JP2022055231A - データ処理システム、データ処理方法、および、データ処理プログラム - Google Patents

データ処理システム、データ処理方法、および、データ処理プログラム Download PDF

Info

Publication number
JP2022055231A
JP2022055231A JP2020162714A JP2020162714A JP2022055231A JP 2022055231 A JP2022055231 A JP 2022055231A JP 2020162714 A JP2020162714 A JP 2020162714A JP 2020162714 A JP2020162714 A JP 2020162714A JP 2022055231 A JP2022055231 A JP 2022055231A
Authority
JP
Japan
Prior art keywords
data
evaluation
standard
unit
processing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020162714A
Other languages
English (en)
Other versions
JP7218338B2 (ja
Inventor
亮一 檜物
Riyouichi Himono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Yokogawa Solution Service Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Solution Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Solution Service Corp filed Critical Yokogawa Electric Corp
Priority to JP2020162714A priority Critical patent/JP7218338B2/ja
Priority to US17/483,863 priority patent/US20220100630A1/en
Priority to CN202111134837.1A priority patent/CN114282742A/zh
Publication of JP2022055231A publication Critical patent/JP2022055231A/ja
Application granted granted Critical
Publication of JP7218338B2 publication Critical patent/JP7218338B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3013Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is an embedded system, i.e. a combination of hardware and software dedicated to perform a certain function in mobile devices, printers, automotive or aircraft systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3065Monitoring arrangements determined by the means or processing involved in reporting the monitored data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Data Mining & Analysis (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Figure 2022055231000001
【課題】生産の操業に関する操業データと、生産の評価に関する評価データを取得し、評価データを分類すると共に、操業データとの関連付けを行い評価結果との関連を表示するシステムを提供する。
【解決手段】データ処理システム100は、生産の操業に関する実績を示す操業データを取得する操業データ取得部110と、生産の評価に関する実績を示す評価データを取得する評価データ取得部120と、対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶する基準記憶部140と、管理パラメータについて操業データが管理基準に準拠しているかどうかを判定した判定結果と評価データとに基づいて、生産の実績を示す実績データを分類するデータ分類部150と、分類結果を出力する出力部160とを備える。
【選択図】図1

Description

本発明は、データ処理システム、データ処理方法、および、データ処理プログラムに関する。
特許文献1には、「製品性能のばらつきを生じさせる阻害要因を特定し、製品性能を安定化させる製造プロセスの解析方法」が記載されている。
[先行技術文献]
[特許文献]
[特許文献1] 特開2016-177794号公報
(項目1)
本発明の第1の態様においては、データ処理システムを提供する。データ処理システムは、生産の操業に関する実績を示す操業データを取得する操業データ取得部を備えてよい。データ処理システムは、生産の評価に関する実績を示す評価データを取得する評価データ取得部を備えてよい。データ処理システムは、対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶する基準記憶部を備えてよい。データ処理システムは、管理パラメータについて操業データが管理基準に準拠しているかどうかを判定した判定結果と評価データとに基づいて、生産の実績を示す実績データを分類するデータ分類部を備えてよい。データ処理システムは、分類結果を出力する出力部を備えてよい。
(項目2)
データ分類部は、管理パラメータのうちの運転パラメータに係る全ての項目において操業データが管理基準に準拠しているか否か、および、評価データが予め定められた基準を満たしているか否かにより、実績データを少なくとも4つに分類してよい。
(項目3)
出力部は、少なくとも4つに分類されたそれぞれの頻度をグラフとして表示する表示画面を出力してよい。
(項目4)
データ分類部は、管理パラメータにおけるそれぞれの項目に対して、操業データが管理基準に準拠している場合、上方逸脱している場合、および、下方逸脱している場合の各ケースについて、評価データが予め定められた基準を満たしているか否かにより、実績データを分類してよい。
(項目5)
出力部は、管理パラメータにおけるそれぞれの項目に対して、各ケースについて評価データが予め定められた基準を満たしているか否かの頻度をグラフとして表示する表示画面を出力してよい。
(項目6)
出力部は、実績データのうちの評価データが予め定められた基準を満たしていないデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面を出力してよい。
(項目7)
出力部は、実績データのうちの評価データが予め定められた基準を満たしているデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面を出力してよい。
(項目8)
データ処理システムは、評価データに基づいて評価指標を決定するための評価基準、および、管理基準の少なくともいずれか一方を更新する基準更新部を更に備えてよい。
(項目9)
データ分類部は、評価基準および管理基準の少なくともいずれか一方が更新されたことに応じて、実績データを更新後の基準を用いて再分類し、出力部は、再分類された分類結果を出力してよい。
(項目10)
データ処理システムは、ユーザ入力を受け付ける入力部を更に備え、基準更新部は、ユーザ入力に基づいて評価基準および管理基準の少なくともいずれか一方を更新してよい。
(項目11)
データ処理システムは、分類結果に応じて評価基準および管理基準の少なくともいずれか一方の更新を決定する更新決定部を更に備え、基準更新部は、更新決定部の決定に基づいて評価基準および管理基準の少なくともいずれか一方を更新してよい。
(項目12)
更新決定部は、管理パラメータにおける複数の項目についての各ケースの組み合わせの中から、評価データが予め定められた基準を満たす頻度が高くなる組み合わせを探索して、更新後の管理基準を決定してよい。
(項目13)
評価データは、生産される製品の品質を評価したデータを含んでよい。
(項目14)
評価データは、生産の生産性、コスト、納期、および、安全性の少なくともいずれかを評価したデータを含んでよい。
(項目15)
本発明の第2の態様においては、データ処理方法を提供する。データ処理方法は、生産の操業に関する実績を示す操業データを取得することを備えてよい。データ処理方法は、生産の評価に関する実績を示す評価データを取得することを備えてよい。データ処理方法は、対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶することを備えてよい。データ処理方法は、管理パラメータについて操業データが管理基準に準拠しているかどうかを判定した判定結果と評価データとに基づいて、生産の実績を示す実績データを分類することを備えてよい。データ処理方法は、分類結果を出力することを備えてよい。
(項目16)
本発明の第3の態様においては、データ処理プログラムを提供する。データ処理プログラムは、コンピュータにより実行されてよい。データ処理プログラムは、コンピュータを、生産の操業に関する実績を示す操業データを取得する操業データ取得部として機能させてよい。データ処理プログラムは、コンピュータを、生産の評価に関する実績を示す評価データを取得する評価データ取得部として機能させてよい。データ処理プログラムは、コンピュータを、対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶する基準記憶部として機能させてよい。データ処理プログラムは、コンピュータを、管理パラメータについて操業データが管理基準に準拠しているかどうかを判定した判定結果と評価データとに基づいて、生産の実績を示す実績データを分類するデータ分類部として機能させてよい。データ処理プログラムは、コンピュータを、分類結果を出力する出力部として機能させてよい。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係るデータ処理システム100のブロック図の一例を、生産管理対象10と共に示す。 本実施形態に係るデータ処理システム100が記憶するQMマトリックスの一例を示す。 本実施形態に係るデータ処理システム100が記録する実績データの一例を示す。 本実施形態に係るデータ処理システム100がデータを処理するフローの一例を示す。 本実施形態に係るデータ処理システム100が出力する分類結果の一例を示す。 本実施形態に係るデータ処理システム100が出力する他の分類結果の一例を示す。 本実施形態に係るデータ処理システム100が逸脱パターンの発見をサポートするために出力する他の分類結果の一例を示す。 本実施形態に係るデータ処理システム100が回復方法の発見をサポートするために出力する他の分類結果の一例を示す。 本実施形態に係るデータ処理システム100を用いて評価基準および管理基準を更新するフローの一例を示す。 本実施形態に係るデータ処理システム100を用いて評価基準範囲を絞った場合における分類結果の変化の一例を模式的に示す。 本実施形態に係るデータ処理システム100を用いて管理基準範囲を絞った場合における分類結果の変化の一例を模式的に示す。 本実施形態に係るデータ処理システム100を用いて逸脱パターン毎にQMマトリックスを設定した場合における分類結果の変化の一例を模式的に示す。 本実施形態の変形例に係るデータ処理システム100のブロック図の一例を示す。 本実施形態の変形例に係るデータ処理システム100が、決定木分析を用いて管理基準範囲を絞り込む場合における分析結果の一例を示す。 本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本実施形態に係るデータ処理システム100のブロック図の一例を、生産管理対象10と共に示す。本実施形態に係るデータ処理システム100は、生産管理対象10における生産の実績を示す実績データを取得して分類し、分類した結果を出力する。この際、本実施形態に係るデータ処理システム100は、生産管理対象10における操業が管理基準に準拠しているかどうかを判定した結果と、生産管理対象10における生産の評価とに基づいて実績データを分類する。
生産管理対象10は、データ処理システム100が生産を管理する対象である。生産管理対象10は、例えば、プラントであってよい。このようなプラントは、化学等の工業プラントの他、ガス田や油田等の井戸元やその周辺を管理制御するプラント、水力・火力・原子力等の発電を管理制御するプラント、太陽光や風力等の環境発電を管理制御するプラント、および、上下水やダム等を管理制御するプラント等であってよい。しかしながら、これに限定されるものではない。データ処理システム100は、原材料などを加工することによって製品を生産する如何なる産業設備を管理対象としてもよい。
データ処理システム100は、PC(パーソナルコンピュータ)、タブレット型コンピュータ、スマートフォン、ワークステーション、サーバコンピュータ、または汎用コンピュータ等のコンピュータであってよく、複数のコンピュータが接続されたコンピュータシステムであってもよい。このようなコンピュータシステムもまた広義のコンピュータである。また、データ処理システム100は、コンピュータ内で1または複数実行可能な仮想コンピュータ環境によって実装されてもよい。これに代えて、データ処理システム100は、データ処理用に設計された専用コンピュータであってもよく、専用回路によって実現された専用ハードウェアであってもよい。また、データ処理システム100がインターネットに接続可能な場合、データ処理システム100は、クラウドコンピューティングにより実現されてもよい。
データ処理システム100は、操業データ取得部110と、評価データ取得部120と、データ記録部130と、基準記憶部140と、データ分類部150と、出力部160と、入力部170と、基準更新部180とを備える。なお、これらブロックは、それぞれ機能的に分離された機能ブロックであって、実際のデバイス構成とは必ずしも一致していなくてもよい。すなわち、本図において、1つのブロックとして示されているからといって、それが必ずしも1つのデバイスにより構成されていなくてもよい。また、本図において、別々のブロックとして示されているからといって、それらが必ずしも別々のデバイスにより構成されていなくてもよい。
操業データ取得部110は、生産の操業に関する実績を示す操業データを取得する。操業データ取得部110は、例えば、操業データとして、生産管理対象10における生産要素に関する実績を示すデータを取得してよい。ここで、生産要素とは、製品を生産するための要素である。この生産要素のうち、"原材料(Material)"、"設備(Machine)"、"人(Man)"、および、"工程(Method)"を「生産の4要素」といい、これらは"4M"とも呼ばれている。操業データ取得部110は、例えば、生産管理対象10における"4M"に関する実績を示す操業データを時系列に取得してよい。
ここで、"4M"のうちの"工程"に係る項目を、運転パラメータとして定義することとする。すなわち、運転パラメータとは、言わば、運転中に制御することができるパラメータとして定義することができる。一方、"4M"のうちの"原材料"、"設備"、および、"人"に係る項目を、運転条件の一部として定義することとする。なお、このような運転条件には、"原材料"、"設備"、および、"人"に加えて、季節、天気、気温、および、時間帯等、生産管理対象10における運転に影響を及ぼし得る様々な条件が含まれていてよい。すなわち、運転条件とは、言わば、運転中に制御することができないパラメータとして定義することができる。
操業データ取得部110は、例えば、通信部であってよく、通信ネットワークを介して、生産管理対象10から操業データを時系列に取得する。このような通信ネットワークは、複数のコンピュータを接続するネットワークであってよい。例えば、通信ネットワークは、複数のコンピュータネットワークを相互接続したグローバルなネットワークであってよく、一例として、インターネット・プロトコルを使用したインターネット等であってよい。これに代えて、通信ネットワークは、専用回線により実現されていてもよい。なお、上述の説明では、操業データ取得部110が通信ネットワークを介して生産管理対象10から操業データを時系列に取得する場合を一例として示したが、これに限定されるものではない。操業データ取得部110は、例えば、ユーザ入力や各種メモリデバイス等、通信ネットワークとは異なる他の手段を介して、生産管理対象10における操業データを取得してもよい。操業データ取得部110は、取得した操業データをデータ記録部130へ供給する。
評価データ取得部120は、生産の評価に関する実績を示す評価データを取得する。ここで、生産の評価とは、対象とする生産に対する評価である。多くの製造業において、目標とするPQCDS(Productivity:生産性、Quality:品質、Cost:コスト、Delivery:納期、Safety:安全性)を安定して実現することが重要な課題の一つである。したがって、評価データ取得部120は、例えば、評価データとして、生産管理対象10におけるPQCDSの実績の少なくともいずれかを評価したデータを取得してよい。これより先、評価データ取得部120が、評価データとして、生産管理対象10において生産される製品の品質を評価したデータ(例えば、製品品質について実測した測定値)を製品のロット毎に取得する場合を一例として説明する。このように、評価データは、生産される製品の品質を評価したデータを含んでよい。しかしながら、これに限定されるものではない。上述のとおり、評価データ取得部120は、評価データとして、製品品質に代えて、または、加えて、生産管理対象10における生産の生産性、コスト、納期、および、安全性の少なくともいずれかを評価したデータを取得してもよい。このように、評価データは、生産の生産性、コスト、納期、および、安全性の少なくともいずれかを評価したデータを含んでもよい。
評価データ取得部120は、操業データ取得部110と同様、通信部であってよく、例えば、通信ネットワークを介して、生産管理対象10から製品の品質を評価した評価データを製品のロット毎に取得する。なお、評価データ取得部120についても、操業データ取得部110と同様、ユーザ入力や各種メモリデバイスなど、通信ネットワークとは異なる他の手段を介して、生産管理対象10における評価データを取得してもよい。評価データ取得部120は、取得した評価データをデータ記録部130へ供給する。
データ記録部130は、生産管理対象10における生産の実績を示す実績データを記録する。データ記録部130は、例えば、操業データ取得部110から供給された操業データを取得する。また、データ記録部130は、評価データ取得部120から供給された評価データを取得する。そして、データ記録部130は、取得した操業データおよび評価データを、製品のロット毎に対応付けて実績データとして記録する。
基準記憶部140は、対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶する。また、基準記憶部140は、対象とする評価項目のそれぞれについて評価データに基づいて評価指標を決定するための評価基準(例えば、製品品質の測定値が当該範囲内である場合に品質が良好であると判定するための良品質基準範囲)を記憶する。ここで、管理基準とは、例えば、生産管理対象10において製品の品質特性を良好に維持すべく、当該品質特性に影響を与え得る重要なパラメータを管理パラメータとして選定し、当該パラメータのとるべき値の範囲を定義したものである。この各管理パラメータの管理基準と品質特性との関係は、QMマトリックスとも呼ばれている。すなわち、基準記憶部140は、操業データに含まれる複数の項目のうち、品質特性に影響を与え得る重要なパラメータとして選定された管理パラメータについて、準拠すべき管理基準をそれぞれ記憶してよい。なお、このような管理パラメータは、運転条件および運転パラメータの両者の中から選定されたものであってよい。
従来の生産においては、安定した特性を持つ原材料を調達し、安定したパフォーマンスを発揮する設備を利用して、経験を積んだ人の下で運転されてきた。このような状況においては、生産管理対象10では、原則、管理基準に準拠するように運転される。しかしながら、近年では、運転条件の変化(原材料のグローバル化、設備の老朽化、および、人員の流動化等)により、管理基準に準拠して運転されたとしても、製品の品質特性を良好に維持することが難しくなってきている。また、納入先からのより高い品質要求により、大きな(致命的な)レベルの異常だけでなく、小さなレベルの異常(例えば、品質のばらつき)をも発生を未然に予防していく必要がある。このような状況の中、生産管理対象10においては、運転条件の変化に応じて現場の知恵により意図的に管理基準を逸脱するように運転されることがある。本実施形態に係るデータ処理システム100は、生産管理対象10における操業が管理基準に準拠しているかどうかを判定した結果と、生産管理対象10における生産の評価(例えば、製品品質の評価)とに基づいて実績データを分類して出力することで、生産管理対象10における生産の改善をサポートする。
データ分類部150は、基準記憶部140にアクセスして、対象とする評価項目のそれぞれについて評価基準を参照する。そして、データ分類部150は、データ記録部130にアクセスして、対象とする評価項目のそれぞれについて記録されている評価データを評価基準に照らして、評価指標をそれぞれ決定する。データ記録部130は、決定した評価指標をデータ記録部130に書き込む。
また、データ分類部150は、基準記憶部140にアクセスして、対象とする管理パラメータのそれぞれについて準拠すべき管理基準を参照する。そして、データ分類部150は、データ記録部130にアクセスして、対象とする管理パラメータのそれぞれについて記録されている操業データを管理基準に照らして、操業データが管理基準に準拠しているかどうかを判定する。
そして、データ分類部150は、操業データが管理基準に準拠しているかどうかを判定した判定結果と評価指標とに基づいて、データ記録部130に記録されている実績データを分類する。このように、データ分類部150は、管理パラメータについて操業データが管理基準に準拠しているかどうかを判定した判定結果と評価データとに基づいて、生産の実績を示す実績データを分類する。すなわち、データ分類部150は、管理基準に準拠して操業されたかどうかの観点と評価実績の観点との2つの観点により実績データを分類する。これについて、詳細は後述する。データ分類部150は、分類した分類結果を出力部160へ供給する。
出力部160は、分類結果を出力する。出力部160は、例えば、データ分類部150から供給された分類結果を表示してよい。ここでいう表示とは、直接モニタに表示することに限定されず、例えば、他の装置や機能部に表示する画面を構成して送信することをも含んでいてよい。なお、上述の説明では出力部160が分類結果を表示する場合を一例として示したが、これに限定されるものではない。出力部160は、分類結果を出力するにあたって、分類結果を印刷する、他の装置や機能部へデータとして送信する、および、音声により出力する等、あらゆる形態で分類結果を出力してよい。
入力部170は、ユーザ入力を受け付ける。入力部170は、例えば、出力部160が表示した分類結果を検討したユーザからの入力を受け付けてよい。一例として、入力部170は、コンピュータとユーザとの間での情報をやりとりするためのインターフェイスであってよく、特に、コンピュータグラフィックスとポインティングデバイスを用いたGUI(Graphical User Interface)であってもよい。入力部170は、受け付けたユーザ入力に応じた命令を出力部160および基準更新部180へ供給する。出力部160は、入力部170からの命令に応じて分類結果の出力形態を変更してよい。これにより、出力部160は、ユーザの望む形態で分類結果を出力することができる。
基準更新部180は、評価データに基づいて評価指標を決定するための評価基準、および、管理基準の少なくともいずれか一方を更新する。基準更新部180は、例えば、ユーザ入力に基づいて評価基準および管理基準の少なくともいずれか一方を更新してよい。すなわち、基準更新部180は、入力部170が受け付けたユーザ入力に応じた命令に従って、基準記憶部140に記憶されている評価基準および管理基準の少なくともいずれか一方を更新する。なお、ここでいう更新とは、基準を実際に更新することに限定されず、基準の変更を試行することをも含んでいてよい。
そして、データ分類部150は、評価基準および管理基準の少なくともいずれか一方が更新されたことに応じて、実績データを更新後の基準を用いて再分類する。これにより、出力部160は、再分類された分類結果を出力する。
図2は、本実施形態に係るデータ処理システム100が記憶するQMマトリックスの一例を示す。例えば、基準記憶部140は、本図に示すような、各管理パラメータにおける管理基準と品質特性との関係を示すQMマトリックスを記憶していてよい。
基準記憶部140は、このようなQMマトリックスを、生産する製品毎(例えば、「製品X」、「製品Y」、および、「製品Z」毎)に記憶していてよい。すなわち、生産する製品毎に管理パラメータが選定され、各管理パラメータに対して管理基準が定義されていてよい。また、運転条件の変化に応じて最適な管理基準を定義できるよう、基準記憶部140は、QMマトリックスを、製品毎だけではなく、運転条件毎(例えば、「夏」、「冬」、「春・秋」毎)に記憶していてよい。すなわち、運転条件毎に管理パラメータが選定され、各管理パラメータに対して管理基準が定義されていてよい。したがって、データ分類部150は、実績データを分類するにあたって、基準記憶部140に記憶されている複数のQMマトリックスの中から、対象となる製品および運転条件に適合したQMマトリックスを選択して参照してよい。なお、本図においては、製品として「Y」が選択され、運転条件として「夏」が選択されている場合におけるQMマトリックスを一例として示している。
本図においては、品質特性のうちの「pH」に影響を与え得る重要なパラメータを管理する管理パラメータとして、「原料B.特性3」、「仕込量」、および、「温水温度」が選定されている場合を示している。同様に、本図においては、品質特性のうちの「粘度」に影響を与え得る重要なパラメータを管理する管理パラメータとして、「原料A.特性1」、「原料B.特性3」、および、「仕込量」が選定されている場合を示している。このように、QMマトリックスにおいては、品質特性の項目毎に、異なる管理パラメータが選定されていてよい。
そして、例えば、管理パラメータ「原料A.特性1」に対して、管理基準として「下限値:6.0」、「下限条件:より大きい」がそれぞれ定義されている。すなわち、製品Yを夏に生産する場合において、製品Yの粘度品質を良好に維持するためには、原料A.特性1が6.0より大きいことが重要なパラメータとして定義されている。同様に、管理パラメータ「温水温度」に対して、管理基準として「下限値:42」、「下限条件:以上」、「上限値:43」、および、「上限条件:より小さい」がそれぞれ定義されている。すなわち、製品Yを夏に生産する場合において、製品YのpH品質を良好に維持するためには、温水温度を42度以上43度未満とすることが重要なパラメータとして定義されている。このように、基準記憶部140は、生産管理対象10において生産の評価特性(例えば、品質特性)を良好に維持すべく、当該評価特性に影響を与え得る重要なパラメータを管理パラメータとして、当該パラメータのとるべき値の範囲を記憶している。
図3は、本実施形態に係るデータ処理システム100が記録する実績データの一例を示す。例えば、データ記録部130は、本図に示すように、操業データ取得部110から供給された操業データおよび評価データ取得部120から供給された評価データを、製品のロットIDに対応付けて実績データとして記録してよい。また、データ記録部130は、データ分類部150が評価データを評価基準に照らして決定した評価指標を、当該評価データに対応付けてそれぞれ記録してよい。本図においては、製品Yにおけるロット#001~ロット#005に対応付けられた実績データを一例として示している。
データ記録部130は、本図に示すように、操業データとして、例えば、生産管理対象10における"4M"、すなわち、"原材料"、"設備"、"人"、および、"工程"に関する実績を示すデータをそれぞれ記録してよい。なお、上述のとおり、"4M"のうちの"原材料"、"設備"、および、"人"に係る項目は、運転条件の一部として定義されている。また、"4M"のうちの"工程"に係る項目は、運転パラメータとして定義されている。
本図においては、"原材料"に関する実績を示すデータとして、原料Aについて特性1の性状を検査したデータ「原料A.特性1」、および、原料Bについて特性3の性状を検査したデータ「原料B.特性3」を一例として示している。なお、本図においては、"設備"および"人"に関する実績を示すデータについては記載を省略している。同様に、本図においては、"工程"に関する実績を示すデータとして、「開始時温度」、「温水温度」、「仕込量」、および、「加熱時間」を一例として示している。
また、データ記録部130は、評価データとして、生産管理対象10におけるPQCDSの実績を評価したデータを記録してよい。例えば、データ記録部130は、本図に示すように、評価データとして、製品YのpHおよび粘度の品質を評価したデータを記録してよい。本図においては、製品YのpHを評価した評価データとして、製品YのpHを実測した測定値を一例として示している。また、本図においては、製品YのpHを評価した評価指標として、pHの測定値が予め定められた評価基準を満たしている(Good)か否(Bad)かを示す指標を一例として示している。なお、本図においては、製品Yの粘度を評価した評価データについては記載を省略している。ここで、上述の説明では、評価指標が、測定値が予め定められた評価基準を満たしているか否かによって2値(Good/Bad)に分類された指標である場合を一例として示したが、これに限定されるものではない。評価指標は、測定値を予め定められた評価基準に照らして多値に分類した指標(例えば、ランクやグレード等)であってもよい。
データ記録部130は、このように複数のロットについて取得された実績データをデータ処理の対象として記録している。本実施形態に係るデータ処理システム100は、このような実績データを分類し、分類した結果を出力する。この際、本実施形態に係るデータ処理システム100は、生産管理対象10における操業が管理基準に準拠しているかどうかを判定した結果と、生産管理対象10における生産の評価とに基づいて実績データを分類する。これについて、フローを用いて詳細に説明する。
図4は、本実施形態に係るデータ処理システム100がデータを処理するフローの一例を示す。
ステップ410において、データ処理システム100は、操業データを取得する。例えば、操業データ取得部110は、通信ネットワークを介して、生産管理対象10から生産の操業に関する実績を示す操業データを時系列に取得する。一例として、操業データ取得部110は、生産管理対象10における"4M"、すなわち、"原材料"、"設備"、"人"、および、"工程"に関する実績を示す操業データを時系列に取得してよい。
操業データ取得部110は、例えば、"原材料"に関する操業データとして、生産管理対象10において原材料を検査した検査データを取得してよい。また、操業データ取得部110は、"設備"に関する操業データとして、生産管理対象10における設備の健全度を示すデータを取得してよい。また、操業データ取得部110は、例えば、"人"に関する操業データとして、生産管理対象10における作業員のスケジュールを示すデータを取得してよい。また、操業データ取得部110は、例えば、"工程"に関する操業データとして、生産管理対象10に設けられたセンサからの測定データやアクチュエータへの制御データを取得してよい。操業データ取得部110は、取得した操業データを、データ記録部130へ供給する。
ステップ420において、データ処理システム100は、評価データを取得する。例えば、評価データ取得部120は、通信ネットワークを介して、生産の評価に関する実績を示す評価データを製品のロット毎に取得する。一例として、評価データ取得部120は、生産管理対象10におけるPQCDSの実績の少なくとも何れかを評価したデータを取得してよい。ここでは、評価データ取得部120が、生産管理対象10において生産される製品の品質を評価した評価データを製品のロット毎に取得するものとして説明する。すなわち、評価データは、生産される製品の品質を評価したデータを含んでよい。しかしながら、これに限定されるものではない。上述のとおり、評価データは、生産の生産性、コスト、納期、および、安全性の少なくともいずれかを評価したデータを含んでもよい。評価データ取得部120は、取得した評価データをデータ記録部130へ供給する。
ステップ430において、データ処理システム100は、実績データを記録する。例えば、データ記録部130は、ステップ410において取得された操業データ、および、ステップ420において取得された評価データを、製品のロット毎に対応付けて実績データとして記録する。
一例として、データ記録部130は、ステップ410において取得された操業データを同一時間帯のデータとなるように紐付けする。このような紐付けを行うのは、取得された操業データが、生産要素毎に出力タイミングが異なる場合があるためである。次に、データ記録部130は、取得された操業データから生産管理対象10における工程の開始時点および終了時点を把握し、操業データをロット毎に区分する。そして、データ記録部130は、ロット毎に区分された操業データを、ステップ420においてロット毎に取得された評価データと対応付けて実績データとして記録する。また、データ記録部130は、データ分類部150が評価データを評価基準に照らして決定した評価指標を、当該評価データに対応付けてそれぞれ記録する。
ステップ440において、データ処理システム100は、実績データを分類する。例えば、データ分類部150は、基準記憶部140にアクセスして、記憶されている複数のQMマトリックスの中から、対象となる製品および運転条件に適合したQMマトリックスを選択して参照する。また、データ分類部150は、データ記録部130にアクセスして、ステップ430において記録された実績データを参照する。そして、データ分類部150は、管理パラメータについて操業データが管理基準に準拠しているかどうかを判定した判定結果と評価データとに基づいて、生産の実績を示す実績データを分類する。これについて詳細に説明する。
データ分類部150は、基準記憶部140にアクセスして、例えば、図2に示されるQMマトリックスを参照する。これにより、データ分類部150は、品質特性のうちの「pH」に影響を与え得る重要なパラメータを管理する管理パラメータとして、「原料B.特性3」、「仕込量」、および、「温水温度」が選定されていることを認識する。また、データ分類部150は、「原料B.特性3」、「仕込量」、および、「温水温度」の各管理パラメータにおいてとるべき値の範囲を認識する。
また、データ分類部150は、データ記録部130にアクセスして、例えば、図3に示される実績データを参照する。そして、データ分類部150は、例えば、図3に示される実績データを図2に示されるQMマトリックスを用いて解析する。
一例として、ロットID「Y001」に対応付けられた実績データに着目すると、管理パラメータのうちの運転条件に係る「原料B.特性3」における操業データが管理基準に準拠している。また、管理パラメータのうちの運転パラメータに係る「仕込量」および「温水温度」における操業データがいずれも管理基準に準拠している。また、「pH」が予め定められた基準を満たす「Good」として評価されている。このような実績データは、例えば、生産管理対象10において、管理基準に準拠した原料Bが調達され、管理基準に準拠して運転された結果、製品のpHが良好となった場合に取得され得る。このように、ロットID「Y001」に対応付けられた実績データは、管理基準を守って運転された結果、良品質を得た場合を示している。データ分類部150は、このように、管理パラメータのうちの運転パラメータに係る全ての項目において操業データが管理基準に準拠しており、かつ、評価データが予め定められた基準を満たしている実績データを、「分類1」にカテゴライズする。このような「分類1」においては、さらに高い品質目標(例えば、ばらつきを小さくする等)を目指すことが課題となる。
同様に、ロットID「Y002」に対応付けられた実績データに着目すると、「原料B.特性3」における操業データが管理基準を逸脱している。また、「温水温度」における操業データが管理基準に準拠し、「仕込量」における操業データが管理基準を逸脱している。また、「pH」が「Good」として評価されている。このような実績データは、例えば、生産管理対象10において、管理基準を逸脱した原料Bが調達されたが、現場の知恵によって仕込量が管理基準を逸脱するように調整されて(例えば、仕込量を管理基準の上限である50よりも大きくして)運転された結果、製品のpHが良好となった場合に取得され得る。このように、ロットID「Y002」に対応付けられた実績データは、管理基準を守らずに運転された結果、良品質を得た場合を示している。データ分類部150は、このように、管理パラメータのうちの運転パラメータに係る少なくとも1つの項目において操業データが管理基準を逸脱しており、かつ、評価データが予め定められた基準を満たしている実績データを、「分類2」にカテゴライズする。このような「分類2」においては、現場の知恵で品質が良好となった経験を標準化していくことが課題となる。
同様に、ロットID「Y003」に対応付けられた実績データに着目すると、「原料B.特性3」における操業データが管理基準を逸脱している。また、「温水温度」および「仕込量」における操業データがいずれも管理基準に準拠している。また、「pH」が予め定められた基準を満たさない「Bad」として評価されている。このような実績データは、例えば、生産管理対象10において、管理基準を逸脱した原料Bが調達されたが、現場において何も対策が取られず、管理基準に準拠するように運転された結果、製品のpHが不良となった場合に取得され得る。このように、ロットID「Y003」に対応付けられた実績データは、管理基準を守って運転された結果、悪品質を得た場合を示している。データ分類部150は、このように、管理パラメータのうちの運転パラメータに係る全ての項目において操業データが管理基準に準拠しており、かつ、評価データが予め定められた基準を満たしていない実績データを、「分類3」にカテゴライズする。このような「分類3」においては、運転条件の変化に応じて運転パラメータを調整していくことが課題となる。
同様に、本図においてロットID「Y004」に着目すると、「原料B.特性3」における操業データが管理基準を逸脱している。また、「温水温度」における操業データが管理基準に準拠し、「仕込量」における操業データが管理基準を逸脱している。また、「pH」が「Bad」として評価されている。このような実績データは、例えば、生産管理対象10において、管理基準を逸脱した原料Bが調達されたので、現場の知恵によって仕込量が管理基準を逸脱するように調整されて運転されたが、製品のpHが不良となった場合に取得され得る。すなわち、ロットID「Y004」は、管理基準を守らずに運転された結果、悪品質を得た場合を示している。データ分類部150は、このように、管理パラメータのうちの運転パラメータに係る少なくとも1つの項目において操業データが管理基準を逸脱しており、かつ、評価データが予め定められた基準を満たしていない実績データを、「分類4」にカテゴライズする。このような「分類4」においては、運転条件が変化した場合に正しく回復できるようにすることが課題となる。
こうして、データ分類部150は、管理パラメータのうちの運転パラメータに係る全ての項目において操業データが管理基準に準拠しているか否か、および、評価データが予め定められた基準を満たしているか否かにより、実績データを少なくとも4つに分類する。このように、データ分類部150は、生産管理対象10における運転の全体的な視点から実績データを分類してよい。
これに加えて、データ分類部150は、各管理パラメータにおけるそれぞれの視点から実績データを分類してよい。例えば、データ分類部150は、「原料B.特性3」について着目し、「原料B.特性3」における操業データを、QMマトリックスにおいて定義された管理基準に照らして、3つの場合に分類する。一例として、データ分類部150は、「原料B.特性3」における操業データが2.0以上10.0未満である実績データを、対象とする管理パラメータにおける操業データが管理基準に準拠していることを示す「分類C」にカテゴライズする。
同様に、データ分類部150は、「原料B.特性3」における操業データが10.0以上である実績データを、対象とする管理パラメータにおける操業データが管理基準に対して上方逸脱していることを示す「分類U」にカテゴライズする。
同様に、データ分類部150は、「原料B.特性3」における操業データが2.0未満である実績データを、対象とする管理パラメータにおける操業データが管理基準に対して下方逸脱していることを示す「分類L」にカテゴライズする。
そして、データ分類部150は、「分類C」、「分類U」、および、「分類L」のそれぞれについて、評価データが予め定められた基準を満たしているか否かを判定して、実績データを2つに分類する。すなわち、例えば、データ分類部150は、「分類C」にカテゴライズされた実績データを、例えば、「pH」が「Good」として評価されている場合と、「Bad」として評価されている場合とに2つに分類する。データ分類部150は、「分類U」および「分類L」にカテゴライズされた実績データについても、同様に、2つに分類する。データ分類部150は、このような分類をQMマトリックスにおいて管理パラメータとして選定されている全ての項目のそれぞれに対して実行する。このように、データ分類部150は、管理パラメータにおけるそれぞれの項目に対して、操業データが管理基準に準拠している場合、上方逸脱している場合、および、下方逸脱している場合の各ケースについて、評価データが予め定められた基準を満たしているか否かにより、実績データを分類する。これにより、データ分類部150は、例えば、「原料B.特性3」が管理基準に準拠している場合、上方逸脱している場合、下方逸脱している場合のそれぞれのケースについて、「pH」が良好となったか不良となったかを切り分けることができる。
ステップ450において、データ処理システム100は、分類結果を出力する。例えば、出力部160は、ステップ440において分類された分類結果をモニタに表示する。一例として、出力部160は、ステップ440においてデータ分類部150が生産管理対象10における運転の全体的な視点から実績データを分類した分類結果を出力してよい。この際、出力部160は、少なくとも4つに分類されたそれぞれの頻度をグラフとして表示する表示画面を出力してよい。
これに加えて、出力部160は、ステップ440においてデータ分類部150が各管理パラメータにおけるそれぞれの視点から実績データを分類した分類結果を出力してよい。この際、出力部160は、管理パラメータにおけるそれぞれの項目に対して、各ケースについて評価データが予め定められた基準を満たしているか否かの頻度をグラフとして表示する表示画面を出力してよい。出力部160が出力する表示画面の詳細については、後述する。
なお、出力部160は、入力部170からの命令に応じて出力する分類結果を、生産管理対象10における運転の全体的な視点から実績データを分類した分類結果と各管理パラメータにおけるそれぞれの視点から実績データを分類した分類結果との間で切り換えてよい。
ステップ460において、データ処理システム100は、基準を更新するか否かを判定する。例えば、基準更新部180は、基準を更新する旨の命令が入力部170から供給されたか否かにより、基準を更新するか否かを判定してよい。ステップ460において、基準を更新しないと判定された場合、データ処理システム100は、フローを終了する。
一方、ステップ460において、基準を更新すると判定された場合、データ処理システム100は、ステップ470において、基準を更新する。例えば、基準更新部180は、入力部170が受け付けたユーザ入力に応じた命令に従って、評価データに基づいて評価指標を決定するための評価基準、および、管理基準の少なくともいずれか一方を更新する。このように、基準更新部180は、例えば、ユーザ入力に基づいて評価基準および管理基準の少なくともいずれか一方を更新してよい。
ステップ470において基準が更新されると、データ処理システム100は、処理をステップ440に戻してフローを継続する。すなわち、ステップ470に続くステップ440において、データ分類部150は、評価基準および管理基準の少なくともいずれか一方が更新されたことに応じて、実績データを更新後の基準を用いて再分類する。そして、ステップ470に続くステップ450において、出力部160は、再分類された分類結果を出力する。
図5は、本実施形態に係るデータ処理システム100が出力する分類結果の一例を示す。本図は、生産管理対象10における運転の全体的な視点から実績データを分類した分類結果の出力例を示している。本実施形態に係るデータ処理システム100は、管理基準に準拠して操業されたかどうかの観点と評価実績の観点との2つの観点により実績データを分類する。上述のように、一例として、データ分類部150は、管理パラメータのうちの運転パラメータに係る全ての項目において操業データが管理基準に準拠しており、かつ、評価データが予め定められた基準を満たしている実績データを、「分類1」にカテゴライズする。また、データ分類部150は、管理パラメータのうちの運転パラメータに係る少なくとも1つの項目において操業データが管理基準を逸脱しており、かつ、評価データが予め定められた基準を満たしている実績データを、「分類2」にカテゴライズする。また、データ分類部150は、管理パラメータのうちの運転パラメータに係る全ての項目において操業データが管理基準に準拠しており、かつ、評価データが予め定められた基準を満たしていない実績データを、「分類3」にカテゴライズする。また、データ分類部150は、管理パラメータのうちの運転パラメータに係る少なくとも1つの項目において操業データが管理基準を逸脱しており、かつ、評価データが予め定められた基準を満たしていない実績データを、「分類4」にカテゴライズする。本図左においては、このように2つの観点により実績データを4つにカテゴライズした状態を模式的に示している。
本実施形態に係るデータ処理システム100は、このように分類した分類結果を集計して、本図右のようなグラフとして表示してよい。すなわち、出力部160は、少なくとも4つに分類されたそれぞれの頻度をグラフとして表示する表示画面を出力してよい。本図においては、出力部160が、それぞれの頻度を比率として表現した円グラフを表示する場合を一例として示している。しかしながら、これに限定されるものではない。出力部160は、円グラフに代えて、棒グラフ、帯グラフ、ヒストグラム、および、レーダーチャート等、それぞれの頻度を表現し得る如何なる形態のグラフを表示してもよい。
図6は、本実施形態に係るデータ処理システム100が出力する他の分類結果の一例を示す。本図は、各管理パラメータにおけるそれぞれの視点から実績データを分類した分類結果の出力例を示している。本図においては、80ロット分の実績データを各管理パラメータにおけるそれぞれの視点から分類した場合を一例として示している。本図においては、「pH」が、80ロット中53ロットが「Good」、すなわち良好と評価され、27ロットが「Bad」、すなわち不良と評価されている場合を示している。本実施形態に係るデータ処理システム100は、より詳細な分析を可能とすべく、管理パラメータにおけるそれぞれの項目に対して、操業データが管理基準に準拠している場合、上方逸脱している場合、および、下方逸脱している場合の各ケースに分類する。上述のように、一例として、データ分類部150は、「原料B.特性3」における操業データが2.0以上10.0未満である実績データを「分類C」に、10.0以上である実績データを「分類U」に、2.0未満である実績データを「分類L」にそれぞれカテゴライズする。そして、データ分類部150は、「分類C」、「分類U」、および、「分類L」のそれぞれについて、「pH」が「Good」として評価されている場合と、「Bad」として評価されている場合とに2つに分類する。データ分類部150は、このような分類をQMマトリックスにおいて管理パラメータとして選定されている全ての項目のそれぞれに対して実行する。
本図においては、例えば、「原料B.特性3」における操業データが、80ロット中27ロットについて管理基準に対して上方逸脱しており、そのうちの14ロットが最終的にpHが良好と評価され、残りの13ロットが不良と評価されていることを示している。同様に、本図においては、例えば、「原料B.特性3」における操業データが、80ロット中26ロットについて管理基準に準拠しており、そのうちの24ロットが最終的にpHが良好と評価され、残りの2ロットが不良と評価されていることを示している。同様に、本図においては、例えば、「原料B.特性3」における操業データが、80ロット中27ロットについて管理基準に対して下方逸脱しており、そのうちの15ロットが最終的にpHが良好と評価され、残りの12ロットが不良と評価されたことを示している。他の管理パラメータについても同様である。本図に示すように、出力部160は、管理パラメータにおけるそれぞれの項目に対して、各ケースについて評価データが予め定められた基準を満たしているか否かの頻度をグラフとして表示する表示画面を出力してよい。なお、本図においても、出力部160が円グラフを表示する場合を一例として示しているが、如何なる形態のグラフを表示してもよい。また、出力部160は、運転員が認識する時間順序に従うように、当該時間順序に沿って各管理パラメータの表示する順序を左から右へ並べて各グラフを表示してよい。これにより、起こった現象の伝播の様子が理解しやすくなる。また、出力部160は、表示する管理パラメータを部分的に非表示してもよい。これにより、管理パラメータが多くなっても品質に影響を及ぼす重要な管理パラメータ等のみを確認することができる。
図7は、本実施形態に係るデータ処理システム100が逸脱パターンの発見をサポートするために出力する他の分類結果の一例を示す。ここで、管理パラメータにおけるそれぞれの項目に対して操業データを管理基準に照らして判定した場合に、操業データが管理基準を逸脱しているポイントであって、評価データが予め定められた基準を満たさなくなるに至った要因と推定されるポイントを"逸脱ポイント"と定義することとする。また、管理パラメータにおける複数の項目についての各ケースの組み合わせであって、少なくとも1つの"逸脱ポイント"を含む組み合わせを"逸脱パターン"と定義することとする。
例えば、図6に示す分類結果の表示中に、入力部170を介して最終的に「pH」が「Bad」となったケースを示すグラフ(本図における右下のグラフ)をユーザが選択し、クリックしたとする。この場合、出力部160は、本図に示すような表示画面を出力してよい。すなわち、出力部160は、最終的に「pH」が「Bad」と評価されるに至ったパスとそのロット数を表示してよい。ここで、出力部160は、例えば、ロット数に応じた太さでパスを表示してもよい。すなわち、出力部160は、ロット数が多いパスをロット数が少ないパスよりも太く表示してもよい。このように、出力部160は、実績データのうちの評価データが予め定められた基準を満たしていないデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面を出力してよい。
本図に示されるように、最終的に「pH」が「Bad」と評価されるに至った27ロットのうち、約半分を占める13ロットにおいて「原料B.特性3」が上方逸脱していることが分かる。したがって、「原料B.特性3」における上方逸脱が逸脱ポイントの一つであると考えることができる。また、本図においては、例えば、「原料B.特性3」における「分類U」から「仕込量」における「分類C」へのパスについて、ロット数が13であることを示している。これは、最終的に「pH」が「Bad」と評価されるに至った27ロットのうちの13ロットが、「原料B.特性3」における操業データが上方逸脱し、かつ、「仕込量」が管理基準に準拠するように運転されたことを示している。したがって、「原料B.特性3」における上方逸脱、および、「仕込量」における基準準拠の組み合わせが逸脱パターンの一つであると考えることができる。このようにして、本実施形態に係るデータ処理システム100が出力した分類結果を検討することによって、ユーザは逸脱パターンを発見することができる。
図8は、本実施形態に係るデータ処理システム100が回復方法の発見をサポートするために出力する他の分類結果の一例を示す。ここで、回復方法とは、逸脱パターンを回復させるための方法である。例えば、図7に示す分類結果を検討したユーザが、最終的に「pH」が「Bad」となるに至った要因と推定される逸脱パターンが「原料B.特性3」における上方逸脱、および、「仕込量」における基準準拠の組み合わせであったことを発見したとする。そして、図7に示す分類結果の表示中に、入力部170を介して、逸脱ポイント、すなわち、「原料B.特性3」が上方逸脱しているケースを示すグラフ(本図における左上のグラフ)をユーザが選択し、クリックしたとする。この場合、出力部160は、本図に示すような表示画面を出力してよい。すなわち、出力部160は、選択されたケースを介して最終的に「pH」が「Good」と評価されるに至ったパスとそのロット数を表示してよい。この際、出力部160は、図7に示す表示画面と同様、ロット数に応じた太さでパスを表示してもよい。このように、出力部160は、実績データのうちの評価データが予め定められた基準を満たしているデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面を出力してよい。
本図においては、例えば、「原料B.特性3」における「分類U」から「仕込量」における「分類U」へのパスについて、ロット数が12であることを示している。同様に、本図においては、「原料B.特性3」における「分類U」から「仕込量」における「分類C」へのパスについて、ロット数が2であることを示している。これは、「原料B.特性3」が上方逸脱している場合であっても、14ロットが最終的に「pH」が良好と評価されており、そのうちの12ロットについては「仕込量」が上方逸脱するように調整されて運転され、残りの2ロットについては「仕込量」が管理基準に準拠するように運転されていたことを示している。したがって、「原料B.特性3」が上方逸脱している場合においては「仕込量」を上方逸脱するように調整することによって、「pH」が良好と評価される頻度が増すと考えられる。すなわち、ユーザは「仕込量」を上方逸脱するように調整することが、上記逸脱パターンに対する回復方法であることを発見することができる。このように、本実施形態に係るデータ処理システム100が出力した分類結果を検討することによって、ユーザは、逸脱パターン毎の回復方法を発見することができる。
図9は、本実施形態に係るデータ処理システム100を用いて評価基準および管理基準を更新するフローの一例を示す。
ステップ900からステップ920は、上述の「分類1」における課題を解決するためのステップである。すなわち、ステップ900からステップ920は、例えば、納入先からの高い品質要求に応えるために、製品品質のばらつきをより小さくすることを目的として実行される。
ステップ900において、データ処理システム100は、品質特性のばらつきを小さくするか否か判定する。例えば、データ処理システム100は、入力部170を介して品質特性のばらつきを小さくすることを要求するユーザ入力を受けたか否かにより、品質特性のばらつきを小さくするか否か判定してよい。
ステップ900において品質特性のばらつきを小さくしないと判定された場合、データ処理システム100は、処理をステップ930へ進める。一方、ステップ900において品質特性のばらつきを小さくすると判定された場合、データ処理システム100は、処理をステップ910へ進める。
ステップ910において、データ処理システム100は、評価基準範囲を絞る。例えば、データ処理システム100は、生産管理対象10における運転の全体的な視点から実績データを分類した分類結果を表示する。この際、データ処理システム100は、一例として、横軸に評価基準の更新の対象となる評価項目における測定値を、縦軸に当該測定値毎の頻度をそれぞれ示したヒストグラムを併せて表示してよい。そして、データ処理システム100は、例えば、入力部170を介して良品質基準範囲の変更を要求するユーザ入力を受けた場合に、当該入力に応じた命令に従って、良品質基準範囲、すなわち、評価基準範囲を絞ってよい。
ステップ920において、データ処理システム100は、実績データを再分類する。データ処理システム100は、ステップ910において更新された評価基準を用いて実績データを再分類する。この結果、「分類1」にカテゴライズされていた実績データの一部が更新後の評価基準の下で新たに「分類3」にカテゴライズされ、「分類2」にカテゴライズされていた実績データの一部が更新後の評価基準の下で新たに「分類4」にカテゴライズされることとなる。これについて、詳細は後述する。このようにして、データ処理システム100は、製品品質のばらつきがより小さくなるように評価基準を更新する。
ステップ930からステップ960は、上述の「分類3」における課題を解決するためのステップである。すなわち、ステップ930からステップ960は、「分類3」にカテゴライズされた実績データが存在する場合に、管理基準に準拠して運転されれば常に良品となるよう、管理基準を絞り込むことを目的として実行される。
ステップ930において、データ処理システム100は、「分類3」が存在するか否か判定する。例えば、データ処理システム100は、分類された実績データの中で「分類3」にカテゴライズされた実績データが存在していたか否かにより、「分類3」が存在するか否か判定してよい。
ステップ930において「分類3」が存在していないと判定された場合、データ処理システム100は、処理をステップ970へ進める。一方、ステップ930において「分類3」が存在していると判定された場合、データ処理システム100は、処理をステップ940へ進める。
ステップ940において、例えば、ユーザは、良/不良の分離・隔たりを発見する。一例として、データ処理システム100は、管理パラメータにおける実績値のヒストグラムや散布図を表示してよい。そして、当該表示画面を検討したユーザは、製品品質における良/不良の分布が分離または隔たっているパラメータを発見する。
ステップ950において、データ処理システム100は、管理基準範囲を絞る。例えば、データ処理システム100は、横軸にステップ940において発見された管理パラメータにおける実績値を、縦軸に当該実績値毎の頻度をそれぞれ示したヒストグラムを表示してよい。そして、データ処理システム100は、例えば、入力部170を介して管理基準範囲の変更を要求するユーザ入力を受けた場合に、当該入力に応じた命令に従って、管理基準範囲を絞ってよい。
ステップ960において、データ処理システム100は、実績データを再分類する。データ処理システム100は、ステップ950において更新された管理基準を用いて実績データを再分類する。この結果、「分類1」にカテゴライズされていた実績データの一部が更新後の管理基準の下で新たに「分類2」にカテゴライズされ、「分類3」にカテゴライズされていた実績データの全てが更新後の管理基準の下で新たに「分類4」にカテゴライズされることとなる。これについても、詳細は後述する。このようにして、データ処理システム100は、「分類3」にカテゴライズされる実績データが存在しなくなるように、管理基準を更新する。
ステップ970からステップ990における処理は、上述の「分類4」における課題を解決するためのものである。すなわち、ステップ970からステップ990は、「分類4」にカテゴライズされた実績データから逸脱パターンを発見し、「分類2」にカテゴライズされた実績データからその回復方法を発見して、新たなQMマトリックスを設定することを目的として実行される。
ステップ970において、例えば、ユーザは、逸脱パターンを発見する。一例として、データ処理システム100は、各管理パラメータにおけるそれぞれの視点から実績データを分類した分類結果(例えば、図6)を示す表示画面を出力する。そして、例えば図6に示す分類結果の表示中に、入力部170を介して最終的に「pH」が「Bad」となったケースを示すグラフをユーザが選択し、クリックしたとする。これに応じて、データ処理システム100は、実績データのうちの評価データが予め定められた基準を満たしていないデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面(例えば、図7)を出力する。そして、当該表示画面を検討したユーザは、逸脱パターンを発見する。
ステップ980において、例えば、ユーザは、回復方法を発見する。一例として、図7に示す分類結果の表示中に、入力部170を介して逸脱ポイント、すなわち、「原料B.特性3」が上方逸脱しているケースを示すグラフをユーザが選択し、クリックしたとする。これに応じて、データ処理システム100は、実績データのうちの評価データが予め定められた基準を満たしているデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面(例えば、図8)を出力する。そして、当該表示画面を検討したユーザは、逸脱パターン毎の回復方法を発見する。
ステップ990において、データ処理システム100は、逸脱パターン毎にQMマトリックスを設定する。例えば、データ処理システム100は、ステップ980において回復方法を発見したユーザから入力部170を介して逸脱パターン毎の管理基準の設定を要求するユーザ入力を受けた場合に、当該入力に応じた命令に従って、逸脱パターン毎にQMマトリックスを新たに設定してよい。これについても、詳細は後述する。このようにして、データ処理システム100は、評価基準および管理基準を更新するフローを終了する。
図10は、本実施形態に係るデータ処理システム100を用いて評価基準範囲を絞った場合における分類結果の変化の一例を模式的に示す。本図上は、評価基準範囲(良品質基準範囲)を絞る前における分類結果を示している。また、本図下は、評価基準範囲を絞った後における分類結果を示している。また、本図左は、横軸に評価基準の更新の対象となる評価項目における測定値を、縦軸に当該測定値毎の頻度をそれぞれ示したヒストグラムを示している。また、本図右は、生産管理対象10における運転の全体的な視点から実績データを分類した分類結果を示す円グラフを示している。
本図に示されるように、良品質基準範囲を絞った結果、「分類1」にカテゴライズされていた実績データの一部が更新後の評価基準の下で新たに「分類3」にカテゴライズされ、「分類2」にカテゴライズされていた実績データの一部が更新後の評価基準の下で新たに「分類4」にカテゴライズされている。このようにして、データ処理システム100は、製品品質のばらつきがより小さくなるように評価基準を更新する。
図11は、本実施形態に係るデータ処理システム100を用いて管理基準範囲を絞った場合における分類結果の変化の一例を模式的に示す。本図上は、管理基準範囲を絞る前における分類結果を示している。また、本図下は、管理基準範囲を絞った後における分類結果を示している。また、本図左は、横軸に管理基準の更新の対象となる管理パラメータにおける実績値を、縦軸に当該実績値毎の頻度をそれぞれ示したヒストグラムを示している。また、本図右は、生産管理対象10における運転の全体的な視点から実績データを分類した分類結果を示す円グラフを示している。
本図に示されるように、管理基準範囲を絞った結果、「分類1」にカテゴライズされていた実績データの一部が更新後の管理基準の下で新たに「分類2」にカテゴライズされ、「分類3」にカテゴライズされていた実績データの全てが更新後の管理基準の下で新たに「分類4」にカテゴライズされている。このようにして、データ処理システム100は、「分類3」にカテゴライズされる実績データが存在しなくなるように、管理基準を更新する。
図12は、本実施形態に係るデータ処理システム100を用いて逸脱パターン毎にQMマトリックスを設定した場合における分類結果の変化の一例を模式的に示す。本図上は、逸脱パターン毎にQMマトリックスを設定する前における分類結果を示している。また、本図下は、逸脱パターンごとにQMマトリックスを設定した後における分類結果を示している。また、本図左は、設定された運転条件毎のQMマトリックスを示している。また、本図右は、生産管理対象10における運転の全体的な視点から実績データを分類した分類結果を示す円グラフを示している。
本実施形態に係るデータ処理システム100は、「分類4」にカテゴライズされた実績データから逸脱パターンを発見し、「分類2」にカテゴライズされた実績データからその回復方法を発見して、逸脱パターン毎に新たなQMマトリックスを設定する。例えば、本図において「パターン1」は、「原料B.特性3」が上方逸脱している場合、すなわち、「原料B.特性3」が「10以上である場合」等であってよい。そして、「パターン1」として新たに設けられたQMマトリックスにおいて、例えば、「仕込量」に対して「下限値:50」、「下限条件:より大きい」、「上限値:55」、および、「上限条件:以下」がそれぞれ管理基準として定義されてよい。
逸脱パターン毎にQMマトリックスを設定した結果、「分類4」にカテゴライズされていた実績データの全てが逸脱パターン毎のQMマトリックスの下で新たに「分類2」にカテゴライズされている。このように、データ処理システム100は、「分類4」にカテゴライズされる実績データが存在しなくなるように、逸脱パターン毎にQMマトリックスを設定してよい。すなわち、本実施形態に係るデータ処理システム100は、発見した逸脱パターンを新たな運転条件として、当該運転条件毎のQMマトリックスを新たに設定する。これにより、データ処理システム100は、過去に発生したパターンと同様の条件が発生した場合に、当該逸脱パターン毎に設けられたQMマトリックスに従って運転することができる。
従来、運転条件の変化等により、管理基準を守って運転しても生産の評価特性を良好に維持できない場合があった。また、生産の評価特性を良好に維持するために管理基準をどのように変更すればよいのか分からない場合があった。こうなると、管理基準は有名無実化し、現場の知恵に依存した運転となり、スキルの高くない運転員は安定した運転を実現することができなくなっていた。これに対して、本実施形態に係るデータ処理システム100は、管理パラメータについて操業データが管理基準に準拠しているかどうかを判定した判定結果と評価特性とに基づいて実績データを分類し、分類結果を出力する。これにより、本実施形態に係るデータ処理システム100によれば、管理基準が守られたかどうかと評価特性との関係をユーザに知らしめることができる。
また、本実施形態に係るデータ処理システム100は、管理パラメータのうちの運転パラメータに係る全ての項目において操業データが管理基準に準拠しているか否か、および、評価データが予め定められた基準を満たしているか否かにより、実績データを少なくとも4つに分類し、それぞれの頻度をグラフとして表示する。これにより、本実施形態に係るデータ処理システム100によれば、それぞれの分類における発生頻度をユーザに知らしめることができる。
また、本実施形態に係るデータ処理システム100は、管理パラメータにおけるそれぞれの項目に対して、操業データが管理基準に準拠している場合、上方逸脱している場合、および、下方逸脱している場合の各ケースについて、評価データが予め定められた基準を満たしているか否かにより実績データを分類し、各ケースについてそれぞれの頻度をグラフとして表示する。これにより、本実施形態に係るデータ処理システム100によれば、各管理パラメータの管理基準が守られたかどうかと評価特性との関係を、運転の流れの中でユーザに理解させることができる。
また、本実施形態に係るデータ処理システム100は、評価データが予め定められた基準を満たしていないデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面を出力する。これにより、本実施形態に係るデータ処理システム100によれば、評価特性が不良となるに至った要因をユーザが推定することをサポートすることができる。
また、本実施形態に係るデータ処理システム100は、評価データが予め定められた基準を満たしているデータが、管理パラメータにおけるそれぞれの項目について、各ケースのいずれに該当したかの対応付けを示す表示画面を出力する。これにより、本実施形態に係るデータ処理システム100によれば、ユーザが評価特性を改善するための運転パラメータの調整方法を発見することをサポートすることができる。
また、本実施形態に係るデータ処理システム100は、評価基準および管理基準の少なくともいずれか一方を更新する基準更新部を備え、例えばユーザ入力に基づいて評価基準および管理基準の少なくともいずれか一方が更新されたことに応じて、実績データを更新後の基準を用いて再分類し、再分類された分類結果を出力する。これにより、本実施形態に係るデータ処理システム100によれば、本格的な改善に取り組む前に、基準を更新したらどのような評価特性が見込まれるかをユーザに知らしめることができる。
また、本実施形態に係るデータ処理システム100は、評価データとして、製品の品質、生産の生産性、コスト、納期、および、安全性の少なくともいずれかを評価したデータを用いる。これにより、本実施形態に係るデータ処理システム100によれば、PQCDSを安定して実現することをサポートすることができる。
これにより、本実施形態に係るデータ処理システム100によれば、高度なデータ解析の知識やスキルが無くても課題を発見し、解決することができる。そして、本実施形態に係るデータ処理システム100によれば、評価基準や管理基準の継続的な更新をサポートすることによって、管理基準を守って運転すれば、PQCDSを安定して実現することを可能にする。
なお、上述の説明では、データ処理システム100を利用したユーザが主体となって評価基準および管理基準を更新する場合を一例として示した。しかしながら、これに限定されるものではない。データ処理システム100は、自ら更新すべき評価基準および管理基準を決定して自動的にこれらを更新または提案してもよい。
図13は、本実施形態の変形例に係るデータ処理システム100のブロック図の一例を示す。本図においては、図1と同じ機能および構成を有する部材に対して同じ符号を付すとともに、以下相違点を除き説明を省略する。本変形例に係るデータ処理システム100は、更新決定部1310を備える。なお、本図においては、データ処理システム100が、入力部170に代えて、更新決定部1310を備える場合を一例として示しているが、これに限定されるものではない。データ処理システム100は、入力部170に加えて、更新決定部1310を備えていてよい。すなわち、データ処理システム100は、ユーザ入力に応じて基準を更新する機能と、自らが自動的に基準を更新する機能の両者を備えていてもよい。
本変形例において、出力部160は、データ分類部150が分類した分類結果を、更新決定部1310へ供給する。そして、更新決定部1310は、出力部160によって出力された分類結果に応じて評価基準および管理基準の少なくともいずれか一方の更新を決定する。更新決定部1310は、評価基準および管理基準の少なくともいずれか一方について決定した更新情報を基準更新部180へ供給する。そして、基準更新部180は、更新決定部1310から供給された更新情報に従って、基準記憶部140に記憶されている評価基準および管理基準の少なくともいずれか一方を更新する。すなわち、基準更新部180は、更新決定部1310の決定に基づいて評価基準および管理基準の少なくともいずれか一方を更新する。
例えば、上述のステップ910において評価基準範囲を絞るにあたって、更新決定部1310は、測定値の頻度分布に基づいて更新後の良品質基準範囲を決定してよい。一例として、更新決定部1310は、図10に示されるヒストグラムに基づいて、測定値の頻度分布において平均からのずれが予め定められた閾値以上(例えば、1σ以上)の範囲における測定値が「Good」から「Bad」となるように、更新後の良品質基準範囲を決定してよい。このように、本変形例に係るデータ処理システム100において、更新決定部1310は、分類結果に応じて評価基準の更新を自動的に決定することができる。
また、例えば、上述のステップ940において良/不良の分離・隔たりを発見するにあたって、更新決定部1310は、決定木分析(Decision Tree)を用いてよい。一例として、更新決定部1310は、実績データ(表形式データ)を入力として決定木分析を実行することによって、製品品質を判別(Good/Bad)するのに、どのパラメータを使って、どの値で分ければよいかを示してよい。そして、上述のステップ950において、更新決定部1310は、上記分析結果に基づいて、更新後の管理基準範囲を決定してよい。
図14は、本実施形態の変形例に係るデータ処理システム100が、決定木分析を用いて管理基準範囲を絞り込む場合における分析結果の一例を示す。更新決定部1310は、例えば、本図左に示すような、ロットID、当該ロットにおける運転パラメータの実績値、および、当該ロットにおける品質評価結果を含む表形式データを入力する。そして、更新決定部1310は、このような表形式データを入力として、本図右に示すような分析結果を出力する。
本図右においては、製品Xにおける37ロットがどのようにGoodとBadに判別できるかを示している。すなわち、本図右においては、パラメータ1≧31.7の場合に27ロットがGoodとなり、パラメータ1<31.7、かつ、パラメータ2≧46.7の場合に1ロットがGoodとなり、パラメータ1<31.7、かつ、パラメータ2<46.7の場合に9ロットがGoodとなったことを示している。このように分析された場合、更新決定部1310は、例えば、更新後の管理基準範囲として、パラメータ1≧31.7、および/または、パラメータ2≧46.7と決定する。このように、本変形例に係るデータ処理システム100において、更新決定部1310は、分類結果に応じて管理基準の更新を自動的に決定することができる。
また、例えば、上述のステップ970において逸脱パターンを発見するにあたって、更新決定部1310は、自動的に逸脱パターンを発見してよい。一例として、更新決定部1310は、図7において、対応付けられたロット数が多いパスを、逸脱パターンとして決定してよい。この際、更新決定部1310は、例えば、対応付けられたロット数が最も多いパスを逸脱パターンと決定してよい。これに代えて、更新決定部1310は、対応付けられたロット数が上位n番目までのパスを逸脱パターンとして決定してもよいし、対応付けられたロット数が予め定められた閾値以上であるパスを逸脱パターンとして決定してもよいし、発見されたすべてのパスを逸脱パターンとして決定してもよい。
そして、ステップ980において、更新決定部1310は、決定した逸脱パターンにおける逸脱ポイントを選択し、図8において、対応付けられたロット数が最も多いパスを探索して、回復方法を自動的に発見してもよい。すなわち、更新決定部1310は、管理パラメータにおける複数の項目についての各ケースの組み合わせの中から、評価データが予め定められた基準を満たす頻度が高くなる組み合わせを探索して、更新後の管理基準を決定してよい。このように、本変形例に係るデータ処理システム100において、更新決定部1310は、分類結果に応じて管理基準の更新を自動的に決定してもよい。
このように、本変形例に係るデータ処理システム100は、分類結果に応じて評価基準および管理基準の少なくともいずれか一方の更新を決定する更新決定部1310を更に備え、基準更新部180は、更新決定部1310の決定に基づいて評価基準および管理基準の少なくともいずれか一方を更新する。これにより、本変形例に係るデータ処理システム100によれば、実績データを分類する際に用いる評価基準や管理基準を自動的に最適化することができる。
また、本変形例に係るデータ処理システム100において、更新決定部1310は、管理パラメータにおける複数の項目についての各ケースの組み合わせの中から、評価データが予め定められた基準を満たす頻度が高くなる組み合わせを探索して、更新後の管理基準を決定する。これにより、本変形例に係るデータ処理システム100によれば、回復方法を自動的に発見し、管理基準を最適化することができる。
本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。
コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。
コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードのいずれかを含んでよい。
コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
図15は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。コンピュータ2200にインストールされたプログラムは、コンピュータ2200に、本発明の実施形態に係る装置に関連付けられる操作または当該装置の1または複数のセクションとして機能させることができ、または当該操作または当該1または複数のセクションを実行させることができ、および/またはコンピュータ2200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ2200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定の操作を実行させるべく、CPU2212によって実行されてよい。
本実施形態によるコンピュータ2200は、CPU2212、RAM2214、グラフィックコントローラ2216、およびディスプレイデバイス2218を含み、それらはホストコントローラ2210によって相互に接続されている。コンピュータ2200はまた、通信インターフェイス2222、ハードディスクドライブ2224、DVD-ROMドライブ2226、およびICカードドライブのような入/出力ユニットを含み、それらは入/出力コントローラ2220を介してホストコントローラ2210に接続されている。コンピュータはまた、ROM2230およびキーボード2242のようなレガシの入/出力ユニットを含み、それらは入/出力チップ2240を介して入/出力コントローラ2220に接続されている。
CPU2212は、ROM2230およびRAM2214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ2216は、RAM2214内に提供されるフレームバッファ等またはそれ自体の中にCPU2212によって生成されたイメージデータを取得し、イメージデータがディスプレイデバイス2218上に表示されるようにする。
通信インターフェイス2222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ2224は、コンピュータ2200内のCPU2212によって使用されるプログラムおよびデータを格納する。DVD-ROMドライブ2226は、プログラムまたはデータをDVD-ROM2201から読み取り、ハードディスクドライブ2224にRAM2214を介してプログラムまたはデータを提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取り、および/またはプログラムおよびデータをICカードに書き込む。
ROM2230はその中に、アクティブ化時にコンピュータ2200によって実行されるブートプログラム等、および/またはコンピュータ2200のハードウェアに依存するプログラムを格納する。入/出力チップ2240はまた、様々な入/出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入/出力コントローラ2220に接続してよい。
プログラムが、DVD-ROM2201またはICカードのようなコンピュータ可読媒体によって提供される。プログラムは、コンピュータ可読媒体から読み取られ、コンピュータ可読媒体の例でもあるハードディスクドライブ2224、RAM2214、またはROM2230にインストールされ、CPU2212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ2200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ2200の使用に従い情報の操作または処理を実現することによって構成されてよい。
例えば、通信がコンピュータ2200および外部デバイス間で実行される場合、CPU2212は、RAM2214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インターフェイス2222に対し、通信処理を命令してよい。通信インターフェイス2222は、CPU2212の制御下、RAM2214、ハードディスクドライブ2224、DVD-ROM2201、またはICカードのような記録媒体内に提供される送信バッファ処理領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信された受信データを記録媒体上に提供される受信バッファ処理領域等に書き込む。
また、CPU2212は、ハードディスクドライブ2224、DVD-ROMドライブ2226(DVD-ROM2201)、ICカード等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM2214に読み取られるようにし、RAM2214上のデータに対し様々なタイプの処理を実行してよい。CPU2212は次に、処理されたデータを外部記録媒体にライトバックする。
様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU2212は、RAM2214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプの操作、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM2214に対しライトバックする。また、CPU2212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU2212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ2200上またはコンピュータ2200近傍のコンピュータ可読媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ2200に提供する。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 生産管理対象
100 データ処理システム
110 操業データ取得部
120 評価データ取得部
130 データ記録部
140 基準記憶部
150 データ分類部
160 出力部
170 入力部
180 基準更新部
1310 更新決定部
2200 コンピュータ
2201 DVD-ROM
2210 ホストコントローラ
2212 CPU
2214 RAM
2216 グラフィックコントローラ
2218 ディスプレイデバイス
2220 入/出力コントローラ
2222 通信インターフェイス
2224 ハードディスクドライブ
2226 DVD-ROMドライブ
2230 ROM
2240 入/出力チップ
2242 キーボード

Claims (16)

  1. 生産の操業に関する実績を示す操業データを取得する操業データ取得部と、
    前記生産の評価に関する実績を示す評価データを取得する評価データ取得部と、
    対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶する基準記憶部と、
    前記管理パラメータについて前記操業データが前記管理基準に準拠しているかどうかを判定した判定結果と前記評価データとに基づいて、前記生産の実績を示す実績データを分類するデータ分類部と、
    分類結果を出力する出力部と
    を備える、データ処理システム。
  2. 前記データ分類部は、前記管理パラメータのうちの運転パラメータに係る全ての項目において前記操業データが前記管理基準に準拠しているか否か、および、前記評価データが予め定められた基準を満たしているか否かにより、前記実績データを少なくとも4つに分類する、請求項1に記載のデータ処理システム。
  3. 前記出力部は、前記少なくとも4つに分類されたそれぞれの頻度をグラフとして表示する表示画面を出力する、請求項2に記載のデータ処理システム。
  4. 前記データ分類部は、前記管理パラメータにおけるそれぞれの項目に対して、前記操業データが前記管理基準に準拠している場合、上方逸脱している場合、および、下方逸脱している場合の各ケースについて、前記評価データが予め定められた基準を満たしているか否かにより、前記実績データを分類する、請求項1から3のいずれか一項に記載のデータ処理システム。
  5. 前記出力部は、前記管理パラメータにおけるそれぞれの項目に対して、前記各ケースについて前記評価データが予め定められた基準を満たしているか否かの頻度をグラフとして表示する表示画面を出力する、請求項4に記載のデータ処理システム。
  6. 前記出力部は、前記実績データのうちの前記評価データが予め定められた基準を満たしていないデータが、前記管理パラメータにおけるそれぞれの項目について、前記各ケースのいずれに該当したかの対応付けを示す表示画面を出力する、請求項4または5に記載のデータ処理システム。
  7. 前記出力部は、前記実績データのうちの前記評価データが予め定められた基準を満たしているデータが、前記管理パラメータにおけるそれぞれの項目について、前記各ケースのいずれに該当したかの対応付けを示す表示画面を出力する、請求項4から6のいずれか一項に記載のデータ処理システム。
  8. 前記評価データに基づいて評価指標を決定するための評価基準、および、前記管理基準の少なくともいずれか一方を更新する基準更新部を更に備える、請求項1から7のいずれか一項に記載のデータ処理システム。
  9. 前記データ分類部は、前記評価基準および前記管理基準の少なくともいずれか一方が更新されたことに応じて、前記実績データを更新後の基準を用いて再分類し、
    前記出力部は、再分類された分類結果を出力する、請求項8に記載のデータ処理システム。
  10. ユーザ入力を受け付ける入力部を更に備え、
    前記基準更新部は、前記ユーザ入力に基づいて前記評価基準および前記管理基準の少なくともいずれか一方を更新する、請求項8または9に記載のデータ処理システム。
  11. 前記分類結果に応じて前記評価基準および前記管理基準の少なくともいずれか一方の更新を決定する更新決定部を更に備え、
    前記基準更新部は、前記更新決定部の決定に基づいて前記評価基準および前記管理基準の少なくともいずれか一方を更新する、請求項8から10のいずれか一項に記載のデータ処理システム。
  12. 前記更新決定部は、前記管理パラメータにおける複数の項目についての各ケースの組み合わせの中から、前記評価データが予め定められた基準を満たす頻度が高くなる組み合わせを探索して、更新後の前記管理基準を決定する、請求項11に記載のデータ処理システム。
  13. 前記評価データは、生産される製品の品質を評価したデータを含む、請求項1から12のいずれか一項に記載のデータ処理システム。
  14. 前記評価データは、生産の生産性、コスト、納期、および、安全性の少なくともいずれかを評価したデータを含む、請求項1から13のいずれか一項に記載のデータ処理システム。
  15. 生産の操業に関する実績を示す操業データを取得することと、
    前記生産の評価に関する実績を示す評価データを取得することと、
    対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶することと、
    前記管理パラメータについて前記操業データが前記管理基準に準拠しているかどうかを判定した判定結果と前記評価データとに基づいて、前記生産の実績を示す実績データを分類することと、
    分類結果を出力することと
    を備える、データ処理方法。
  16. コンピュータにより実行されて、前記コンピュータを、
    生産の操業に関する実績を示す操業データを取得する操業データ取得部と、
    前記生産の評価に関する実績を示す評価データを取得する評価データ取得部と、
    対象とする管理パラメータについて準拠すべき管理基準をそれぞれ記憶する基準記憶部と、
    前記管理パラメータについて前記操業データが前記管理基準に準拠しているかどうかを判定した判定結果と前記評価データとに基づいて、前記生産の実績を示す実績データを分類するデータ分類部と、
    分類結果を出力する出力部と
    して機能させる、データ処理プログラム。
JP2020162714A 2020-09-28 2020-09-28 データ処理システム、データ処理方法、および、データ処理プログラム Active JP7218338B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020162714A JP7218338B2 (ja) 2020-09-28 2020-09-28 データ処理システム、データ処理方法、および、データ処理プログラム
US17/483,863 US20220100630A1 (en) 2020-09-28 2021-09-24 Data processing system, data processing method, and recording medium having data processing program recorded thereon
CN202111134837.1A CN114282742A (zh) 2020-09-28 2021-09-27 数据处理系统、数据处理方法和记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020162714A JP7218338B2 (ja) 2020-09-28 2020-09-28 データ処理システム、データ処理方法、および、データ処理プログラム

Publications (2)

Publication Number Publication Date
JP2022055231A true JP2022055231A (ja) 2022-04-07
JP7218338B2 JP7218338B2 (ja) 2023-02-06

Family

ID=80822638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020162714A Active JP7218338B2 (ja) 2020-09-28 2020-09-28 データ処理システム、データ処理方法、および、データ処理プログラム

Country Status (3)

Country Link
US (1) US20220100630A1 (ja)
JP (1) JP7218338B2 (ja)
CN (1) CN114282742A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024125910A (ja) * 2023-03-06 2024-09-19 横河電機株式会社 情報提供装置、情報提供方法及び情報提供プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950949A (ja) * 1995-05-26 1997-02-18 Hitachi Ltd 製品の製造方法および生産管理計算システム
JP2006155557A (ja) * 2004-11-05 2006-06-15 Nippon Steel Corp 製造プロセスにおける操業と品質の関連解析装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
WO2015119232A1 (ja) * 2014-02-10 2015-08-13 オムロン株式会社 品質管理装置及びその制御方法
US20170169380A1 (en) * 2015-12-14 2017-06-15 Wipro Limited Method and System for Determining Quality Level of Performance Data Associated With an Enterprise
JP2020149181A (ja) * 2019-03-12 2020-09-17 株式会社日立製作所 データ分類装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI543102B (zh) * 2014-10-22 2016-07-21 財團法人工業技術研究院 異因分析與校正方法與系統
US11042146B2 (en) * 2017-11-17 2021-06-22 Kodak Alaris Inc. Automated 360-degree dense point object inspection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950949A (ja) * 1995-05-26 1997-02-18 Hitachi Ltd 製品の製造方法および生産管理計算システム
JP2006155557A (ja) * 2004-11-05 2006-06-15 Nippon Steel Corp 製造プロセスにおける操業と品質の関連解析装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
WO2015119232A1 (ja) * 2014-02-10 2015-08-13 オムロン株式会社 品質管理装置及びその制御方法
US20170169380A1 (en) * 2015-12-14 2017-06-15 Wipro Limited Method and System for Determining Quality Level of Performance Data Associated With an Enterprise
JP2020149181A (ja) * 2019-03-12 2020-09-17 株式会社日立製作所 データ分類装置

Also Published As

Publication number Publication date
US20220100630A1 (en) 2022-03-31
CN114282742A (zh) 2022-04-05
JP7218338B2 (ja) 2023-02-06

Similar Documents

Publication Publication Date Title
US20220024607A1 (en) Predictive maintenance model design system
Debrah et al. Artificial intelligence in green building
JP2015184942A (ja) 故障原因分類装置
JP6901243B2 (ja) プロセス環境のための制御システムを最適化するためのシステムおよび方法
CN113469241B (zh) 基于工艺网络模型与机器学习算法的产品质量控制方法
CN103597417A (zh) 状态监测方法及装置
Kraus et al. Artificial intelligence for structural glass engineering applications—overview, case studies and future potentials
US20230075005A1 (en) Intelligent asset anomaly prediction via feature generation
JP5963579B2 (ja) ショベルの管理装置及びショベルの異常検出方法
JP2024100928A (ja) 情報処理方法、情報処理装置、生産システム、物品の製造方法、プログラム、記録媒体
CN115237086A (zh) 工业厂房中的决策支持
US20200210881A1 (en) Cross-domain featuring engineering
CN118011990A (zh) 基于人工智能的工业数据品质监控与提升系统
JP5571528B2 (ja) 生産情報管理装置および生産情報管理方法
JP2022055231A (ja) データ処理システム、データ処理方法、および、データ処理プログラム
Al-Shalabi et al. A novel framework for BIM enabled facility energy management: a concept paper
US12038802B2 (en) Collaborative learning model for semiconductor applications
JP7283105B2 (ja) 分析装置および分析方法
JP7181849B2 (ja) 装置、方法およびプログラム
WO2022054520A1 (ja) 生産管理システム、生産管理方法、および、生産管理プログラム
KR20200002433A (ko) 빅데이터 분석을 이용한 통계적 품질 관리 시스템
JP2010128870A (ja) データ処理装置
Reddicharla et al. Automated Well Portfolio Optimization for a Mature Hydrocarbon Field in the Middle East
Cheng et al. A hybrid feature selection model for identifying groups of critical elements in aero‐engine assembly
CN118092362B (zh) 烧结过程异常原因分析方法、装置及设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230125

R150 Certificate of patent or registration of utility model

Ref document number: 7218338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350