JP2022054696A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2022054696A
JP2022054696A JP2020161866A JP2020161866A JP2022054696A JP 2022054696 A JP2022054696 A JP 2022054696A JP 2020161866 A JP2020161866 A JP 2020161866A JP 2020161866 A JP2020161866 A JP 2020161866A JP 2022054696 A JP2022054696 A JP 2022054696A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
storage housing
structure portion
multilayer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020161866A
Other languages
Japanese (ja)
Other versions
JP7433182B2 (en
Inventor
雅也 佐々木
Masaya Sasaki
稔 鈴木
Minoru Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2020161866A priority Critical patent/JP7433182B2/en
Publication of JP2022054696A publication Critical patent/JP2022054696A/en
Application granted granted Critical
Publication of JP7433182B2 publication Critical patent/JP7433182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a solid oxide fuel cell with low radiation loss, capable of keeping the inside of a storage housing at a high temperature.SOLUTION: A solid oxide fuel cell includes a reformer 11, a cell stack CS and a combustion part 14 in an internal space S of a storage housing 1. The storage housing 1 has a multilayer structure part M where a plurality of wall materials w are arranged in layers at intervals from each other so that a plurality of spaces separated by the wall materials w are provided. At the multilayer structure part M, exhaust gas containing flue gas generated in the combustion part 14 and air supplied to the cell stack CS and the combustion part 14 flow in the plurality of spaces separately, so that heat exchange between the exhaust gas and the air is performed through the wall materials w. The solid oxide fuel cell is formed such that heat insulation effects by an external heat insulating material Hout provided on the outer face of the multilayer structure part M of the storage housing 1 become higher in a region where temperatures of the multilayer structure part M are higher.SELECTED DRAWING: Figure 2

Description

本発明は、収納筐体と、収納筐体の内面に設けられる内部断熱材と、収納筐体の外面に設けられる外部断熱材とを備え、収納筐体の内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、セルスタックから排出されるオフガスを燃焼して、その燃焼熱を改質器に与える燃焼部とを備える固体酸化物形燃料電池に関する。 The present invention includes a storage housing, an internal heat insulating material provided on the inner surface of the storage housing, and an external heat insulating material provided on the outer surface of the storage housing, and an internal space inside the internal heat insulating material of the storage housing. In addition, a reformer that steam reforms raw fuel to generate fuel gas, a cell stack having a plurality of fuel cell cells that generate power using the fuel gas generated by the reformer, and a cell stack that is discharged from the cell stack. The present invention relates to a solid oxide fuel cell including a combustion unit that burns off-gas and applies the heat of combustion to the reformer.

従来より、酸化物イオンを伝導する膜として固体電解質を用いた固体酸化物形のセルスタックを備えた固体酸化物形燃料電池(SOFC(Solid Oxide Fuel Cell))が知られている。このような固体酸化物形燃料電池の主たる用途の一つとして家庭用のコージェネレーションシステムがある。固体酸化物形燃料電池を用いたコージェネレーションシステムでは、家庭用の給湯暖房需要を賄いながら、大型火力発電所と比べても遜色のない高い発電効率での発電が可能である。 Conventionally, a solid oxide fuel cell (SOFC (Solid Oxide Fuel Cell)) having a solid oxide cell stack using a solid electrolyte as a film for conducting oxide ions has been known. One of the main uses of such solid oxide fuel cells is a home-use cogeneration system. A cogeneration system using solid oxide fuel cells can generate electricity with high power generation efficiency comparable to that of large thermal power plants while meeting the demand for hot water supply and heating for household use.

この固体酸化物形燃料電池においては、セルスタックは複数の燃料電池セルを積層して構成され、各燃料電池セルにおける固体電解質の片面側に燃料ガスを酸化するための燃料極が設けられ、その他面側に空気(酸化剤ガス)中の酸素を還元するための酸素極が設けられている。この固体酸化物形燃料電池の燃料電池セルの作動温度は約600℃~約800℃と高く、このような高温下において、燃料ガス(改質燃料ガス)中の水素や一酸化炭素、炭化水素と空気中の酸素とが電気化学反応を起こすことによって発電が行われる。 In this solid oxide fuel cell, the cell stack is configured by stacking a plurality of fuel cell cells, and a fuel electrode for oxidizing fuel gas is provided on one side of the solid electrolyte in each fuel cell, and the others. An oxygen electrode for reducing oxygen in the air (oxidizing agent gas) is provided on the surface side. The operating temperature of the fuel cell of this solid oxide fuel cell is as high as about 600 ° C to about 800 ° C, and under such high temperatures, hydrogen, carbon monoxide, and hydrocarbons in the fuel gas (reformed fuel gas) Power is generated by an electrochemical reaction between hydrogen and oxygen in the air.

特許文献1(特開2007-59377号公報)の図12には、収納筐体と、収納筐体の内面に設けられる内部断熱材と、収納筐体の外面に設けられる外部断熱材とを備え、収納筐体の内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、セルスタックから排出されるオフガスを燃焼して、その燃焼熱を改質器に与える燃焼部とを備えるものが提案されている。 FIG. 12 of Patent Document 1 (Japanese Unexamined Patent Publication No. 2007-59377) includes a storage housing, an internal heat insulating material provided on the inner surface of the storage housing, and an external heat insulating material provided on the outer surface of the storage housing. In the internal space inside the internal heat insulating material of the storage housing, a reformer that steam-reforms raw fuel to generate fuel gas, and a plurality of reformers that generate power using the fuel gas generated by the reformer. A cell stack having a fuel cell and a combustion unit that burns off gas discharged from the cell stack and gives the combustion heat to the reformer have been proposed.

特開2007-59377号公報Japanese Unexamined Patent Publication No. 2007-59377

固体酸化物形燃料電池のセルスタックは約600℃~約800℃程度の高温で作動させるため、収納筐体の内部をできるだけ高温に保つことが必要である。そのため、セルスタックの周囲を断熱材で取り囲みセルスタックからの放熱量を抑制すること、収納筐体の周囲を断熱材で取り囲むことなどが必要である。加えて、燃焼部で発生した燃焼排ガスを含む排気ガスと、セルスタック及び燃焼部に供給する空気とを熱交換して、収納筐体の内部に供給される空気を予熱しておくことが行われる。例えば、特許文献1の図11に記載の構成であれば、収納筐体は、複数の壁材が互いに間隔を空けて層状に配置されることで、前記壁材によって隔てられた複数の空間を有する多層構造部分を有し、前記多層構造部分において、前記燃焼部で発生した燃焼排ガスを含む排気ガスと、前記セルスタック及び前記燃焼部へ供給される空気とが、複数の前記空間に各別に流れることで、前記排気ガスと前記空気との熱交換が前記壁材を介して行われるようになっている。 Since the cell stack of a solid oxide fuel cell operates at a high temperature of about 600 ° C to about 800 ° C, it is necessary to keep the inside of the storage housing as high as possible. Therefore, it is necessary to surround the cell stack with a heat insulating material to suppress the amount of heat radiated from the cell stack, and to surround the storage housing with a heat insulating material. In addition, it is possible to preheat the air supplied to the inside of the storage housing by exchanging heat between the exhaust gas including the combustion exhaust gas generated in the combustion part and the air supplied to the cell stack and the combustion part. Will be. For example, in the configuration shown in FIG. 11 of Patent Document 1, the storage housing has a plurality of spaces separated by the wall materials by arranging a plurality of wall materials in layers at intervals from each other. It has a multi-layered structure portion, and in the multi-layered structure portion, the exhaust gas including the combustion exhaust gas generated in the combustion portion and the air supplied to the cell stack and the combustion portion are separately provided in the plurality of spaces. By flowing, heat exchange between the exhaust gas and the air is performed through the wall material.

このように、収納筐体の内部の温度を高温に保つための対策が幾つか行われているが、更なる対策が求められる。 As described above, some measures have been taken to keep the temperature inside the storage housing high, but further measures are required.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、収納筐体の内部を高温に保つことができ、放熱損失の少ない固体酸化物形燃料電池を提供する点にある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid oxide fuel cell capable of keeping the inside of a storage housing at a high temperature and having a small heat dissipation loss.

上記目的を達成するための本発明に係る固体酸化物形燃料電池の特徴構成は、収納筐体と、前記収納筐体の内面に設けられる内部断熱材と、前記収納筐体の外面に設けられる外部断熱材とを備え、
前記収納筐体の前記内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、前記セルスタックから排出されるオフガスを燃焼して、その燃焼熱を前記改質器に与える燃焼部とを備える固体酸化物形燃料電池であって、
前記収納筐体は、複数の壁材が互いに間隔を空けて層状に配置されることで、前記壁材によって隔てられた複数の空間を有する多層構造部分を有し、
前記多層構造部分において、前記燃焼部で発生した燃焼排ガスを含む排気ガスと、前記セルスタック及び前記燃焼部へ供給される空気とが、複数の前記空間に各別に流れることで、前記排気ガスと前記空気との熱交換が前記壁材を介して行われるように構成され、
前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど高くなるように形成されている点にある。
ここで、前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材の、当該多層構造部分の外面からの厚さは、前記多層構造部分の温度が高い領域ほど厚く形成されていてもよい。
The characteristic configuration of the solid oxide fuel cell according to the present invention for achieving the above object is provided on the storage housing, the internal heat insulating material provided on the inner surface of the storage housing, and the outer surface of the storage housing. Equipped with external insulation,
In the internal space inside the internal heat insulating material of the storage housing, a reformer that steam-reforms raw fuel to generate fuel gas and a fuel gas generated by the reformer are used to generate power. A solid oxide fuel cell including a cell stack having a plurality of fuel cell cells and a combustion unit that burns off gas discharged from the cell stack and applies the combustion heat to the reformer.
The storage housing has a multi-layered structure portion having a plurality of spaces separated by the wall materials by arranging the plurality of wall materials in a layered manner at intervals from each other.
In the multi-layered structure portion, the exhaust gas including the combustion exhaust gas generated in the combustion portion and the air supplied to the cell stack and the combustion portion flow separately into the plurality of spaces to obtain the exhaust gas. It is configured so that heat exchange with the air is performed through the wall material.
The heat insulating effect of the external heat insulating material provided on the outer surface of the multi-layered structure portion of the storage housing is formed so that the higher the temperature of the multi-layered structure portion, the higher the heat insulating effect.
Here, the thickness of the external heat insulating material provided on the outer surface of the multilayer structure portion of the storage housing from the outer surface of the multilayer structure portion is formed to be thicker in a region where the temperature of the multilayer structure portion is higher. May be good.

上記特徴構成によれば、多層構造部分では高温の排気ガスと低温の空気とが熱交換するため、排気ガスは上流側から下流側へと流れるにつれて空気との熱交換により温度が低下する。その結果、多層構造部分の温度は、排気ガスの上流側に対応する部分が下流側に対応する部分よりも高くなる。そして、収納筐体の多層構造部分の外面に設けられる外部断熱材による断熱効果は、多層構造部分の温度が高い領域ほど高くなるように形成されている。例えば、収納筐体の多層構造部分の外面に設けられる外部断熱材の、その多層構造部分の外面からの厚さは、多層構造部分の温度が高い領域ほど厚く形成されている。つまり、多層構造部分の温度が高い領域から外側への放熱が効果的に抑制される。その結果、多層構造部分よりも内側の、収納筐体の内部空間の温度低下が抑制される。
従って、収納筐体の内部を高温に保つことができ、放熱損失の少ない固体酸化物形燃料電池を提供できる。
According to the above-mentioned characteristic configuration, since the high-temperature exhaust gas and the low-temperature air exchange heat in the multilayer structure portion, the temperature of the exhaust gas decreases due to the heat exchange with the air as it flows from the upstream side to the downstream side. As a result, the temperature of the multilayer structure portion is higher in the portion corresponding to the upstream side of the exhaust gas than in the portion corresponding to the downstream side. The heat insulating effect of the external heat insulating material provided on the outer surface of the multi-layered structure portion of the storage housing is formed so that the higher the temperature of the multi-layered structure portion, the higher the heat insulating effect. For example, the thickness of the external heat insulating material provided on the outer surface of the multilayer structure portion of the storage housing from the outer surface of the multilayer structure portion is formed to be thicker in a region where the temperature of the multilayer structure portion is higher. That is, heat dissipation from the high temperature region of the multilayer structure portion to the outside is effectively suppressed. As a result, the temperature drop of the internal space of the storage housing inside the multilayer structure portion is suppressed.
Therefore, the inside of the storage housing can be kept at a high temperature, and a solid oxide fuel cell having a small heat dissipation loss can be provided.

本発明に係る固体酸化物形燃料電池の別の特徴構成は、前記多層構造部分において、内側の前記空間に前記排気ガスが流れ、外側の前記空間に前記空気が流れる点にある。 Another characteristic configuration of the solid oxide fuel cell according to the present invention is that the exhaust gas flows in the inner space and the air flows in the outer space in the multilayer structure portion.

上記特徴構成によれば、多層構造部分において、内側の空間に高温の排気ガスが流れるため、同じ空間に低温の空気が流れると仮定した場合よりも、多層構造部分よりも内側の、収納筐体の内部空間の温度低下が抑制される。 According to the above-mentioned feature configuration, since the high temperature exhaust gas flows in the inner space in the multi-layered structure portion, the storage housing inside the multi-layered structure portion is larger than the case where the low temperature air flows in the same space. The temperature drop in the internal space of the is suppressed.

本発明に係る固体酸化物形燃料電池の更に別の特徴構成は、前記多層構造部分において、前記排気ガスの流れる方向と、前記空気の流れる方向とが対向している点にある。 Yet another characteristic configuration of the solid oxide fuel cell according to the present invention is that the direction in which the exhaust gas flows and the direction in which the air flows face each other in the multilayer structure portion.

上記特徴構成によれば、多層構造部分において、排気ガスと空気との間の温度差を大きく確保した状態で、排気ガスと空気との熱交換を効果的に行わせることができる。 According to the above-mentioned characteristic configuration, in the multilayer structure portion, heat exchange between the exhaust gas and the air can be effectively performed while a large temperature difference between the exhaust gas and the air is secured.

本発明に係る固体酸化物形燃料電池の更に別の特徴構成は、前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど低くなるように形成されている。
ここで、前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材の、当該多層構造部分の内面からの厚さは、前記多層構造部分の温度が高い領域ほど薄く形成されていてもよい。
Yet another characteristic configuration of the solid oxide fuel cell according to the present invention is that the heat insulating effect of the internal heat insulating material provided on the inner surface of the multi-layered structure portion of the storage housing is a region where the temperature of the multi-layered structure portion is high. It is formed so as to be as low as possible.
Here, the thickness of the internal heat insulating material provided on the inner surface of the multilayer structure portion of the storage housing from the inner surface of the multilayer structure portion is formed thinner as the temperature of the multilayer structure portion is higher. May be good.

上記特徴構成によれば、多層構造部分の温度が高い領域ほど、外部断熱材による断熱効果は高く形成され且つ内部断熱材による断熱効果は低く形成され、多層構造部分の温度が低い領域ほど、外部断熱材による断熱効果は低く形成され且つ内部断熱材による断熱効果は高く形成される。例えば、多層構造部分の温度が高い領域ほど、外部断熱材は厚く形成され且つ内部断熱材は薄く形成され、多層構造部分の温度が低い領域ほど、外部断熱材は薄く形成され且つ内部断熱材は厚く形成される。その結果、多層構造部分の両側に設けられる外部断熱材及び内部断熱材の合計の厚さを、多層構造部分の全体で一定することができる。 According to the above characteristic configuration, the higher the temperature of the multilayer structure portion, the higher the heat insulating effect of the external heat insulating material is formed and the lower the heat insulating effect of the internal heat insulating material is formed. The heat insulating effect of the heat insulating material is formed low, and the heat insulating effect of the internal heat insulating material is formed high. For example, the higher the temperature of the multilayer structure portion, the thicker the external heat insulating material and the thinner the internal heat insulating material, and the lower the temperature of the multi-layered structure portion, the thinner the external heat insulating material and the internal heat insulating material. It is formed thick. As a result, the total thickness of the external heat insulating material and the internal heat insulating material provided on both sides of the multilayer structure portion can be made constant in the entire multilayer structure portion.

収納筐体の内部空間に設置される複数の機器を示す図である。It is a figure which shows a plurality of devices installed in the internal space of a storage housing. 固体酸化物形燃料電池の縦断面を示す図である。It is a figure which shows the vertical cross section of a solid oxide fuel cell. 固体酸化物形燃料電池の縦断面を示す図である。It is a figure which shows the vertical cross section of a solid oxide fuel cell. コンピュータシミュレーションのモデルを示す図である。It is a figure which shows the model of the computer simulation. コンピュータシミュレーションのモデルを示す図である。It is a figure which shows the model of the computer simulation. 別構造の多層構造部分の例を示す図である。It is a figure which shows the example of the multilayer structure part of another structure.

以下に図面を参照して本発明の実施形態に係る固体酸化物形燃料電池について説明する。
図1は、収納筐体1の内部空間Sに設置される複数の機器を示す図である。図2は、固体酸化物形燃料電池の縦断面を示す図である。図3は、固体酸化物形燃料電池の縦断面を示す図である。
The solid oxide fuel cell according to the embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a plurality of devices installed in the internal space S of the storage housing 1. FIG. 2 is a diagram showing a vertical cross section of a solid oxide fuel cell. FIG. 3 is a diagram showing a vertical cross section of a solid oxide fuel cell.

本実施形態の固体酸化物形燃料電池は収納筐体1を備える。収納筐体1は、正面構造体2と、背面構造体3と、右側構造体4と、左側構造体5と、天面構造体6と、底面構造体7とで構成される。図示する例では、正面構造体2及び背面構造体3はZ軸方向に対面している。右側構造体4及び左側構造体5はX軸方向に対面している。天面構造体6及び底面構造体7はY軸方向に対面している。 The solid oxide fuel cell of the present embodiment includes a storage housing 1. The storage housing 1 is composed of a front structure 2, a back structure 3, a right side structure 4, a left side structure 5, a top surface structure 6, and a bottom surface structure 7. In the illustrated example, the front structure 2 and the back structure 3 face each other in the Z-axis direction. The right side structure 4 and the left side structure 5 face each other in the X-axis direction. The top structure 6 and the bottom structure 7 face each other in the Y-axis direction.

固体酸化物形燃料電池は、収納筐体1の内部断熱材Hinよりも内側の内部空間Sに、原燃料を水蒸気改質して燃料ガスを生成する改質器11と、改質器11で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックCSと、セルスタックCSから排出されるオフガスを燃焼して、その燃焼熱を改質器11に与える燃焼部14とを備える。内部空間Sにおいて、セルスタックCSの上方に改質器11と燃焼部14とが設けられる。セルスタックCSには電流取出部20が接続され、電流取出部20は収納筐体1の底面構造体7の部分から収納筐体1の外部に引き出される。 The solid oxide fuel cell is composed of a reformer 11 and a reformer 11 that generate fuel gas by steam reforming raw fuel in the internal space S inside the internal heat insulating material Hin of the storage housing 1. A cell stack CS having a plurality of fuel cell cells that generate power using the generated fuel gas, and a combustion unit 14 that burns the off gas discharged from the cell stack CS and gives the combustion heat to the reformer 11. Be prepared. In the internal space S, the reformer 11 and the combustion unit 14 are provided above the cell stack CS. A current take-out unit 20 is connected to the cell stack CS, and the current take-out unit 20 is pulled out from a portion of the bottom structure 7 of the storage housing 1 to the outside of the storage housing 1.

収納筐体1の内部には、内部空間Sを上側内部空間S1と下側内部空間S2とに仕切る仕切板8が設けられる。仕切板8は、上側内部空間S1と下側内部空間S2との間で気体の流通を可能にする通気孔8aを有する。下側内部空間S2にはセルスタックCS及び熱交換部16が設けられる。上側内部空間S1には改質器11及び燃焼部14が設けられる
Inside the storage housing 1, a partition plate 8 for partitioning the internal space S into the upper internal space S1 and the lower internal space S2 is provided. The partition plate 8 has a ventilation hole 8a that allows gas to flow between the upper internal space S1 and the lower internal space S2. A cell stack CS and a heat exchange unit 16 are provided in the lower internal space S2. The reformer 11 and the combustion unit 14 are provided in the upper internal space S1.

右側構造体4は、収納筐体1の外側から内側に向かって順に第1右側部材4aと第2右側部材4bと第3右側部材4cとを有する。第1右側部材4aと第2右側部材4bと第3右側部材4cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1右側部材4aと第2右側部材4bとの間の空間には酸化剤ガス(空気)が流れ、第2右側部材4bと第3右側部材4cとの間の空間には燃焼排ガスを含む排気ガスが流れる。このように、収納筐体1は、複数の壁材wが互いに間隔を空けて層状に配置されることで、壁材wによって隔てられた複数の空間を有する多層構造部分Mを有する。 The right side structure 4 has a first right side member 4a, a second right side member 4b, and a third right side member 4c in order from the outside to the inside of the storage housing 1. The first right side member 4a, the second right side member 4b, and the third right side member 4c are all plate-shaped members (wall material w), and are arranged at intervals from each other. As will be described later, an oxidant gas (air) flows in the space between the first right side member 4a and the second right side member 4b, and in the space between the second right side member 4b and the third right side member 4c. Exhaust gas including combustion exhaust gas flows. As described above, the storage housing 1 has a multilayer structure portion M having a plurality of spaces separated by the wall material w by arranging the plurality of wall materials w in a layered manner at intervals from each other.

左側構造体5は、収納筐体1の外側から内側に向かって順に第1左側部材5aと第2左側部材5bと第3左側部材5cとを有する。第1左側部材5aと第2左側部材5bと第3左側部材5cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1左側部材5aと第2左側部材5bとの間の空間には酸化剤ガスが流れ、第2左側部材5bと第3左側部材5cとの間の空間には燃焼排ガスを含む排気ガスが流れる。 The left side structure 5 has a first left side member 5a, a second left side member 5b, and a third left side member 5c in order from the outside to the inside of the storage housing 1. The first left side member 5a, the second left side member 5b, and the third left side member 5c are all plate-shaped members (wall material w), and are arranged at intervals from each other. As will be described later, the oxidant gas flows in the space between the first left side member 5a and the second left side member 5b, and the combustion exhaust gas flows in the space between the second left side member 5b and the third left side member 5c. Exhaust gas including flows.

正面構造体2は、収納筐体1の外側から内側に向かって順に第1正面部材2aと第2正面部材2bと第3正面部材2cとを有する。第1正面部材2aと第2正面部材2bと第3正面部材2cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1正面部材2aと第2正面部材2bとの間の空間には酸化剤ガスが流れ、第2正面部材2bと第3正面部材2cとの間の空間には燃焼排ガスを含む排気ガスが流れる。 The front structure 2 has a first front member 2a, a second front member 2b, and a third front member 2c in order from the outside to the inside of the storage housing 1. The first front member 2a, the second front member 2b, and the third front member 2c are all plate-shaped members (wall material w), and are arranged at intervals from each other. As will be described later, the oxidant gas flows in the space between the first front member 2a and the second front member 2b, and the combustion exhaust gas flows in the space between the second front member 2b and the third front member 2c. Exhaust gas including flows.

背面構造体3は、収納筐体1の外側から内側に向かって順に第1背面部材3aと第2背面部材3bと第3背面部材3cとを有する。第1背面部材3aと第2背面部材3bと第3背面部材3cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1背面部材3aと第2背面部材3bとの間の空間には酸化剤ガスが流れ、第2背面部材3bと第3背面部材3cとの間の空間には燃焼排ガスを含む排気ガスが流れる。 The back structure 3 has a first back member 3a, a second back member 3b, and a third back member 3c in order from the outside to the inside of the storage housing 1. The first back surface member 3a, the second back surface member 3b, and the third back surface member 3c are all plate-shaped members (wall material w), and are arranged at intervals from each other. As will be described later, the oxidant gas flows in the space between the first back surface member 3a and the second back surface member 3b, and the combustion exhaust gas flows in the space between the second back surface member 3b and the third back surface member 3c. Exhaust gas including flows.

天面構造体6は、収納筐体1の外側から内側に向かって順に第1天面部材6aと第2天面部材6bとを有する。第1天面部材6aと第2天面部材6bとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1天面部材6aと第2天面部材6bとの間の空間には酸化剤ガスが流れる。 The top surface structure 6 has a first top surface member 6a and a second top surface member 6b in order from the outside to the inside of the storage housing 1. The first top surface member 6a and the second top surface member 6b are both plate-shaped members (wall material w), and are arranged at intervals from each other. As will be described later, the oxidant gas flows in the space between the first top surface member 6a and the second top surface member 6b.

底面構造体7は、収納筐体1の外側から内側に向かって順に第1底面部材7aと第2底面部材7bと第3底面部材7cとを有する。第1底面部材7aと第2底面部材7bと第3底面部材7cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1底面部材7aと第2底面部材7bとの間の空間には酸化剤ガスが流れ、第2底面部材7bと第3底面部材7cとの間の空間には燃焼排ガスを含む排気ガスが流れる。 The bottom surface structure 7 has a first bottom surface member 7a, a second bottom surface member 7b, and a third bottom surface member 7c in order from the outside to the inside of the storage housing 1. The first bottom surface member 7a, the second bottom surface member 7b, and the third bottom surface member 7c are all plate-shaped members (wall material w), and are arranged at intervals from each other. As will be described later, the oxidant gas flows in the space between the first bottom surface member 7a and the second bottom surface member 7b, and the combustion exhaust gas flows in the space between the second bottom surface member 7b and the third bottom surface member 7c. Exhaust gas including flows.

固体酸化物形燃料電池は、収納筐体1の内面に設けられる内部断熱材Hinと、収納筐体1の外面に設けられる外部断熱材Houtとを備える。例えば、図2及び図3に示すように、収納筐体1の正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5は、鉛直方向に直立しているのではなく、傾斜して設けられている。そして、その傾斜部分に、外部断熱材Hout及び内部断熱材Hinが設けられる。 The solid oxide fuel cell includes an internal heat insulating material Hin provided on the inner surface of the storage housing 1 and an external heat insulating material Hout provided on the outer surface of the storage housing 1. For example, as shown in FIGS. 2 and 3, the front structure 2, the back structure 3, the right side structure 4, and the left side structure 5 of the storage housing 1 are not upright in the vertical direction but are inclined. It is provided. Then, an external heat insulating material Hout and an internal heat insulating material Hin are provided on the inclined portion.

内部断熱材Hinは、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部上側断熱材H5と内部底側断熱材H6とを有する。具体的には、仕切板8よりも上方の上側内部空間S1には、内部上側断熱材H5が設けられる。そして、内部上側断熱材H5で囲われた空間に、改質器11と燃焼部14とが設置される。仕切板8よりも下方の下側内部空間S2には、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部底側断熱材H6とが設けられる。そして、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部底側断熱材H6とで囲われる空間に、セルスタックCSなどが設置される。 The internal heat insulating material Hin has an internal front heat insulating material H1, an internal back heat insulating material H2, an internal right side heat insulating material H3, an internal left side heat insulating material H4, an internal upper heat insulating material H5, and an internal bottom side heat insulating material H6. Specifically, the internal upper heat insulating material H5 is provided in the upper internal space S1 above the partition plate 8. Then, the reformer 11 and the combustion unit 14 are installed in the space surrounded by the inner upper heat insulating material H5. In the lower internal space S2 below the partition plate 8, an internal front heat insulating material H1, an internal back heat insulating material H2, an internal right side heat insulating material H3, an internal left side heat insulating material H4, and an internal bottom side heat insulating material H6 are provided. Then, a cell stack CS or the like is installed in a space surrounded by the internal front heat insulating material H1, the internal back heat insulating material H2, the internal right side heat insulating material H3, the internal left side heat insulating material H4, and the internal bottom side heat insulating material H6.

外部断熱材Houtは、外部正面断熱材H7と外部背面断熱材H8と外部右側断熱材H9と外部左側断熱材H10と外部上側断熱材H11と外部下側断熱材H12とを有する。具体的には、収納筐体1の正面構造体2の外側に面して外部正面断熱材H7が設けられ、収納筐体1の背面構造体3の外側に面して外部背面断熱材H8が設けられ、収納筐体1の右側構造体4の外側に面して外部右側断熱材H9が設けられ、収納筐体1の左側構造体5の外側に面して外部左側断熱材H10が設けられ、収納筐体1の天面構造体6の外側に面して外部上側断熱材H11が設けられ、収納筐体1の底面構造体7の外側に面して外部下側断熱材H12が設けられる。 The external heat insulating material Hout has an external front heat insulating material H7, an external back heat insulating material H8, an external right side heat insulating material H9, an external left side heat insulating material H10, an external upper heat insulating material H11, and an external lower heat insulating material H12. Specifically, the external front heat insulating material H7 is provided facing the outside of the front structure 2 of the storage housing 1, and the external back heat insulating material H8 faces the outside of the back structure 3 of the storage housing 1. The external right heat insulating material H9 is provided facing the outside of the right side structure 4 of the storage housing 1, and the external left side heat insulating material H10 is provided facing the outside of the left side structure 5 of the storage housing 1. The outer upper heat insulating material H11 is provided facing the outside of the top surface structure 6 of the storage housing 1, and the outer lower heat insulating material H12 is provided facing the outside of the bottom surface structure 7 of the storage housing 1. ..

収納筐体1の底面構造体7には、給気管18と排気管19とが接続されている。
給気管18を通って収納筐体1の内部に導入される酸化剤ガス(空気)は、先ず第1底面部材7aと第2底面部材7bとの間の空間に至る。本実施形態の収納筐体1では、第1底面部材7aと第2底面部材7bとの間の空間は、第1正面部材2aと第2正面部材2bとの間の空間、及び、第1背面部材3aと第2背面部材3bとの間の空間、及び、第1右側部材4aと第2右側部材4bとの間の空間、及び、第1左側部材5aと第2左側部材5bとの間の空間の全てに繋がっている。また、第1天面部材6aと第2天面部材6bとの間の空間も、第1正面部材2aと第2正面部材2bとの間の空間、及び、第1背面部材3aと第2背面部材3bとの間の空間、及び、第1右側部材4aと第2右側部材4bとの間の空間、及び、第1左側部材5aと第2左側部材5bとの間の空間の全てに繋がっている。
The air supply pipe 18 and the exhaust pipe 19 are connected to the bottom structure 7 of the storage housing 1.
The oxidant gas (air) introduced into the storage housing 1 through the air supply pipe 18 first reaches the space between the first bottom surface member 7a and the second bottom surface member 7b. In the storage housing 1 of the present embodiment, the space between the first bottom surface member 7a and the second bottom surface member 7b is the space between the first front surface member 2a and the second front surface member 2b, and the first back surface. The space between the member 3a and the second back surface member 3b, the space between the first right side member 4a and the second right side member 4b, and the space between the first left side member 5a and the second left side member 5b. It is connected to all of the space. Further, the space between the first top surface member 6a and the second top surface member 6b is also the space between the first front surface member 2a and the second front surface member 2b, and the first back surface member 3a and the second back surface. Connected to all of the space between the member 3b, the space between the first right side member 4a and the second right side member 4b, and the space between the first left side member 5a and the second left side member 5b. There is.

その結果、第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1正面部材2aと第2正面部材2bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1背面部材3aと第2背面部材3bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1右側部材4aと第2右側部材4bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1左側部材5aと第2左側部材5bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。 As a result, the oxidant gas introduced into the space between the first bottom surface member 7a and the second bottom surface member 7b passes through the space between the first front surface member 2a and the second front surface member 2b. It reaches the space between the first top surface member 6a and the second top surface member 6b. The oxidant gas introduced into the space between the first bottom surface member 7a and the second bottom surface member 7b passes through the space between the first back surface member 3a and the second back surface member 3b, and is the first top surface. It reaches the space between the member 6a and the second top surface member 6b. The oxidant gas introduced into the space between the first bottom surface member 7a and the second bottom surface member 7b passes through the space between the first right side member 4a and the second right side member 4b, and is the first top surface. It reaches the space between the member 6a and the second top surface member 6b. The oxidant gas introduced into the space between the first bottom surface member 7a and the second bottom surface member 7b passes through the space between the first left side member 5a and the second left side member 5b, and is the first top surface. It reaches the space between the member 6a and the second top surface member 6b.

第2天面部材6bには、導入酸化剤ガス流通管15が接続され、第1天面部材6aと第2天面部材6bとの間の空間を流れる酸化剤ガスが、導入酸化剤ガス流通管15に流れ込むように構成されている。そして、導入酸化剤ガス流通管15は、収納筐体1の内部空間Sに設置され、酸化剤ガスをセルスタックCSの内部に導くように機能する。つまり、導入酸化剤ガス流通管15は、第1天面部材6aと第2天面部材6bとの間の空間を流れる酸化剤ガスを、収納筐体1の内部空間Sに設置されたセルスタックCSへと導く。 An introduced oxidant gas flow pipe 15 is connected to the second top surface member 6b, and the oxidant gas flowing in the space between the first top surface member 6a and the second top surface member 6b flows through the introduced oxidant gas. It is configured to flow into the tube 15. The introduced oxidant gas flow pipe 15 is installed in the internal space S of the storage housing 1 and functions to guide the oxidant gas to the inside of the cell stack CS. That is, the introduced oxidant gas flow pipe 15 is a cell stack in which the oxidant gas flowing in the space between the first top surface member 6a and the second top surface member 6b is installed in the internal space S of the storage housing 1. Lead to CS.

収納筐体1には給水管9及び原燃料ガス供給管10が接続される。給水管9及び原燃料ガス供給管10は上側内部空間S1に設置される改質器11に接続されて、改質器11へ水及び原燃料ガスを供給する。改質器11では、給水管9から供給される水の気化と原燃料ガスの水蒸気改質とが行われ、水素を主成分とする燃料ガスが生成される。後述するように、改質器11には、その下方にある燃焼部14で発生した燃焼熱が伝達される。 A water supply pipe 9 and a raw fuel gas supply pipe 10 are connected to the storage housing 1. The water supply pipe 9 and the raw fuel gas supply pipe 10 are connected to the reformer 11 installed in the upper internal space S1 to supply water and raw fuel gas to the reformer 11. In the reformer 11, the water supplied from the water supply pipe 9 is vaporized and the raw fuel gas is steam reformed to generate a fuel gas containing hydrogen as a main component. As will be described later, the combustion heat generated in the combustion unit 14 below the reformer 11 is transmitted to the reformer 11.

導入燃料ガス流通管12は、収納筐体1の内部空間Sに設置され、改質器11で生成さ
れた燃料ガスをセルスタックCSの内部に導く。セルスタックCSが有する複数の固体酸化物形燃料電池セルでは、供給される燃料ガスと酸化剤ガスとの電気化学反応により発電が行われる。その電気化学反応で用いられた後の燃料ガスである排出燃料ガスはセルスタックCSの内部から排出され、収納筐体1の内部空間Sに設置される排出燃料ガス流通管13を通って燃焼部14に導かれる。また、その電気化学反応で用いられた後の酸化剤ガスである排出酸化剤ガスは、セルスタックCSの内部から排出された後、収納筐体1の内部空間Sに設置される排出酸化剤ガス流通管17を流れる。
The introduced fuel gas flow pipe 12 is installed in the internal space S of the storage housing 1, and guides the fuel gas generated by the reformer 11 to the inside of the cell stack CS. In a plurality of solid oxide fuel cell cells possessed by the cell stack CS, power generation is performed by an electrochemical reaction between the supplied fuel gas and the oxidant gas. The discharged fuel gas, which is the fuel gas after being used in the electrochemical reaction, is discharged from the inside of the cell stack CS, and passes through the discharged fuel gas flow pipe 13 installed in the internal space S of the storage housing 1 to the combustion unit. Guided to 14. Further, the discharged oxidant gas, which is the oxidant gas after being used in the electrochemical reaction, is discharged from the inside of the cell stack CS and then installed in the internal space S of the storage housing 1. It flows through the distribution pipe 17.

固体酸化物形燃料電池は、導入酸化剤ガス流通管15を流れる酸化剤ガスと、排出酸化剤ガス流通管17を流れる排出酸化剤ガスとが熱交換するように構成される熱交換部16とを備える。熱交換部16で熱交換した後の酸化剤ガスはセルスタックCSの内部に供給されて電気化学反応のために用いられる。 The solid oxide fuel cell has a heat exchange unit 16 configured to exchange heat between the oxidant gas flowing through the introduced oxidant gas flow pipe 15 and the exhaust oxidant gas flowing through the exhaust oxidant gas flow pipe 17. To prepare for. The oxidant gas after heat exchange in the heat exchange unit 16 is supplied to the inside of the cell stack CS and used for the electrochemical reaction.

熱交換部16では、酸化剤ガス及び排出酸化剤ガスは上方から下方に向かって流れ、導入酸化剤ガス流通管15を流れる酸化剤ガスと、排出酸化剤ガス流通管17を流れる排出酸化剤ガスとが熱交換する。このように、熱交換部16での熱交換により、セルスタックCSの内部に供給される酸化剤ガスの温度が、セルスタックCSの内部の温度(排出酸化剤ガスの温度)に近く、それよりも低い温度になる。その結果、セルスタックCSの内部に供給する酸化剤ガスにより、セルスタックCSの内部から熱を持ち出すことができる。 In the heat exchange unit 16, the oxidant gas and the discharged oxidant gas flow from the upper side to the lower side, and the oxidant gas flowing through the introduced oxidant gas flow pipe 15 and the oxidant gas discharged from the exhaust oxidant gas flow pipe 17. Exchanges heat with. As described above, the temperature of the oxidant gas supplied to the inside of the cell stack CS by the heat exchange in the heat exchange unit 16 is close to the temperature inside the cell stack CS (the temperature of the discharged oxidant gas), and is higher than that. Also becomes low temperature. As a result, heat can be taken out from the inside of the cell stack CS by the oxidant gas supplied to the inside of the cell stack CS.

また、セルスタックCSに供給される酸化剤ガスの温度が低過ぎると、セルスタックCSの酸化剤ガスの入口付近の温度が低下して内部抵抗が高くなる。そして、セルスタックCSの酸化剤ガスの入口付近では発電が進まないのに対して、内部抵抗の低い部位では発電が活発になる。このように、セルスタックCSにおいて発電が活発に行われている部位とそうでない部位とが発生することで、セルスタックCSで有効に発電に使用されている面積が減少し、電流密度に偏りが生じることやセル電圧の低下が生じることにつながる。また、発電反応が行われている部分での燃料電池セルの温度が特に上がるため、耐久性の面でも不利となる。
ところが本実施形態の固体酸化物形燃料電池では、熱交換部16での熱交換により、セルスタックCSの内部に供給される酸化剤ガスの温度が、セルスタックCSの内部の温度(排出酸化剤ガスの温度)に近くなるため、そのような問題の発生を回避できる。
Further, if the temperature of the oxidant gas supplied to the cell stack CS is too low, the temperature near the inlet of the oxidant gas of the cell stack CS decreases and the internal resistance increases. Then, while power generation does not proceed near the inlet of the oxidant gas of the cell stack CS, power generation becomes active in a portion where the internal resistance is low. In this way, the area where power generation is actively performed and the part where power generation is not active in the cell stack CS are generated, so that the area effectively used for power generation in the cell stack CS is reduced and the current density is biased. It leads to the occurrence and the decrease of the cell voltage. In addition, since the temperature of the fuel cell in the portion where the power generation reaction is performed rises particularly, it is disadvantageous in terms of durability.
However, in the solid oxide fuel cell of the present embodiment, the temperature of the oxidant gas supplied to the inside of the cell stack CS by heat exchange in the heat exchange unit 16 is the temperature inside the cell stack CS (emission oxidant). Since it is close to the temperature of the gas), the occurrence of such a problem can be avoided.

熱交換部16で熱交換した後の排出酸化剤ガスは、セルスタックCSの下部側でセルスタックCSの周囲の内部空間Sに流出する。例えば、図示は省略するが、熱交換部16の下端付近で排出酸化剤ガス流通管17が内部空間Sに開放され、そこから内部空間Sへ向かって排出酸化剤ガスが放出される。つまり、排出酸化剤ガス流通管17は、セルスタックCSの内部から排出された排出酸化剤ガスをセルスタックCSの周囲の下部側へと導くように構成されている。その結果、電気化学反応で用いられた後にセルスタックCSの内部から排出された排出酸化剤ガスは、セルスタックCSの下部側でセルスタックCSの周囲の内部空間Sに放出され、セルスタックCSの周囲をセルスタックCSの下部側から上部側へ向かって流れた後、燃焼部14において排出燃料ガスを燃焼させるために利用されるようになる。 The exhausted oxidant gas after heat exchange in the heat exchange unit 16 flows out to the internal space S around the cell stack CS on the lower side of the cell stack CS. For example, although not shown, the exhaust oxidant gas flow pipe 17 is opened to the internal space S near the lower end of the heat exchange unit 16, and the exhaust oxidant gas is discharged from there toward the internal space S. That is, the exhaust oxidant gas flow pipe 17 is configured to guide the exhaust oxidant gas discharged from the inside of the cell stack CS to the lower side around the cell stack CS. As a result, the discharged oxidant gas discharged from the inside of the cell stack CS after being used in the electrochemical reaction is released into the internal space S around the cell stack CS on the lower side of the cell stack CS, and is discharged from the cell stack CS. After flowing around from the lower side to the upper side of the cell stack CS, it will be used for burning the exhaust fuel gas in the combustion unit 14.

セルスタックCSは、直方体形状になっており、複数の固体酸化物形燃料電池セルの積層方向が水平方向に沿う状態で収納筐体1の内部空間Sに設置される。具体的に説明すると、セルスタックCSは、複数の固体酸化物形燃料電池がZ軸方向に積層されて構成される。そして、セルスタックCSは、Z軸方向の長さが、X軸方向の長さ及びY軸方向の長さよりも短い直方体形状になっている。また、収納筐体1も、Z軸方向の長さが、X軸方向の長さ及びY軸方向の長さよりも短い直方体形状になっている。このような構成を採用することで、固体酸化物形燃料電池セルの積層数に応じて、水平方向でのセルスタックCSの長さ(厚さ)が決まる。つまり、セルスタックCSを薄型化して、それを収納する収納筐体1も薄型化することが可能になる。 The cell stack CS has a rectangular parallelepiped shape, and is installed in the internal space S of the storage housing 1 in a state where the stacking direction of the plurality of solid oxide fuel cell cells is along the horizontal direction. Specifically, the cell stack CS is configured by stacking a plurality of solid oxide fuel cells in the Z-axis direction. The cell stack CS has a rectangular parallelepiped shape in which the length in the Z-axis direction is shorter than the length in the X-axis direction and the length in the Y-axis direction. Further, the storage housing 1 also has a rectangular parallelepiped shape in which the length in the Z-axis direction is shorter than the length in the X-axis direction and the length in the Y-axis direction. By adopting such a configuration, the length (thickness) of the cell stack CS in the horizontal direction is determined according to the number of stacked solid oxide fuel cell cells. That is, the cell stack CS can be made thinner, and the storage housing 1 for storing the cell stack CS can also be made thinner.

熱交換部16は、収納筐体1の内部空間Sに設置されたセルスタックCSの4つの側方のうち、水平方向の長さが短い一つの側面に相対して設けられる。収納筐体1の内部空間SでセルスタックCSと熱交換部16とが組み合わされて設置された構造を考えると、熱交換部16は、セルスタックCSの4つの側方のうち、水平方向の長さが短い一つの側面に相対して、即ち、水平方向の長さが長い方向に沿ってセルスタックCSと隣接して設けられる。図示する例では、熱交換部16は、X軸方向に沿ってセルスタックCSと並ぶ状態で設置される。つまり、収納筐体1の内部空間SでセルスタックCSと熱交換部16とが組み合わされて設置された構造の最も薄い部分はセルスタックCSの最も薄い部分と同等になる。その結果、セルスタックCS及び熱交換部16を収納する収納筐体1を薄型化することが可能になる。 The heat exchange unit 16 is provided so as to face one side surface having a short horizontal length among the four sides of the cell stack CS installed in the internal space S of the storage housing 1. Considering a structure in which the cell stack CS and the heat exchange unit 16 are installed in combination in the internal space S of the storage housing 1, the heat exchange unit 16 is located in the horizontal direction among the four sides of the cell stack CS. It is provided relative to one side surface having a short length, that is, adjacent to the cell stack CS along a direction having a long horizontal length. In the illustrated example, the heat exchange unit 16 is installed in a state of being aligned with the cell stack CS along the X-axis direction. That is, the thinnest portion of the structure in which the cell stack CS and the heat exchange unit 16 are installed in combination in the internal space S of the storage housing 1 is equivalent to the thinnest portion of the cell stack CS. As a result, the storage housing 1 for accommodating the cell stack CS and the heat exchange unit 16 can be made thinner.

熱交換部16とセルスタックCSとは間隔を空けて配置されている。そして、熱交換部16とセルスタックCSとの間の空間には、放出された排出酸化剤ガスが流れることができる。 The heat exchange unit 16 and the cell stack CS are arranged at a distance from each other. Then, the released oxidant gas can flow in the space between the heat exchange unit 16 and the cell stack CS.

導入酸化剤ガス流通管15は、収納筐体1の天面側を構成する天面板状部材としての第2天面部材6bに固定されて鉛直下方に延びる。そして、導入酸化剤ガス流通管15は、途中に熱交換部16を介してセルスタックCSに接続される。つまり、セルスタックCSは、収納筐体1の第2天面部材6bに固定される導入酸化剤ガス流通管15及び熱交換部16を介して、収納筐体1の第2天面部材6bから吊り下げられた形態で設置される。つまり、収納筐体1の内部でセルスタックCSを支えるための支柱などの構造体を特別に設ける必要性が低くなる点で好ましい。 The introduced oxidant gas flow pipe 15 is fixed to the second top surface member 6b as a top surface plate-like member constituting the top surface side of the storage housing 1 and extends vertically downward. Then, the introduced oxidant gas flow pipe 15 is connected to the cell stack CS via the heat exchange unit 16 on the way. That is, the cell stack CS is transferred from the second top surface member 6b of the storage housing 1 via the introduced oxidant gas flow pipe 15 and the heat exchange unit 16 fixed to the second top surface member 6b of the storage housing 1. It is installed in a suspended form. That is, it is preferable in that it is less necessary to specially provide a structure such as a support column for supporting the cell stack CS inside the storage housing 1.

収納筐体1の下側内部空間S2では、内部正面断熱材H1が第3正面部材2cに相対して接した状態で設けられ、内部背面断熱材H2が第3背面部材3cに相対して接した状態で設けられ、内部右側断熱材H3が第3右側部材4cに相対して接した状態で設けられ、内部左側断熱材H4が第3左側部材5cに相対して接した状態で設けられ、内部底側断熱材H6が第3底面部材7cに相対して接した状態で設けられる。そして、下側内部空間S2で、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部底側断熱材H6とに囲まれた空間に、セルスタックCSと熱交換部16と導入酸化剤ガス流通管15と排出酸化剤ガス流通管17と導入燃料ガス流通管12と排出燃料ガス流通管13とが配置される。このような構成を採用することで、セルスタックCSの温度を所望の温度に維持し易くなる。 In the lower internal space S2 of the storage housing 1, the internal front heat insulating material H1 is provided in contact with the third front member 2c, and the internal back heat insulating material H2 is in contact with the third back member 3c. The internal right side heat insulating material H3 is provided in a state of being in contact with the third right side member 4c, and the internal left side heat insulating material H4 is provided in a state of being in contact with the third left side member 5c. The inner bottom side heat insulating material H6 is provided in a state of being in contact with the third bottom surface member 7c. Then, in the lower internal space S2, the cell stack CS is placed in a space surrounded by the internal front heat insulating material H1, the internal back heat insulating material H2, the internal right heat insulating material H3, the internal left heat insulating material H4, and the internal bottom side heat insulating material H6. The heat exchange unit 16, the introduced oxidant gas flow pipe 15, the exhausted oxidant gas flow pipe 17, the introduced fuel gas flow pipe 12, and the discharged fuel gas flow pipe 13 are arranged. By adopting such a configuration, it becomes easy to maintain the temperature of the cell stack CS at a desired temperature.

具体的には、図3に示すように、導入酸化剤ガス流通管15及び排出酸化剤ガス流通管17及び導入燃料ガス流通管12及び排出燃料ガス流通管13はセルスタックCSの正面側に接続されている。また、図3に示すように、内部正面断熱材H1には第1凹部H1aと第2凹部H1bとが形成されている。そして、第1凹部H1aの部分で、排出燃料ガス流通管13はセルスタックCSの正面側に接続され、且つ、排出酸化剤ガス流通管17はセルスタックCSの正面側に接続される。また、第2凹部H1bの部分で、導入燃料ガス流通管12はセルスタックCSの正面側に接続され、且つ、導入酸化剤ガス流通管15はセルスタックCSの正面側に接続される。 Specifically, as shown in FIG. 3, the introduced oxidant gas flow pipe 15, the discharged oxidant gas flow pipe 17, the introduced fuel gas flow pipe 12, and the discharged fuel gas flow pipe 13 are connected to the front side of the cell stack CS. Has been done. Further, as shown in FIG. 3, a first recess H1a and a second recess H1b are formed in the internal front heat insulating material H1. Then, at the portion of the first recess H1a, the exhaust fuel gas flow pipe 13 is connected to the front side of the cell stack CS, and the exhaust oxidant gas flow pipe 17 is connected to the front side of the cell stack CS. Further, at the portion of the second recess H1b, the introduced fuel gas flow pipe 12 is connected to the front side of the cell stack CS, and the introduced oxidant gas flow pipe 15 is connected to the front side of the cell stack CS.

収納筐体1の上側内部空間S1では、内部上側断熱材H5が設けられる。内部上側断熱材H5は、改質器11及び燃焼部14の上部と側部(正面側の側部と背面側の側部)とを覆うように設けられている。また、上側内部空間S1では、第3正面部材2cには正面排気口2dが設けられ、第3背面部材3cには背面排気口3dが設けられ、第3右側部材4cには右側排気口4dが設けられ、第3左側部材5cには左側排気口5dが設けられている。 In the upper internal space S1 of the storage housing 1, an internal upper heat insulating material H5 is provided. The inner upper heat insulating material H5 is provided so as to cover the upper portion and the side portion (front side portion and back side side portion) of the reformer 11 and the combustion portion 14. Further, in the upper internal space S1, the third front member 2c is provided with a front exhaust port 2d, the third back member 3c is provided with a rear exhaust port 3d, and the third right member 4c has a right exhaust port 4d. The third left side member 5c is provided with a left side exhaust port 5d.

燃焼部14では、排出燃料ガス流通管13を通って供給される排出燃料ガスに含まれる燃料成分が、仕切板8に形成される通気孔8aを介して上側内部空間S1に流入し、燃焼部14の通気部14aを通って供給された排出酸化剤ガスに含まれる酸素を用いて燃焼される。 In the combustion unit 14, the fuel component contained in the exhaust fuel gas supplied through the exhaust fuel gas flow pipe 13 flows into the upper internal space S1 through the ventilation hole 8a formed in the partition plate 8 and flows into the combustion unit. It is burned using oxygen contained in the exhaust oxidant gas supplied through the ventilation portion 14a of 14.

燃焼部14で発生した燃焼排ガスを含む排気ガスは、第3右側部材4cに形成される右側排気口4dを通って第2右側部材4bと第3右側部材4cとの間の空間へと流出し、第3左側部材5cに形成される左側排気口5dを通って第2左側部材5bと第3左側部材5cとの間の空間へと流出する。また、燃焼部14で発生した燃焼排ガスを含む排気ガスは、内部上側断熱材H5と第2天面部材6bとの間の空間に流れ込み、その空間から、第3正面部材2cに形成される正面排気口2dを通って第2正面部材2bと第3正面部材2cとの間の空間へと流出し、第3背面部材3cに形成される背面排気口3dを通って第2背面部材3bと第3背面部材3cとの間の空間へと流出する。 Exhaust gas including combustion exhaust gas generated in the combustion unit 14 flows out to the space between the second right side member 4b and the third right side member 4c through the right side exhaust port 4d formed in the third right side member 4c. , It flows out into the space between the second left side member 5b and the third left side member 5c through the left side exhaust port 5d formed in the third left side member 5c. Further, the exhaust gas including the combustion exhaust gas generated in the combustion unit 14 flows into the space between the internal upper heat insulating material H5 and the second top surface member 6b, and from that space, the front surface formed on the third front surface member 2c. It flows out to the space between the second front member 2b and the third front member 2c through the exhaust port 2d, and passes through the back exhaust port 3d formed in the third back member 3c to the second back member 3b and the second. 3 Outflows into the space between the back member 3c.

そして、第2正面部材2bと第3正面部材2cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガス、第2背面部材3bと第3背面部材3cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガス、第2右側部材4bと第3右側部材4cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガス、第2左側部材5bと第3左側部材5cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガスは、第2底面部材7bと第3底面部材7cとの間の空間を経由して排気管19に至り、収納筐体1から排出される。このように、収納筐体1では、内部空間Sへと導入される酸化剤ガスが、内部空間Sから排出される燃焼排ガスを含む排気ガスと熱交換する、即ち、内部空間Sへと導入される酸化剤ガスの予熱が行われるように構成されている。 Then, the exhaust gas including the exhaust gas flowing downward in the space between the second front member 2b and the third front member 2c, and the combustion flowing downward in the space between the second back member 3b and the third back member 3c. Exhaust gas including exhaust gas, exhaust gas including combustion exhaust gas flowing downward in the space between the second right side member 4b and the third right side member 4c, the space between the second left side member 5b and the third left side member 5c. The exhaust gas including the combustion exhaust gas flowing downward reaches the exhaust pipe 19 via the space between the second bottom surface member 7b and the third bottom surface member 7c, and is discharged from the storage housing 1. As described above, in the storage housing 1, the oxidant gas introduced into the internal space S exchanges heat with the exhaust gas including the combustion exhaust gas discharged from the internal space S, that is, is introduced into the internal space S. It is configured to preheat the oxidant gas.

以上のように、収納筐体1の正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5のそれぞれは、複数の壁材wが互いに間隔を空けて層状に配置されることで、壁材wによって隔てられた複数の空間を有する多層構造部分Mを有する。そして、その多層構造部分Mにおいて、燃焼部14で発生した燃焼排ガスを含む排気ガスと、セルスタックCS及び燃焼部14へ供給される空気とが、複数の空間に各別に流れることで、排気ガスと空気との熱交換が壁材wを介して行われるように構成されている。また、多層構造部分Mにおいて、内側(内部断熱材Hin側)の空間に排気ガスが流れ、外側(外部断熱材Hout側)の空間に空気が流れる。多層構造部分Mにおいて、排気ガスの流れる方向と、空気の流れる方向とが対向している。 As described above, in each of the front structure 2, the back structure 3, the right side structure 4, and the left side structure 5 of the storage housing 1, a plurality of wall materials w are arranged in layers at intervals from each other. It has a multi-layered structure portion M having a plurality of spaces separated by a wall material w. Then, in the multilayer structure portion M, the exhaust gas including the combustion exhaust gas generated in the combustion unit 14 and the air supplied to the cell stack CS and the combustion unit 14 flow separately in a plurality of spaces, so that the exhaust gas is exhausted. It is configured so that heat exchange between air and air is performed via the wall material w. Further, in the multilayer structure portion M, the exhaust gas flows in the space inside (on the side of the internal heat insulating material Hin), and the air flows in the space on the outside (on the side of the external heat insulating material Hout). In the multilayer structure portion M, the direction in which the exhaust gas flows and the direction in which the air flows face each other.

正面構造体2の場合、第1正面部材2aと第2正面部材2bと第3正面部材2cとが多層構造部分Mに対応する。背面構造体3の場合、第1背面部材3aと第2背面部材3bと第3背面部材3cとが多層構造部分Mに対応する。右側構造体4の場合、第1右側部材4aと第2右側部材4bと第3右側部材4cとが多層構造部分Mに対応する。左側構造体5の場合、第1左側部材5aと第2左側部材5bと第3左側部材5cとが多層構造部分Mに対応する。 In the case of the front structure 2, the first front member 2a, the second front member 2b, and the third front member 2c correspond to the multilayer structure portion M. In the case of the back structure 3, the first back member 3a, the second back member 3b, and the third back member 3c correspond to the multilayer structure portion M. In the case of the right side structure 4, the first right side member 4a, the second right side member 4b, and the third right side member 4c correspond to the multilayer structure portion M. In the case of the left side structure 5, the first left side member 5a, the second left side member 5b, and the third left side member 5c correspond to the multilayer structure portion M.

本実施形態において、収納筐体1の正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5のそれぞれに設けられている多層構造部分Mでは、上方から下方に向かって高温の排気ガスが流れる。そのため、各多層構造部分Mでは、上方が下方よりも温度が高くなっている。そして、収納筐体1の多層構造部分Mの外面に設けられる外部断熱材Houtによる断熱効果は、多層構造部分Mの温度が高い領域ほど高くなるように形成されている。例えば、本実施形態の場合、熱伝導率が均一な外部断熱材Houtを用いて、収納筐体1の多層構造部分Mの外面に設けられる外部断熱材Houtの、その多層構造部分Mの外面からの厚さ(即ち、法線方向の厚さ)は、多層構造部分Mの温度が高い領域ほど厚く形成されている。本実施形態の場合、多層構造部分Mの外面に設けられる外部断熱材Houtは、上方が下方よりも厚く形成されている。つまり、温度が高い領域の多層構造部は厚い外部断熱材Houtで覆われるため、温度が高い領域の多層構造部分Mからの放熱が効果的に抑制される。 In the present embodiment, in the multilayer structure portion M provided in each of the front structure 2, the back structure 3, the right side structure 4, and the left side structure 5 of the storage housing 1, the temperature is high from above to below. Exhaust gas flows. Therefore, in each multilayer structure portion M, the temperature in the upper part is higher than that in the lower part. The heat insulating effect of the external heat insulating material Hout provided on the outer surface of the multi-layered structure portion M of the storage housing 1 is formed so that the higher the temperature of the multi-layered structure portion M, the higher the heat insulating effect. For example, in the case of the present embodiment, the external heat insulating material Hout having a uniform thermal conductivity is used from the outer surface of the multi-layered structure portion M of the external heat insulating material Hout provided on the outer surface of the multi-layered structure portion M of the storage housing 1. (That is, the thickness in the normal direction) is formed to be thicker in the region where the temperature of the multilayer structure portion M is higher. In the case of the present embodiment, the external heat insulating material Hout provided on the outer surface of the multilayer structure portion M is formed to be thicker at the upper side than at the lower side. That is, since the multilayer structure portion in the high temperature region is covered with the thick external heat insulating material Hout, heat dissipation from the multilayer structure portion M in the high temperature region is effectively suppressed.

加えて、収納筐体1の多層構造部分Mの内面に設けられる内部断熱材Hinによる断熱効果は、多層構造部分Mの温度が高い領域ほど低くなるように形成されている。例えば、本実施形態の場合、熱伝導率が均一な内部断熱材Hinを用いて、収納筐体1の多層構造部分Mの内面に設けられる内部断熱材Hinの、その多層構造部分Mの内面からの厚さ(法線方向の厚さ)は、多層構造部分Mの温度が高い領域ほど薄く形成されている。つまり、本実施形態では、多層構造部分Mの温度が高い領域ほど、外部断熱材Houtは厚く形成され且つ内部断熱材Hinは薄く形成され、多層構造部分Mの温度が低い領域ほど、外部断熱材Houtは薄く形成され且つ内部断熱材Hinは厚く形成される。 In addition, the heat insulating effect of the internal heat insulating material Hin provided on the inner surface of the multi-layered structure portion M of the storage housing 1 is formed so that the higher the temperature of the multi-layered structure portion M, the lower the heat insulating effect. For example, in the case of the present embodiment, the internal heat insulating material Hin having a uniform thermal conductivity is used from the inner surface of the multi-layered structure portion M of the internal heat insulating material Hin provided on the inner surface of the multi-layered structure portion M of the storage housing 1. The thickness (thickness in the normal direction) of the multilayer structure portion M is formed thinner as the temperature of the multilayer structure portion M is higher. That is, in the present embodiment, the higher the temperature of the multilayer structure portion M, the thicker the external heat insulating material Hout is formed and the thinner the internal heat insulating material Hin, and the lower the temperature of the multilayer structure portion M, the thicker the external heat insulating material. The Hout is formed thin and the internal heat insulating material Hin is formed thick.

上述のように、収納筐体1の多層構造部分Mを構成する正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5は、鉛直方向に直立しているのではなく、傾斜して設けられている。そして、本実施形態の固体酸化物形燃料電池では、多層構造部分Mの厚さと、その多層構造部分Mの外面からの外部断熱材Houtの厚さと、その多層構造部分Mの内面からの内部断熱材Hinの厚さとの合計は一定である。つまり、外部断熱材Hout及び内部断熱材Hinの厚さは、多層構造部分Mの温度の高低に応じて変化しているが、多層構造部分M及び外部断熱材Hout及び内部断熱材Hinの全体で見ると、図中の鉛直上下方向で、それら合計の厚さは一定である。
尚、上述した収納筐体1の多層構造部分Mを構成する正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5の傾斜角度は適宜設計可能である。
As described above, the front structure 2, the back structure 3, the right side structure 4, and the left side structure 5 constituting the multilayer structure portion M of the storage housing 1 are not upright in the vertical direction but are inclined. It is provided. In the solid oxide fuel cell of the present embodiment, the thickness of the multilayer structure portion M, the thickness of the external heat insulating material Hout from the outer surface of the multilayer structure portion M, and the internal heat insulation from the inner surface of the multilayer structure portion M. The sum with the thickness of the material Hin is constant. That is, the thicknesses of the external heat insulating material Hout and the internal heat insulating material Hin vary depending on the temperature of the multilayer structure portion M, but the thickness of the multi-layered structure portion M, the external heat insulating material Hout, and the internal heat insulating material Hin is the whole. Looking at it, the total thickness is constant in the vertical vertical direction in the figure.
The inclination angles of the front structure 2, the back structure 3, the right side structure 4, and the left side structure 5 constituting the multilayer structure portion M of the storage housing 1 described above can be appropriately designed.

次に、本実施形態の固体酸化物形燃料電池で採用する外部断熱材Hout及び内部断熱材Hinの効果を確認するために行ったコンピュータシミュレーションについて図4を参照して説明する。 Next, a computer simulation performed to confirm the effects of the external heat insulating material Hout and the internal heat insulating material Hin used in the solid oxide fuel cell of the present embodiment will be described with reference to FIG.

図4(a)は実施例のモデルを示す図であり、図4(b)は比較例のモデルを示す図である。これらのモデルは、収納筐体1をその両側から内部断熱材Hinと外部断熱材Houtとで挟んだ構造になっている。 FIG. 4A is a diagram showing a model of an embodiment, and FIG. 4B is a diagram showing a model of a comparative example. These models have a structure in which the storage housing 1 is sandwiched between the internal heat insulating material Hin and the external heat insulating material Hout from both sides thereof.

実施例のモデルでは、多層構造部分Mの温度が高い領域ほど、外部断熱材Houtは厚く形成され且つ内部断熱材Hinは薄く形成され、多層構造部分Mの温度が低い領域ほど、外部断熱材Houtは薄く形成され且つ内部断熱材Hinは厚く形成されている。具体的には、図4(a)に示すように、L1t=22.4mm、L1b=46.4mm、L2t=40.8mm、L2b=16.8mmとした。つまり、実施例のモデルでは、内部断熱材Hin及び外部断熱材Houtの合計の厚さを63.2mmに設定した。 In the model of the embodiment, the higher the temperature of the multilayer structure portion M, the thicker the external heat insulating material Hout is formed and the thinner the internal heat insulating material Hin, and the lower the temperature of the multilayer structure portion M, the thicker the external heat insulating material Hout. Is formed thin and the internal heat insulating material Hin is formed thick. Specifically, as shown in FIG. 4A, L1t = 22.4 mm, L1b = 46.4 mm, L2t = 40.8 mm, and L2b = 16.8 mm. That is, in the model of the example, the total thickness of the internal heat insulating material Hin and the external heat insulating material Hout was set to 63.2 mm.

比較例では、多層構造部分Mの温度が高い領域と温度が低い領域とで、外部断熱材Hout及び内部断熱材Hinの厚さに変化はなく、一定にしている。具体的には、図4(b)に示すように、内部断熱材Hinの厚さを40mmで一定とし、外部断熱材Houtの厚さを30mmで一定とした。つまり、比較例のモデルでは、内部断熱材Hin及び外部断熱材Houtの合計の厚さを70mmに設定した。 In the comparative example, the thicknesses of the external heat insulating material Hout and the internal heat insulating material Hin do not change and are kept constant between the region where the temperature of the multilayer structure portion M is high and the region where the temperature is low. Specifically, as shown in FIG. 4B, the thickness of the internal heat insulating material Hin was fixed at 40 mm, and the thickness of the external heat insulating material Hout was fixed at 30 mm. That is, in the model of the comparative example, the total thickness of the internal heat insulating material Hin and the external heat insulating material Hout was set to 70 mm.

シミュレーション対象とする内部断熱材Hin及び外部断熱材Houtの高さは図4に示すように250mmである。多層構造部分Mは、厚さが各1mmの3枚のSUS板の壁材wが、互いに1.5mmの間隔を空けて層状に配置されることで、壁材wによって隔てられた複数の空間を有する。そして、図中の左側の空間に排気ガスが流れ、図中の右側の空間に空気が流れる。 The heights of the internal heat insulating material Hin and the external heat insulating material Hout to be simulated are 250 mm as shown in FIG. The multilayer structure portion M is a plurality of spaces separated by the wall material w by arranging the wall materials w of three SUS plates each having a thickness of 1 mm in a layered manner with an interval of 1.5 mm from each other. Have. Exhaust gas flows in the space on the left side of the figure, and air flows in the space on the right side of the figure.

〔シミュレーションの設定条件〕
多層構造部分Mの一方の空間に流入する排気ガスは、入口温度が410℃であり、組成は、COが5.1%、HOが22.1%、窒素が65.2%、酸素が7.6%である。多層構造部分Mの他方の空間に流入する空気は、入口温度が100℃であり、組成は、酸素21%、窒素79%である。これらの条件は、以下で運転した場合を想定したものとなっている。即ち、改質器11に供給される原燃料ガスは天然ガスであり、水蒸気改質におけるS/C=2.5であり、燃料利用率は80%であり、空気利用率は45%である。そして、セルスタックCSのDC出力は770Wであり、平均セル電圧は0.8Vである。
[Simulation setting conditions]
The exhaust gas flowing into one space of the multilayer structure portion M has an inlet temperature of 410 ° C., and has a composition of 5.1% CO 2 , 22.1% H 2 O, 65.2% nitrogen, and so on. Oxygen is 7.6%. The air flowing into the other space of the multilayer structure portion M has an inlet temperature of 100 ° C. and a composition of oxygen 21% and nitrogen 79%. These conditions are based on the assumption that the vehicle is operated as follows. That is, the raw fuel gas supplied to the reformer 11 is natural gas, S / C = 2.5 in steam reforming, the fuel utilization rate is 80%, and the air utilization rate is 45%. .. The DC output of the cell stack CS is 770 W, and the average cell voltage is 0.8 V.

各部材の熱伝導率は以下の通りである。
内部断熱材Hin及び外部断熱材Hout:0.033W/(m・K)
多層構造部分Mの壁材wであるSUS板:26.4W/(m・K)
The thermal conductivity of each member is as follows.
Internal heat insulating material Hin and external heat insulating material Hout: 0.033W / (m ・ K)
SUS plate which is the wall material w of the multi-layer structure part M: 26.4 W / (m · K)

境界条件は以下の通りである。
内部断熱材Hinの表面(図中の左側):600℃等温条件
外部断熱材Houtの表面(図中の右側):熱伝達率20W/(m・K)、外部温度40℃
モデルの上下端:排気ガス及び空気の流路部を除き、断熱条件
The boundary conditions are as follows.
Surface of internal heat insulating material Hin (left side in the figure): 600 ° C isothermal condition Surface of external heat insulating material Hout (right side in the figure): Heat transfer coefficient 20 W / (m 2 · K), external temperature 40 ° C
Upper and lower ends of the model: Insulation conditions except for exhaust gas and air flow paths

このときのシミュレーション結果を以下の表1に示す。
実施例及び比較例のモデルにおいて、排気ガス出口温度及び空気出口温度はほぼ同じである。外部断熱材Houtからの放熱量Q-outは、実施例のモデルで132W/mであり、比較例のモデルで131W/mである。このように、実施例のモデルでの内部断熱材Hin及び外部断熱材Houtの合計の厚さ(63.2mm)は、比較例のモデルでの内部断熱材Hin及び外部断熱材Houtの合計の厚さ(70mm)よりも薄いにも関わらず、外部断熱材Houtからの放熱量を十分に抑制できていることが分かる。
The simulation results at this time are shown in Table 1 below.
In the models of Examples and Comparative Examples, the exhaust gas outlet temperature and the air outlet temperature are almost the same. The heat dissipation amount Q-out from the external heat insulating material Hout is 132 W / m 2 in the model of the example and 131 W / m 2 in the model of the comparative example. As described above, the total thickness (63.2 mm) of the internal heat insulating material Hin and the external heat insulating material Hout in the model of the example is the total thickness of the internal heat insulating material Hin and the external heat insulating material Hout in the model of the comparative example. It can be seen that the amount of heat radiated from the external heat insulating material Hout can be sufficiently suppressed even though it is thinner than (70 mm).

内部断熱材Hinの表面(図中の左側)を600℃等温としている(即ち、内部断熱材Hinの表面が600℃になるように入熱量が定まる)が、内部断熱材Hinへの入熱量Q-inは、実施例のモデルで226W/mであり、比較例のモデルで192W/mというように相違している。これは、実施例のモデルにおいて、内部断熱材Hinの厚さは多層構造部分Mの温度が高い領域(モデルの排気ガス入口付近)ほど薄く形成されており、その厚さは比較例のモデルの内部断熱材Hinよりも薄くなっているため、内部断熱材Hinへ熱が入り易くなったためだと考えられる。 The surface of the internal heat insulating material Hin (left side in the figure) is set to an isothermal temperature of 600 ° C. (that is, the amount of heat input is determined so that the surface of the internal heat insulating material Hin is 600 ° C.), but the amount of heat input to the internal heat insulating material Hin is Q. -In is 226 W / m 2 in the model of the example, and 192 W / m 2 in the model of the comparative example. This is because, in the model of the example, the thickness of the internal heat insulating material Hin is formed thinner in the region where the temperature of the multilayer structure portion M is higher (near the exhaust gas inlet of the model), and the thickness is the same as that of the model of the comparative example. Since it is thinner than the internal heat insulating material Hin, it is considered that heat easily enters the internal heat insulating material Hin.

Figure 2022054696000002
Figure 2022054696000002

尚、図6のように、内部断熱材Hinへの入熱量Q-inを、実施例及び比較例の各モデルにおいて上側入熱量Q-high及び下側入熱量Q-lowというように上下に分けて数値化した場合、以下の表2のような数値になる。この表2から分かるように、内部断熱材Hinの下側への入熱量Q-lowは、実施例(106W/m)と比較例(107W/m)とでほとんど差が無い。つまり、本実施形態の固体酸化物形燃料電池の構成を考えた場合、収納筐体1の内部空間Sの下方に設置されるセルスタックCSから内側断熱材の下側へと移動する熱量は、実施例のモデルと比較例のモデルとでほとんど差が無いと言える。従って、実施例のモデルを用いた場合、比較例のモデルと比べてセルスタックCSの温度が低下するといった問題及びセルスタックCSからの放熱量が増えるといった問題は生じないと言える。 As shown in FIG. 6, the heat input amount Q-in to the internal heat insulating material Hin is divided into upper and lower heat input amounts Q-high and lower heat input amount Q-low in each model of the example and the comparative example. When quantified, the values are as shown in Table 2 below. As can be seen from Table 2, there is almost no difference in the amount of heat input Q-low to the lower side of the internal heat insulating material Hin between the example (106 W / m 2 ) and the comparative example (107 W / m 2 ). That is, when considering the configuration of the solid oxide fuel cell of the present embodiment, the amount of heat transferred from the cell stack CS installed below the internal space S of the storage housing 1 to the lower side of the inner heat insulating material is It can be said that there is almost no difference between the model of the example and the model of the comparative example. Therefore, when the model of the example is used, it can be said that the problem of lowering the temperature of the cell stack CS and the problem of increasing the amount of heat dissipated from the cell stack CS do not occur as compared with the model of the comparative example.

Figure 2022054696000003
Figure 2022054696000003

以上のように、本実施形態の固体酸化物形燃料電池では、収納筐体1の多層構造部分Mの外面に設けられる外部断熱材Houtの、その多層構造部分Mの外面からの厚さは、多層構造部分Mの温度が高い領域ほど厚く形成されている。その結果、上記表2の「外部断熱材Houtからの放熱量Q-out」の数値で示したように、多層構造部分Mから外側への放熱、特に多層構造部分Mの温度が高い領域から外側への放熱が効果的に抑制される。従って、多層構造部分Mよりも内側の、収納筐体1の内部空間Sの温度低下が抑制される。また、放熱量を増やすことなく、多層構造部分Mの内外に設けられる内側断熱材Hin及び外側断熱材Houtの合計厚さを減らすことができ、収納筐体1の薄型化を実現できる。 As described above, in the solid oxide fuel cell of the present embodiment, the thickness of the external heat insulating material Hout provided on the outer surface of the multilayer structure portion M of the storage housing 1 from the outer surface of the multilayer structure portion M is set. The region where the temperature of the multilayer structure portion M is higher is formed thicker. As a result, as shown by the numerical value of "heat dissipation amount Q-out from the external heat insulating material Hout" in Table 2 above, heat is dissipated from the multilayer structure portion M to the outside, particularly from the region where the temperature of the multilayer structure portion M is high to the outside. Heat dissipation to is effectively suppressed. Therefore, the temperature drop of the internal space S of the storage housing 1 inside the multilayer structure portion M is suppressed. Further, the total thickness of the inner heat insulating material Hin and the outer heat insulating material Hout provided inside and outside the multilayer structure portion M can be reduced without increasing the amount of heat radiation, and the storage housing 1 can be made thinner.

<別実施形態>
<1>
上記実施形態では、固体酸化物形燃料電池の構成について具体例を挙げて説明したが、その構成については適宜変更可能である。
例えば、収納筐体1の内部空間Sにおける各機器(改質器11、セルスタックCS、燃焼部14など)の設置場所は適宜変更可能である。また、各機器の形状なども適宜変更可能である。
<Another Embodiment>
<1>
In the above embodiment, the configuration of the solid oxide fuel cell has been described with reference to specific examples, but the configuration can be changed as appropriate.
For example, the installation location of each device (reformer 11, cell stack CS, combustion unit 14, etc.) in the internal space S of the storage housing 1 can be appropriately changed. In addition, the shape of each device can be changed as appropriate.

<2>
上記実施形態では、同一種類の(即ち、熱伝導率が同一の)外部断熱材Houtの厚さ及び同一種類の内部断熱材Hinの厚さを連続的に変化させる(即ち、各断熱材による断熱効果を連続的に変化させる)場合を説明したが、本発明はそのような場合に限定されない。例えば、図6に例示するように、同一種類の外部断熱材Houtの厚さ及び同一種類の内部断熱材Hinの厚さを段階的に(ステップ状に)変化させることで、断熱材による断熱効果を段階的に変化させてもよい。
<2>
In the above embodiment, the thickness of the external heat insulating material Hout of the same type (that is, the same thermal conductivity) and the thickness of the internal heat insulating material Hin of the same type are continuously changed (that is, heat insulation by each heat insulating material). Although the case of continuously changing the effect) has been described, the present invention is not limited to such a case. For example, as illustrated in FIG. 6, by changing the thickness of the external heat insulating material Hout of the same type and the thickness of the internal heat insulating material Hin of the same type stepwise (stepwise), the heat insulating effect of the heat insulating material is obtained. May be changed step by step.

或いは、熱伝導率が異なる複数種の断熱材を併せて用いれば、外部断熱材Hout及び内部断熱材Hinの厚さを変化させずに一様にしながら、外部断熱材Hout及び内部断熱材Hinの中で断熱効果の高い部分と断熱効果の低い部分とを形成することもできる。例えば、多層構造部分Mに面して設けられる外部断熱材Houtの厚さを一定にしながら、多層構造部分Mの温度が高い領域に面して熱伝導率の小さい(即ち、断熱効果の高い)材料を用いた外部断熱材Houtを設置し、多層構造部分Mの温度が低い領域に面して熱伝導率の大きい(即ち、断熱効果の低い)材料を用いた外部断熱材Houtを設置することができる。また、多層構造部分Mに面して設けられる内部断熱材Hinの厚さを一定にしながら、多層構造部分Mの温度が高い領域に面して熱伝導率の大きい(即ち、断熱効果の低い)材料を用いた内部断熱材Hinを設置し、多層構造部分Mの温度が低い領域に面して熱伝導率の小さい(即ち、断熱効果の高い)材料を用いた内部断熱材Hinを設置することができる。 Alternatively, if a plurality of types of heat insulating materials having different thermal conductivitys are used together, the thickness of the external heat insulating material Hout and the internal heat insulating material Hin can be made uniform without changing the thickness of the external heat insulating material Hout and the internal heat insulating material Hin. It is also possible to form a portion having a high heat insulating effect and a portion having a low heat insulating effect. For example, while keeping the thickness of the external heat insulating material Hout provided facing the multilayer structure portion M constant, the thermal conductivity is small (that is, the heat insulating effect is high) facing the region where the temperature of the multilayer structure portion M is high. An external heat insulating material Hout using a material is installed, and an external heat insulating material Hout using a material having a high thermal conductivity (that is, a low heat insulating effect) is installed facing a region where the temperature of the multilayer structure portion M is low. Can be done. Further, while keeping the thickness of the internal heat insulating material Hin provided facing the multilayer structure portion M constant, the heat conductivity is high (that is, the heat insulating effect is low) facing the region where the temperature of the multilayer structure portion M is high (that is, the heat insulating effect is low). Install the internal heat insulating material Hin using the material, and install the internal heat insulating material Hin using the material with low thermal conductivity (that is, high heat insulating effect) facing the region where the temperature of the multilayer structure portion M is low. Can be done.

<3>
上記実施形態では、収納筐体1の4つの側面を構成する正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5のそれぞれの多層構造部分Mに、多層構造部分Mの温度が高い領域ほど断熱効果が高くなるように形成されている外部断熱材Hout、及び、多層構造部分Mの温度が高い領域ほど断熱効果が低くなるように形成されている内部断熱材Hinが設けられる例を説明したが、本発明はそのような例に限定されない。例えば、収納筐体1の正面構造体2及び背面構造体3の合計2面や、右側構造体4及び左側構造体5の合計2面などに上記外部断熱材Hout及び上記内部断熱材Hinが設けられる構成を採用してもよい。
<3>
In the above embodiment, the temperature of the multilayer structure portion M is set on each of the multilayer structure portions M of the front structure 2, the back structure 3, the right side structure 4, and the left side structure 5 constituting the four side surfaces of the storage housing 1. The external heat insulating material Hout is formed so that the heat insulating effect is higher in the region where the heat is higher, and the internal heat insulating material Hin is provided so that the heat insulating effect is lower in the region where the temperature of the multilayer structure portion M is higher. Although examples have been described, the present invention is not limited to such examples. For example, the external heat insulating material Hout and the internal heat insulating material Hin are provided on a total of two surfaces of the front structure 2 and the back structure 3 of the storage housing 1, and a total of two surfaces of the right side structure 4 and the left side structure 5. May be adopted.

<4>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
<4>
The configurations disclosed in the above embodiment (including other embodiments, the same shall apply hereinafter) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and are also disclosed herein. The embodiment is an example, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、収納筐体の内部を高温に保つことができ、放熱損失の少ない固体酸化物形燃料電池に利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a solid oxide fuel cell that can keep the inside of the storage housing at a high temperature and has a small heat dissipation loss.

1 :収納筐体
2a :第1正面部材(壁材 w)
2b :第2正面部材(壁材 w)
2c :第3正面部材(壁材 w)
3a :第1背面部材(壁材 w)
3b :第2背面部材(壁材 w)
3c :第3背面部材(壁材 w)
4a :第1右側部材(壁材 w)
4b :第2右側部材(壁材 w)
4c :第3右側部材(壁材 w)
5a :第1左側部材(壁材 w)
5b :第2左側部材(壁材 w)
5c :第3左側部材(壁材 w)
11 :改質器
14 :燃焼部
CS :セルスタック
H1 :内部正面断熱材(内部断熱材 Hin)
H2 :内部背面断熱材(内部断熱材 Hin)
H3 :内部右側断熱材(内部断熱材 Hin)
H4 :内部左側断熱材(内部断熱材 Hin)
H7 :外部正面断熱材(外部断熱材 Hout)
H8 :外部背面断熱材(外部断熱材 Hout)
H9 :外部右側断熱材(外部断熱材 Hout)
H10 :外部左側断熱材(外部断熱材 Hout)
Hin :内部断熱材
Hout :外部断熱材
M :多層構造部分
S :内部空間
w :壁材
1: Storage housing 2a: First front member (wall material w)
2b: Second front member (wall material w)
2c: Third front member (wall material w)
3a: First back member (wall material w)
3b: Second back member (wall material w)
3c: Third back member (wall material w)
4a: First right side member (wall material w)
4b: Second right member (wall material w)
4c: Third right member (wall material w)
5a: First left member (wall material w)
5b: Second left side member (wall material w)
5c: Third left member (wall material w)
11: Reformer 14: Combustion part CS: Cell stack H1: Internal front heat insulating material (internal heat insulating material Hin)
H2: Internal back insulation material (internal insulation material Hin)
H3: Internal right heat insulating material (internal heat insulating material Hin)
H4: Internal left heat insulating material (internal heat insulating material Hin)
H7: External front insulation material (external insulation material Hout)
H8: External back insulation material (external insulation material Hout)
H9: External right heat insulating material (external heat insulating material Hout)
H10: External left heat insulating material (external heat insulating material Hout)
Hin: Internal heat insulating material Hout: External heat insulating material M: Multilayer structure part S: Internal space w: Wall material

Claims (6)

収納筐体と、前記収納筐体の内面に設けられる内部断熱材と、前記収納筐体の外面に設けられる外部断熱材とを備え、
前記収納筐体の前記内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、前記セルスタックから排出されるオフガスを燃焼して、その燃焼熱を前記改質器に与える燃焼部とを備える固体酸化物形燃料電池であって、
前記収納筐体は、複数の壁材が互いに間隔を空けて層状に配置されることで、前記壁材によって隔てられた複数の空間を有する多層構造部分を有し、
前記多層構造部分において、前記燃焼部で発生した燃焼排ガスを含む排気ガスと、前記セルスタック及び前記燃焼部へ供給される空気とが、複数の前記空間に各別に流れることで、前記排気ガスと前記空気との熱交換が前記壁材を介して行われるように構成され、
前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど高くなるように形成されている固体酸化物形燃料電池。
A storage housing, an internal heat insulating material provided on the inner surface of the storage housing, and an external heat insulating material provided on the outer surface of the storage housing are provided.
In the internal space inside the internal heat insulating material of the storage housing, a reformer that steam-reforms raw fuel to generate fuel gas and a fuel gas generated by the reformer are used to generate power. A solid oxide fuel cell including a cell stack having a plurality of fuel cell cells and a combustion unit that burns off gas discharged from the cell stack and applies the combustion heat to the reformer.
The storage housing has a multi-layered structure portion having a plurality of spaces separated by the wall materials by arranging the plurality of wall materials in a layered manner at intervals from each other.
In the multi-layered structure portion, the exhaust gas including the combustion exhaust gas generated in the combustion portion and the air supplied to the cell stack and the combustion portion flow separately into the plurality of spaces to obtain the exhaust gas. It is configured so that heat exchange with the air is performed through the wall material.
A solid oxide fuel cell formed so that the heat insulating effect of the external heat insulating material provided on the outer surface of the multilayer structure portion of the storage housing becomes higher in a region where the temperature of the multilayer structure portion is higher.
前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材の、当該多層構造部分の外面からの厚さは、前記多層構造部分の温度が高い領域ほど厚く形成されている請求項1に記載の固体酸化物形燃料電池。 The thickness of the external heat insulating material provided on the outer surface of the multilayer structure portion of the storage housing from the outer surface of the multilayer structure portion is formed to be thicker in a region where the temperature of the multilayer structure portion is higher. The solid oxide fuel cell described in. 前記多層構造部分において、内側の前記空間に前記排気ガスが流れ、外側の前記空間に前記空気が流れる請求項1又は2に記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to claim 1 or 2, wherein in the multilayer structure portion, the exhaust gas flows in the inner space and the air flows in the outer space. 前記多層構造部分において、前記排気ガスの流れる方向と、前記空気の流れる方向とが対向している請求項1~3の何れか一項に記載の固体酸化物形燃料電池。 The solid oxide fuel cell according to any one of claims 1 to 3, wherein in the multilayer structure portion, the direction in which the exhaust gas flows and the direction in which the air flows face each other. 前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど低くなるように形成されている請求項1~4の何れか一項に記載の固体酸化物形燃料電池。 Any one of claims 1 to 4, wherein the heat insulating effect of the internal heat insulating material provided on the inner surface of the multi-layered structure portion of the storage housing is formed so that the temperature of the multi-layered structure portion becomes lower as the temperature is higher. The solid oxide fuel cell according to the section. 前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材の、当該多層構造部分の内面からの厚さは、前記多層構造部分の温度が高い領域ほど薄く形成されている請求項5に記載の固体酸化物形燃料電池。
5. The thickness of the internal heat insulating material provided on the inner surface of the multilayer structure portion of the storage housing from the inner surface of the multilayer structure portion is formed thinner as the temperature of the multilayer structure portion is higher. The solid oxide fuel cell described in.
JP2020161866A 2020-09-28 2020-09-28 solid oxide fuel cell Active JP7433182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020161866A JP7433182B2 (en) 2020-09-28 2020-09-28 solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020161866A JP7433182B2 (en) 2020-09-28 2020-09-28 solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2022054696A true JP2022054696A (en) 2022-04-07
JP7433182B2 JP7433182B2 (en) 2024-02-19

Family

ID=80997956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020161866A Active JP7433182B2 (en) 2020-09-28 2020-09-28 solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP7433182B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3386017B1 (en) 2017-04-07 2019-11-20 Panasonic Intellectual Property Management Co., Ltd. High-temperature operating fuel cell system

Also Published As

Publication number Publication date
JP7433182B2 (en) 2024-02-19

Similar Documents

Publication Publication Date Title
JP5436196B2 (en) Power generator
JP5109252B2 (en) Fuel cell
JP6719070B2 (en) High temperature operating fuel cell and fuel cell system.
JP5744349B2 (en) Fuel cell module and fuel cell device
WO2007066619A1 (en) Fuel cell
JP5408609B2 (en) Fuel cell
JP4751580B2 (en) Power generator
JP5427568B2 (en) Power generator
JP6111904B2 (en) Fuel cell device
JP5481181B2 (en) Power generator
JP6550814B2 (en) Air preheater and power generator
JP4778198B2 (en) Power generator
JP2010245049A (en) Fuel cell assembly
JP2007026928A (en) Fuel cell
JP4704693B2 (en) Power generator
JP5907751B2 (en) Solid oxide fuel cell
JP4986403B2 (en) Power generator
JP4704696B2 (en) Power generator
JP7433182B2 (en) solid oxide fuel cell
JP4942287B2 (en) Power generator
JP4733354B2 (en) Power generator
WO2017057151A1 (en) Fuel cell reformer, fuel cell module, and fuel cell device
JP2020119854A (en) Solid oxide fuel cell system
JP7397631B2 (en) fuel cell module
JP6177359B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230519

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240206

R150 Certificate of patent or registration of utility model

Ref document number: 7433182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150