入されるので、短絡負荷を通電する溶接電流Iwは急減する。そして、急減した溶接電流Iwの値が低レベル電流設定信号Ilrの値まで減少すると、駆動信号DrはHighレベルになり、トランジスタTRがオン状態になるので、減流抵抗器Rは短絡されて通常の状態に戻る。 The drive circuit DR receives the above-mentioned current comparison signal Cm and the above-mentioned constriction detection signal Nd as inputs, and changes to the Low level when the constriction detection signal Nd changes to the High level, and then changes to the Low level when the current comparison signal Cm changes to the High level. The drive signal Dr that changes to the High level is output to the base terminal of the above-mentioned transistor TR. Therefore, when the constriction is detected, the drive signal Dr becomes Low level, the transistor TR is turned off, and the current reduction resistor R is inserted in the current path, so that the welding current Iw that energizes the short-circuit load drops sharply. .. Then, when the value of the suddenly reduced welding current Iw decreases to the value of the low level current setting signal Ilr, the drive signal Dr becomes the High level and the transistor TR is turned on, so that the current reduction resistor R is short-circuited and normally. Return to the state of.

電流制御設定回路ICRは、上記の短絡判別信号Sd、上記の低レベル電流設定信号Ilr及び上記のくびれ検出信号Ndを入力として、以下の処理を行い、電流制御設定信号Icrを出力する。
1)短絡判別信号SdがLowレベル(アーク期間)のときは、低レベル電流設定信号Ilrとなる電流制御設定信号Icrを出力する。
2)短絡判別信号SdがHighレベル(短絡期間)に変化すると、予め定めた初期期間中は予め定めた初期電流設定値となり、その後は予め定めた短絡時傾斜で予め定めた短絡時ピーク設定値まで上昇してその値を維持する電流制御設定信号Icrを出力する。
3)その後に、くびれ検出信号NdがHighレベルに変化すると、低レベル電流設定信号Ilrの値となる電流制御設定信号Icrを出力する。
The current control setting circuit ICR receives the above-mentioned short-circuit discrimination signal Sd, the above-mentioned low-level current setting signal Ilr, and the above-mentioned constriction detection signal Nd as inputs, performs the following processing, and outputs the current control setting signal Icr.
1) When the short-circuit discrimination signal Sd is at the Low level (arc period), the current control setting signal Icr, which is the low level current setting signal Ilr, is output.
2) When the short-circuit discrimination signal Sd changes to the High level (short-circuit period), the initial current set value becomes a predetermined value during the predetermined initial period, and then the short-circuit peak set value predetermined with the predetermined short-circuit slope. The current control setting signal Icr that rises to and maintains that value is output.
3) After that, when the constriction detection signal Nd changes to the High level, the current control setting signal Icr, which is the value of the low level current setting signal Ilr, is output.

電流誤差増幅回路EIは、上記の電流制御設定信号Icr及び上記の電流検出信号Idを入力として、電流制御設定信号Icr(+)と電流検出信号Id(-)との誤差を増幅して、電流誤差増幅信号Eiを出力する。 The current error amplifier circuit EI uses the above-mentioned current control setting signal Icr and the above-mentioned current detection signal Id as inputs, and amplifies the error between the current control setting signal Icr (+) and the current detection signal Id (-) to obtain a current. The error amplification signal Ei is output.

電流降下時間設定回路TDRは、予め定めた電流降下時間設定信号Tdrを出力する。 The current drop time setting circuit TDR outputs a predetermined current drop time setting signal Tdr.

小電流期間回路STDは、上記の短絡判別信号Sd及び上記の電流降下時間設定信号Tdrを入力として、短絡判別信号SdがLowレベル(アーク期間)に変化した時点から電流降下時間設定信号Tdrによって定まる時間が経過した時点でHighレベルになり、その後に短絡判別信号SdがHighレベル(短絡期間)になるとLowレベルになる小電流期間信号Stdを出力する。 The small current period circuit STD receives the above-mentioned short-circuit discrimination signal Sd and the above-mentioned current drop time setting signal Tdr as inputs, and is determined by the current drop time setting signal Tdr from the time when the short-circuit discrimination signal Sd changes to the Low level (arc period). When the time elapses, the high level is reached, and then when the short circuit determination signal Sd reaches the high level (short circuit period), the low level signal Std is output.

電源特性切換回路SWは、上記の電流誤差増幅信号Ei、上記の電圧誤差増幅信号Ev、上記の短絡判別信号Sd及び上記の小電流期間信号Stdを入力として、以下の処理を行い、誤差増幅信号Eaを出力する。
1)短絡判別信号SdがHighレベル(短絡期間)に変化した時点から、短絡判別信号SdがLowレベル(アーク期間)に変化して予め定めた遅延期間が経過した時点までの期間中は、電流誤差増幅信号Eiを誤差増幅信号Eaとして出力する。
2)その後の大電流アーク期間中は、電圧誤差増幅信号Evを誤差増幅信号Eaとして出力する。
3)その後のアーク期間中に小電流期間信号StdがHighレベルとなる小電流アーク期間中は、電流誤差増幅信号Eiを誤差増幅信号Eaとして出力する。
この回路によって、溶接電源の特性は、短絡期間、遅延期間及び小電流アーク期間中は定電流特性となり、それ以外の大電流アーク期間中は定電圧特性となる。
The power supply characteristic switching circuit SW receives the above-mentioned current error amplification signal Ei, the above-mentioned voltage error amplification signal Ev, the above-mentioned short-circuit discrimination signal Sd, and the above-mentioned small current period signal Std as inputs, and performs the following processing to perform the following processing, and the error amplification signal. Output Ea.
1) During the period from the time when the short-circuit discrimination signal Sd changes to the High level (short-circuit period) to the time when the short-circuit discrimination signal Sd changes to the Low level (arc period) and a predetermined delay period elapses, the current The error amplification signal Ei is output as the error amplification signal Ea.
2) During the subsequent large current arc period, the voltage error amplification signal Ev is output as the error amplification signal Ea.
3) During the small current arc period in which the small current period signal Std becomes the High level during the subsequent arc period, the current error amplification signal Ei is output as the error amplification signal Ea.
By this circuit, the characteristics of the welding power supply become the constant current characteristic during the short circuit period, the delay period and the small current arc period, and become the constant voltage characteristic during the other large current arc period.

図2は、本発明の実施の形態1に係るアーク溶接制御方法を示す図1の溶接電源における各信号のタイミングチャートである。同図(A)はプル送給速度Fwの時間変化を示し、同図(B)は溶接電流Iwの時間変化を示し、同図(C)は溶接電圧Vwの時間変化を示し、同図(D)は短絡判別信号Sdの時間変化を示し、同図(E)は小電流期間信号Stdの時間変化を示し、同図(F)はプッシュ送給速度Fwpの時間変化を示す。以下、同図を参照して各信号の動作について説明する。 FIG. 2 is a timing chart of each signal in the welding power supply of FIG. 1 showing an arc welding control method according to the first embodiment of the present invention. The figure (A) shows the time change of the pull feed rate Fw, the figure (B) shows the time change of the welding current Iw, and the figure (C) shows the time change of the welding voltage Vw. D) shows the time change of the short circuit discrimination signal Sd, FIG. 3E shows the time change of the small current period signal Std, and FIG. 3F shows the time change of the push feeding rate Fwp. Hereinafter, the operation of each signal will be described with reference to the figure.

同図(A)に示すプル送給速度Fwは、図1のプル送給速度設定回路FRから出力されるプル送給速度設定信号Frの値に制御される。プル送給速度Fwは、図1の正送加速期間設定信号Tsurによって定まる正送加速期間Tsu、短絡が発生するまで継続する正送ピーク期間Tsp、図1の正送減速期間設定信号Tsdrによって定まる正送減速期間Tsd、図1の逆送加速期間設定信号Trurによって定まる逆送加速期間Tru、アークが発生するまで継続する逆送ピーク期間Trp及び図1の逆送減速期間設定信号Trdrによって定まる逆送減速期間Trdから形成される。さらに、正送ピーク値Wspは図1の正送ピーク値設定信号Wsrによって定まり、逆送ピーク値Wrpは図1の逆送ピーク値設定信号Wrrによって定まる。この結果、プル送給速度設定信号Frは、正負の略台形波波状に変化する送給パターンとなる。また、同図(F)に示すプッシュ送給速度Fwpは、図1のプッシュ送給速度設定信号Frpによって定まる一定の速度となる。 The pull feed rate Fw shown in FIG. 1A is controlled by the value of the pull feed rate setting signal Fr output from the pull feed rate setting circuit FR of FIG. The pull feed rate Fw is determined by the normal feed acceleration period Tsu determined by the forward feed acceleration period setting signal Tsur in FIG. 1, the forward feed peak period Tsp that continues until a short circuit occurs, and the forward feed deceleration period setting signal Tsdr in FIG. Forward deceleration period Tsd, reverse acceleration period Tru determined by the reverse acceleration period setting signal Trur in FIG. 1, reverse peak period Trp that continues until an arc occurs, and reverse determined by the reverse deceleration period setting signal Trdr in FIG. It is formed from the feed deceleration period Trd. Further, the forward peak value Wsp is determined by the forward peak value setting signal Wsr in FIG. 1, and the reverse peak value Wrp is determined by the reverse peak value setting signal Wrr in FIG. As a result, the pull feed rate setting signal Fr becomes a feed pattern that changes in a substantially trapezoidal wave shape of positive and negative. Further, the push feeding speed Fwp shown in FIG. 1F is a constant speed determined by the push feeding speed setting signal Frp of FIG.

[時刻t1~t4の短絡期間の動作]
正送ピーク期間Tsp中の時刻t1において短絡が発生すると、同図(C)に示すように、溶接電圧Vwは数Vの短絡電圧値に急減するので、同図(D)に示すように、短絡判別信号SdがHighレベル(短絡期間)に変化する。これに応動して、時刻t1~t2の予め定めた正送減速期間Tsdに移行し、同図(A)に示すように、プル送給速度Fwは上記の正送ピーク値Wspから0まで減速する。
[Operation during short-circuit period from time t1 to t4]
When a short circuit occurs at time t1 during the normal feed peak period Tsp, the welding voltage Vw drops sharply to a short circuit voltage value of several V as shown in FIG. The short-circuit discrimination signal Sd changes to the High level (short-circuit period). In response to this, the process shifts to the predetermined normal feed deceleration period Tsd at times t1 to t2, and as shown in FIG. do.

同図(A)に示すように、プル送給速度Fwは時刻t2~t3の予め定めた逆送加速期間Truに入り、0から上記の逆送ピーク値Wrpまで加速する。この期間中は短絡期間が継続している。 As shown in FIG. 3A, the pull feed rate Fw enters the predetermined reverse feed acceleration period Tru at times t2 to t3, and accelerates from 0 to the above-mentioned reverse feed peak value Wrp. During this period, the short circuit period continues.

時刻t3において逆送加速期間Truが終了すると、同図(A)に示すように、プル送給速度Fwは逆送ピーク期間Trpに入り、上記の逆送ピーク値Wrpになる。逆送ピーク期間Trpは、時刻t4にアークが発生するまで継続する。したがって、時刻t1~t4の期間が短絡期間となる。 When the reverse feed acceleration period Tru ends at time t3, the pull feed rate Fw enters the reverse feed peak period Trp and becomes the above-mentioned reverse feed peak value Wrp, as shown in FIG. The reverse peak period Trp continues until an arc is generated at time t4. Therefore, the period from time t1 to t4 is the short circuit period.

同図(B)に示すように、時刻t1~t4の短絡期間中の溶接電流Iwは、予め定めた初期期間中は予め定めた初期電流値となる。その後、溶接電流Iwは、予め定めた短絡時傾斜で上昇し、予め定めた短絡時ピーク値に達するとその値を維持する。 As shown in FIG. 3B, the welding current Iw during the short-circuit period from time t1 to t4 has a predetermined initial current value during the predetermined initial period. After that, the welding current Iw increases with a predetermined short-circuit slope, and maintains that value when the predetermined short-circuit peak value is reached.

同図(C)に示すように、溶接電圧Vwは、溶接電流Iwが短絡時ピーク値となるあたりから上昇する。これは、溶接ワイヤ1の逆送及び溶接電流Iwによるピンチ力の作用により、溶接ワイヤ1の先端の溶滴にくびれが次第に形成されるためである。 As shown in FIG. 6C, the welding voltage Vw rises from the point where the welding current Iw reaches the peak value at the time of short circuit. This is because the back feed of the welding wire 1 and the action of the pinch force due to the welding current Iw gradually form a constriction in the droplets at the tip of the welding wire 1.

その後に溶接電圧Vwの電圧上昇値が基準値に達すると、くびれの形成状態が基準状態になったと判別して、図1のくびれ検出信号NdはHighレベルに変化する。 After that, when the voltage rise value of the welding voltage Vw reaches the reference value, it is determined that the constriction formation state has reached the reference state, and the constriction detection signal Nd in FIG. 1 changes to the High level.

くびれ検出信号NdがHighレベルになったことに応動して、図1の駆動信号DrはLowレベルになるので、図1のトランジスタTRはオフ状態となり図1の減流抵抗器Rが通電路に挿入される。同時に、図1の電流制御設定信号Icrが低レベル電流設定信号Ilrの値に小さくなる。このために、同図(B)に示すように、溶接電流Iwは短絡時ピーク値から低レベル電流値へと急減する。そして、溶接電流Iwが低レベル電流値まで減少すると、駆動信号DrはHighレベルに戻るので、トランジスタTRはオン状態となり減流抵抗器Rは短絡される。同図(B)に示すように、溶接電流Iwは、電流制御設定信号Icrが低レベル電流設定信号Ilrのままであるので、アーク再発生から予め定めた遅延期間が経過するまでは低レベル電流値を維持する。したがって、トランジスタTRは、くびれ検出信号NdがHighレベルに変化した時点から溶接電流Iwが低レベル電流値に減少するまでの期間のみオフ状態となる。同図(C)に示すように、溶接電圧Vwは、溶接電流Iwが小さくなるので一旦減少した後に急上昇する。上述した各パラメータは、例えば以下の値に設定される。初期電流=40A、初期期間=0.5ms、短絡時傾斜=175A/ms、短絡時ピーク値=400A、低レベル電流値=50A、遅延期間=0.5ms。 In response to the constriction detection signal Nd reaching the High level, the drive signal Dr in FIG. 1 becomes the Low level, so that the transistor TR in FIG. Will be inserted. At the same time, the current control setting signal Icr in FIG. 1 becomes smaller than the value of the low level current setting signal Ilr. Therefore, as shown in FIG. 3B, the welding current Iw sharply decreases from the peak value at the time of short circuit to the low level current value. Then, when the welding current Iw decreases to a low level current value, the drive signal Dr returns to the high level, so that the transistor TR is turned on and the current reduction resistor R is short-circuited. As shown in FIG. 3B, the welding current Iw is a low level current from the arc re-occurrence until the predetermined delay period elapses because the current control setting signal Icr remains the low level current setting signal Ilr. Maintain the value. Therefore, the transistor TR is turned off only during the period from the time when the constriction detection signal Nd changes to the High level until the welding current Iw decreases to the low level current value. As shown in FIG. 3C, the welding voltage Vw decreases once and then rises sharply because the welding current Iw becomes small. Each of the above-mentioned parameters is set to the following values, for example. Initial current = 40A, initial period = 0.5ms, short-circuit gradient = 175A / ms, short-circuit peak value = 400A, low-level current value = 50A, delay period = 0.5ms.

[時刻t4~t7のアーク期間の動作]
時刻t4において、溶接ワイヤの逆送及び溶接電流Iwの通電によるピンチ力によってくびれが進行してアークが発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増するので、同図(D)に示すように、短絡判別信号SdがLowレベル(アーク期間)に変化する。これに応動して、時刻t4~t5の予め定めた逆送減速期間Trdに移行し、同図(A)に示すように、プル送給速度Fwは上記の逆送ピーク値Wrpから0まで減速する。
[Operation during the arc period from time t4 to t7]
At time t4, when the constriction progresses and an arc is generated due to the pinch force due to the reverse feed of the welding wire and the energization of the welding current Iw, the welding voltage Vw is an arc voltage value of several tens of V as shown in FIG. As shown in FIG. 3D, the short-circuit discrimination signal Sd changes to the Low level (arc period). In response to this, the process shifts to the predetermined reverse feed deceleration period Trd at times t4 to t5, and as shown in FIG. do.

時刻t5において逆送減速期間Trdが終了すると、時刻t5~t6の予め定めた正送加速期間Tsuに移行する。この正送加速期間Tsu中は、同図(A)に示すように、プル送給速度Fwは0から上記の正送ピーク値Wspまで加速する。この期間中はアーク期間が継続している。 When the reverse feed deceleration period Trd ends at time t5, the process shifts to the predetermined forward feed acceleration period Tsu from time t5 to t6. During this normal feed acceleration period Tsu, the pull feed rate Fw accelerates from 0 to the above normal feed peak value Wsp, as shown in FIG. The arc period continues during this period.

時刻t6において正送加速期間Tsuが終了すると、同図(A)に示すように、プル送給速度Fwは正送ピーク期間Tspに入り、上記の正送ピーク値Wspになる。この期間中もアーク期間が継続している。正送ピーク期間Tspは、時刻t7に短絡が発生するまで継続する。したがって、時刻t4~t7の期間がアーク期間となる。そして、短絡が発生すると、時刻t1の動作に戻る。 When the normal feed acceleration period Tsu ends at time t6, the pull feed rate Fw enters the normal feed peak period Tsp and becomes the above normal feed peak value Wsp, as shown in FIG. The arc period continues during this period. The forward peak period Tsp continues until a short circuit occurs at time t7. Therefore, the period from time t4 to t7 is the arc period. Then, when a short circuit occurs, the operation returns to the operation at time t1.

時刻t4においてアークが発生すると、同図(C)に示すように、溶接電圧Vwは数十Vのアーク電圧値に急増する。他方、同図(B)に示すように、溶接電流Iwは、時刻t4~t41の遅延期間の間は低レベル電流値を継続する。その後、時刻t41から溶接電流Iwは急速に増加してピーク値となり、その後は徐々に減少する大電流値となる。この時刻t41~t61の大電流アーク期間中は、図1の電圧誤差増幅信号Evによって溶接電源のフィードバック制御が行われるので、定電圧特性となる。したがって、大電流アーク期間中の溶接電流Iwの値はアーク負荷によって変化する。 When an arc is generated at time t4, the welding voltage Vw rapidly increases to an arc voltage value of several tens of V, as shown in FIG. On the other hand, as shown in FIG. 3B, the welding current Iw continues to have a low level current value during the delay period from time t4 to t41. After that, from time t41, the welding current Iw rapidly increases to a peak value, and then gradually decreases to a large current value. During the large current arc period from time t41 to t61, the feedback control of the welding power supply is performed by the voltage error amplification signal Ev in FIG. 1, so that the constant voltage characteristic is obtained. Therefore, the value of the welding current Iw during the high current arc period changes depending on the arc load.

時刻t4にアークが発生してから図1の電流降下時間設定信号Tdrによって定まる電流降下時間が経過する時刻t61において、同図(E)に示すように、小電流期間信号StdがHighレベルに変化する。これに応動して、溶接電源は定電圧特性から定電流特性に切り換えられる。このために、同図(B)に示すように、溶接電流Iwは低レベル電流値に低下し、短絡が発生する時刻t7までその値を維持する。同様に、同図(C)に示すように、溶接電圧Vwも低下する。小電流期間信号Stdは、時刻t7に短絡が発生するとLowレベルに戻る。 At time t61, when the current drop time determined by the current drop time setting signal Tdr in FIG. 1 elapses after the arc is generated at time t4, the small current period signal Std changes to the High level as shown in FIG. do. In response to this, the welding power supply is switched from the constant voltage characteristic to the constant current characteristic. Therefore, as shown in FIG. 6B, the welding current Iw drops to a low level current value and maintains that value until the time t7 when the short circuit occurs. Similarly, as shown in FIG. 6C, the welding voltage Vw also decreases. The small current period signal Std returns to the Low level when a short circuit occurs at time t7.

同図において、正送減速期間Tsd(図1の正送減速期間設定信号Tsdr)、逆送減速期間Trd(図1の逆送減速期間設定信号Trdr)、逆送加速期間Tsu(図1の逆送加速期間設定信号Tsur)、及び、正送加速期間Tsu(図1の正送加速期間設定信号Tsur)は、図1のプル送給速度補正回路FHによって、処理1)~6)の中から一つが選択されて補正制御される。この補正制御によって、図1の中間ワイヤ収容部の収容量が目標値と等しくなるように制御されるので、短絡期間及びアーク期間が変動しても、プル送給速度Fwの平均値を一定に保つことができる。 In the figure, the forward deceleration period Tsd (normal feed deceleration period setting signal Tsdr in FIG. 1), the reverse feed deceleration period Trd (reverse feed deceleration period setting signal Trdr in FIG. 1), and the reverse feed acceleration period Tsu (reverse in FIG. 1). The feed acceleration period setting signal Tsur) and the normal feed acceleration period Tsu (the normal feed acceleration period setting signal Tsur in FIG. 1) are selected from the processes 1) to 6) by the pull feed rate correction circuit FH in FIG. One is selected and corrected and controlled. By this correction control, the accommodation capacity of the intermediate wire accommodating portion in FIG. 1 is controlled to be equal to the target value, so that the average value of the pull feed rate Fw is constant even if the short circuit period and the arc period fluctuate. Can be kept.

処理1)正送減速期間設定信号Tsdrのみを補正制御する場合
時刻t1において、同図(D)に示す短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間Tsdが開始すると、その時点における図1の収容量誤差増幅信号Ewによって図1の正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。図1の収容量信号Wbが図1の収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。
Process 1) When only the forward deceleration period setting signal Tsdr is corrected and controlled At time t1, when the short-circuit discrimination signal Sd shown in FIG. At that time, the accommodation error amplification signal Ew in FIG. 1 corrects and controls (modulates) the normal feed deceleration period initial value setting signal Tsds in FIG. 1, and outputs the forward feed deceleration period setting signal Tsdr = Tsds + Ew. When the accommodation signal Wb in FIG. 1 is larger than the accommodation setting signal Wbr in FIG. 1, the forward deceleration period setting signal Tsdr becomes longer than the initial value, and the accommodation signal Wb decreases and approaches the set value. It will be. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr becomes shorter than the initial value, and the accommodation signal Wb increases and approaches the set value. ..

処理2)逆送減速期間設定信号Trdrのみを補正制御する場合
時刻t4において、同図(D)に示す短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間Trdが開始すると、その時点における収容量誤差増幅信号Ewによって図1の逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。
Process 2) When only the reverse feed / deceleration period setting signal Trdr is corrected and controlled At time t4, when the short-circuit discrimination signal Sd shown in FIG. , The capacity error amplification signal Ew at that time corrects and controls (modulates) the reverse feed deceleration period initial value setting signal Trds in FIG. 1, and outputs the reverse feed deceleration period setting signal Trdr = Trds-Ew. When the accommodating amount signal Wb is larger than the accommodating amount setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, and the accommodating amount signal Wb decreases and approaches the set value. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, and the accommodation signal Wb increases and approaches the set value. ..

処理3)正送減速期間設定信号Tsdr及び逆送減速期間設定信号Trdrの2つを補正制御する場合
上記の処理1)及び処理2)の両方を行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。
Process 3) When correcting and controlling both the forward deceleration period setting signal Tsdr and the reverse deceleration period setting signal Trdr Both the above processes 1) and 2) are performed. When the accommodation signal Wb is larger than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, the reverse feed deceleration period setting signal Trdr becomes shorter than the initial value, and the accommodation signal Wb. Will decrease and approach the set value. On the contrary, when the accommodation amount signal Wb is smaller than the accommodation amount setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes shorter than the initial value, and the reverse feed deceleration period setting signal Trdr becomes longer than the initial value and accommodates. The quantity signal Wb increases and approaches the set value.

処理4)正送減速期間設定信号Tsdr及び逆送加速期間設定信号Trurの2つを補正制御する場合
時刻t1において、同図(D)に示す短絡判別信号SdがHighレベル(短絡期間)に変化して正送減速期間Tsdが開始すると、その時点における収容量誤差増幅信号Ewによって正送減速期間初期値設定信号Tsdsを補正制御(変調制御)して正送減速期間設定信号Tsdr=Tsds+Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって図1の逆送加速期間初期値設定信号Trusを補正制御(変調制御)して逆送加速期間設定信号Trur=Trus-Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理4)では、Tsdr+Trurは一定値となるので、補正制御を行っても短絡期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 4) When the forward deceleration period setting signal Tsdr and the reverse feed acceleration period setting signal Trur are corrected and controlled. At time t1, the short-circuit discrimination signal Sd shown in FIG. Then, when the normal feed deceleration period Tsd starts, the normal feed deceleration period initial value setting signal Tsds is corrected and controlled (modulation control) by the accommodation error amplification signal Ew at that time, and the normal feed deceleration period setting signal Tsdr = Tsds + Ew is output. do. At the same time, the reverse feed acceleration period initial value setting signal Trus in FIG. 1 is corrected and controlled (modulation control) by the capacity error amplification signal Ew, and the reverse feed acceleration period setting signal Trur = Trus-Ew is output. When the accommodation signal Wb is larger than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr becomes longer than the initial value, the reverse acceleration period setting signal Trur becomes shorter than the initial value, and the accommodation signal Wb. Will decrease and approach the set value. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr is shorter than the initial value, and the reverse acceleration period setting signal Trur is longer than the initial value and is accommodated. The quantity signal Wb increases and approaches the set value. Here, in the process 4), since Tsdr + Trur becomes a constant value, the short-circuit period can be maintained at a substantially constant value even if correction control is performed, and the welded state can be stabilized.

処理5)逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの2つを補正制御する場合
時刻t4において、同図(D)に示す短絡判別信号SdがLowレベル(アーク期間)に変化して逆送減速期間Trdが開始すると、その時点における収容量誤差増幅信号Ewによって逆送減速期間初期値設定信号Trdsを補正制御(変調制御)して逆送減速期間設定信号Trdr=Trds-Ewを出力する。同時に、上記の収容量誤差増幅信号Ewによって図1の正送加速期間初期値設定信号Tsusを補正制御(変調制御)して正送加速期間設定信号Tsur=Tsus+Ewを出力する。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理5)では、Trdr+Tsurは一定値となるので、補正制御を行ってもアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 5) When the reverse feed deceleration period setting signal Trdr and the forward feed acceleration period setting signal Tsur are corrected and controlled. At time t4, the short circuit discrimination signal Sd shown in FIG. Then, when the reverse feed deceleration period Trd starts, the reverse feed deceleration period initial value setting signal Trds is corrected and controlled (modulation control) by the accommodation error amplification signal Ew at that time, and the reverse feed deceleration period setting signal Trdr = Trds-Ew. Is output. At the same time, the positive feed acceleration period initial value setting signal Tsus of FIG. 1 is corrected and controlled (modulation control) by the above-mentioned capacity error amplification signal Ew, and the normal feed acceleration period setting signal Tsur = Tsus + Ew is output. When the accommodation signal Wb is larger than the accommodation setting signal Wbr, the reverse feed deceleration period setting signal Trdr is shorter than the initial value, the forward acceleration period setting signal Tsur is longer than the initial value, and the accommodation signal Wb. Will decrease and approach the set value. On the contrary, when the accommodating amount signal Wb is smaller than the accommodating amount setting signal Wbr, the reverse feed deceleration period setting signal Trdr becomes longer than the initial value, and the forward feed acceleration period setting signal Tsur becomes shorter than the initial value and accommodates. The quantity signal Wb increases and approaches the set value. Here, in the process 5), since Trdr + Tsur becomes a constant value, the arc period can be maintained at a substantially constant value even if correction control is performed, and the welded state can be stabilized.

処理6)正送減速期間設定信号Tsdr、逆送加速期間設定信号Trur、逆送減速期間設定信号Trdr及び正送加速期間設定信号Tsurの4つを補正制御する場合
上記の処理4)及び処理5)を両方行う。収容量信号Wbが収容量設定信号Wbrよりも大きいときは、正送減速期間設定信号Tsdrは初期値よりも長くなり、逆送加速期間設定信号Trurは初期値よりも短くなり、逆送減速期間設定信号Trdrは初期値よりも短くなり、正送加速期間設定信号Tsurは初期値よりも長くなり、収容量信号Wbは減少して、設定値に近づくことになる。逆に、収容量信号Wbが収容量設定信号Wbrよりも小さいときは、正送減速期間設定信号Tsdrは初期値よりも短くなり、逆送加速期間設定信号Trurは初期値よりも長くなり、逆送減速期間設定信号Trdrは初期値よりも長くなり、正送加速期間設定信号Tsurは初期値よりも短くなり、収容量信号Wbは増加して、設定値に近づくことになる。ここで、処理6)では、Tsdr+Trur及びTrdr+Tsurはそれぞれ一定値となるので、補正制御を行っても短絡期間及びアーク期間をほぼ一定値に維持することができ、溶接状態を安定にすることができる。
Process 6) When correcting and controlling four of the forward feed deceleration period setting signal Tsdr, the reverse feed acceleration period setting signal Trur, the reverse feed deceleration period setting signal Trdr, and the forward feed acceleration period setting signal Tsur. ) Do both. When the accommodation amount signal Wb is larger than the accommodation amount setting signal Wbr, the forward feed deceleration period setting signal Tsdr becomes longer than the initial value, the reverse feed acceleration period setting signal Trur becomes shorter than the initial value, and the reverse feed deceleration period. The setting signal Trdr becomes shorter than the initial value, the normal feed acceleration period setting signal Tsur becomes longer than the initial value, and the accommodation signal Wb decreases and approaches the set value. On the contrary, when the accommodation signal Wb is smaller than the accommodation setting signal Wbr, the forward deceleration period setting signal Tsdr is shorter than the initial value, and the reverse acceleration period setting signal Trur is longer than the initial value, and vice versa. The feed / deceleration period setting signal Trdr becomes longer than the initial value, the forward acceleration period setting signal Tsur becomes shorter than the initial value, and the capacity signal Wb increases to approach the set value. Here, in the process 6), since Tsdr + Trur and Trdr + Tsur each have constant values, the short-circuit period and the arc period can be maintained at substantially constant values even if correction control is performed, and the welded state can be stabilized. ..

プル送給速度Fwの波形パラメータの数値例を以下に示す。
正送ピーク値Wsp=50m/min、逆送ピーク値Wrp=-30m/min
正送ピーク期間Tsp≒3ms(所定値ではない)、逆送ピーク期間Trp≒1ms(所定値ではない)、正送加速期間初期値=2ms、正送減速期間初期値=1ms、逆送加速期間初期値=2ms、逆送減速期間初期値=1ms
A numerical example of the waveform parameter of the pull feed rate Fw is shown below.
Forward peak value Wsp = 50m / min, reverse peak value Wrp = -30m / min
Forward feed peak period Tsp ≒ 3 ms (not a predetermined value), reverse feed peak period Trp ≒ 1 ms (not a predetermined value), forward feed acceleration period initial value = 2 ms, forward feed deceleration period initial value = 1 ms, reverse feed acceleration period Initial value = 2ms, reverse feed deceleration period Initial value = 1ms

上述した実施の形態1によれば、中間ワイヤ収容部の収容量に基づいて、プル送給速度の正送減速期間及び/又は逆送減速期間を補正する。正逆送給アーク溶接方法においては、短絡期間及びアーク期間の発生タイミングに同期して、正送期間と逆送期間とが切り換えられる。このために、溶接中にワイヤ突き出し長さ、前進角、溶接速度等が変化して短絡期間とアーク期間との時間比率が変化すると、正送期間と逆送期間との時間比率も変化するので、溶接ワイヤの平均送給速度(プル送給速度の平均値)が変化する。平均送給速度が変化すると、溶着量が変化するので、溶接品質が悪くなる。本実施の形態においては、正送期間と逆送期間との時間比率が変化してプル送給速度の平均値が変化すると、一定速度のプッシュ送給速度との間に差分が生じる。この結果、中間ワイヤ収容部の収容量と目標値との間に誤差が発生する。この誤差が0になるように正送減速期間及び/又は逆送減速期間を補正することによって、プル送給速度とプッシュ送給速度の平均値とを等しくすることができる。このために、プル送給速度の平均値を所定値に戻すことができる。さらに、溶接作業者が手動て溶接トーチを操作して溶接する半自動溶接においては、溶接作業者の手振れによるワイヤ突き出し長さ、前進角、溶接速度等の変動が大きくなる。このような半自動溶接においても、本実施の形態を採用すれば、変動に起因するアーク長の変動を抑制することができ、溶接状態を安定化することができる。 According to the first embodiment described above, the normal feed deceleration period and / or the reverse feed deceleration period of the pull feed rate is corrected based on the capacity of the intermediate wire accommodating portion. In the forward / reverse feed arc welding method, the forward feed period and the reverse feed period are switched in synchronization with the occurrence timing of the short circuit period and the arc period. For this reason, if the wire protrusion length, advance angle, welding speed, etc. change during welding and the time ratio between the short circuit period and the arc period changes, the time ratio between the normal feed period and the reverse feed period also changes. , The average feed rate of the welded wire (the average value of the pull feed rate) changes. When the average feeding rate changes, the amount of welding changes, so the welding quality deteriorates. In the present embodiment, when the time ratio between the normal feed period and the reverse feed period changes and the average value of the pull feed rate changes, a difference occurs between the push feed rate and the constant feed rate. As a result, an error occurs between the accommodation capacity of the intermediate wire accommodating portion and the target value. By correcting the forward deceleration period and / or the reverse feed deceleration period so that this error becomes 0, the average value of the pull feed rate and the push feed rate can be made equal. Therefore, the average value of the pull feeding rate can be returned to a predetermined value. Further, in semi-automatic welding in which a welding worker manually operates a welding torch to perform welding, fluctuations in wire protrusion length, advance angle, welding speed, etc. due to camera shake of the welding worker become large. Even in such semi-automatic welding, if the present embodiment is adopted, the fluctuation of the arc length due to the fluctuation can be suppressed, and the welding state can be stabilized.

さらに、本実施の形態によれば、正送減速期間の開始時点における収容量に基づいて正送減速期間の補正制御を行い、逆送減速期間の開始時点における収容量に基づいて逆送減速期間の補正制御を行う、ことが望ましい。このようにすると、補正制御の過渡応答性を良好にすることができるので、プル送給速度の平均値をより一定に保つことができる。 Further, according to the present embodiment, the correction control of the forward deceleration period is performed based on the capacity at the start of the forward deceleration period, and the reverse feed deceleration period is performed based on the capacity at the start of the reverse deceleration period. It is desirable to perform correction control. By doing so, the transient response of the correction control can be improved, so that the average value of the pull feeding speed can be kept more constant.

さらに、本実施の形態によれば、正送減速期間の補正制御を行ったときは正送減速期間と逆送加速期間との合算値が一定になるように逆送加速期間を補正制御し、逆送減速期間の補正制御を行ったときは逆送減速期間と正送加速期間との合算値が一定になるように正送加速期間を補正制御する、ことが望ましい。このようにすれば、短絡期間及びアーク期間をより一定値に近づけることができるので、溶接状態をさらに安定化することができる。 Further, according to the present embodiment, when the correction control of the normal feed deceleration period is performed, the reverse feed acceleration period is corrected and controlled so that the total value of the normal feed deceleration period and the reverse feed acceleration period becomes constant. When the correction control of the reverse feed deceleration period is performed, it is desirable to correct and control the forward feed acceleration period so that the total value of the reverse feed deceleration period and the forward feed acceleration period becomes constant. By doing so, the short-circuit period and the arc period can be brought closer to constant values, so that the welded state can be further stabilized.

1 溶接ワイヤ
2 母材
3 アーク
4 溶接トーチ
5 送給ロール
CM 電流比較回路
Cm 電流比較信号
DR 駆動回路
Dr 駆動信号
E 出力電圧
Ea 誤差増幅信号
ED 出力電圧検出回路
Ed 出力電圧検出信号
EI 電流誤差増幅回路
Ei 電流誤差増幅信号
ER 出力電圧設定回路
Er 出力電圧設定信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
EW 収容量誤差増幅回路
Ew 収容量誤差増幅信号
FC プル送給制御回路
Fc プル送給制御信号
FCP プッシュ送給制御回路
Fcp プッシュ送給制御信号
FH プル送給速度補正回路
FR プル送給速度設定回路
Fr プル送給速度設定信号
FRP プッシュ送給速度設定回路
Frp プッシュ送給速度設定信号
Fw プル送給速度
Fwp プッシュ送給速度
ICR 電流制御設定回路
Icr 電流制御設定信号
ID 電流検出回路
Id 電流検出信号
ILR 低レベル電流設定回路
Ilr 低レベル電流設定信号
Iw 溶接電流
ND くびれ検出回路
Nd くびれ検出信号
PM 電源主回路
R 減流抵抗器
SD 短絡判別回路
Sd 短絡判別信号
STD 小電流期間回路
Std 小電流期間信号
SW 電源特性切換回路
TDR 電流降下時間設定回路
Tdr 電流降下時間設定信号
TR トランジスタ
Trd 逆送減速期間
Trdr 逆送減速期間設定信号
TRDS 逆送減速期間初期値設定回路
Trds 逆送減速期間初期値設定信号
Trp 逆送ピーク期間
Tru 逆送加速期間
Trur 逆送加速期間設定信号
TRUS 逆送加速期間初期値設定回路
Trus 逆送加速期間初期値設定信号
Tsd 正送減速期間
Tsdr 正送減速期間設定信号
TsdS 正送減速期間初期値設定信号
Tsds 正送減速期間初期値設定信号
Tsp 正送ピーク期間
Tsu 正送加速期間
Tsur 正送加速期間設定信号
TsuS 正送加速期間初期値設定信号
Tsus 正送加速期間初期値設定信号
VD 電圧検出回路
Vd 電圧検出信号
Vw 溶接電圧
WB 中間ワイヤ収容部
Wb 収容量信号
WBR 収容量設定回路
Wbr 収容量設定信号
WL リアクトル
WM プル側送給モータ
WMP プッシュ側送給モータ
Wrp 逆送ピーク値
WRR 逆送ピーク値設定回路
Wrr 逆送ピーク値設定信号
Wsp 正送ピーク値
WSR 正送ピーク値設定回路
Wsr 正送ピーク値設定信号
1 Welding wire
2 Base material
3 arc
4 Welding torch
5 Feed roll CM Current comparison circuit Cm Current comparison signal DR Drive circuit Dr Drive signal E Output voltage Ea Error amplification signal ED Output voltage detection circuit Ed Output voltage detection signal EI Current error amplification circuit Ei Current error amplification signal ER Output voltage setting circuit Er Output voltage setting signal EV Voltage error amplification circuit Ev Voltage error amplification signal EW Capacity error amplification circuit Ew Capacity error amplification signal FC Pull feed control circuit Fc Pull feed control signal FCP Push feed control circuit Fcp Push feed control Signal FH Pull feed speed correction circuit FR Pull feed speed setting circuit F Pull feed speed setting signal FRP Push feed speed setting circuit Frp Push feed speed setting signal Fw Pull feed speed Fwp Push feed speed ICR Current control setting Circuit Icr Current control setting signal ID Current detection circuit Id Current detection signal ILR Low level current setting circuit Ilr Low level current setting signal Iw Welding current ND Constriction detection circuit Nd Constriction detection signal PM Power supply main circuit R Current drainage resistor SD Short circuit discrimination circuit Sd Short-circuit discrimination signal STD Small current period circuit Std Small current period signal SW Power supply characteristic switching circuit TDR Current drop time setting circuit Tdr Current drop time setting signal TR Transistor Trd Reverse feed deceleration period Trdr Reverse feed deceleration period setting signal TRDS Reverse feed deceleration period Initial value setting circuit Trds Reverse feed deceleration period Initial value setting signal Trp Reverse feed peak period Tru Reverse feed acceleration period Trur Reverse feed acceleration period setting signal TRUS Reverse feed acceleration period initial value setting circuit Trus Reverse feed acceleration period Initial value setting signal Tsd Positive Forward deceleration period Tsdr Normal feed deceleration period setting signal TsdS Normal feed deceleration period initial value setting signal Tsds Positive feed deceleration period initial value setting signal Tsp Forward feed peak period Tsu Normal feed acceleration period Tsur Forward feed acceleration period setting signal TsuS Forward feed acceleration period Initial value setting signal Tsus Normal feed acceleration period Initial value setting signal VD Voltage detection circuit Vd Voltage detection signal Vw Welding voltage WB Intermediate wire accommodating part Wb Accommodating amount signal WBR Accommodating amount setting circuit Wbr Accommodating amount setting signal WL Reactor WM Pull side feeding Motor WMP Push side feed motor Wrp Reverse feed peak value WRR Reverse feed peak value setting circuit Wrr Reverse feed peak value setting signal Wsp Forward feed peak value WSR Forward feed peak value setting circuit Wsr Forward feed peak value setting signal

Claims (3)

正送回転するプッシュ側送給モータ及び正送回転と逆送回転とを繰り返すプル側送給モータによるプッシュプル送給制御によって溶接ワイヤを送給し、
前記プッシュ側送給モータと前記プル側送給モータとの送給経路の間に前記溶接ワイヤを一時的に収容する中間ワイヤ収容部を設け、前記中間ワイヤ収容部の収容量に基づいて前記プル側送給モータのプル送給速度を補正し、
短絡期間とアーク期間とを繰り返して溶接するアーク溶接制御方法において、
前記収容量に基づいて、前記プル送給速度の正送減速期間及び/又は逆送減速期間を補正制御する、
ことを特徴とするアーク溶接制御方法。
Welding wire is fed by push-pull feed control by a push-side feed motor that rotates forward and a pull-side feed motor that repeats forward rotation and reverse rotation.
An intermediate wire accommodating portion for temporarily accommodating the welded wire is provided between the feeding path between the push-side feeding motor and the pull-side feeding motor, and the pull is based on the accommodating capacity of the intermediate wire accommodating portion. Correct the pull feed speed of the side feed motor and
In the arc welding control method in which short-circuit period and arc period are repeatedly welded,
Based on the capacity, the normal feed deceleration period and / or the reverse feed deceleration period of the pull feed rate is corrected and controlled.
An arc welding control method characterized by this.
前記正送減速期間の開始時点における前記収容量に基づいて前記正送減速期間の前記補正制御を行い、前記逆送減速期間の開始時点における前記収容量に基づいて前記逆送減速期間の前記補正制御を行う、
ことを特徴とする請求項1に記載のアーク溶接制御方法。
The correction control of the forward deceleration period is performed based on the capacity at the start of the forward deceleration period, and the correction of the reverse deceleration period is performed based on the capacity at the start of the reverse deceleration period. To control,
The arc welding control method according to claim 1.
前記正送減速期間の前記補正制御を行ったときは前記正送減速期間と逆送加速期間との合算値が一定になるように前記逆送加速期間を前記補正制御し、前記逆送減速期間の前記補正制御を行ったときは前記逆送減速期間と正送加速期間との合算値が一定になるように前記正送加速期間を前記補正制御する、
ことを特徴とする請求項1又は2に記載のアーク溶接制御方法。
When the correction control of the forward feed deceleration period is performed, the reverse feed acceleration period is corrected and controlled so that the total value of the forward feed deceleration period and the reverse feed acceleration period becomes constant, and the reverse feed deceleration period is performed. When the correction control is performed, the normal feed acceleration period is corrected and controlled so that the total value of the reverse feed deceleration period and the forward feed acceleration period becomes constant.
The arc welding control method according to claim 1 or 2.
JP2020164377A 2020-09-30 2020-09-30 Arc-welding control method Pending JP2022056565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020164377A JP2022056565A (en) 2020-09-30 2020-09-30 Arc-welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020164377A JP2022056565A (en) 2020-09-30 2020-09-30 Arc-welding control method

Publications (1)

Publication Number Publication Date
JP2022056565A true JP2022056565A (en) 2022-04-11

Family

ID=81111196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020164377A Pending JP2022056565A (en) 2020-09-30 2020-09-30 Arc-welding control method

Country Status (1)

Country Link
JP (1) JP2022056565A (en)

Similar Documents

Publication Publication Date Title
CN107538103B (en) Arc welding control method
JP6835449B2 (en) Output control method for arc welding power supply
JP6895210B2 (en) Arc welding control method
JP2012006020A (en) Arc welding control method
KR20160105770A (en) Arc welding control method
JP7075705B2 (en) Arc welding control method
JP6809759B2 (en) Arc welding control method
JP7039413B2 (en) Arc welding control method
JP7396779B2 (en) Arc welding control method
JP2022056565A (en) Arc-welding control method
JP7053121B2 (en) Arc welding control method
EP3685949B1 (en) Arc welding control method
JP2022185997A (en) Pulse arc welding power source
JP7158327B2 (en) Arc welding control method
JP2021053649A (en) Arc-welding method
JP2020131200A (en) Arc-welding method
JP7335677B2 (en) Arc welding control method
JP2023066022A (en) Arc-welding control method
JP7053120B2 (en) Arc welding control method
JP7329299B2 (en) Arc welding control method
JP7272740B2 (en) Arc welding control method
JP2024021967A (en) Forward/backward feeding arc-welding method
JP2021090994A (en) Arc-welding control method
JP2023031419A (en) Arc welding control method
JP2021178340A (en) Arc welding power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240523