JP2022055711A - Fuel leakage detection system and fuel leakage determination device - Google Patents

Fuel leakage detection system and fuel leakage determination device Download PDF

Info

Publication number
JP2022055711A
JP2022055711A JP2020163291A JP2020163291A JP2022055711A JP 2022055711 A JP2022055711 A JP 2022055711A JP 2020163291 A JP2020163291 A JP 2020163291A JP 2020163291 A JP2020163291 A JP 2020163291A JP 2022055711 A JP2022055711 A JP 2022055711A
Authority
JP
Japan
Prior art keywords
fuel
pipeline
flow
fuel supply
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020163291A
Other languages
Japanese (ja)
Other versions
JP7458953B2 (en
Inventor
雄大 村上
Takehiro Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico System Solutions Co Ltd
Original Assignee
Tokico System Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico System Solutions Co Ltd filed Critical Tokico System Solutions Co Ltd
Priority to JP2020163291A priority Critical patent/JP7458953B2/en
Publication of JP2022055711A publication Critical patent/JP2022055711A/en
Application granted granted Critical
Publication of JP7458953B2 publication Critical patent/JP7458953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

To provide a technology feasible to detect fuel leakage in a sharing duct and a plurality of individual ducts in a system capable of supplying fuel to a plurality of fuel supply machines from a supply source with less number of sensors.SOLUTION: A fuel leakage detection system 1 comprises a sharing duct 131 sending fuel from a storage tank 11 to a plurality of fuel supply machines 12X, a fuel supply duct 13 containing a plurality of individual ducts 132X connecting the sharing duct 131 with each of the plurality of fuel supply machines 12X, a plurality of flow meters 20X disposed on a connecting part between the sharing duct 131 and the plurality of individual ducts 132X and measuring the flow of the fuel, and a fuel leakage detection device 30 determining a leakage location of the fuel from among the sharing duct 131 and the plurality of individual ducts 132X based on the measurement result of the flow of each of the plurality of flow meters 20X in a state in which no fuel supply by the plurality of fuel supply machines 12X is conducted.SELECTED DRAWING: Figure 5

Description

本開示は燃料漏洩検知システム等に関する。 This disclosure relates to a fuel leak detection system and the like.

例えば、共有管路、及び共有管路から分岐する複数の個別管路を通じて、供給源からの燃料を複数の燃料供給機(被燃料供給体)へ供給可能なシステムにおいて、共有管路に燃料漏洩を検知可能なセンサを設置する技術が知られている(例えば、特許文献1参照)。 For example, in a system capable of supplying fuel from a supply source to a plurality of fuel supply machines (fueled units) through a shared pipeline and a plurality of individual pipelines branching from the shared pipeline, fuel leaks to the shared pipeline. A technique for installing a sensor capable of detecting a fuel is known (see, for example, Patent Document 1).

特開平9-30600号公報Japanese Unexamined Patent Publication No. 9-30600

しかしながら、共有管路だけでなく、複数の個別管路のそれぞれにおける燃料漏洩を検知しようとすると、共有管路、及び複数の個別管路の全てにセンサを設置する必要が生じうる。そのため、燃料漏洩を検知するためのシステム全体のコストが相対的に高くなる可能性がある。 However, in order to detect fuel leakage not only in the shared pipeline but also in each of the plurality of individual pipelines, it may be necessary to install sensors in all of the shared pipeline and the plurality of individual pipelines. Therefore, the cost of the entire system for detecting a fuel leak may be relatively high.

そこで、上記課題に鑑み、供給源から複数の燃料供給機に燃料を供給可能なシステムにおいて、共有管路、及び複数の個別管路ごとの燃料漏洩の検知をより少ないセンサによって実現可能な技術を提供することを目的とする。 Therefore, in view of the above problems, in a system that can supply fuel from a supply source to a plurality of fuel supply machines, a technology that can realize detection of fuel leakage in a shared pipeline and a plurality of individual pipelines with a smaller number of sensors is provided. The purpose is to provide.

上記目的を達成するため、本開示の一実施形態では、
被燃料供給体への燃料供給を行う複数の燃料供給機と、
燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路と、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられ、燃料の流量を計測する複数の流量計と、
前記複数の燃料供給機による燃料供給が行われていない状態で、前記複数の流量計のそれぞれの流量の計測結果に基づき、前記燃料供給管路のうちの前記共有管路、及び前記複数の個別管路の中から燃料の漏洩箇所を判定する燃料漏洩判定装置と、を備える、
燃料漏洩検知システムが提供される。
In order to achieve the above object, in one embodiment of the present disclosure,
Multiple fuel supply machines that supply fuel to the fueled object, and
A fuel supply pipe including a shared pipeline for sending fuel from a fuel supply source to the plurality of fuel feeders, and a plurality of individual pipelines connecting the shared pipeline and each of the plurality of fuel feeders. The road and
A plurality of flow meters provided at the connection points between the shared pipeline and each of the plurality of individual pipelines to measure the flow rate of fuel, and a plurality of flow meters.
In a state where fuel is not supplied by the plurality of fuel supply machines, the shared pipeline among the fuel supply pipelines and the plurality of individual pipes are based on the measurement results of the respective flow rates of the plurality of flow meters. It is equipped with a fuel leak determination device that determines the location of fuel leakage from the pipeline.
A fuel leak detection system is provided.

また、本開示の他の実施形態では、
被燃料供給体への燃料供給を行う複数の燃料供給機と、
燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路と、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられ、燃料の流れ方向を検知する複数の流れ方向検知装置と、
前記複数の燃料供給機による燃料供給が行われていない状態で、前記複数の流れ方向検知装置のそれぞれによる燃料の流れ方向の検知結果に基づき、前記燃料供給管路のうちの前記共有管路、及び前記複数の個別管路の中から燃料の漏洩箇所を判定する燃料漏洩判定装置と、を備える、
燃料漏洩検知システムが提供される。
Also, in other embodiments of the present disclosure,
Multiple fuel supply machines that supply fuel to the fueled object, and
A fuel supply pipe including a shared pipeline for sending fuel from a fuel supply source to the plurality of fuel feeders, and a plurality of individual pipelines connecting the shared pipeline and each of the plurality of fuel feeders. The road and
A plurality of flow direction detecting devices provided at the connection points between the shared pipeline and each of the plurality of individual pipelines to detect the fuel flow direction, and
In a state where fuel is not supplied by the plurality of fuel supply machines, the shared pipeline among the fuel supply pipelines is based on the detection result of the fuel flow direction by each of the plurality of flow direction detection devices. And a fuel leak determination device for determining a fuel leak location from the plurality of individual pipelines.
A fuel leak detection system is provided.

また、本開示の更に他の実施形態では、
被燃料供給体への燃料供給を行う複数の燃料供給機と、燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路とを有する燃料供給システムにおける燃料の漏洩を検知する燃料漏洩検知装置であって、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられる、燃料の流量を計測する複数の流量計の計測結果を取得する取得部と、
前記複数の燃料供給機による前記燃料供給が行われていない状態で、前記複数の流量計のそれぞれの流量の計測結果に基づき、前記燃料供給管路のうちの前記共有管路、及び前記複数の個別管路の中から燃料の漏洩箇所を判定する判定部と、を備える、
燃料漏洩検知装置が提供される。
Further, in still other embodiments of the present disclosure,
A plurality of fuel feeders that supply fuel to the fueled object, a shared pipeline that sends fuel from the fuel supply source to the plurality of fuel feeders, and the shared pipeline and the plurality of fuel feeders. A fuel leak detection device that detects a fuel leak in a fuel supply system having a fuel supply pipeline including a plurality of individual pipelines connecting to each other.
An acquisition unit for acquiring the measurement results of a plurality of flow meters for measuring the flow rate of fuel, which are provided at the connection points between the shared pipeline and each of the plurality of individual pipelines.
In a state where the fuel is not supplied by the plurality of fuel supply machines, the shared pipeline among the fuel supply pipelines and the plurality of fuel supply pipelines are based on the measurement results of the flow rates of the plurality of flow meters. It is equipped with a determination unit that determines the location of fuel leakage from the individual pipelines.
A fuel leak detector is provided.

また、本開示の更に他の実施形態では、
被燃料供給体への燃料供給を行う複数の燃料供給機と、燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路とを有する燃料供給システムにおける燃料の漏洩を検知する燃料漏洩検知装置であって、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられる、燃料の流れ方向を検知する複数の流れ方向検知装置の検知結果を取得する取得部と、
前記複数の燃料供給機による前記燃料供給が行われていない状態で、前記複数の流れ方向検知装置のそれぞれによる燃料の流れ方向の検知結果に基づき、前記燃料供給管路のうちの前記共有管路、及び前記複数の個別管路の中から燃料の漏洩箇所を判定する判定部と、を備える、
燃料漏洩検知装置が提供される。
Further, in still other embodiments of the present disclosure,
A plurality of fuel feeders that supply fuel to the fueled object, a shared pipeline that sends fuel from the fuel supply source to the plurality of fuel feeders, and the shared pipeline and the plurality of fuel feeders. A fuel leak detection device that detects a fuel leak in a fuel supply system having a fuel supply pipeline including a plurality of individual pipelines connecting to each other.
An acquisition unit for acquiring the detection results of a plurality of flow direction detection devices for detecting the fuel flow direction provided at the connection points between the shared pipeline and each of the plurality of individual pipelines.
In a state where the fuel is not supplied by the plurality of fuel supply machines, the shared pipeline among the fuel supply pipelines is based on the detection result of the fuel flow direction by each of the plurality of flow direction detection devices. , And a determination unit for determining a fuel leak location from the plurality of individual pipelines.
A fuel leak detector is provided.

上述の実施形態によれば、共通の供給源から複数の燃料供給機に燃料を供給可能なシステムにおいて、共有管路を含む上流側の管路、及び複数の燃料供給管路ごとの燃料漏洩の検知をより少ないセンサによって実現することができる。 According to the above-described embodiment, in a system capable of supplying fuel to a plurality of fuel supply machines from a common supply source, an upstream line including a shared line and a fuel leak in each of the plurality of fuel supply lines. Detection can be achieved with fewer sensors.

燃料漏洩検知システムの一例を示す図である。It is a figure which shows an example of a fuel leak detection system. 燃料の漏洩箇所の判定方法を説明する図である。It is a figure explaining the determination method of the fuel leakage part. 燃料の漏洩箇所の判定方法を説明する図である。It is a figure explaining the determination method of the fuel leakage part. 燃料の漏洩箇所の判定方法を説明する図である。It is a figure explaining the determination method of the fuel leakage part. 燃料の漏洩検知に関する制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control process about fuel leakage detection. 燃料の漏洩箇所の判定方法を説明する図である。It is a figure explaining the determination method of the fuel leakage part. 燃料の漏洩箇所の判定方法を説明する図である。It is a figure explaining the determination method of the fuel leakage part. 燃料の漏洩検知に関する制御処理の他の例を示すフローチャートである。It is a flowchart which shows the other example of the control process concerning the fuel leakage detection.

以下、図面を参照して実施形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.

[燃料漏洩検知システムの構成]
最初に、図1を参照して、燃料漏洩検知システム1の構成について説明する。
[Fuel leak detection system configuration]
First, the configuration of the fuel leak detection system 1 will be described with reference to FIG.

図1は、燃料漏洩検知システム1の一例を示す図である。 FIG. 1 is a diagram showing an example of a fuel leak detection system 1.

図1に示すように、燃料漏洩検知システム1は、燃料供給システム10と、流量計20と、燃料漏洩検知装置30とを含む。 As shown in FIG. 1, the fuel leak detection system 1 includes a fuel supply system 10, a flow meter 20, and a fuel leak detection device 30.

燃料供給システム10は、貯蔵タンク11から燃料供給機12に燃料を導入し、燃料供給機12を通じて所定の被燃料供給体に燃料を供給する。被燃料供給体は、例えば、鉄道車両、船舶、自動車等である。また、燃料は、例えば、ディーゼル燃料(軽油)である。 The fuel supply system 10 introduces fuel from the storage tank 11 into the fuel supply machine 12, and supplies fuel to a predetermined fuel supply body through the fuel supply machine 12. The fueled supply body is, for example, a railroad vehicle, a ship, an automobile, or the like. The fuel is, for example, diesel fuel (light oil).

燃料供給システム10は、貯蔵タンク11と、燃料供給機12と、燃料供給管路13とを含む。 The fuel supply system 10 includes a storage tank 11, a fuel supply machine 12, and a fuel supply line 13.

貯蔵タンク11(燃料供給源の一例)は、燃料を貯蔵する。 The storage tank 11 (an example of a fuel supply source) stores fuel.

燃料供給機12は、貯蔵タンク11から燃料供給管路13を通じて導入される燃料を被燃料供給体に供給する。具体的には、燃料供給機12と貯蔵タンク11との間の燃料供給管路13(後述の主管路131M)には、燃料を圧送するポンプが設けられ、ポンプの動力で貯蔵タンク11の燃料は、燃料供給機12に導入される。 The fuel supply machine 12 supplies the fuel introduced from the storage tank 11 through the fuel supply pipeline 13 to the fueled feeder. Specifically, a pump for pumping fuel is provided in the fuel supply line 13 (main line 131M described later) between the fuel supply machine 12 and the storage tank 11, and the fuel in the storage tank 11 is powered by the pump. Is introduced into the fuel supply machine 12.

燃料供給機12には、被燃料供給体の給油口に挿入可能なノズルが設けられ、貯蔵タンク11から導入される燃料は、ユーザの操作に応じて、ノズルの先端から流出する。これにより、ユーザは、被燃料供給体の給油口にノズルを挿入し、所定の操作を行うことで、被燃料供給体に燃料を補給することができる。 The fuel supply machine 12 is provided with a nozzle that can be inserted into the fuel filler port of the fuel supply body, and the fuel introduced from the storage tank 11 flows out from the tip of the nozzle according to the user's operation. As a result, the user can refuel the fueled feeder by inserting the nozzle into the fuel filler port of the fueled feeder and performing a predetermined operation.

燃料供給機12は、複数(本実施形態では、3つ)の燃料供給機12A~12Cを含む。以下、符号中の"A"、"B"、及び"C"によって区別される複数の構成について、これらの複数の構成を包括的に、或いは、複数の構成中の任意の一つとして取り扱うため、符号中の"A"、"B"、及び"C"を"X"に読み替える場合がある。例えば、燃料供給機12A~12Cを包括的に、或いは、燃料供給機12A~12Cのうちの任意の一つを個別に、"燃料供給機12X"と称する場合がある。 The fuel supply machine 12 includes a plurality of (three in this embodiment) fuel supply machines 12A to 12C. Hereinafter, in order to treat a plurality of configurations distinguished by "A", "B", and "C" in the reference numerals comprehensively or as any one of the plurality of configurations. , "A", "B", and "C" in the code may be read as "X". For example, the fuel supply machines 12A to 12C may be comprehensively referred to, or any one of the fuel supply machines 12A to 12C may be individually referred to as "fuel supply machine 12X".

尚、燃料供給システム10に含まれる燃料供給機12は、2つであってもよいし、4つ以上であってもよい。 The fuel supply machine 12 included in the fuel supply system 10 may be two or four or more.

燃料供給管路13は、貯蔵タンク11と燃料供給機12A~12Cとの間を接続する。以下、燃料供給管路13のある箇所から見て、貯蔵タンク11側を上流側とし、燃料供給機12A~12C側を下流側として説明を行う。 The fuel supply line 13 connects the storage tank 11 and the fuel supply machines 12A to 12C. Hereinafter, the description will be given with the storage tank 11 side as the upstream side and the fuel supply machines 12A to 12C side as the downstream side when viewed from a certain location of the fuel supply pipeline 13.

燃料供給管路13は、共有管路131と、個別管路132とを含む。 The fuel supply line 13 includes a shared line 131 and an individual line 132.

共有管路131は、貯蔵タンク11から延び出すように設けられ、貯蔵タンク11から燃料供給機12A~12Cに向けて燃料を送る。共有管路131は、貯蔵タンク11から延び出すように設けられる一本の主管路131Mと、主管路131Mから燃料供給機12A~12Cのそれぞれに分岐する分岐管路131A~131Cとにより構成される。 The shared pipeline 131 is provided so as to extend from the storage tank 11, and fuel is sent from the storage tank 11 to the fuel supply units 12A to 12C. The shared pipeline 131 is composed of a single main pipeline 131M extending from the storage tank 11 and branch pipelines 131A to 131C branching from the main pipeline 131M to the fuel supply units 12A to 12C, respectively. ..

分岐管路131A~131Cのそれぞれの主管路131Mからの分岐部(入口)には、電磁弁14A~14Cが設けられる。これにより、電磁弁14A~14Cを用いて、主管路131Mから分岐管路131A~131Cのそれぞれに供給される燃料を遮断することができる。 Solenoid valves 14A to 14C are provided at the branch portions (inlet) from the main pipelines 131M of the branch pipelines 131A to 131C. As a result, the solenoid valves 14A to 14C can be used to shut off the fuel supplied from the main pipeline 131M to each of the branch pipelines 131A to 131C.

また、分岐管路131A~131Cのそれぞれの下流側の端部(先端)には、電磁弁15A~15Cが設けられる。 Further, solenoid valves 15A to 15C are provided at the downstream end (tip) of each of the branch pipelines 131A to 131C.

個別管路132は、電磁弁15A~15Cより下流側に位置し、共有管路131(分岐管路131A~131C)を通じて供給される燃料を燃料供給機12A~12Cのそれぞれに燃料を送る。個別管路132は、個別管路132A~132Cを含む。 The individual pipeline 132 is located on the downstream side of the solenoid valves 15A to 15C, and sends fuel supplied through the shared pipeline 131 (branch pipeline 131A to 131C) to each of the fuel supply machines 12A to 12C. The individual pipeline 132 includes the individual pipelines 132A to 132C.

個別管路132A~132Cは、それぞれ、電磁弁15Aと燃料供給機12Aとの間、電磁弁15Bと燃料供給機12Bとの間、及び電磁弁15Cと燃料供給機12Cとの間を接続する。 The individual pipelines 132A to 132C connect between the solenoid valve 15A and the fuel supply machine 12A, between the solenoid valve 15B and the fuel supply machine 12B, and between the solenoid valve 15C and the fuel supply machine 12C, respectively.

分岐管路131Aと個別管路132Aとの間には、電磁弁15Aを迂回するバイパス管路133Aが設けられる。バイパス管路133Aには、電磁弁16Aが設けられる。 A bypass line 133A that bypasses the solenoid valve 15A is provided between the branch line 131A and the individual line 132A. A solenoid valve 16A is provided in the bypass pipeline 133A.

同様に、分岐管路131Bと個別管路132Bとの間には、電磁弁15Bを迂回するバイパス管路133Bが設けられる。バイパス管路133Bには、電磁弁16Bが設けられる。 Similarly, a bypass line 133B that bypasses the solenoid valve 15B is provided between the branch line 131B and the individual line 132B. A solenoid valve 16B is provided in the bypass pipeline 133B.

同様に、分岐管路131Cと個別管路132Cとの間には、電磁弁15Cを迂回するバイパス管路133Cが設けられる。バイパス管路133Cには、電磁弁16Cが設けられる。 Similarly, a bypass line 133C that bypasses the solenoid valve 15C is provided between the branch line 131C and the individual line 132C. A solenoid valve 16C is provided in the bypass pipeline 133C.

バイパス管路133A~133Cは、後述の燃料漏洩の有無、及び燃料漏洩箇所の検知(判定)の対象から除外されてよい。バイパス管路133A~133Cは、例えば、共有管路131(主管路131M及び分岐管路131A~131C)や個別管路132(個別管路132A~132C)に対して、経路長さが非常に短く、且つ、耐久性が相対的に高いからである。また、バイパス管路133A~133Cは、それぞれ、流量計20Xより上流側及び下流側のそれぞれの管路部分が分岐管路131X及び個別管路132Xに含められる形で、後述の燃料漏洩の有無、及び燃料漏洩箇所の検知(判定)の対象に含められてもよい。 The bypass pipelines 133A to 133C may be excluded from the targets of the presence / absence of fuel leakage and the detection (determination) of the fuel leakage location, which will be described later. Bypass pipelines 133A to 133C have a very short path length with respect to, for example, shared pipelines 131 (main pipelines 131M and branch pipelines 131A to 131C) and individual pipelines 132 (individual pipelines 132A to 132C). Moreover, the durability is relatively high. Further, in the bypass pipelines 133A to 133C, the presence / absence of fuel leakage, which will be described later, is described in such a manner that the respective pipeline portions on the upstream side and the downstream side of the flow meter 20X are included in the branch pipeline 131X and the individual pipeline 132X, respectively. And may be included in the target of detection (determination) of the fuel leak location.

尚、バイパス管路133A~133Cは、省略されてもよい。 The bypass pipelines 133A to 133C may be omitted.

電磁弁14A~14Cは、通常、開かれている。これにより、主管路131Mから分岐管路131A~131Cを通じて個別管路132A~132Cに燃料が流入可能となる。 Solenoid valves 14A-14C are normally open. As a result, fuel can flow from the main pipeline 131M into the individual pipelines 132A to 132C through the branch pipelines 131A to 131C.

電磁弁15A~15Cは、通常、開かれ、電磁弁16A~16Cは、通常、閉じられる。これにより、分岐管路131Aと個別管路132Aとの間、分岐管路131Bと個別管路132Bとの間、及び分岐管路131Cと個別管路132Cとの間は、それぞれ、電磁弁15A~15Cを通じて連通する。そのため、主管路131Mから分岐管路131A~131Cに流入する燃料は、電磁弁15A~15Cを通じて燃料供給機12A~12Cに導入される。 The solenoid valves 15A to 15C are normally opened, and the solenoid valves 16A to 16C are normally closed. As a result, the solenoid valves 15A to between the branch line 131A and the individual line 132A, between the branch line 131B and the individual line 132B, and between the branch line 131C and the individual line 132C, respectively. Communicate through 15C. Therefore, the fuel flowing from the main pipeline 131M into the branch pipelines 131A to 131C is introduced into the fuel supply units 12A to 12C through the solenoid valves 15A to 15C.

また、燃料漏洩検知装置30により燃料供給システム10(燃料供給管路13)における燃料漏洩の有無の検知が行われる場合、電磁弁15A~15Cは閉じられ、電磁弁16A~16Cは開かれる。この場合、分岐管路131Aと個別管路132Aとの間、分岐管路131Bと個別管路132Bとの間、及び分岐管路131Cと個別管路132Cとの間は、それぞれ、バイパス管路133A,133B,133C(電磁弁16A~16C)を通じて連通する。 Further, when the presence or absence of fuel leakage in the fuel supply system 10 (fuel supply pipeline 13) is detected by the fuel leakage detection device 30, the solenoid valves 15A to 15C are closed and the solenoid valves 16A to 16C are opened. In this case, the bypass line 133A is between the branch line 131A and the individual line 132A, between the branch line 131B and the individual line 132B, and between the branch line 131C and the individual line 132C, respectively. , 133B, 133C (solenoid valves 16A to 16C) communicate with each other.

流量計20は、燃料供給機12A~12Cにより被燃料供給体への燃料供給が行われていない状態において、バイパス管路133A~133Cにおける燃料の流量を計測する。流量計20は、例えば、燃料の漏洩による微少な燃料の流動による流量を計測可能な微少流量計である。また、流量計20は、個別管路132における燃料の流れの方向を検知可能であってもよい。 The flow meter 20 measures the flow rate of the fuel in the bypass pipelines 133A to 133C in a state where the fuel is not supplied to the fueled feeder by the fuel supply machines 12A to 12C. The flow meter 20 is, for example, a minute flow meter capable of measuring a flow rate due to a minute flow of fuel due to fuel leakage. Further, the flow meter 20 may be able to detect the direction of the fuel flow in the individual pipeline 132.

流量計20は、流量計20A~20Cを含む。 The flow meter 20 includes flow meters 20A to 20C.

流量計20A(流れ方向検知装置の一例)は、バイパス管路133Aにおいて、電磁弁16Aの上流側に設けられる。これにより、流量計20Aは、バイパス管路133Aを通じた共有管路131(分岐管路131A)と個別管路132Aとの間での燃料の流量を計測することができる。流量計20Aは、流量の計測値に対応する信号(計測信号)を出力し、その計測信号は、所定の通信回線を通じて、燃料漏洩検知装置30に取り込まれる。流量の計測値には、流れの方向に関する情報が含まれてよい。例えば、流量計の計測値は、下流側に向かう流れの場合、正値で表され、上流側に向かう流れの場合、負値で表される態様であってよい。また、計測信号には、計測値のデータ以外に、流れの方向を表すデータが含まれてもよい。 The flow meter 20A (an example of the flow direction detecting device) is provided on the upstream side of the solenoid valve 16A in the bypass pipeline 133A. As a result, the flow meter 20A can measure the flow rate of fuel between the shared line 131 (branch line 131A) and the individual line 132A through the bypass line 133A. The flow meter 20A outputs a signal (measurement signal) corresponding to the measured value of the flow rate, and the measurement signal is taken into the fuel leak detection device 30 through a predetermined communication line. The flow measurement may include information about the direction of the flow. For example, the measured value of the flow meter may be represented by a positive value in the case of a flow toward the downstream side, and may be represented by a negative value in the case of a flow toward the upstream side. Further, the measurement signal may include data indicating the flow direction in addition to the data of the measured value.

所定の通信回線は、例えば、一対一の通信線であってよい。また、所定の通信回線には、例えば、燃料供給システム10が設置される施設内のローカルネットワーク(LAN:Local Area Network)が含まれてもよい。また、所定の通信回線には、例えば、広域ネットワーク(WAN:Wide Area Network)が含まれてもよい。広域ネットワークには、例えば、基地局を末端とする移動体通信網が含まれてよい。また、広域ネットワークには、例えば、通信衛星を利用する衛星通信網が含まれてもよい。また、広域ネットワークには、例えば、インターネット網が含まれてよい。また、所定の通信回線には、例えば、無線による近距離通信回線が含まれてもよい。近距離通信回線には、例えば、ブルートゥース(登録商標)の規格による通信回線やWiFiの規格による通信回線が含まれてよい。以下、流量計20B,20Cと燃料漏洩検知装置30との間の通信回線についても同様であってよい。 The predetermined communication line may be, for example, a one-to-one communication line. Further, the predetermined communication line may include, for example, a local network (LAN: Local Area Network) in the facility where the fuel supply system 10 is installed. Further, the predetermined communication line may include, for example, a wide area network (WAN). The wide area network may include, for example, a mobile communication network having a base station as an end. Further, the wide area network may include, for example, a satellite communication network that uses a communication satellite. Further, the wide area network may include, for example, an Internet network. Further, the predetermined communication line may include, for example, a wireless short-range communication line. The short-range communication line may include, for example, a communication line according to the Bluetooth (registered trademark) standard and a communication line according to the WiFi standard. Hereinafter, the same may apply to the communication line between the flow meters 20B and 20C and the fuel leak detection device 30.

尚、上述の如く、バイパス管路133Aが省略される場合、流量計20Aは、電磁弁15Aの近傍の分岐管路131A或いは個別管路132Aに設けられる。 As described above, when the bypass line 133A is omitted, the flow meter 20A is provided in the branch line 131A or the individual line 132A in the vicinity of the solenoid valve 15A.

流量計20B(流れ方向検知装置の一例)は、バイパス管路133Bにおいて、電磁弁16Bの上流側に設けられる。これにより、流量計20Bは、バイパス管路133Bを通じた共有管路131(分岐管路131B)と個別管路132Bとの間での燃料の流量を計測することができる。流量計20Bは、流量の計測値に対応する信号(計測信号)を出力し、その計測信号は、所定の通信回線を通じて、燃料漏洩検知装置30に取り込まれる。 The flow meter 20B (an example of the flow direction detecting device) is provided on the upstream side of the solenoid valve 16B in the bypass pipeline 133B. As a result, the flow meter 20B can measure the flow rate of fuel between the shared pipe 131 (branch pipe 131B) and the individual pipe 132B through the bypass pipe 133B. The flow meter 20B outputs a signal (measurement signal) corresponding to the measured value of the flow rate, and the measurement signal is taken into the fuel leak detection device 30 through a predetermined communication line.

尚、上述の如く、バイパス管路133Bが省略される場合、流量計20Bは、電磁弁15Bの近傍の分岐管路131B或いは個別管路132Bに設けられる。 As described above, when the bypass line 133B is omitted, the flow meter 20B is provided in the branch line 131B or the individual line 132B in the vicinity of the solenoid valve 15B.

流量計20C(流れ方向検知装置の一例)は、バイパス管路133Cにおいて、電磁弁16Cの上流側に設けられる。これにより、流量計20Cは、バイパス管路133Cを通じた共有管路131(分岐管路131C)と個別管路132Cとの間での燃料の流量を計測することができる。流量計20Cは、流量の計測値に対応する信号(計測信号)を出力し、その計測信号は、所定の通信回線を通じて、燃料漏洩検知装置30に取り込まれる。 The flow meter 20C (an example of the flow direction detecting device) is provided on the upstream side of the solenoid valve 16C in the bypass pipeline 133C. As a result, the flow meter 20C can measure the flow rate of fuel between the shared line 131 (branch line 131C) and the individual line 132C through the bypass line 133C. The flow meter 20C outputs a signal (measurement signal) corresponding to the measured value of the flow rate, and the measurement signal is taken into the fuel leak detection device 30 through a predetermined communication line.

尚、上述の如く、バイパス管路133Cが省略される場合、流量計20Cは、電磁弁15Cの近傍の分岐管路131C或いは個別管路132Cに設けられる。 As described above, when the bypass line 133C is omitted, the flow meter 20C is provided in the branch line 131C or the individual line 132C in the vicinity of the solenoid valve 15C.

燃料漏洩検知装置30は、燃料供給システム10(燃料供給管路13)における燃料の漏洩を検知すると共に、燃料の漏洩箇所を判定する。 The fuel leak detection device 30 detects a fuel leak in the fuel supply system 10 (fuel supply pipeline 13) and determines a fuel leak location.

燃料漏洩検知装置30(燃料漏洩判定装置の一例)は、例えば、燃料供給システム10が設置される施設の内部の事務所等に設置される端末装置であってよい。端末装置は、例えば、デスクトップ型のコンピュータ端末等の定置型の端末装置であってもよいし、スマートフォン、タブレット端末、ラップトップ型のコンピュータ端末等の携帯型(可搬型)の端末(携帯端末)であってもよい。また、燃料漏洩検知装置30は、燃料供給システム10が設置される施設の内部、或いは、外部に設けられるサーバ装置であってもよい。サーバ装置は、燃料供給システム10が設置される施設の内部やこの施設から相対的に近い場所にある別の施設に設置されるエッジサーバであってもよいし、この施設から相対的に離れた場所にある別の施設に設置されるクラウドサーバであってもよい。 The fuel leak detection device 30 (an example of the fuel leak determination device) may be, for example, a terminal device installed in an office or the like inside a facility where the fuel supply system 10 is installed. The terminal device may be, for example, a stationary terminal device such as a desktop computer terminal, or a portable terminal (portable terminal) such as a smartphone, a tablet terminal, or a laptop computer terminal. It may be. Further, the fuel leak detection device 30 may be a server device provided inside or outside the facility where the fuel supply system 10 is installed. The server device may be an edge server installed inside a facility where the fuel supply system 10 is installed or in another facility relatively close to this facility, or relatively far from this facility. It may be a cloud server installed in another facility at a location.

燃料漏洩検知装置30の機能は、任意のハードウェア、或いは、任意のハードウェア及びソフトウェアの組み合わせ等により実現されてよい。例えば、燃料漏洩検知装置30は、CPU(Central Processing Unit)、RAM(Random Access Memory)等のメモリ装置、ROM(Read Only Memory)等の不揮発性の補助記憶装置、及び外部との入出力用のインタフェース装置等を中心に構成される。燃料漏洩検知装置30は、例えば、補助記憶装置にインストールされるプログラムをメモリ装置にロードしCPUで実行することにより実現される機能部として、情報取得部301と、漏洩検知部302とを含む。 The function of the fuel leak detection device 30 may be realized by any hardware, or a combination of any hardware and software. For example, the fuel leak detection device 30 includes a CPU (Central Processing Unit), a memory device such as a RAM (Random Access Memory), a non-volatile auxiliary storage device such as a ROM (Read Only Memory), and an external input / output device. It is mainly composed of interface devices and the like. The fuel leak detection device 30 includes, for example, an information acquisition unit 301 and a leak detection unit 302 as functional units realized by loading a program installed in the auxiliary storage device into the memory device and executing the program on the CPU.

情報取得部301(取得部の一例)は、所定の通信回線を通じて、流量計20A~20Cの計測信号(計測結果、検知結果の一例)を取得(受信)する。 The information acquisition unit 301 (an example of the acquisition unit) acquires (receives) the measurement signals (measurement result, an example of the detection result) of the flow meters 20A to 20C through a predetermined communication line.

漏洩検知部302(判定部の一例)は、情報取得部301により取得される計測信号に基づき、燃料供給システム10(燃料供給管路13)における燃料漏洩を検知する(即ち、燃料漏洩の有無を判定する)。また、漏洩検知部302は、燃料供給システム10(燃料供給管路13)における燃料の漏洩があると判定する場合、更に、燃料の漏洩箇所を判定する。 The leak detection unit 302 (an example of the determination unit) detects a fuel leak in the fuel supply system 10 (fuel supply pipeline 13) based on the measurement signal acquired by the information acquisition unit 301 (that is, whether or not there is a fuel leak). judge). Further, when the leak detection unit 302 determines that there is a fuel leak in the fuel supply system 10 (fuel supply pipeline 13), the leak detection unit 302 further determines the fuel leak location.

[燃料漏洩箇所の判定方法の第1例]
次に、図2~図5を参照して、燃料供給システム10における燃料漏洩箇所の判定方法の第1例について説明する。
[First example of a method for determining a fuel leak location]
Next, a first example of a method for determining a fuel leak location in the fuel supply system 10 will be described with reference to FIGS. 2 to 5.

<概要>
図2~図4は、燃料漏洩箇所の判定方法を説明する図である。具体的には、図2は、燃料供給管路13の中の流量計20A~20Cよりも上流側の共有管路131(本例では、主管路131M)で燃料が漏洩している場合の流量計20A~20Cの設置箇所に流れる燃料の流量の積算値(以下、「積算流量」)及び流れの方向を表す図である。また、図3は、燃料供給管路13の中の一つの流量計20X(本例では、流量計20A)の下流側(本例では、個別管路132A)で燃料が漏洩している場合の流量計20A~20Cの設置箇所に流れる燃料の積算流量及び流れの方向を表す図である。また、図4は、燃料供給管路13の中の二つの流量計20X(本例では、流量計20A,20C)の下流側(本例では、個別管路132A,132C)で燃料が漏洩している場合の流量計20A~20Cの設置箇所に流れる燃料の積算流量及び流れの方向を表す図である。以下、本例では、燃料供給機12A~12Cで被燃料供給体への燃料供給が行われていないことを前提にして説明を行う。
<Overview>
2 to 4 are diagrams illustrating a method for determining a fuel leak location. Specifically, FIG. 2 shows the flow rate when fuel is leaking in the shared line 131 (in this example, the main line 131M) on the upstream side of the flow meters 20A to 20C in the fuel supply line 13. It is a figure which shows the integrated value (hereinafter, "integrated flow rate") and the flow direction of the flow rate of the fuel flowing to the installation place of the total 20A to 20C. Further, FIG. 3 shows a case where fuel leaks on the downstream side (in this example, the individual flow meter 132A) of one flow meter 20X (in this example, the flow meter 20A) in the fuel supply line 13. It is a figure which shows the integrated flow rate and the flow direction of the fuel which flows to the installation place of the flow meter 20A to 20C. Further, in FIG. 4, fuel leaks on the downstream side (in this example, individual pipelines 132A, 132C) of the two flowmeters 20X (in this example, the flowmeters 20A and 20C) in the fuel supply pipeline 13. It is a figure which shows the integrated flow rate and the flow direction of the fuel which flows to the installation place of the flow meter 20A to 20C in the case of. Hereinafter, in this example, the description will be made on the premise that the fuel supply units 12A to 12C do not supply fuel to the fueled body.

図2~図4では、燃料供給管路13における燃料漏洩の有無が検知される場合、即ち、電磁弁15A~15Cが閉じられ、電磁弁16A~16Cが閉じられる場合の分岐管路131A~131C及び個別管路132A~132Cの部分が簡略して表されている。具体的には、図2~図4では、バイパス管路133Xの部分の表記が省略され、流量計20Xの上流側の管路部分が分岐管路131Xと表記され、流量計20Xの下流側の管路部分が個別管路132Xと表記されている。この場合、バイパス管路133Xは、上述の如く、燃料漏洩の有無の検知等の対象から除外されてもよいし、流量計20Xを基準とする上流側及び下流側の管路部分がそれぞれ分岐管路131X及び個別管路132Xに含められる形で対象に含められてもよい。以下、後述の図6、図7の場合についても同様である。 2 to 4 show branch lines 131A to 131C when the presence or absence of fuel leakage in the fuel supply line 13 is detected, that is, when the solenoid valves 15A to 15C are closed and the solenoid valves 16A to 16C are closed. And the portions of the individual pipelines 132A to 132C are simply represented. Specifically, in FIGS. 2 to 4, the notation of the bypass pipeline 133X is omitted, the pipeline portion on the upstream side of the flow meter 20X is described as the branch pipeline 131X, and the downstream side of the flow meter 20X. The pipeline portion is described as an individual pipeline 132X. In this case, the bypass pipeline 133X may be excluded from the target of detection of the presence or absence of fuel leakage as described above, and the upstream side and downstream side pipeline portions based on the flow meter 20X are branch pipes, respectively. It may be included in the subject in the form of being included in the road 131X and the individual pipeline 132X. Hereinafter, the same applies to the cases of FIGS. 6 and 7 described later.

また、図2~図4では、流量計20A~20Cの設置箇所のそれぞれに流れる燃料の積算流量及び流れの向きが白抜き矢印の太さ及び矢印の向きで表されている。以下、後述の図6、図7の場合についても同様である。 Further, in FIGS. 2 to 4, the integrated flow rate and the direction of the flow of fuel flowing in each of the installation locations of the flow meters 20A to 20C are represented by the thickness of the white arrow and the direction of the arrow. Hereinafter, the same applies to the cases of FIGS. 6 and 7 described later.

図2~図4に示すように、燃料供給管路13の任意の箇所で燃料漏洩が発生した場合を検討する。 As shown in FIGS. 2 to 4, a case where a fuel leak occurs at an arbitrary position in the fuel supply line 13 will be examined.

燃料供給機12A~12Cによる被燃料供給体への燃料供給が行われていない状態では、燃料供給管路13に燃料漏洩が発生していない場合、燃料供給管路13の内部の燃料は上流側にも下流側にも流れず、略静止状態にある。 If fuel is not supplied to the fueled object by the fuel supply units 12A to 12C and there is no fuel leakage in the fuel supply line 13, the fuel inside the fuel supply line 13 is on the upstream side. It does not flow to the downstream side, and is in a substantially stationary state.

これに対して、燃料供給管路13で燃料漏洩が発生すると、燃料供給管路13の内部の燃料は、燃料漏洩の箇所に向かって流れる。そのため、図2~図4に示すように、流量計20A~20Cの設置箇所でも、燃料が漏洩箇所に向かって流れる。よって、漏洩検知部302は、流量計20A~20Cの設置箇所で燃料が流れている場合に、燃料供給管路13に燃料漏洩が発生していると判定することができる。 On the other hand, when a fuel leak occurs in the fuel supply line 13, the fuel inside the fuel supply line 13 flows toward the fuel leak point. Therefore, as shown in FIGS. 2 to 4, fuel flows toward the leaked portion even at the installation location of the flow meters 20A to 20C. Therefore, the leak detection unit 302 can determine that fuel leakage has occurred in the fuel supply line 13 when fuel is flowing at the installation points of the flow meters 20A to 20C.

例えば、漏洩検知部302は、流量計20A~20Cのそれぞれの計測値が全て閾値Th11以上である場合に、燃料供給管路13に燃料漏洩が発生していると判定してよい。また、例えば、漏洩検知部302は、流量計20A~20Cのそれぞれの計測値の少なくとも一部の計測値が閾値Th11以上である場合に、燃料供給管路13に燃料漏洩が発生していると判定してもよい。つまり、漏洩検知部302は、流量計20A~20Cの少なくとも一つの流量計20Xの計測値が閾値Th11以上である場合に、燃料供給管路13に燃料漏洩が発生していると判定してよい。閾値Th11(第1の閾値の一例)は、例えば、実験やシミュレーションを通じて、流量計20A~20Cの設置箇所に燃料の漏洩により燃料が流れていると漏洩検知部302が判定可能な下限値として予め規定される。また、閾値Th11は、例えば、周囲から伝達される振動等に伴って、流量計20A~20Cにより計測される流量よりも大きい値に予め規定される。周囲から燃料供給管路13に伝達される振動には、例えば、燃料供給システム10による燃料供給の対象(被燃料供給体)が列車である場合の列車の走行による振動が含まれる。これにより、漏洩検知部302は、閾値Th11を用いて、燃料漏洩と、燃料供給管路13に伝達される振動とを区別し、燃料漏洩の誤検知を抑制することができる。 For example, the leak detection unit 302 may determine that a fuel leak has occurred in the fuel supply pipeline 13 when all the measured values of the flow meters 20A to 20C are at least the threshold value Th11. Further, for example, the leak detection unit 302 states that fuel leakage has occurred in the fuel supply line 13 when at least a part of the measured values of the flow meters 20A to 20C is at or above the threshold value Th11. You may judge. That is, the leak detection unit 302 may determine that fuel leakage has occurred in the fuel supply line 13 when the measured value of at least one flow meter 20X of the flow meters 20A to 20C is the threshold value Th11 or more. .. The threshold value Th11 (an example of the first threshold value) is set in advance as a lower limit value at which the leakage detection unit 302 can determine in advance that fuel is flowing due to fuel leakage to the installation locations of the flow meters 20A to 20C through experiments and simulations. Is stipulated. Further, the threshold value Th11 is predetermined to be a value larger than the flow rate measured by the flow meters 20A to 20C due to, for example, vibration transmitted from the surroundings. The vibration transmitted from the surroundings to the fuel supply pipeline 13 includes, for example, vibration caused by running the train when the target of fuel supply (fueled body) by the fuel supply system 10 is a train. As a result, the leak detection unit 302 can distinguish between fuel leakage and vibration transmitted to the fuel supply pipeline 13 by using the threshold value Th11, and can suppress erroneous detection of fuel leakage.

尚、漏洩検知部302は、後述の漏洩箇所の判定の場合と同様、流量計20A~20Cの流量計の計測値を所定期間で積算した値(以下、便宜的に「積算流量測定値」)に基づき、燃料供給管路13に燃料漏洩が発生しているか否かを判定してもよい。具体的には、漏洩検知部302は、流量計20A~20Cのうちの少なくとも一つの流量計20Xの計測値が所定の閾値以上である場合に、燃料供給管路13に燃料漏洩が発生していると判定してもよい。 In addition, the leak detection unit 302 is a value obtained by integrating the measured values of the flow meters of the flow meters 20A to 20C in a predetermined period as in the case of determining the leak location described later (hereinafter, “integrated flow rate measurement value” for convenience). Based on the above, it may be determined whether or not a fuel leak has occurred in the fuel supply line 13. Specifically, when the measured value of at least one flow meter 20X among the flow meters 20A to 20C is equal to or higher than a predetermined threshold value, the leak detection unit 302 causes a fuel leak in the fuel supply line 13. It may be determined that there is.

また、図2に示すように、燃料供給管路13の中の流量計20A~20Cより上流側の共有管路131で燃料漏洩が発生した場合を検討する。 Further, as shown in FIG. 2, a case where a fuel leak occurs in the shared pipeline 131 on the upstream side of the flow meters 20A to 20C in the fuel supply pipeline 13 will be examined.

この場合、流量計20A~20Cの設置箇所では、個別管路132A,132B,132Cの内部にある燃料が下流側から上流側に向かって流れる。そのため、共有管路131の燃料漏洩によって、流量計20A~20Cのそれぞれの設置箇所を通過する積算流量は、個別管路132A,132B,132Cのそれぞれの内部の容量に略等しいと考えることができる。個別管路132A,132B,132Cのそれぞれの内部の容量は、例えば、設計データ等から予め把握することが可能である。よって、漏洩検知部302は、流量計20A~20Cの設置箇所の積算流量の相互間の差が、個別管路132A,132B,132Cのそれぞれの内部の容量の相互間の差と略同等である場合に、共有管路131で燃料漏洩が発生していると判定できる。特に、個別管路132A,132B,132Cの内部の容量が略同等である状況では、漏洩検知部302は、流量計20A~20Cの設置箇所の積算流量が全て略同等である場合に、共有管路131で燃料漏洩が発生していると判定できる。 In this case, at the installation location of the flow meters 20A to 20C, the fuel inside the individual pipelines 132A, 132B, 132C flows from the downstream side to the upstream side. Therefore, it can be considered that the integrated flow rate passing through the respective installation locations of the flow meters 20A to 20C due to the fuel leakage of the shared pipeline 131 is substantially equal to the internal capacity of each of the individual pipelines 132A, 132B, 132C. .. The internal capacity of each of the individual pipelines 132A, 132B, 132C can be grasped in advance from, for example, design data. Therefore, in the leak detection unit 302, the difference between the integrated flow rates at the installation locations of the flow meters 20A to 20C is substantially the same as the difference between the internal capacities of the individual pipelines 132A, 132B, and 132C. In this case, it can be determined that a fuel leak has occurred in the shared pipeline 131. In particular, in a situation where the internal capacities of the individual pipelines 132A, 132B, 132C are substantially the same, the leak detection unit 302 is a shared pipe when the integrated flow rates at the installation locations of the flow meters 20A to 20C are all substantially the same. It can be determined that a fuel leak has occurred on the road 131.

例えば、漏洩検知部302は、流量計20A~20Cのそれぞれの測定値を積算した値(積算流量測定値)の相互間の差が所定の閾値Th12以下である場合に、共有管路131で燃料漏洩が発生していると判定してよい。閾値Th12(第2の閾値の一例)は、例えば、個別管路132A,132B,132Cのそれぞれの内部の容量の相互間の差から想定される、流量計20A~20Cの設置箇所の積算流量の相互間の差の上限値として予め規定される。また、閾値Th12は、例えば、個別管路132A~132Cのそれぞれにおける流量計20Xと燃料供給機12X(供給弁)との間の管路内の容量の相互差の最大値であってもよい。 For example, when the difference between the values obtained by integrating the measured values of the flow meters 20A to 20C (integrated flow rate measured values) is equal to or less than a predetermined threshold value Th12, the leak detection unit 302 fuels the shared pipeline 131. It may be determined that a leak has occurred. The threshold value Th12 (an example of the second threshold value) is, for example, the integrated flow rate at the installation location of the flow meters 20A to 20C, which is assumed from the difference between the internal capacities of the individual pipelines 132A, 132B, and 132C. It is predetermined as the upper limit of the difference between them. Further, the threshold value Th12 may be, for example, the maximum value of the mutual difference in the capacity in the pipeline between the flow meter 20X and the fuel supply machine 12X (supply valve) in each of the individual pipelines 132A to 132C.

また、図3、図4に示すように、燃料供給管路13の中の流量計20A~20Cのうちの一部の流量計20Xの下流側の個別管路132Xで燃料漏洩が発生している場合を検討する。 Further, as shown in FIGS. 3 and 4, fuel leakage has occurred in the individual pipeline 132X on the downstream side of some of the flow meters 20A to 20C in the fuel supply pipeline 13. Consider the case.

この場合、流量計20A~20Cのうち、下流側で燃料漏洩が発生している流量計20X(図3の流量計20Aや図4の流量計20A,20C)の設置箇所では、共有管路131の燃料が上流側から下流側に向かって流れる。また、共有管路131は、流量計20Xの下流側の個別管路132Xよりも十分に大きな容量を有する。そのため、流量計20A~20Cのうち、下流側で燃料漏洩が発生している流量計20Xの設置箇所を通過する燃料の積算流量は、相対的に大きくなる。 In this case, of the flow meters 20A to 20C, the shared pipeline 131 is installed at the flow meter 20X (flow meter 20A in FIG. 3 and flow meters 20A and 20C in FIG. 4) in which fuel leakage occurs on the downstream side. Fuel flows from the upstream side to the downstream side. Further, the shared pipeline 131 has a sufficiently larger capacity than the individual pipeline 132X on the downstream side of the flow meter 20X. Therefore, among the flow meters 20A to 20C, the integrated flow rate of the fuel passing through the installation location of the flow meter 20X where the fuel leak occurs on the downstream side becomes relatively large.

一方、流量計20A~20Cのうち、下流側で燃料漏洩が発生していない流量計20X(図3の流量計20B,20Cや図4の流量計20B)の設置箇所では、流量計20Xの下流側の個別管路132Xの燃料が共有管路131に向かって流出する。そして、流出した燃料は、共有管路131を経由して、流量計20A~20Cのうち、下流側で燃料漏洩が発生している流量計20Xの下流側(個別管路132X)の漏洩箇所に流れ込む。また、流量計20A~20Cの設置箇所の下流側の部分(個別管路132X)の内部の容量は、共有管路131の内部の容量に対して十分に小さい。そのため、流量計20A~20Cのうち、下流側で燃料漏洩が発生していない流量計20Xの設置箇所を通過する燃料の積算流量は、相対的に小さくなる。 On the other hand, of the flowmeters 20A to 20C, at the location where the flowmeter 20X (flowmeters 20B and 20C in FIG. 3 and the flowmeter 20B in FIG. 4) in which fuel leakage does not occur on the downstream side is installed, it is downstream of the flowmeter 20X. The fuel of the individual pipeline 132X on the side flows out toward the shared pipeline 131. Then, the spilled fuel passes through the shared pipeline 131 to the leakage point on the downstream side (individual pipeline 132X) of the flow meter 20X where the fuel leak occurs on the downstream side of the flow meters 20A to 20C. It flows in. Further, the internal capacity of the downstream portion (individual pipeline 132X) of the installation location of the flow meters 20A to 20C is sufficiently smaller than the internal capacity of the shared pipeline 131. Therefore, among the flow meters 20A to 20C, the integrated flow rate of the fuel passing through the installation location of the flow meter 20X in which fuel leakage does not occur on the downstream side is relatively small.

よって、漏洩検知部302は、流量計20A~20Cのうちの一の流量計20Xの積算流量測定値が他の流量計20Xの積算流量測定値よりも十分に大きい場合、一の流量計20Xの下流側の個別管路132Xで燃料漏洩が発生していると判定することができる。 Therefore, when the integrated flow rate measurement value of one flow meter 20X among the flow meters 20A to 20C is sufficiently larger than the integrated flow rate measurement value of the other flow meter 20X, the leak detection unit 302 of one flow meter 20X. It can be determined that a fuel leak has occurred in the individual pipeline 132X on the downstream side.

例えば、漏洩検知部302は、流量計20A~20Cのうちの一の流量計20Xの積算流量測定値が、他の流量計20Xの積算流量測定値に閾値Th13を加算した値以上である場合、一の流量計20Xの下流側の部分で燃料漏洩が発生していると判定してよい。閾値Th13(第3の閾値の一例)は、例えば、燃料供給管路13の設計データ等を用いて、共有管路131及び個別管路132A~132Cを構成する配管の長さの違い、即ち、各配管の内部の容量の相互間の差等が考慮されることにより予め規定される。また、閾値Th13は、例えば、実験やシミュレーションを通じて、下流側で燃料漏洩が発生している流量計20Xの設置箇所と下流側で燃料漏洩が発生していない流量計20Xの設置箇所との間に生じる積算流量の差の下限値として予め規定されてもよい。また、閾値Th13は、閾値Th12より大きい。個別管路132A,132B,132Cの内部の容量の相互間の差よりも、共有管路131と個別管路132A,132B,132Cのそれぞれとの内部の容量の差の方が十分に大きいからである。 For example, when the leak detection unit 302 has the integrated flow rate measurement value of one of the flow meters 20A to 20C of the flow meter 20X equal to or more than the value obtained by adding the threshold Th13 to the integrated flow rate measurement value of the other flow meter 20X. It may be determined that a fuel leak has occurred in the downstream portion of one flow meter 20X. The threshold value Th13 (an example of the third threshold value) is, for example, a difference in the lengths of the pipes constituting the shared pipe line 131 and the individual pipe lines 132A to 132C, that is, using the design data of the fuel supply pipe line 13. It is defined in advance by considering the difference between the internal capacities of each pipe. Further, the threshold value Th13 is set between the installation location of the flow meter 20X in which fuel leakage occurs on the downstream side and the installation location of the flow meter 20X in which fuel leakage does not occur on the downstream side, for example, through experiments and simulations. It may be predetermined as the lower limit of the difference in the accumulated flow rates that occur. Further, the threshold value Th13 is larger than the threshold value Th12. This is because the difference in internal capacity between the shared pipeline 131 and each of the individual pipelines 132A, 132B, 132C is sufficiently larger than the difference between the internal capacities of the individual pipelines 132A, 132B, 132C. be.

このように、本例では、燃料漏洩検知装置30は、流量計20A~20Cごとの積算流量計測値の相対比較に基づき、燃料供給システム10(燃料供給管路13)における燃料漏洩箇所を判定(特定)することができる。 As described above, in this example, the fuel leak detection device 30 determines the fuel leak location in the fuel supply system 10 (fuel supply pipeline 13) based on the relative comparison of the integrated flow rate measurement values for each of the flow meters 20A to 20C ( Can be specified).

<燃料の漏洩検知に関する制御処理>
図5は、燃料の漏洩検知に関する制御処理(以下、「燃料漏洩検知処理」)の一例を概略的に示すフローチャートである。
<Control processing related to fuel leak detection>
FIG. 5 is a flowchart schematically showing an example of a control process related to fuel leak detection (hereinafter, “fuel leak detection process”).

本フローチャートは、例えば、燃料漏洩の検知の要求信号が燃料漏洩検知装置30で受け付けられると開始される。燃料漏洩の検知の要求信号は、例えば、ユーザからの所定の入力に応じて出力されてよい。また、燃料漏洩の検知の要求信号は、例えば、燃料供給機12A~12Cが使用されない時間帯(例えば、夜中等)等の所定のタイミングで自動的に出力されてもよい。また、本フローチャートの実行時には、上述の如く、電磁弁14A~14Cは、開かれ、電磁弁15A~15Cは、閉じられ、電磁弁16A~16Cは、開かれる。また、本フローチャートの開始時に、燃料漏洩検知装置30からの制御指令に応じて、電磁弁14A~14C、電磁弁15A~15C、及び電磁弁16A~16Cが上記の状態に切り替えられてもよい。また、本フローチャートが実行される場合、燃料供給機12A~12Cが使用不能の状態に制御されたり、燃料供給機12A~12Cのディスプレイに使用不可であることを示す通知が表示されたりしてもよい。以下、後述の図8のフローチャートの場合についても同様であってよい。 This flowchart starts, for example, when a request signal for detecting a fuel leak is received by the fuel leak detecting device 30. The request signal for detecting fuel leakage may be output, for example, in response to a predetermined input from the user. Further, the request signal for detecting fuel leakage may be automatically output at a predetermined timing, for example, during a time period when the fuel supply devices 12A to 12C are not used (for example, in the middle of the night). Further, at the time of executing this flowchart, the solenoid valves 14A to 14C are opened, the solenoid valves 15A to 15C are closed, and the solenoid valves 16A to 16C are opened, as described above. Further, at the start of this flowchart, the solenoid valves 14A to 14C, the solenoid valves 15A to 15C, and the solenoid valves 16A to 16C may be switched to the above states in response to a control command from the fuel leak detection device 30. Further, when this flowchart is executed, even if the fuel supply machines 12A to 12C are controlled to be in an unusable state, or a notification indicating that the fuel supply machines 12A to 12C is unusable is displayed on the display of the fuel supply machines 12A to 12C. good. Hereinafter, the same may apply to the case of the flowchart of FIG. 8 described later.

図5に示すように、ステップS102にて、漏洩検知部302は、流量計20A~20Cの計測値αi(i=1,2,3)が閾値Th11以上であるか否かを判定する。計測値α1~α3は、それぞれ、流量計20A~20Cの流量の計測値を表す。具体的には、漏洩検知部302は、上述の如く、流量計20A~20Cのうちの少なくとも一つの流量計20Xの計測値が閾値Th11以上であるか否かを判定してよい。漏洩検知部302は、流量計20A~20Cの少なくとも一つの流量計20Xの計測値が閾値Th11以上である場合、燃料供給管路13で燃料漏洩が発生していると判定し、ステップS104に進む。一方、漏洩検知部302は、流量計20A~20Cのそれぞれの計測値が閾値Th11以上でない場合、燃料供給管路13で燃料漏洩が発生していないと判定し、今回のフローチャートの処理を終了する。 As shown in FIG. 5, in step S102, the leak detection unit 302 determines whether or not the measured value αi (i = 1, 2, 3) of the flow meters 20A to 20C is the threshold value Th11 or more. The measured values α1 to α3 represent the measured values of the flow rates of the flow meters 20A to 20C, respectively. Specifically, as described above, the leak detection unit 302 may determine whether or not the measured value of at least one flow meter 20X among the flow meters 20A to 20C is the threshold value Th11 or more. When the measured value of at least one flow meter 20X of the flow meters 20A to 20C is equal to or higher than the threshold value Th11, the leak detection unit 302 determines that a fuel leak has occurred in the fuel supply line 13, and proceeds to step S104. .. On the other hand, when the measured values of the flow meters 20A to 20C are not equal to or higher than the threshold value Th11, the leak detection unit 302 determines that no fuel leak has occurred in the fuel supply pipeline 13, and ends the processing of the current flowchart. ..

尚、ステップS102にて、漏洩検知部302は、上述の如く、流量計20A~20Cのそれぞれの計測値の全てが閾値Th11以上であるか否かを判定してもよい。 In step S102, the leak detection unit 302 may determine whether or not all the measured values of the flow meters 20A to 20C are at or above the threshold value Th11, as described above.

ステップS104にて、漏洩検知部302は、流量計20A~20Cごとの積算流量計測値βi(i=1,2,3)の相互差|βj-βk|(j≠k)の全てが閾値Th12以下であるか否かを判定する。積算流量計測値β1~β3は、それぞれ、流量計20A~20Cの積算流量計測値を表す。具体的には、漏洩検知部302は、流量計20A~20Cのうちの2つの流量計20Xの全ての組み合わせについて、相互差|βj-βk|を算出し、その全てが閾値Th12以上であるか否かを判定してよい。漏洩検知部302は、流量計20A~20Cごとの積算流量計測値βiの相互差|βj-βk|の全てが閾値Th12以下である場合、ステップS106に進み、それ以外の場合、ステップS108に進む。 In step S104, in the leak detection unit 302, all of the mutual differences | βj-βk | (j ≠ k) of the integrated flow rate measurement values βi (i = 1, 2, 3) for each of the flow meters 20A to 20C are threshold values Th12. It is determined whether or not it is as follows. The integrated flow rate measurement values β1 to β3 represent the integrated flow rate measurement values of the flow meters 20A to 20C, respectively. Specifically, the leak detection unit 302 calculates the mutual difference | βj-βk | for all combinations of the two flowmeters 20X among the flowmeters 20A to 20C, and whether all of them are the threshold value Th12 or more. It may be determined whether or not. The leak detection unit 302 proceeds to step S106 when all of the mutual differences | βj-βk | of the integrated flow rate measurement values βi for each flow meter 20A to 20C are equal to or less than the threshold value Th12, and proceeds to step S108 in other cases. ..

ステップS106にて、漏洩検知部302は、共有管路131に燃料の漏洩箇所があると判定し、その旨を示すログを補助記憶装置等に記録する。 In step S106, the leak detection unit 302 determines that there is a fuel leak location in the shared pipeline 131, and records a log indicating that fact in the auxiliary storage device or the like.

燃料漏洩検知装置30は、ステップS106の処理が完了すると、今回のフローチャートの処理を終了する。 When the process of step S106 is completed, the fuel leak detection device 30 ends the process of the current flowchart.

一方、ステップS108にて、漏洩検知部302は、流量計20A~20Cのうちの一の流量計20Xの積算流量測定値βjが、他の流量計20Xの積算流量測定値βkに閾値Th13を加算した値以上であるか否かを判定する。そして、漏洩検知部302は、流量計20A~20Cのうちの2つの流量計20Xの全ての組み合わせ(具体的には、流量計20A,20Bの組み合わせ、流量計20A,20Cの組み合わせ、及び流量計20B,20Cの組み合わせ)について上記判定を順次行う。漏洩検知部302は、上記の条件を満足する一の流量計20X及び他の流量計20Xの組み合わせが少なくとも一組でも存在する場合、ステップS110に進み、存在しない場合、ステップS112に進む。 On the other hand, in step S108, in the leak detection unit 302, the integrated flow rate measurement value βj of one of the flow meters 20A to 20C of the flow meter 20X adds the threshold value Th13 to the integrated flow rate measurement value βk of the other flow meter 20X. It is determined whether or not the value is equal to or greater than the specified value. Then, the leak detection unit 302 is a combination of all the flowmeters 20X of the two flowmeters 20A to 20C (specifically, a combination of the flowmeters 20A and 20B, a combination of the flowmeters 20A and 20C, and a flowmeter. The above determination is sequentially performed for the combination of 20B and 20C). The leak detection unit 302 proceeds to step S110 if at least one combination of one flow meter 20X and another flow meter 20X satisfying the above conditions exists, and proceeds to step S112 if it does not exist.

ステップS110にて、漏洩検知部302は、上記の条件を満足するの組み合わせのうちの一の流量計20Xより下流側の個別管路132Xに燃料の漏洩箇所があると判定し、その旨を示すログを補助記憶装置等に記録する。 In step S110, the leak detection unit 302 determines that there is a fuel leak point in the individual pipeline 132X on the downstream side of the flow meter 20X, which is one of the combinations satisfying the above conditions, and indicates that fact. Record the log in an auxiliary storage device or the like.

燃料漏洩検知装置30は、ステップS110の処理が完了すると、今回のフローチャートの処理を終了する。 When the process of step S110 is completed, the fuel leak detection device 30 ends the process of the current flowchart.

一方、ステップS112にて、漏洩検知部302は、燃料の漏洩箇所を確定できないと判定し、その旨を示すログを補助記憶装置等に記録する。 On the other hand, in step S112, the leak detection unit 302 determines that the fuel leak location cannot be determined, and records a log indicating that fact in the auxiliary storage device or the like.

燃料漏洩検知装置30は、ステップS112の処理が完了すると、今回のフローチャートの処理を終了する。 When the process of step S112 is completed, the fuel leak detection device 30 ends the process of the current flowchart.

尚、ステップS108,S112が省略され、燃料漏洩検知装置30は、ステップS104の判定条件が成立しない場合、ステップS110に進んでもよい。この場合、ステップS110にて、漏洩検知部302は、複数の個別管路132X(の何れか)で燃料漏洩が発生していると判定し、その旨を示すログを補助記憶装置等に記録してよい。 If steps S108 and S112 are omitted and the determination condition of step S104 is not satisfied, the fuel leak detection device 30 may proceed to step S110. In this case, in step S110, the leak detection unit 302 determines that fuel leakage has occurred in (any of) the plurality of individual pipelines 132X, and records a log indicating that fact in the auxiliary storage device or the like. It's okay.

<作用>
このように、本例では、燃料漏洩検知装置30は、複数の燃料供給機12Xによる燃料供給が行われていない状態で、複数の流量計20Xのそれぞれの流量の計測結果に基づき、燃料供給管路13のうちの共有管路131、及び複数の個別管路132Xの中から燃料の漏洩箇所を判定する。
<Action>
As described above, in this example, the fuel leak detection device 30 is a fuel supply pipe based on the measurement results of the respective flow rates of the plurality of flow meters 20X in a state where the fuel is not supplied by the plurality of fuel supply machines 12X. The fuel leakage point is determined from the shared pipe 131 of the road 13 and the plurality of individual pipes 132X.

これにより、燃料漏洩検知装置30は、共有管路131に燃料漏洩を検知可能なセンサが設けられなくても、共有管路131、及び複数の個別管路132Xの中から燃料の漏洩箇所を判定することができる。そのため、燃料漏洩検知装置30は、共有管路131及び複数の個別管路132Xごとの燃料漏洩の検知をより少ないセンサ(流量計20X)によって実現することができる。よって、燃料漏洩検知システム1の全体のコストを抑制することができる。 As a result, the fuel leak detection device 30 determines the fuel leak location from the shared pipeline 131 and the plurality of individual pipelines 132X even if the shared pipeline 131 is not provided with a sensor capable of detecting the fuel leak. can do. Therefore, the fuel leak detection device 30 can realize the detection of the fuel leak for each of the shared pipeline 131 and the plurality of individual pipelines 132X with a smaller number of sensors (flow meter 20X). Therefore, the overall cost of the fuel leak detection system 1 can be suppressed.

また、本例では、燃料漏洩検知装置30は、複数の燃料供給機12Xによる燃料供給が行われていない状態で、複数の流量計20Xのうちの少なくとも一つの流量計20Xの計測値が閾値Th11以上であり、且つ、複数の流量計20Xごとの積算流量計測値の差が閾値Th12以下である場合、共有管路131で燃料の漏洩が発生していると判定してよい。 Further, in this example, in the fuel leak detection device 30, the measured value of at least one flow meter 20X among the plurality of flow meters 20X is the threshold Th11 in a state where the fuel is not supplied by the plurality of fuel supply machines 12X. When the above is the above and the difference between the integrated flow rate measurement values for each of the plurality of flow meters 20X is the threshold Th12 or less, it may be determined that fuel leakage has occurred in the shared pipeline 131.

これにより、燃料漏洩検知装置30は、共有管路131に燃料漏洩を検知可能なセンサが設けられなくても、具体的に、共有管路131における燃料漏洩を判定することができる。 As a result, the fuel leak detection device 30 can specifically determine the fuel leak in the shared pipeline 131 even if the shared pipeline 131 is not provided with a sensor capable of detecting the fuel leak.

また、本例では、燃料漏洩検知装置30は、複数の燃料供給機12Xによる燃料供給が行われていない状態で、複数の流量計20Xのうちの少なくとも一つの流量計20Xの計測値が閾値Th11以上であり、且つ、複数の流量計20Xごとの積算流量計測値の差が閾値Th12を超える場合、複数の個別管路132Xで燃料の漏洩が発生していると判定してよい。 Further, in this example, in the fuel leak detection device 30, the measured value of at least one flow meter 20X among the plurality of flow meters 20X is the threshold Th11 in a state where the fuel is not supplied by the plurality of fuel supply machines 12X. When the above is the above and the difference between the integrated flow rate measurement values for each of the plurality of flow meters 20X exceeds the threshold Th12, it may be determined that fuel leakage has occurred in the plurality of individual pipelines 132X.

これにより、燃料漏洩検知装置30は、共有管路131に燃料漏洩を検知可能なセンサが設けられなくても、具体的に、燃料漏洩箇所が、共有管路131であるか、共有管路131以外(即ち、複数の個別管路132X)であるかを判定することができる。 As a result, in the fuel leak detection device 30, even if the shared pipeline 131 is not provided with a sensor capable of detecting the fuel leak, the fuel leak location is specifically the shared pipeline 131 or the shared pipeline 131. Other than (that is, a plurality of individual pipelines 132X) can be determined.

また、本例では、燃料漏洩検知装置30は、複数の燃料供給機12Xによる燃料の供給が行われていない状態で、複数の流量計20Xのうちの少なくとも一つの流量計20Xの計測値が閾値Th11以上であり、且つ、複数の流量計20Xのうちの一の流量計20Xの積算流量計測値が、他の流量計20Xの積算流量計測値に閾値Th12より大きい閾値Th13を加算した値以上である場合、一の流量計20Xの下流側の個別管路132Xで燃料の漏洩が発生していると判定してよい。 Further, in this example, in the fuel leak detection device 30, the measured value of at least one flow meter 20X among the plurality of flow meters 20X is a threshold value in a state where the fuel is not supplied by the plurality of fuel supply machines 12X. Th11 or more, and the integrated flow rate measurement value of one of the plurality of flowmeters 20X is the value obtained by adding the threshold Th13 larger than the threshold Th12 to the integrated flow rate measurement value of the other flowmeters 20X. In some cases, it may be determined that fuel leakage has occurred in the individual pipeline 132X on the downstream side of one flow meter 20X.

これにより、燃料漏洩検知装置30は、共有管路131に燃料漏洩を検知可能なセンサが設けられなくても、具体的に、燃料漏洩箇所が、共有管路131を含む共有管路131であるか、特定の個別管路132Xであるかを判定できる。 As a result, in the fuel leak detection device 30, even if the shared pipeline 131 is not provided with a sensor capable of detecting the fuel leak, the fuel leak location is specifically the shared pipeline 131 including the shared pipeline 131. It can be determined whether it is a specific individual pipeline 132X.

尚、本例(第1例)の場合、流量計20A~20Cは、流れの方向を検知できない仕様であってもよい。以下、後述の第2例、第3例の場合についても同様であってよい。 In the case of this example (first example), the flow meters 20A to 20C may have specifications that cannot detect the flow direction. Hereinafter, the same may apply to the cases of the second example and the third example described later.

[燃料の漏洩箇所の判定方法の第2例]
次に、図2~図4、図6を参照して、燃料供給システム10における燃料漏洩箇所の判定方法の第2例について説明する。
[Second example of the method for determining the location of fuel leakage]
Next, a second example of a method for determining a fuel leak location in the fuel supply system 10 will be described with reference to FIGS. 2 to 4 and 6.

図6は、燃料漏洩箇所の判定方法を説明する図である。具体的には、図6は、燃料供給管路13の中の流量計20A~20Cの全ての下流側(個別管路132A,132B,132C)で燃料が漏洩している場合の流量計20A~20Cの設置箇所に流れる燃料の積算流量及び流れの方向を示す図である。 FIG. 6 is a diagram illustrating a method for determining a fuel leak location. Specifically, FIG. 6 shows the flow meters 20A to 20C when fuel is leaking on all downstream sides (individual lines 132A, 132B, 132C) of the flow meters 20A to 20C in the fuel supply line 13. It is a figure which shows the integrated flow rate and the direction of flow of the fuel which flows to the installation place of 20C.

図2に示すように、燃料供給管路13の中の流量計20A~20Cより上流側の共有管路131で燃料漏洩が発生した場合を検討する。 As shown in FIG. 2, a case where a fuel leak occurs in the shared pipeline 131 on the upstream side of the flow meters 20A to 20C in the fuel supply pipeline 13 will be examined.

この場合、流量計20A~20Cの設置箇所では、それぞれ、個別管路132A,132B,132Cから共有管路131に燃料が流出する。そのため、流量計20A~20Cの設置箇所を通過する燃料の積算流量は、共有管路131(分岐管路131X)から個別管路132Xに燃料が流入する場合に対して、十分に小さくなる。よって、漏洩検知部302は、流量計20A~20Cごとの積算流量が全て非常に小さい場合に、共有管路131を含む共有管路131で燃料漏洩が発生していると判定できる。 In this case, fuel flows out from the individual pipelines 132A, 132B, and 132C to the shared pipeline 131 at the locations where the flowmeters 20A to 20C are installed, respectively. Therefore, the integrated flow rate of the fuel passing through the installation points of the flow meters 20A to 20C is sufficiently smaller than the case where the fuel flows from the shared pipeline 131 (branch pipeline 131X) into the individual pipeline 132X. Therefore, the leak detection unit 302 can determine that fuel leakage has occurred in the shared pipe 131 including the shared pipe 131 when the integrated flow rates for each of the flow meters 20A to 20C are all very small.

例えば、漏洩検知部302は、流量計20A~20Cのそれぞれの積算流量計測値が、所定の閾値Th21以下である場合、共有管路131で燃料漏洩が発生していると判定してよい。閾値Th21は、例えば、実験やシミュレーションを通じて、流量計20A~20Cの下流側で燃料漏洩が発生している場合に通過する燃料の積算流量の上限値に所定の余裕分を加えた値であってよい。 For example, the leak detection unit 302 may determine that fuel leakage has occurred in the shared pipeline 131 when the integrated flow rate measurement values of the flow meters 20A to 20C are equal to or less than a predetermined threshold value Th21. The threshold value Th21 is, for example, a value obtained by adding a predetermined margin to the upper limit value of the integrated flow rate of the fuel passing when a fuel leak occurs on the downstream side of the flow meters 20A to 20C through an experiment or a simulation. good.

また、図3、図4、図6に示すように、流量計20A~20Cの一部又は全部の下流側で燃料漏洩が発生した場合を検討する。 Further, as shown in FIGS. 3, 4, and 6, a case where fuel leakage occurs on the downstream side of a part or all of the flow meters 20A to 20C will be examined.

この場合、流量計20A~20Cのうち、下流側で燃料漏洩が発生している流量計20Xの設置箇所には、共有管路131から個別管路132Xに燃料が流入する。そのため、下流側で燃料漏洩が発生している流量計20Xの設置箇所を通過する燃料の積算流量は、個別管路132Xから共有管路131(分岐管路131X)に燃料が流出する場合よりも十分に大きくなる。よって、漏洩検知部302は、流量計20Xの設置箇所を通過する燃料の積算流量が、個別管路132Xから共有管路131(分岐管路131X)に燃料が流出する場合よりも十分に大きい場合、流量計20Xの下流側の個別管路132Xで燃料漏洩が発生していると判定できる。 In this case, of the flow meters 20A to 20C, fuel flows from the shared pipeline 131 to the individual pipeline 132X at the installation location of the flow meter 20X where fuel leakage occurs on the downstream side. Therefore, the integrated flow rate of the fuel passing through the installation location of the flow meter 20X where the fuel leak occurs on the downstream side is larger than the case where the fuel flows out from the individual pipeline 132X to the shared pipeline 131 (branch pipeline 131X). It will be big enough. Therefore, in the leak detection unit 302, when the integrated flow rate of the fuel passing through the installation location of the flow meter 20X is sufficiently larger than the case where the fuel flows out from the individual pipeline 132X to the shared pipeline 131 (branch pipeline 131X). It can be determined that fuel leakage has occurred in the individual pipeline 132X on the downstream side of the flow meter 20X.

例えば、漏洩検知部302は、流量計20Xの積算流量計測値が上述の閾値Th21より大きい場合、流量計20Xの下流側の個別管路132Xで燃料漏洩が発生していると判定してよい。これにより、例えば、図6のように、流量計20A~20Cの全ての下流側(個別管路132A~132C)で燃料漏洩が発生している場合でも、漏洩検知部302は、流量計20A~20Cの下流側で燃料漏洩が発生していると判定することができる。 For example, when the integrated flow rate measurement value of the flow meter 20X is larger than the above-mentioned threshold value Th21, the leak detection unit 302 may determine that fuel leakage has occurred in the individual pipeline 132X on the downstream side of the flow meter 20X. As a result, for example, as shown in FIG. 6, even if a fuel leak occurs on all downstream sides (individual pipelines 132A to 132C) of the flow meters 20A to 20C, the leak detection unit 302 can use the flow meters 20A to 20A. It can be determined that a fuel leak has occurred on the downstream side of 20C.

このように、本例では、燃料漏洩検知装置30は、流量計20Xの積算流量測定値の絶対値に基づき、燃料供給システム10(燃料供給管路13)における燃料漏洩箇所を判定(特定)することができる。 As described above, in this example, the fuel leak detection device 30 determines (specifies) the fuel leak location in the fuel supply system 10 (fuel supply pipeline 13) based on the absolute value of the integrated flow rate measurement value of the flow meter 20X. be able to.

[燃料の漏洩箇所の判定方法の第3例]
次に、図2~図4、図6、図7を参照して、燃料供給システム10における燃料漏洩箇所の判定方法の第3例について説明する。
[Third example of the method for determining the fuel leak location]
Next, a third example of a method for determining a fuel leak location in the fuel supply system 10 will be described with reference to FIGS. 2 to 4, 6 and 7.

図7は、燃料供給管路13の中の共有管路131(本例では、主管路131M)、及び個別管路132X(本例では、流量計20Aの下流の個別管路132A)の双方で燃料が漏洩している場合の流量計20A~20Cの設置箇所に流れる燃料の積算流量及び流れの方向を表す図である。 FIG. 7 shows both the shared pipe 131 (in this example, the main pipe 131M) and the individual pipe 132X (in this example, the individual pipe 132A downstream of the flow meter 20A) in the fuel supply pipe 13. It is a figure which shows the integrated flow | concentration flow | flow direction of the fuel which flows to the installation place of the flow meter 20A to 20C when the fuel is leaking.

図7に示すように、共有管路131及び個別管路132X(個別管路132A)の双方に燃料漏洩が発生した場合を検討する。 As shown in FIG. 7, a case where fuel leakage occurs in both the shared pipeline 131 and the individual pipeline 132X (individual pipeline 132A) will be examined.

この場合、共有管路131の燃料は、個別管路132Aに流入すると共に、主管路131Mの漏洩箇所から外部に漏洩する。そのため、図3のように、個別管路132X(個別管路132A)だけに燃料の漏洩箇所がある場合に対して、個別管路132Xに共有管路131から流入する燃料の積算流量が減少する。よって、漏洩検知部302は、下流側で燃料漏洩が発生している流量計20Xの設置箇所を通過する燃料の積算流量が、共有管路131で燃料漏洩が未発生のときに想定される積算流量より小さい場合、共有管路131でも燃料漏洩が発生していると判定できる。 In this case, the fuel in the shared pipeline 131 flows into the individual pipeline 132A and leaks to the outside from the leaked portion of the main pipeline 131M. Therefore, as shown in FIG. 3, when there is a fuel leakage point only in the individual pipeline 132X (individual pipeline 132A), the integrated flow rate of the fuel flowing into the individual pipeline 132X from the shared pipeline 131 decreases. .. Therefore, in the leak detection unit 302, the integrated flow rate of the fuel passing through the installation location of the flow meter 20X where the fuel leakage has occurred on the downstream side is estimated when the fuel leakage has not occurred in the shared pipeline 131. If it is smaller than the flow rate, it can be determined that fuel leakage has occurred even in the shared pipeline 131.

尚、流量計20Xの下流側で燃料漏洩が発生しているか否かは、上述の第1例や第2例の判定方法を用いることにより判定されてよい。 Whether or not fuel leakage has occurred on the downstream side of the flow meter 20X may be determined by using the determination methods of the first and second examples described above.

例えば、漏洩検知部302は、下流側で燃料漏洩の発生している流量計20Xの積算流量測定値が所定の閾値Th31以下である場合に、共有管路131でも燃料漏洩が発生していると判定してよい。閾値Th31は、例えば、実験やシミュレーションを通じて、共有管路131で燃料漏洩が未発生のときに下流側で燃料漏洩が発生している流量計20Xの設置箇所を通過する燃料の積算流量の下限値として予め設定される。また、閾値Th31は、個別管路132A,132B,132Cのうちの燃料漏洩が発生している個別管路132Xの数に応じて可変される。具体的には、閾値Th31は、個別管路132A,132B,132Cのうちの燃料漏洩が発生している個別管路132Xの数が増えるほど、小さくなるように設定される。図3、図4、図6に示すように、個別管路132A,132B,132Cのうちの燃料漏洩が発生している個別管路132Xの数が増えるほど、共有管路131から個別管路132Xに流入する燃料の積算流量が減少するからである。 For example, the leak detection unit 302 determines that fuel leakage has also occurred in the shared pipeline 131 when the integrated flow rate measurement value of the flow meter 20X in which fuel leakage has occurred on the downstream side is equal to or less than a predetermined threshold value Th31. You may judge. The threshold value Th31 is, for example, the lower limit of the integrated flow rate of the fuel passing through the installation location of the flow meter 20X where the fuel leak occurs on the downstream side when the fuel leak does not occur in the shared pipeline 131 through experiments and simulations. Is preset as. Further, the threshold value Th31 is variable according to the number of individual pipelines 132X in which fuel leakage has occurred among the individual pipelines 132A, 132B, and 132C. Specifically, the threshold value Th31 is set so as to increase as the number of individual pipelines 132X in which fuel leakage occurs among the individual pipelines 132A, 132B, 132C increases. As shown in FIGS. 3, 4, and 6, as the number of individual pipelines 132X in which fuel leakage occurs among the individual pipelines 132A, 132B, and 132C increases, the number of individual pipelines 132X from the shared pipeline 131X increases. This is because the integrated flow rate of the fuel flowing into the water is reduced.

このように、本例では、燃料漏洩検知装置30は、流量計20Xの下流側の部分(個別管路132X)で燃料漏洩が発生している場合に、併せて、共有管路131で燃料漏洩が発生しているか否かを判定することできる。 As described above, in this example, when the fuel leak is generated in the downstream portion (individual pipeline 132X) of the flow meter 20X, the fuel leak detection device 30 is combined with the fuel leak in the shared pipeline 131. Can be determined whether or not is occurring.

[燃料の漏洩箇所の判定方法の第4例]
次に、図2~図4、図6、図8を参照して、燃料供給システム10における燃料漏洩箇所の判定方法の第4例について説明する。
[Fourth example of the method for determining the location of fuel leakage]
Next, a fourth example of a method for determining a fuel leak location in the fuel supply system 10 will be described with reference to FIGS. 2 to 4, 6 and 8.

<概要>
図2~図4、図6、図8に示すように、燃料供給管路13の任意の箇所で燃料漏洩が発生した場合を検討する。
<Overview>
As shown in FIGS. 2 to 4, 6 and 8, a case where a fuel leak occurs at an arbitrary position in the fuel supply line 13 will be examined.

上述の如く、燃料供給管路13で燃料漏洩が発生すると、燃料供給管路13の内部の燃料は、燃料漏洩の箇所に向かって流れる。そのため、図2~図4、図6に示すように、流量計20A~20Cの設置箇所でも、燃料が漏洩箇所に向かって流れる。よって、漏洩検知部302は、流量計20A~20Cの設置箇所で燃料が流れている場合に、燃料供給管路13に燃料漏洩が発生していると判定することができる。 As described above, when a fuel leak occurs in the fuel supply line 13, the fuel inside the fuel supply line 13 flows toward the fuel leak point. Therefore, as shown in FIGS. 2 to 4 and 6, fuel flows toward the leaked portion even at the installation location of the flow meters 20A to 20C. Therefore, the leak detection unit 302 can determine that fuel leakage has occurred in the fuel supply line 13 when fuel is flowing at the installation points of the flow meters 20A to 20C.

例えば、漏洩検知部302は、流量計20A~20Cの設置箇所の全てにおいて燃料の流れが生じている場合に、燃料供給管路13に燃料漏洩が発生していると判定してよい。また、漏洩検知部302は、流量計20Xの設置箇所の少なくとも一部で燃料の流れが生じている場合に、燃料供給管路13に燃料漏洩が発生していると判定してもよい。つまり、漏洩検知部302は、流量計20A~20Cの設置箇所のうちの少なくとも一つで燃料の流れが生じている場合に、燃料供給管路13に燃料漏洩が発生していると判定してよい。 For example, the leak detection unit 302 may determine that a fuel leak has occurred in the fuel supply pipeline 13 when the fuel is flowing at all the installation locations of the flow meters 20A to 20C. Further, the leak detection unit 302 may determine that a fuel leak has occurred in the fuel supply pipeline 13 when a fuel flow has occurred in at least a part of the installation location of the flow meter 20X. That is, the leak detection unit 302 determines that a fuel leak has occurred in the fuel supply pipeline 13 when the fuel is flowing at at least one of the installation locations of the flow meters 20A to 20C. good.

また、図2に示すように、燃料供給管路13の中の流量計20A~20Cより上流側の共有管路131で燃料漏洩が発生した場合を検討する。 Further, as shown in FIG. 2, a case where a fuel leak occurs in the shared pipeline 131 on the upstream side of the flow meters 20A to 20C in the fuel supply pipeline 13 will be examined.

この場合、流量計20A~20Cの設置箇所では、全て、下流側から上流側に燃料が流れる。そのため、漏洩検知部302は、流量計20A~20Cにより検知される燃料の流れの方向が下流側から上流側に向かう方向である場合、共有管路131で燃料漏洩が発生していると判定することができる。 In this case, fuel flows from the downstream side to the upstream side at all the locations where the flow meters 20A to 20C are installed. Therefore, the leak detection unit 302 determines that fuel leakage has occurred in the shared pipeline 131 when the direction of the fuel flow detected by the flow meters 20A to 20C is from the downstream side to the upstream side. be able to.

また、図3、図4、図6に示すように、流量計20A~20Cの一部又は全部の下流側(個別管路132X)で燃料漏洩が発生した場合を検討する。 Further, as shown in FIGS. 3, 4, and 6, a case where a fuel leak occurs on the downstream side (individual pipeline 132X) of a part or all of the flow meters 20A to 20C will be examined.

この場合、下流側で燃料漏洩の発生している流量計20Xの設置箇所では、上流側から下流側に燃料が流れる。そのため、漏洩検知部302は、流量計20A~20Cにより検知される燃料の流れの方向の一部又は全部が上流側から下流側に向かう方向である場合、上流側から下流側に向かう流れを検知した流量計20Xの下流側の個別管路132Xで燃料漏洩が発生していると判定してよい。 In this case, fuel flows from the upstream side to the downstream side at the installation location of the flow meter 20X where the fuel leak occurs on the downstream side. Therefore, the leak detection unit 302 detects the flow from the upstream side to the downstream side when part or all of the fuel flow direction detected by the flow meters 20A to 20C is from the upstream side to the downstream side. It may be determined that fuel leakage has occurred in the individual pipeline 132X on the downstream side of the flow meter 20X.

<燃料の漏洩検知に関する制御処理>
図8は、燃料漏洩検知処理の他の例を概略的に示すフローチャートである。
<Control processing related to fuel leak detection>
FIG. 8 is a flowchart schematically showing another example of the fuel leak detection process.

図8に示すように、ステップS202にて、漏洩検知部302は、流量計20A~20Cにより、方向を問わず、燃料の流れが検知されたか否かを判定する。具体的には、漏洩検知部302は、上述の如く、流量計20A~20Cのうちの少なくとも一つの流量計20Xにより燃料の流れが検知されたか否かを判定してよい。漏洩検知部302は、流量計20A~20Cのうちの少なくとも一つの流量計20Xにより燃料の流れが検知された場合、燃料供給管路13で燃料漏洩が発生していると判定し、ステップS204に進む。一方、漏洩検知部302は、流量計20A~20Cの全てで燃料の流れが検知されていない場合、燃料供給管路13で燃料漏洩が発生していないと判定し、今回のフローチャートの処理を終了する。 As shown in FIG. 8, in step S202, the leak detection unit 302 determines whether or not the fuel flow is detected by the flow meters 20A to 20C regardless of the direction. Specifically, the leak detection unit 302 may determine whether or not the fuel flow is detected by at least one flow meter 20X among the flow meters 20A to 20C as described above. When the leak detection unit 302 detects the fuel flow by at least one flow meter 20X among the flow meters 20A to 20C, the leak detection unit 302 determines that a fuel leak has occurred in the fuel supply pipeline 13, and proceeds to step S204. move on. On the other hand, when the fuel flow is not detected in all of the flow meters 20A to 20C, the leak detection unit 302 determines that no fuel leak has occurred in the fuel supply pipeline 13, and ends the processing of this flowchart. do.

ステップS204にて、漏洩検知部302は、全ての流量計20A~20Cで下流側から上流側に向かう流れが検知された場合、ステップS206に進む。一方、漏洩検知部302は、流量計20A~20Cの一部又は全部で上流側から下流側に向かう流れが検知された場合、ステップS208に進む。 In step S204, the leak detection unit 302 proceeds to step S206 when the flow from the downstream side to the upstream side is detected by all the flow meters 20A to 20C. On the other hand, when the leak detection unit 302 detects a flow from the upstream side to the downstream side in part or all of the flow meters 20A to 20C, the leak detection unit 302 proceeds to step S208.

ステップS206にて、漏洩検知部302は、共有管路131に燃料の漏洩箇所があると判定し、その旨を示すログを補助記憶装置等に記録する。 In step S206, the leak detection unit 302 determines that there is a fuel leak location in the shared pipeline 131, and records a log indicating that fact in the auxiliary storage device or the like.

燃料漏洩検知装置30は、ステップS206の処理が完了すると、今回のフローチャートの処理を終了する。 When the process of step S206 is completed, the fuel leak detection device 30 ends the process of the current flowchart.

一方、ステップS208にて、漏洩検知部302は、上流側から下流側に向かう流れが検知された流量計20Xより下流側の個別管路132Xに漏洩箇所があると判定し、その旨を示すログを補助記憶装置等に記録する。 On the other hand, in step S208, the leak detection unit 302 determines that there is a leak point in the individual pipeline 132X on the downstream side of the flow meter 20X in which the flow from the upstream side to the downstream side is detected, and a log indicating that fact. Is recorded in an auxiliary storage device or the like.

燃料漏洩検知装置30は、ステップS208の処理が完了すると、今回のフローチャートの処理を終了する。 When the process of step S208 is completed, the fuel leak detection device 30 ends the process of the current flowchart.

<作用>
このように、本例では、燃料漏洩検知装置30は、複数の燃料供給機12Xによる燃料供給が行われていない状態で、複数の流量計20Xのそれぞれによる燃料の流れ方向の検知結果に基づき、燃料供給管路13のうちの共有管路131、及び複数の個別管路132Xの中から燃料の漏洩箇所を判定する。
<Action>
As described above, in this example, the fuel leak detection device 30 is based on the detection result of the fuel flow direction by each of the plurality of flow meters 20X in a state where the fuel is not supplied by the plurality of fuel supply machines 12X. A fuel leak location is determined from the shared pipeline 131 of the fuel supply pipeline 13 and the plurality of individual pipelines 132X.

これにより、燃料漏洩検知装置30は、共有管路131に燃料漏洩を検知可能なセンサが設けられなくても、共有管路131、及び複数の個別管路132Xの中から燃料の漏洩箇所を判定することができる。そのため、燃料漏洩検知装置30は、共有管路131及び複数の個別管路132Xごとの燃料漏洩の検知をより少ないセンサ(流量計20X)によって実現することができる。よって、燃料漏洩検知システム1の全体のコストを抑制することができる。 As a result, the fuel leak detection device 30 determines the fuel leak location from the shared pipeline 131 and the plurality of individual pipelines 132X even if the shared pipeline 131 is not provided with a sensor capable of detecting the fuel leak. can do. Therefore, the fuel leak detection device 30 can realize the detection of the fuel leak for each of the shared pipeline 131 and the plurality of individual pipelines 132X with a smaller number of sensors (flow meter 20X). Therefore, the overall cost of the fuel leak detection system 1 can be suppressed.

また、本例では、燃料漏洩検知装置30は、複数の流量計20Xの少なくとも一つの流量計20Xにより燃料の流れが検知され、且つ、複数の流量計20Xの全てにより下流側から上流側に向かう方向の流れが検知される場合、共有管路131で燃料の漏洩が発生していると判定してよい。 Further, in this example, in the fuel leak detection device 30, the fuel flow is detected by at least one flow meter 20X of the plurality of flow meters 20X, and the fuel flow is detected by all of the plurality of flow meters 20X from the downstream side to the upstream side. When the flow in the direction is detected, it may be determined that fuel leakage has occurred in the shared pipeline 131.

これにより、燃料漏洩検知装置30は、共有管路131に燃料漏洩を検知可能なセンサが設けられなくても、具体的に、共有管路131における燃料漏洩を判定することができる。 As a result, the fuel leak detection device 30 can specifically determine the fuel leak in the shared pipeline 131 even if the shared pipeline 131 is not provided with a sensor capable of detecting the fuel leak.

また、本例では、燃料漏洩検知装置30は、複数の流量計20Xのうちの一の流量計20Xにより上流側から下流側に向かう燃料の流れが検知される場合、一の流量計20Xの下流側の個別管路132Xで燃料の漏洩が発生していると判定してよい。 Further, in this example, the fuel leak detection device 30 is downstream of one flow meter 20X when the flow of fuel from the upstream side to the downstream side is detected by the flow meter 20X of one of the plurality of flow meters 20X. It may be determined that fuel leakage has occurred in the individual pipeline 132X on the side.

これにより、燃料漏洩検知装置30は、共有管路131に燃料漏洩を検知可能なセンサが設けられなくても、具体的に、燃料漏洩箇所が、共有管路131であるか、個別管路132Xであるかを判定できる。 As a result, in the fuel leak detection device 30, even if the shared pipeline 131 is not provided with a sensor capable of detecting the fuel leak, the fuel leak location is specifically the shared pipeline 131 or the individual pipeline 132X. Can be determined.

尚、本例では、流量計20A~20Cは、燃料の流れの方向だけを検知可能な所定の装置(流れ方向検知装置の一例)に置換されてもよい。 In this example, the flow meters 20A to 20C may be replaced with a predetermined device (an example of the flow direction detecting device) capable of detecting only the direction of the fuel flow.

[変形・変更]
以上、実施形態について詳述したが、本開示はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された要旨の範囲内において、種々の変形・変更が可能である。
[Transform / Change]
Although the embodiments have been described in detail above, the present disclosure is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist described in the claims.

例えば、上述の実施形態において、上述の第1例~第3例の一部又は全部と、上述の第4例を組み合わせてもよい。即ち、上述の実施形態において、燃料漏洩検知装置30は、流量計20Xによる流量の計測結果及び流れの方向の検知結果の双方に基づき、燃料供給管路13における燃料の漏洩箇所を判定してもよい。 For example, in the above-described embodiment, a part or all of the above-mentioned first to third examples may be combined with the above-mentioned fourth example. That is, in the above-described embodiment, the fuel leak detection device 30 may determine the fuel leak location in the fuel supply line 13 based on both the flow rate measurement result by the flow meter 20X and the flow direction detection result. good.

また、上述の実施形態では、流量計20Xの積算流量計測値等を用いて、燃料供給管路13の燃料漏洩箇所が判定されるが、流量計20Xの設置箇所で燃料の流れが継続している時間(以下、「流れ継続時間」)の長さで判定されてもよい。流れ継続時間は、流量計20Xがゼロよりも大きい計測値を継続して出力している継続時間であってよい。また、流れ方向検知装置としての流量計20Xが燃料の流れを検知し続けている継続時間であってもよい。燃料漏洩により発生する燃料の流量自体は、漏洩箇所の変化によってそれほど変化せず、積算流量が大きくなるほど、流れ継続時間が長くなると考えられる。そのため、燃料漏洩検知装置30は、積算流量を利用する場合と同様に、流れ継続時間を用いて、漏洩箇所を判定することができる。例えば、複数の個別管路132Xのうちの何れの個別管路132Xで燃料漏洩が発生しているかを判定する際に、一の流量計20Xで流量が計測されていない状態(流量≒0)で、他の流量計20Xではゼロより大きい流量が継続して計測されている場合、他の流量計20Xの下流の個別管路132Xで燃料漏洩が発生していると判定してよい。具体的には、燃料漏洩が発生している一の個別管路132Xでは、他の個別管路132Xに比べ、内部を流れる燃料の積算流量が大きく、その分、流量計20Xがゼロより大きい流量を計測する時間も長くなる。そのため、燃料漏洩検知装置30は、一の流量計20Xが他の流量計20Xよりも長い時間で継続してゼロより大きい流量を計測している場合、一の流量計20Xの下流側の個別管路132Xに燃料漏洩が発生していると判定することができる。 Further, in the above-described embodiment, the fuel leakage location of the fuel supply line 13 is determined using the integrated flow rate measurement value of the flow meter 20X, but the fuel flow continues at the installation location of the flow meter 20X. It may be determined by the length of time (hereinafter, "flow duration"). The flow duration may be the duration during which the flow meter 20X continuously outputs measured values larger than zero. Further, the duration may be such that the flow meter 20X as the flow direction detecting device continues to detect the flow of fuel. It is considered that the flow rate of the fuel generated by the fuel leak does not change so much due to the change of the leak location, and the larger the integrated flow rate, the longer the flow duration. Therefore, the fuel leak detection device 30 can determine the leak location by using the flow duration, as in the case of using the integrated flow rate. For example, when determining which of the individual pipelines 132X among the plurality of individual pipelines 132X has a fuel leak, the flow rate is not measured by one flow meter 20X (flow rate ≈ 0). If the flow rate larger than zero is continuously measured by the other flow meter 20X, it may be determined that fuel leakage has occurred in the individual pipeline 132X downstream of the other flow meter 20X. Specifically, in one individual pipeline 132X where fuel leakage occurs, the integrated flow rate of fuel flowing inside is larger than that of the other individual pipeline 132X, and the flow rate of the flow meter 20X is larger than zero by that amount. It also takes longer to measure. Therefore, when one flow meter 20X continuously measures a flow rate larger than zero for a longer time than the other flow meters 20X, the fuel leak detection device 30 is an individual pipe on the downstream side of the one flow meter 20X. It can be determined that a fuel leak has occurred on the road 132X.

1 燃料漏洩検知システム
10 燃料供給システム
11 貯蔵タンク(燃料供給源)
12,12A~12C 燃料供給機
13 燃料供給管路
131 共有管路
131A~131C 分岐管路
131M 主管路
132,132A~132C,132X 個別管路
133A~133C バイパス管路
14A~14C 電磁弁
15A~15C 電磁弁
16A~16C 電磁弁
20,20A~20C,20X 流量計(流れ方向検知装置)
30 燃料漏洩検知装置(燃料漏洩判定装置)
301 情報取得部(取得部)
302 漏洩検知部(判定部)
1 Fuel leak detection system 10 Fuel supply system 11 Storage tank (fuel supply source)
12, 12A ~ 12C Fuel supply machine 13 Fuel supply line 131 Shared line 131A ~ 131C Branch line 131M Main line 132, 132A ~ 132C, 132X Individual line 133A ~ 133C Bypass line 14A ~ 14C Solenoid valve 15A ~ 15C Solenoid valve 16A to 16C Solenoid valve 20, 20A to 20C, 20X Flow meter (flow direction detector)
30 Fuel leak detection device (fuel leak determination device)
301 Information acquisition department (acquisition department)
302 Leakage detection unit (judgment unit)

Claims (7)

被燃料供給体への燃料供給を行う複数の燃料供給機と、
燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路と、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられ、燃料の流量を計測する複数の流量計と、
前記複数の燃料供給機による燃料供給が行われていない状態で、前記複数の流量計のそれぞれの流量の計測結果に基づき、前記燃料供給管路のうちの前記共有管路及び前記複数の個別管路の中から燃料の漏洩箇所を判定する燃料漏洩判定装置と、を備える、
燃料漏洩検知システム。
Multiple fuel supply machines that supply fuel to the fueled object, and
A fuel supply pipe including a shared pipeline for sending fuel from a fuel supply source to the plurality of fuel feeders, and a plurality of individual pipelines connecting the shared pipeline and each of the plurality of fuel feeders. The road and
A plurality of flow meters provided at the connection points between the shared pipeline and each of the plurality of individual pipelines to measure the flow rate of fuel, and a plurality of flow meters.
In a state where fuel is not supplied by the plurality of fuel supply machines, the shared pipeline and the plurality of individual pipes among the fuel supply pipelines are based on the measurement results of the flow rates of the plurality of flow meters. It is equipped with a fuel leak determination device that determines the location of fuel leakage from the road.
Fuel leak detection system.
前記燃料漏洩判定装置は、前記複数の流量計のうちの少なくとも一つの流量計の計測値が第1の閾値以上であり、且つ、前記複数の流量計ごとの計測値を積算した値の差が第2の閾値以下である場合、前記共有管路で燃料の漏洩が発生していると判定する、
請求項1に記載の燃料漏洩検知システム。
In the fuel leakage determination device, the difference between the values measured by at least one of the plurality of flow meters is equal to or higher than the first threshold value and the measured values of the plurality of flow meters are integrated. If it is equal to or less than the second threshold value, it is determined that fuel leakage has occurred in the shared pipeline.
The fuel leak detection system according to claim 1.
前記燃料漏洩判定装置は、前記複数の流量計のうちの少なくとも一つの計測値が前記第1の閾値以上であり、且つ、前記複数の流量計ごとの計測値が積算した値の差が前記第2の閾値を超える場合、前記複数の個別管路で漏洩が発生していると判定する、
請求項2に記載の燃料漏洩検知システム。
In the fuel leakage determination device, the difference between the measured values of at least one of the plurality of flow meters is equal to or higher than the first threshold value and the integrated values of the measured values of the plurality of flow meters is the first. If the threshold value of 2 is exceeded, it is determined that leakage has occurred in the plurality of individual pipelines.
The fuel leak detection system according to claim 2.
前記燃料漏洩判定装置は、前記複数の流量計のうちの少なくとも一つの計測値が前記第1の閾値以上であり、且つ、前記複数の流量計のうちの一の流量計の計測値を積算した値が、他の流量計の計測値を積算した値に前記第2の閾値より大きい第3の閾値を加算した値以上である場合、前記複数の個別管路のうちの前記一の流量計の下流側の個別管路で燃料の漏洩が発生していると判定する、
請求項2又は3に記載の燃料漏洩検知システム。
In the fuel leakage determination device, the measured value of at least one of the plurality of flowmeters is equal to or higher than the first threshold value, and the measured value of one of the plurality of flowmeters is integrated. When the value is equal to or greater than the value obtained by adding the third threshold value larger than the second threshold value to the integrated value of the measured values of the other flow meters, the flow meter of the one of the plurality of individual pipelines. Judge that fuel leakage has occurred in the individual pipeline on the downstream side,
The fuel leak detection system according to claim 2 or 3.
被燃料供給体への燃料供給を行う複数の燃料供給機と、
燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路と、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられ、燃料の流れ方向を検知する複数の流れ方向検知装置と、
前記複数の燃料供給機による燃料供給が行われていない状態で、前記複数の流れ方向検知装置のそれぞれによる燃料の流れ方向の検知結果に基づき、前記燃料供給管路のうちの前記共有管路、及び前記複数の個別管路の中から燃料の漏洩箇所を判定する燃料漏洩判定装置と、を備える、
燃料漏洩検知システム。
Multiple fuel supply machines that supply fuel to the fueled object, and
A fuel supply pipe including a shared pipeline for sending fuel from a fuel supply source to the plurality of fuel feeders, and a plurality of individual pipelines connecting the shared pipeline and each of the plurality of fuel feeders. The road and
A plurality of flow direction detecting devices provided at the connection points between the shared pipeline and each of the plurality of individual pipelines to detect the fuel flow direction, and
In a state where fuel is not supplied by the plurality of fuel supply machines, the shared pipeline among the fuel supply pipelines is based on the detection result of the fuel flow direction by each of the plurality of flow direction detection devices. And a fuel leak determination device for determining a fuel leak location from the plurality of individual pipelines.
Fuel leak detection system.
被燃料供給体への燃料供給を行う複数の燃料供給機と、燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路とを有する燃料供給システムにおける燃料の漏洩を検知する燃料漏洩検知装置であって、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられる、燃料の流量を計測する複数の流量計の計測結果を取得する取得部と、
前記複数の燃料供給機による燃料供給が行われていない状態で、前記複数の流量計のそれぞれの流量の計測結果に基づき、前記燃料供給管路のうちの前記共有管路、及び前記複数の個別管路の中から燃料の漏洩箇所を判定する判定部と、を備える、
燃料漏洩検知装置。
A plurality of fuel feeders that supply fuel to the fueled object, a shared pipeline that sends fuel from the fuel supply source to the plurality of fuel feeders, and the shared pipeline and the plurality of fuel feeders. A fuel leak detection device that detects a fuel leak in a fuel supply system having a fuel supply pipeline including a plurality of individual pipelines connecting to each other.
An acquisition unit for acquiring the measurement results of a plurality of flow meters for measuring the flow rate of fuel, which are provided at the connection points between the shared pipeline and each of the plurality of individual pipelines.
In a state where fuel is not supplied by the plurality of fuel supply machines, the shared pipeline among the fuel supply pipelines and the plurality of individual pipes are based on the measurement results of the flow rates of the plurality of flow meters. It is equipped with a determination unit for determining the location of fuel leakage from the pipeline.
Fuel leak detector.
被燃料供給体への燃料供給を行う複数の燃料供給機と、燃料供給源から前記複数の燃料供給機に向けて燃料を送る共有管路、及び前記共有管路と前記複数の燃料供給機のそれぞれとの間を接続する複数の個別管路を含む燃料供給管路とを有する燃料供給システムにおける燃料の漏洩を検知する燃料漏洩検知装置であって、
前記共有管路と前記複数の個別管路のそれぞれとの接続箇所に設けられる、燃料の流れ方向を検知する複数の流れ方向検知装置の検知結果を取得する取得部と、
前記複数の燃料供給機による燃料供給が行われていない状態で、前記複数の流れ方向検知装置のそれぞれによる燃料の流れ方向の検知結果に基づき、前記燃料供給管路のうちの前記共有管路、及び前記複数の個別管路の中から燃料の漏洩箇所を判定する判定部と、を備える、
燃料漏洩検知装置。
A plurality of fuel feeders that supply fuel to the fueled object, a shared pipeline that sends fuel from the fuel supply source to the plurality of fuel feeders, and the shared pipeline and the plurality of fuel feeders. A fuel leak detection device that detects a fuel leak in a fuel supply system having a fuel supply pipeline including a plurality of individual pipelines connecting to each other.
An acquisition unit for acquiring the detection results of a plurality of flow direction detection devices for detecting the fuel flow direction provided at the connection points between the shared pipeline and each of the plurality of individual pipelines.
In a state where fuel is not supplied by the plurality of fuel supply machines, the shared pipeline among the fuel supply pipelines is based on the detection result of the fuel flow direction by each of the plurality of flow direction detection devices. And a determination unit for determining a fuel leak location from the plurality of individual pipelines.
Fuel leak detector.
JP2020163291A 2020-09-29 2020-09-29 Fuel leak detection system, fuel leak determination device Active JP7458953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020163291A JP7458953B2 (en) 2020-09-29 2020-09-29 Fuel leak detection system, fuel leak determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020163291A JP7458953B2 (en) 2020-09-29 2020-09-29 Fuel leak detection system, fuel leak determination device

Publications (2)

Publication Number Publication Date
JP2022055711A true JP2022055711A (en) 2022-04-08
JP7458953B2 JP7458953B2 (en) 2024-04-01

Family

ID=80998960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020163291A Active JP7458953B2 (en) 2020-09-29 2020-09-29 Fuel leak detection system, fuel leak determination device

Country Status (1)

Country Link
JP (1) JP7458953B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622757B2 (en) 1999-11-30 2003-09-23 Veeder-Root Company Fueling system vapor recovery and containment performance monitor and method of operation thereof
JP4956391B2 (en) 2007-11-20 2012-06-20 大阪瓦斯株式会社 Fluid leak detection method
EP2396273A2 (en) 2009-02-09 2011-12-21 Warren Rogers Associates, Inc. Method and apparatus for monitoring fluid storage and dispensing systems

Also Published As

Publication number Publication date
JP7458953B2 (en) 2024-04-01

Similar Documents

Publication Publication Date Title
Duan et al. Extended blockage detection in pipes using the system frequency response: analytical analysis and experimental verification
JP2014505874A5 (en)
CN109469834B (en) Liquid pipeline leakage detection method, device and system
Mounce et al. Cloud based machine learning approaches for leakage assessment and management in smart water networks
AU2017328150A1 (en) Pipe condition assessment device and system
Xue et al. Application of acoustic intelligent leak detection in an urban water supply pipe network
CN101965504B (en) Flowmeter
JP2022055711A (en) Fuel leakage detection system and fuel leakage determination device
CN208721789U (en) For positioning the device of blocking object and including its blocking object positioning system
CN105020579A (en) Single-flow double-metering liquefied natural gas filling machine
Stoica et al. Investigation of the gas losses in transmission networks
Capponi et al. Hydraulic diagnostic kit for the automatic expeditious survey of in-line valve sealing in long, large diameter transmission mains
JPH04363638A (en) Monitoring method of leakage for gas supply system
CN108980631A (en) A kind of negative pressure wave method pipeline leakage checking system based on in-circuit emulation
CN108943869A (en) A kind of positioning of fuel gas pipeline leakage and detection system
CN103851339A (en) System and method for detecting pipeline leakage
CN205261210U (en) LNG loading sledge integrated device
JP2022015555A (en) Gas leakage inspection system
JP4439195B2 (en) Utility consumer equipment operation recognition device
JP4394520B2 (en) Method and apparatus for detecting leakage of fluid flowing through a pipeline
Akdeniz A case study on integrated management of water losses in Antalya, Turkey
CN203823428U (en) Easily operated LNG (liquefied natural gas) injector
CN206459019U (en) A kind of pipeline gas transmission station anti-leak alarm and technological processing for explosion protection feature device
JP2604981B2 (en) Gas leak monitoring device
CN111156098A (en) Engine leakage detection method, detection device and detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240319

R150 Certificate of patent or registration of utility model

Ref document number: 7458953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150