JP2022055933A - ANALYTIC METHOD AND ANALYZER OF HUMAN IgG4 ANTIBODY - Google Patents

ANALYTIC METHOD AND ANALYZER OF HUMAN IgG4 ANTIBODY Download PDF

Info

Publication number
JP2022055933A
JP2022055933A JP2020163658A JP2020163658A JP2022055933A JP 2022055933 A JP2022055933 A JP 2022055933A JP 2020163658 A JP2020163658 A JP 2020163658A JP 2020163658 A JP2020163658 A JP 2020163658A JP 2022055933 A JP2022055933 A JP 2022055933A
Authority
JP
Japan
Prior art keywords
antibody
column
buffer
buffer solution
human igg4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020163658A
Other languages
Japanese (ja)
Inventor
亨 田中
Toru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020163658A priority Critical patent/JP2022055933A/en
Publication of JP2022055933A publication Critical patent/JP2022055933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

To provide an analytic method of an affinity variant to an Fc receptor in which a result can be obtained with good reproducibility and highly accurately for a human IgG4 antibody whose analysis has conventionally been difficult.SOLUTION: A human IgG4 antibody is analyzed by an analytic method including: a process of passing buffer solution from pH5 to pH7 into a column filled with insoluble carrier in which Fc receptors are immobilized to bring the column into equilibrium; a process of injecting solution containing antibodies into the column which has been brought into equilibrium; and a gradient eluting process of gradually increasing the ratio of buffer solution from pH3 to pH5 while passing the buffer solution from pH5 to pH7 to elute the antibody, in which the buffer solution from pH3 to pH5 has higher buffer agent concentration than the buffer solution from pH5 to pH7.SELECTED DRAWING: Figure 1

Description

本発明は、ヒトIgG4抗体の液体クロマトグラフィー分析方法及び分析装置に関する。 The present invention relates to a liquid chromatography analysis method and an analyzer for human IgG4 antibody.

近年、ガンや免疫疾患等の治療に抗体を含む医薬品(抗体医薬品)が用いられている。抗体医薬品に用いる抗体は、遺伝子工学的手法により得られた、当該抗体を発現可能な細胞(例えば、チャイニーズハムスター卵巣(CHO)細胞等)を培養後、カラムクロマトグラフィー等を用いて高純度に精製して製造される。抗体分子の設計に関しては、標的分子の選択が最重要であるが、基本構造として適切なサブクラスを選択するのも重要である。現在実用化されている抗体医薬品の大多数は、免疫原性を考慮してヒト抗体と同一の構造を有する分子が設計されており、キメラ抗体、ヒト化抗体、完全ヒト抗体などが例示できる。また、サブクラスに関しては、ヒトIgG抗体の4つのサブクラス(IgG1、IgG2、IgG3およびIgG4)より、エフェクター機能の強さ、安定性、生産性などを考慮して選択する。適切な分子設計を行ったとしても、抗体分子は酸化、還元、異性化、糖鎖付加等の修飾を受けることで多様化することが判明しており、薬効や安全性への影響が懸念されている。特に、抗体のFc領域に結合した糖鎖の構造は多岐に渡り、抗体医薬品の薬効や副作用に大きく関わる重要な因子であるが、その構造をコントロールする方法は限定的である(非特許文献1参照)。 In recent years, drugs containing antibodies (antibody drugs) have been used for the treatment of cancer and immune diseases. Antibodies The antibodies used in pharmaceuticals are obtained by culturing cells capable of expressing the antibody (for example, Chinese hamster ovary (CHO) cells) obtained by genetic engineering techniques, and then purifying them to high purity using column chromatography or the like. Manufactured. Regarding the design of antibody molecules, the selection of target molecules is of utmost importance, but it is also important to select appropriate subclasses as the basic structure. The majority of antibody drugs currently in practical use are designed with molecules having the same structure as human antibodies in consideration of immunogenicity, and examples thereof include chimeric antibodies, humanized antibodies, and fully human antibodies. The subclass is selected from the four subclasses of human IgG antibody (IgG1, IgG2, IgG3 and IgG4) in consideration of the strength, stability, productivity and the like of the effector function. Even with appropriate molecular design, antibody molecules have been found to diversify by undergoing modifications such as oxidation, reduction, isomerization, and glycosylation, and there are concerns about their impact on drug efficacy and safety. ing. In particular, the structure of the sugar chain bound to the Fc region of the antibody is diverse and is an important factor greatly related to the efficacy and side effects of the antibody drug, but the method for controlling the structure is limited (Non-Patent Document 1). reference).

ヒト3型Fc受容体(FcγRIIIA)をリガンドとして用いた分析カラムが開発されたことにより(非特許文献2参照)、pHグラジェント溶出法を用いることで、IgG1抗体やIgG3抗体などのFc受容体への結合が強い抗体に関しては、糖鎖構造やエフェクター機能に基づいた詳細分析が可能となった(非特許文献3参照)。 Due to the development of an analytical column using a human type 3 Fc receptor (FcγRIIIA) as a ligand (see Non-Patent Document 2), Fc receptors such as IgG1 antibody and IgG3 antibody can be used by using the pH gradient elution method. For antibodies with strong binding to, detailed analysis based on the sugar chain structure and effector function has become possible (see Non-Patent Document 3).

しかしながら、IgG2抗体やIgG4抗体はFcγRIIIAに対する親和性が極めて低いことが知られており、特にIgG4に関してはIgG1やIgG3と比較して結合親和性が5倍~50倍ほど低いため(非特許文献4参照)、分析が困難である。 However, IgG2 antibody and IgG4 antibody are known to have extremely low affinity for FcγRIIIA, and in particular, IgG4 has a binding affinity that is 5 to 50 times lower than that of IgG1 and IgG3 (Non-Patent Document 4). See), difficult to analyze.

この様な背景のもと、従来、IgG4抗体に関しては糖鎖構造の違いによるエフェクター機能の変化については議論されてこなかったが、潜在的に、糖鎖構造が医薬品の品質に影響している可能性は否定できないため、有効な分析方法の開発が求められていた。 Against this background, the change in effector function due to the difference in sugar chain structure has not been discussed for IgG4 antibody, but the sugar chain structure may potentially affect the quality of pharmaceutical products. Since the sex cannot be denied, the development of an effective analysis method was required.

Patrick Hossler et al.、Glycobiology、19、9、936-949(2009)Patrick Hossler et al. , Glycobiology, 19, 9, 936-949 (2009) 東ソー研究・技術報告、第63巻(2019)、77-82Tosoh Research and Technical Report, Vol. 63 (2019), 77-82 Masato Kiyoshi et al.、Scientific reports、8:3955(2018)Masato Kiyoshi et al. , Scientific reports, 8: 3955 (2018) Pierre Bruhns et al.、BLOOD、113、16、3716-3725(2009)Pierre Bruhns et al. , BLOOD, 113, 16, 3716-3725 (2009)

本発明の課題は、従来Fc受容体への親和性異なるバリアントの解析が困難であったヒトIgG4抗体について、再現性良く、高精度に結果が得られる、液体クロマトグラフィー分析方法及び分析装置を提供することにある。 An object of the present invention is to provide a liquid chromatography analysis method and an analyzer that can obtain highly reproducible and highly accurate results for a human IgG4 antibody, which has conventionally been difficult to analyze variants having different affinities for Fc receptors. To do.

前記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。 In order to solve the above-mentioned problems, the present inventors have reached the present invention as a result of repeated diligent studies.

すなわち本発明の一態様は、Fc受容体を固定化した不溶性担体を充填したカラムを用いたヒトIgG4抗体の分析方法であって、
pH5からpH7の緩衝液を通液して前記カラムを平衡化する工程と、
平衡化した前記カラムに抗体を含む溶液を注入する工程と、
pH5からpH7の緩衝液を通液しながら、pH3からpH5の緩衝液の割合を徐々に増加させて前記抗体を溶出させるグラジェント溶出工程を含んでなる分析方法において、
pH3からpH5の緩衝液が、pH5からpH7の緩衝液よりも高い緩衝剤濃度であることを特徴とする、ヒトIgG4抗体の分析方法である。
That is, one aspect of the present invention is a method for analyzing a human IgG4 antibody using a column packed with an insoluble carrier on which an Fc receptor is immobilized.
The step of equilibrating the column by passing a buffer solution of pH 5 to pH 7 and the process of equilibrating the column.
The step of injecting the solution containing the antibody into the equilibrated column, and
In an analytical method comprising a gradient elution step of elution of the antibody by gradually increasing the proportion of the buffer solution of pH 3 to pH 5 while passing a buffer solution of pH 5 to pH 7.
A method for analyzing a human IgG4 antibody, wherein the buffer solution having a pH of 3 to 5 has a higher buffer concentration than the buffer solution having a pH of 5 to 7.

前記抗体の検出にはUV吸光検出機や蛍光検出機が使用でき、より好ましくは280nmの紫外光の吸光度を用いることができる。 A UV absorption detector or a fluorescence detector can be used for detecting the antibody, and more preferably, the absorbance of ultraviolet light of 280 nm can be used.

Fc受容体としては、ヒトFcγRI、ヒトFcγRII、ヒトFcγRIIIおよび補体タンパク質C1qが挙げられ、各々を構成するアミノ酸が部分的に置換した変異体を用いてもよい。 Examples of the Fc receptor include human FcγRI, human FcγRII, human FcγRIII and complement protein C1q, and variants in which the amino acids constituting each thereof are partially substituted may be used.

不溶性担体としては、抗体の吸着/溶出に用いる溶液や溶剤に対して不溶性であり、かつFc受容体を共有結合で固定化するための官能基(例えばヒドロキシ基)を有した物質であればよく、ジルコニア、ゼオライト、シリカ、皮膜シリカ等の無機系物質に由来した担体であってもよいし、セルロース、アガロース、デキストラン等の天然有機高分子物質に由来した担体であってもよいし、ポリアクリル酸、ポリスチレン、ポリアクリルアミド、ポリメタクリルアミド、ポリメタクリレート、ビニルポリマー等の合成有機高分子物質に由来した担体であってもよい。 The insoluble carrier may be a substance that is insoluble in the solution or solvent used for adsorbing / elution of the antibody and has a functional group (for example, a hydroxy group) for immobilizing the Fc acceptor by a covalent bond. , A carrier derived from an inorganic substance such as zirconia, zeolite, silica, or film silica, a carrier derived from a natural organic polymer substance such as cellulose, agarose, or dextran, or a polyacrylic. The carrier may be derived from a synthetic organic polymer substance such as acid, polystyrene, polyacrylamide, polymethacrylicamide, polymethacrylate, and vinyl polymer.

カラムを平衡化するにはカラムボリュームを基準にカラムボリュームに対して1倍以上通液すればよく、3倍以上通液することがより好ましい。 In order to equilibrate the column, it is sufficient to pass the liquid 1 times or more with respect to the column volume based on the column volume, and it is more preferable to pass the liquid 3 times or more.

溶離液は、緩衝液濃度が10mM以上1000mM以下であることが好ましく、20mM以上300mM以下であることがより好ましい。 The eluent preferably has a buffer concentration of 10 mM or more and 1000 mM or less, and more preferably 20 mM or more and 300 mM or less.

緩衝液としては、クエン酸緩衝液、コハク酸緩衝液、酒石酸緩衝液、GTA緩衝液、ホウ酸緩衝液、トリス緩衝液、グリシンナトリウム緩衝液、リン酸緩衝液、酢酸緩衝液、グリシン塩酸緩衝液、MES緩衝液やHEPES緩衝液といったグッドバッファーなどを用いることができる。また、親和性の調整や非特異的な吸着を抑制する目的で、無機塩類や界面活性剤を添加しても良い。 The buffers include citric acid buffer, succinic acid buffer, tartrate buffer, GTA buffer, borate buffer, Tris buffer, sodium glycine buffer, phosphate buffer, acetate buffer, and glycine hydrochloride buffer. , Good buffers such as MES buffer and HEEPS buffer can be used. Inorganic salts and surfactants may be added for the purpose of adjusting affinity and suppressing non-specific adsorption.

抗体を含む溶液としては、抗体を濃度として10μg/L以上含む溶液と定義できる。カラムに添加する抗体量としては、クロマト装置の検出器で検出できればよく、0.1μg以上1g以下が好ましい。また、本溶液の添加剤として、緩衝剤、塩類、防腐剤、界面活性剤が含まれていてもよい。 The solution containing the antibody can be defined as a solution containing the antibody at a concentration of 10 μg / L or more. The amount of antibody added to the column may be as long as it can be detected by a detector of a chromatographic device, and is preferably 0.1 μg or more and 1 g or less. Further, as an additive of this solution, a buffering agent, salts, a preservative, and a surfactant may be contained.

分析に供する抗体はヒト抗体、ヒト化抗体、キメラ抗体やそれらのアミノ酸置換体が挙げられ、基本構造としてヒトIgG4のFc領域を有する。抗体の由来は問わず、ヒト血液から製造されるガンマグロブリンでもよいし、動物細胞培養や微生物培養によって得られたリコンビナントタンパク質であっても使用できる。また、Fc融合タンパク質や、抗体を分解して得られるFc部位の断片も広義の抗体として利用できる。 Antibodies to be analyzed include human antibodies, humanized antibodies, chimeric antibodies and their amino acid substitutions, and have an Fc region of human IgG4 as a basic structure. Regardless of the origin of the antibody, gamma globulin produced from human blood may be used, or recombinant protein obtained by animal cell culture or microbial culture may be used. Further, an Fc fusion protein and a fragment of an Fc site obtained by degrading an antibody can also be used as an antibody in a broad sense.

カラムは、その親和性において温度依存性があるため、カラムオーブンなどを使用して恒温状態を保つのが望ましい。測定温度としては、カラム内が凍結しない温度以上であり、また、リガンドとして固定したFc結合性タンパク質が変性しない温度以下であればよい。具体的には、4℃以上50℃以下が好ましく、15℃以上35℃以下がより好ましい。 Since the column has a temperature dependence in its affinity, it is desirable to keep it at a constant temperature by using a column oven or the like. The measured temperature may be a temperature at which the inside of the column does not freeze and a temperature at which the Fc-binding protein immobilized as a ligand does not denature. Specifically, it is preferably 4 ° C. or higher and 50 ° C. or lower, and more preferably 15 ° C. or higher and 35 ° C. or lower.

本発明によれば、再現性良く、高精度に、ヒトIgG4抗体をクロマト分離し、Fc受容体への結合性に基づく成分分析を実施することが可能となる。 According to the present invention, it is possible to perform chromatographic separation of a human IgG4 antibody with good reproducibility and high accuracy, and perform component analysis based on the binding property to the Fc receptor.

20mMクエン酸緩衝液および50mMクエン酸緩衝液を溶離液として使用し、ヒトIgG4抗体を分離して得られたクロマトグラフである。6 is a chromatograph obtained by separating a human IgG4 antibody using 20 mM citrate buffer and 50 mM citrate buffer as eluents. 50mMクエン酸緩衝液を溶離液として使用し、ヒトIgG1およびヒトIgG4抗体を分離して得られたクロマトグラフである。6 is a chromatograph obtained by separating human IgG1 and human IgG4 antibodies using 50 mM citrate buffer as an eluent. 25mMクエン酸緩衝液を溶離液として使用し、ヒトIgG4抗体を分離して得られたクロマトグラフである。It is a chromatograph obtained by separating a human IgG4 antibody using 25 mM citrate buffer as an eluent. 20mMクエン酸緩衝液を溶離液として使用し、ヒトIgG4抗体を分離して得られたクロマトグラフである。It is a chromatograph obtained by separating a human IgG4 antibody using 20 mM citrate buffer as an eluent.

本発明に係るヒトIgG4抗体の分析方法は、Fc受容体を固定化した不溶性担体を充填したカラムに、pH5からpH7のクエン酸緩衝液(以下、溶離液A)を添加して前記カラムを平衡化する工程と、平衡化した前記カラムに抗体を含む溶液を添加する工程と、溶離液Aを通液しながら、pH3からpH5のクエン酸緩衝液(以下、溶離液B)の割合を徐々に増加させて前記抗体を溶出させるグラジェント溶出工程とを含んでなる。 In the method for analyzing a human IgG4 antibody according to the present invention, a citrate buffer solution having a pH of 5 to 7 (hereinafter referred to as eluent A) is added to a column packed with an insoluble carrier on which an Fc receptor is immobilized to equilibrate the column. Gradually the ratio of the citrate buffer solution (hereinafter, eluent B) of pH 3 to pH 5 while passing the eluent A and the step of adding the solution containing the antibody to the equilibrated column. It comprises a gradient elution step of increasing and eluting the antibody.

まず、Fc受容体を固定化した不溶性担体を充填したカラムに、溶離液Aを添加して前記カラムを平衡化する。 First, eluent A is added to a column packed with an insoluble carrier on which the Fc receptor is immobilized to equilibrate the column.

以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Examples are shown below, and embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible for details. Furthermore, the present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining the disclosed technical means are also included in the technical scope of the present invention.

以下の通り、実施例で用いる溶離液等の調製を行った。
(1)溶離液AおよびB
クエン酸(富士フイルム和光純薬製)を9.606g取り、900mLのミリQ水に溶解後に水酸化ナトリウム水溶液にて規定のpHに調整(溶離液AはpH6.5、溶離液BはpH4.5)した後、メスシリンダーで1000mLにメスアップした。溶液を0.2μmのフィルターでろ過し、減圧しながら超音波照射にて脱気することで50mMクエン酸緩衝液を調製した。同様の手順で、20mM、25mMのクエン酸緩衝液も調製した。
(2)抗体サンプル
市販の抗体2種(ヒトIgG1(κ):シグマアルドリッチ製、ヒトIgG4(κ):シグマアルドリッチ製)を終濃度0.2g/Lとなるように溶離液Aで希釈し、調製した。
(3)分析カラム
Fc受容体固定化カラムとして、市販のTSKgel FcR-IIIA-NPR(東ソー社製)を使用した。
The eluent and the like used in the examples were prepared as follows.
(1) Eluents A and B
Take 9.606 g of citric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), dissolve it in 900 mL of Milli-Q water, and then adjust the pH to the specified pH with an aqueous solution of sodium hydroxide (pH 6.5 for eluent A and pH 4. for eluent B. 5) After that, the volume was increased to 1000 mL with a measuring cylinder. The solution was filtered through a 0.2 μm filter and degassed by ultrasonic irradiation while reducing the pressure to prepare a 50 mM citric acid buffer. 20 mM and 25 mM citric acid buffers were also prepared by the same procedure.
(2) Antibody sample Two commercially available antibodies (human IgG1 (κ): manufactured by Sigma-Aldrich, human IgG4 (κ): manufactured by Sigma-Aldrich) were diluted with eluent A so as to have a final concentration of 0.2 g / L. Prepared.
(3) Analytical column As an Fc receptor-immobilized column, a commercially available TSKgel FcR-IIIA-NPR (manufactured by Tosoh Corporation) was used.

(実施例1)
20mM-50mMクエン酸緩衝液による分析
カラム、溶離液A(クエン酸濃度 20mM、pH6.5)、溶離液B(クエン酸濃度 50mM、pH4.5)と抗体サンプル(ヒトIgG4)をHPLC装置(東ソー製)に設置した。カラムオーブン温度は15℃及び25℃、流速は1.0mL/分、検出器は280nmの吸光度測定に設定した。グラジェント条件は、溶離液A100%-溶離液B0%で2分間通液後、溶離液A100%-溶離液B0%から溶離液A0%-溶離液B100%に18分間でリニアに切り替えた後、溶離液A0%-溶離液B100%で5分間通液、その後溶離液A100%-溶離液B0%で5分間通液する設定とした(以下、標準グラジェント法と呼ぶ)。溶離液Aにてカラムを平衡化した後、抗体を負荷量50μL(10μg)にてカラムに添加後、標準グラジェント法で溶出することでクロマトグラムを取得した結果を図1に示す。保持時間、ピークの分離が良好なクロマトグラムが取得できた。また、分離が良好であることでマイナーピークを明確に判別可能となり、分析の再現性や精度の向上が確認された。
(Example 1)
Analysis with 20 mM-50 mM citric acid buffer Column, eluent A (citric acid concentration 20 mM, pH 6.5), eluent B (citric acid concentration 50 mM, pH 4.5) and antibody sample (human IgG4) were used in an HPLC device (Tosoh). Made). The column oven temperature was set to 15 ° C. and 25 ° C., the flow rate was set to 1.0 mL / min, and the detector was set to measure the absorbance at 280 nm. The gradient conditions are as follows: after passing the eluent A100% -eluent B0% for 2 minutes, and then switching linearly from eluent A100% -eluent B0% to eluent A0% -eluent B100% in 18 minutes. It was set to pass the eluent A 0% -eluent B 100% for 5 minutes, and then eluate A 100% -eluent B 0% for 5 minutes (hereinafter referred to as the standard gradient method). FIG. 1 shows the results obtained by equilibrating the column with eluent A, adding the antibody to the column with a loading of 50 μL (10 μg), and then eluting by the standard gradient method to obtain a chromatogram. A chromatogram with good retention time and peak separation could be obtained. In addition, good separation made it possible to clearly discriminate minor peaks, confirming improvements in analysis reproducibility and accuracy.

(比較例1)
ヒトIgG1向け標準分析条件での分析
カラム、溶離液A(クエン酸濃度 50mM、pH6.5)、溶離液B(クエン酸濃度 50mM、pH4.5)および抗体サンプル(ヒトIgG1およびヒトIgG4)をHPLC装置(東ソー製)に設置した。カラムオーブン温度は25℃、抗体負荷量は50μL、流速は1.0mL/分、検出器は280nmの吸光度測定に設定した。実施例1に記載の標準グラジェント法で分析した結果を図2に示す。ヒトIgG1に関しては良好な分析結果が得られたものの、ヒトIgG4に関しては保持が弱いためピークが近接し、解析は困難であった。
(Comparative Example 1)
Analysis under standard analytical conditions for human IgG1 Column, eluent A (citric acid concentration 50 mM, pH 6.5), eluent B (citric acid concentration 50 mM, pH 4.5) and antibody sample (human IgG1 and human IgG4) HPLC. Installed in the device (manufactured by Tosoh). The column oven temperature was set to 25 ° C., the antibody loading was set to 50 μL, the flow rate was set to 1.0 mL / min, and the detector was set to measure the absorbance at 280 nm. The results of analysis by the standard gradient method described in Example 1 are shown in FIG. Although good analysis results were obtained for human IgG1, it was difficult to analyze human IgG4 because the peaks were close to each other due to its weak retention.

(比較例2)
25mMクエン酸緩衝液による分析
カラム、溶離液A(クエン酸濃度 25mM、pH6.5)、溶離液B(クエン酸濃度 25mM、pH4.5)と抗体サンプル(ヒトIgG4)をHPLC装置(東ソー製)に設置した。カラムオーブン温度は15℃及び25℃、抗体負荷量は50μL、流速は1.0mL/分、検出器は280nmの吸光度測定に設定した。実施例1に記載の標準グラジェント法で分析した結果を図3に示す。比較例1と比較し、保持時間が延びていることは確認できるが、一部のピークの分離は不完全であった。
(Comparative Example 2)
Analysis with 25 mM citric acid buffer Column, eluent A (citric acid concentration 25 mM, pH 6.5), eluent B (citric acid concentration 25 mM, pH 4.5) and antibody sample (human IgG4) were used in an HPLC device (manufactured by Toso). Installed in. The column oven temperature was set to 15 ° C. and 25 ° C., the antibody loading was set to 50 μL, the flow rate was set to 1.0 mL / min, and the detector was set to measure the absorbance at 280 nm. The results of analysis by the standard gradient method described in Example 1 are shown in FIG. It can be confirmed that the retention time is extended as compared with Comparative Example 1, but the separation of some peaks was incomplete.

(比較例3)
20mMクエン酸緩衝液による分析
カラム、溶離液A(クエン酸濃度 20mM、pH6.5)、溶離液B(クエン酸濃度 20mM、pH4.5)と抗体サンプル(ヒトIgG4)をHPLC装置(東ソー製)に設置した。カラムオーブン温度は15℃及び25℃、抗体負荷量は50μL、流速は1.0mL/分、検出器は280nmの吸光度測定に設定した。実施例1に記載の標準グラジェント法で分析した結果を図4に示す。比較例1と比較し、保持時間が延びていることは確認できるが、ピーク幅が大きくなり、マイナーピークの検出が困難であった。
(Comparative Example 3)
Analysis with 20 mM citric acid buffer Column, eluent A (citric acid concentration 20 mM, pH 6.5), eluent B (citric acid concentration 20 mM, pH 4.5) and antibody sample (human IgG4) are HPLC device (manufactured by Toso). Installed in. The column oven temperature was set to 15 ° C. and 25 ° C., the antibody loading was set to 50 μL, the flow rate was set to 1.0 mL / min, and the detector was set to measure the absorbance at 280 nm. The results of analysis by the standard gradient method described in Example 1 are shown in FIG. It can be confirmed that the holding time is extended as compared with Comparative Example 1, but the peak width is large and it is difficult to detect the minor peak.

Claims (7)

Fc受容体を固定化した不溶性担体を充填したカラムを用いたヒトIgG4抗体の分析方法であって、
pH5からpH7の緩衝液を通液して前記カラムを平衡化する工程と、
平衡化した前記カラムに抗体を含む溶液を注入する工程と、
pH5からpH7の緩衝液を通液しながら、pH3からpH5の緩衝液の割合を徐々に増加させて前記抗体を溶出させるグラジェント溶出工程を含んでなる分析方法において、
pH3からpH5の緩衝液が、pH5からpH7の緩衝液よりも高い緩衝剤濃度であることを特徴とする、
ヒトIgG4抗体の分析方法。
A method for analyzing a human IgG4 antibody using a column packed with an insoluble carrier on which an Fc receptor is immobilized.
The step of equilibrating the column by passing a buffer solution of pH 5 to pH 7 and the process of equilibrating the column.
The step of injecting the solution containing the antibody into the equilibrated column, and
In an analytical method comprising a gradient elution step of elution of the antibody by gradually increasing the proportion of the buffer solution of pH 3 to pH 5 while passing a buffer solution of pH 5 to pH 7.
The buffer solution of pH 3 to pH 5 is characterized by having a higher buffer concentration than the buffer solution of pH 5 to pH 7.
Analytical method for human IgG4 antibody.
Fc受容体として、FcγRI、FcγRII、FcγRIIIおよびそのアミノ酸変異体を使用することを特徴とする、請求項1に記載の分析方法。 The analytical method according to claim 1, wherein FcγRI, FcγRII, FcγRIII and an amino acid variant thereof are used as the Fc receptor. ヒトIgG4抗体が、ヒト抗体、ヒト化抗体、キメラ抗体、Fc融合タンパク質、低分子化抗体であることを特徴とする、請求項1または2に記載の分析方法。 The analysis method according to claim 1 or 2, wherein the human IgG4 antibody is a human antibody, a humanized antibody, a chimeric antibody, an Fc fusion protein, or a low molecular weight antibody. 緩衝液濃度が10mMから1000mMの範囲であることを特徴とする、請求項1から3のいずれかに記載の分析方法。 The analytical method according to any one of claims 1 to 3, wherein the buffer concentration is in the range of 10 mM to 1000 mM. 緩衝剤がクエン酸である、請求項1から4のいずれかに記載の分析方法。 The analytical method according to any one of claims 1 to 4, wherein the buffer is citric acid. 測定温度として4℃から50℃の範囲で実施することを特徴とする、請求項1~5のいずれかに記載の分析方法。 The analysis method according to any one of claims 1 to 5, wherein the measurement is carried out in the range of 4 ° C to 50 ° C. 請求項1から6のいずれかに記載のヒトIgG4抗体の分析装置。 The analyzer for human IgG4 antibody according to any one of claims 1 to 6.
JP2020163658A 2020-09-29 2020-09-29 ANALYTIC METHOD AND ANALYZER OF HUMAN IgG4 ANTIBODY Pending JP2022055933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020163658A JP2022055933A (en) 2020-09-29 2020-09-29 ANALYTIC METHOD AND ANALYZER OF HUMAN IgG4 ANTIBODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020163658A JP2022055933A (en) 2020-09-29 2020-09-29 ANALYTIC METHOD AND ANALYZER OF HUMAN IgG4 ANTIBODY

Publications (1)

Publication Number Publication Date
JP2022055933A true JP2022055933A (en) 2022-04-08

Family

ID=80998386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020163658A Pending JP2022055933A (en) 2020-09-29 2020-09-29 ANALYTIC METHOD AND ANALYZER OF HUMAN IgG4 ANTIBODY

Country Status (1)

Country Link
JP (1) JP2022055933A (en)

Similar Documents

Publication Publication Date Title
KR102511050B1 (en) Methods for quantitating individual antibodies from a mixture
Williams et al. Automated 2D-HPLC method for characterization of protein aggregation with in-line fraction collection device
Todoroki et al. Bioanalytical methods for therapeutic monoclonal antibodies and antibody–drug conjugates: A review of recent advances and future perspectives
EP3196646B1 (en) Methods of mapping protein variants
JP7055837B2 (en) Quantification of sugar chain portion in recombinant glycoprotein
Černigoj et al. Characterization of methacrylate chromatographic monoliths bearing affinity ligands
Trang et al. Application of protein A-modified capillary-channeled polymer polypropylene fibers to the quantitation of IgG in complex matrices
Horak et al. Quantification of immunoglobulin G and characterization of process related impurities using coupled Protein A and size exclusion high performance liquid chromatography
Kangwa et al. An engineered Staphylococcal Protein A based ligand: Production, characterization and potential application for the capture of Immunoglobulin and Fc-fusion proteins
Marek et al. Isolation of monoclonal antibody from a Chinese hamster ovary supernatant. I: Assessment of different separation concepts
Wang et al. Fiber-based HIC capture loop for coupling of protein A and size exclusion chromatography in a two-dimensional separation of monoclonal antibodies
JP2022055933A (en) ANALYTIC METHOD AND ANALYZER OF HUMAN IgG4 ANTIBODY
Lemmerer et al. Coupled affinity and sizing chromatography: a novel in-process analytical tool to measure titer and trend Fc-protein aggregation
US20210382065A1 (en) Method and chromatography system for determining amount and purity of a multimeric protein
JP7159642B2 (en) How to measure column retention for antibodies
Ralla et al. Application of conjoint liquid chromatography with monolithic disks for the simultaneous determination of immunoglobulin G and other proteins present in a cell culture medium
US20230018939A1 (en) On-line ultra performance hydrophobic interaction chromatography for monitoring at least one product attribute
Hélie et al. Application of the Protein Maker as a platform purification system for therapeutic antibody research and development
KR20220103967A (en) Eluent collection during antibody chromatography
Gehrmann et al. Rapid purification of mAb using protein a membranes yielding high HCP clearance
US20240241093A1 (en) Titer method using uv measurement for continuous biological production
JP7540346B2 (en) How to analyze intact antibodies
JP2022092978A (en) Methods for analyzing antibodies
EP4435107A1 (en) Antibody isolation method
US20180100023A1 (en) Composition Enriched in Anti-A and /or Anti B Polyclonal Immunoglobulins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241008