JP2022053418A - Optimum regulator - Google Patents

Optimum regulator Download PDF

Info

Publication number
JP2022053418A
JP2022053418A JP2020160253A JP2020160253A JP2022053418A JP 2022053418 A JP2022053418 A JP 2022053418A JP 2020160253 A JP2020160253 A JP 2020160253A JP 2020160253 A JP2020160253 A JP 2020160253A JP 2022053418 A JP2022053418 A JP 2022053418A
Authority
JP
Japan
Prior art keywords
control
power
evaluation function
variable
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020160253A
Other languages
Japanese (ja)
Inventor
忠三 蜷川
Chuzo Ninagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai National Higher Education and Research System NUC
Original Assignee
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai National Higher Education and Research System NUC filed Critical Tokai National Higher Education and Research System NUC
Priority to JP2020160253A priority Critical patent/JP2022053418A/en
Publication of JP2022053418A publication Critical patent/JP2022053418A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide an optimum regulator using an evaluation function capable of directly calculating a power rate.SOLUTION: An optimum regulator controls an air-conditioning system configured to adjust the room temperature of a common space and power consumption, and is characterized in that an evaluation function thereof is represented as a formula.SELECTED DRAWING: None

Description

本発明は、スマートグリッド(次世代電力網)で想定される、時々刻々変動するリアルタイム電力料金単価に合わせて、需要家設備の本来機能とリアルタイム電力料金のトレードオフを最適制御するための方法を提供するものであり、特にビルに備えられた空調設備を集中管理して運転制御を行う場合に、ビルマルチ空調設備群の消費電力フィードバック制御方法に係る最適レギュレータに関するものである。 The present invention provides a method for optimally controlling the trade-off between the original function of consumer equipment and the real-time power charge according to the ever-changing real-time power charge unit price assumed in the smart grid (next-generation power network). This is particularly related to the optimum regulator related to the power consumption feedback control method of the building multi-air conditioning equipment group when the operation control is performed by centrally managing the air conditioning equipment provided in the building.

従来からビルの各部屋に備え付けられたビルマルチ空調機の運転を集中管理システムが知られている。ビルマルチ空調機は、1台の室外機と複数台の室内機の構成が最小単位の1つの設備となり、この設備が必要に応じて複数備え付けられる。通常、このビル内に備え付けられるビルマルチ空調設備は、空調機内部の組込み制御に加えて、集中管理システムホストコンピュータからの管理指示に応じて運転制御されるため、空調装置とホストコンピュータの間を取り持つ空調通信措置が備えられている。一般に、空調機組込み制御は冷媒制御を担当し、消費電力ひいては電力料金の管理は集中管理システムが担当する。 Conventionally, a centralized management system for operating a building multi air conditioner installed in each room of a building has been known. The building multi air conditioner consists of one outdoor unit and a plurality of indoor units as one facility having the smallest unit, and a plurality of these facilities are installed as needed. Normally, the building multi air conditioner installed in this building is operated and controlled according to the management instruction from the centralized management system host computer in addition to the built-in control inside the air conditioner. It is equipped with air-conditioning communication measures. Generally, the air conditioner embedded control is in charge of refrigerant control, and the centralized management system is in charge of power consumption and thus power charge management.

最近、数十分刻みで電力料金を変更するスマートグリッド技術であるリアルタイムプライシング(Real-Time Pricing: RTP)が注目されている。RTPを考慮して消費電力を制御する対象設備としては、ビル空調設備が有望である。しかし、ビル空調設備は電力料金だけでなく空調快適性を総合して管理されることが必要である。しかし、これまで室温にほとんど影響がない範囲で RTP料金が高ければ一部空調機を停止させ、低くなれば再度運転させてRTPに応答するといった単純なものであった。 Recently, real-time pricing (RTP), which is a smart grid technology that changes electricity charges in tens of minutes, is drawing attention. Building air-conditioning equipment is promising as a target equipment for controlling power consumption in consideration of RTP. However, it is necessary for building air-conditioning equipment to be managed not only for electricity charges but also for air-conditioning comfort. However, until now, if the RTP charge is high, some air conditioners are stopped, and if the RTP charge is low, the air conditioner is restarted to respond to the RTP.

RTP制度により、電力料金単価が10分程度の時間刻みで数倍~数十倍変動する環境下においては、電力料金単価の変更予定順列に対応する空調圧縮機インバータ電力制限指令順列として指令する制御方法を用いて、ある期間の合計電力料金と空調快適度を代表する「平均室温偏差」からなる評価関数を最小化する電力制限指令順列を、Simulated Annealingアルゴリズムにより最適解探索して制御する方式が提案されている。 Under the RTP system, in an environment where the unit price of electricity fluctuates several to several tens of times in time increments of about 10 minutes, control that commands the air conditioner compressor inverter power limit command sequence corresponding to the scheduled change sequence of the unit price of electricity. Using this method, a method that uses the Simulated Annealing algorithm to search for and control the optimum solution of the power limit command sequence that minimizes the evaluation function consisting of the total power charge for a certain period and the "average room temperature deviation" that represents air conditioning comfort. Proposed.

ところで、古典フィードバック制御例(非特許文献1)では、電力抑制値は古典制御理論の比例積分(PI)制御方式により制御可能であることを示しているが、その副作用である空調室温の悪化に対しては評価されていない。古典制御ではトレードオフ関係にある複数の制御変数を総合的最適状態に制御することができないためである。 By the way, in the classical feedback control example (Non-Patent Document 1), it is shown that the power suppression value can be controlled by the proportional integral (PI) control method of the classical control theory. It has not been evaluated. This is because classical control cannot control multiple control variables that are in a trade-off relationship to a comprehensive optimum state.

さらに、現代フィードバック制御例(非特許文献2)では、現代制御理論によりトレードオフにある空調電力と室温偏差という複数の制御変数を、評価関数を使って数十分間にわたり総合評価する最適レギュレータ方式を提案している。これにより、電力量の2乗と室温偏差の2乗の評価時間積分値で評価して最適(評価関数最小)の制御が可能である。 Furthermore, in the modern feedback control example (Non-Patent Document 2), an optimum regulator method that comprehensively evaluates a plurality of control variables such as air conditioning power and room temperature deviation, which are trade-offs based on modern control theory, over several tens of minutes using an evaluation function. Is proposing. This makes it possible to perform optimal control (minimum evaluation function) by evaluating with the evaluation time integral value of the square of the electric energy and the square of the room temperature deviation.

ここで,最適レギュレータは、原理上評価関数が線形2次形式であることが必須なので、電力量ペナルティは2乗で評価される。しかし、電力料金は電力量の1乗に比例(単価比例)するため、金額評価ができなかった。 Here, since it is essential that the evaluation function of the optimum regulator is in a linear quadratic form in principle, the electric energy penalty is evaluated by the square. However, since the electricity charge is proportional to the first power amount (proportional to the unit price), the monetary amount could not be evaluated.

Akihisa Kiyota, Morio Takahama, Chuzo Ninagawa, "Wide Area Network Discrete Feedback Control on FastADR of a Cluster of Building Air-conditioning Facilities",電気学会共通英文論文誌, IEEJ Transactions on Electrical and Electronic Engineering, Vol.11, pp.826?828, 2016.Akihisa Kiyota, Morio Takahama, Chuzo Ninagawa, "Wide Area Network Discrete Feedback Control on FastADR of a Cluster of Building Air-conditioning Facilities", IEEJ Transactions on Electrical and Electronic Engineering, Vol.11, pp. 826? 828, 2016. Chuzo Ninagawa, Hidetoshi Asaka, Morio Takahama, "Optimal Regulator with Time-shifted State Space Expression Converted from AR Model for Smart Grid FastADR",電気学会共通英文論文誌, IEEJ Transactions on Electrical and Electronic Engineering.Chuzo Ninagawa, Hidetoshi Asaka, Morio Takahama, "Optimal Regulator with Time-shifted State Space Expression Converted from AR Model for Smart Grid FastADR", IEEJ Transactions on Electrical and Electronic Engineering.

本発明の課題は、電力料金を直接計算可能な評価関数を用いた最適レギュレータを提案することである。 An object of the present invention is to propose an optimum regulator using an evaluation function capable of directly calculating a power charge.

上記課題を解決するために、現代制御理論の制御変数ベクトルからなる状態空間モデルにおいて、電力変数P(t)の平方根を取った「平方根電力変数」を定義し、

Figure 2022053418000001
In order to solve the above problem, in a state-space model consisting of control variable vectors of modern control theory, we define a "square root power variable" that takes the square root of the power variable P (t).
Figure 2022053418000001

本発明は、共通状態空間の室温及び消費電力を調整するように構成される空調システムを制御する最適レギュレータであって、

Figure 2022053418000002
The present invention is an optimal regulator that controls an air conditioning system configured to regulate room temperature and power consumption in a common state space.
Figure 2022053418000002

なお、最適レギュレータとは、外乱によって状態変数が目標値からずれたときに、式(8)に示す評価関数JTEを最小として状態変数を目標値に戻すための多入力多出力フィードバック制御方法である。 The optimum regulator is a multi-input multi-output feedback control method for returning the state variable to the target value by minimizing the evaluation function J TE shown in Eq. (8) when the state variable deviates from the target value due to disturbance. be.

ビル空調管理の観点からは、前記3項目のバランスを取る係数、すなわち、電力料金ペナルティ係数q11、室温偏差ペナルティ係数q22、および、操作量変化ペナルティ係数Rを相対的に調整することにより3項目の重要度を選択して、電力量と室温快適度を最適なバランスで制御可能となった。 From the viewpoint of building air conditioning management, the coefficients that balance the above three items, that is, the electric power charge penalty coefficient q 11 , the room temperature deviation penalty coefficient q 22 , and the operation amount change penalty coefficient R are relatively adjusted to 3 By selecting the importance of the item, it became possible to control the amount of power and room temperature comfort in the optimum balance.

さらに、電力料金ペナルティ係数q11をその時点の電力料金単価そのものに設定することにより、評価関数の電力量ペナルティ項積算値が電力料金(あるいはその定数倍)とすることができる。つまり、需要家側の観点からは、室温の快適さを維持できる範囲で電力料金の削減金額を時々刻々把握可能となる。将来電力料金が数十分で大きく変動するリアルタイム電力料金制度が導入された場合でも、時々刻々、1分毎に電力料金と室温偏差というトレードオフを需要家にとって最も望ましい割合に調整しながら制御ができるようになる。 Further, by setting the electric power charge penalty coefficient q 11 to the electric power charge unit price itself at that time, the integrated value of the electric energy penalty term of the evaluation function can be set as the electric power charge (or a constant multiple thereof). In other words, from the consumer's point of view, it becomes possible to grasp the amount of reduction in electricity charges from moment to moment as long as the comfort of room temperature can be maintained. Even if a real-time electricity tariff system is introduced in which the electricity tariff fluctuates greatly in tens of minutes in the future, control can be performed by adjusting the trade-off between electricity tariff and room temperature deviation every minute to the most desirable ratio for the consumer. become able to.

図1は、本発明の最適レギュレータを適用した場合の1分毎の離散時間と電力の変化を示した図である。FIG. 1 is a diagram showing changes in discrete time and power every minute when the optimum regulator of the present invention is applied. 図2は、従来技術の最適レギュレータを適用した場合の1分毎の離散時間と電力の変化を示した図である。FIG. 2 is a diagram showing changes in discrete time and power every minute when the optimum regulator of the prior art is applied. 図3は、本発明の最適レギュレータを適用した場合の1分毎の離散時間と室温の変化を示した図である。FIG. 3 is a diagram showing changes in the discrete time and room temperature every minute when the optimum regulator of the present invention is applied. 図4は、従来技術の最適レギュレータを適用した場合の1分毎の離散時間と温度の変化を示した図である。FIG. 4 is a diagram showing changes in the discrete time and temperature every minute when the optimum regulator of the prior art is applied.

本発明では、現代制御理論の制御変数ベクトルからなる状態空間モデルにおいて、電力変数P(t)の平方根を取った「平方根電力変数」を定義し、

Figure 2022053418000003
In the present invention, in a state-space model consisting of control variable vectors of modern control theory, a "square root power variable" that takes the square root of the power variable P (t) is defined.
Figure 2022053418000003

その理由は、後述のように現代制御理論の最適レギュレータ方式を採用して、複数の制御変数を状態ベクトルとしてまとめて、それら変数間のトレードオフ関係をバランスよく制御したいためである。初歩的なPID制御など古典制御理論では、制御対象の変数を独立して制御するしかないので、以下の式のように複数の変数を状態ベクトルとしてまとめて数式表現を得る必要はない。 The reason is that we want to adopt the optimum regulator method of modern control theory as described later, combine multiple control variables as state vectors, and control the trade-off relationship between these variables in a well-balanced manner. In classical control theory such as rudimentary PID control, there is no choice but to control the variables to be controlled independently, so it is not necessary to obtain a mathematical expression by grouping multiple variables as a state vector as shown in the following equation.

一般に、制御対象を古典制御では伝達関数、現代制御では状態方程式で数式モデルを得ることが制御系設計の出発点である。その固有の制御対象の数式モデルが知られてない場合、時系列データから数式モデルを同定することが多い。その際、デジタルの時代となった今では、時系列データは離散型データとしてしか得られない場合が一般的である。したがって、離散時間時系列データから古典制御では伝達関数、現代制御では離散型状態方程式を得る必要がある。 In general, the starting point of control system design is to obtain a mathematical model from a transfer function in classical control and a state equation in modern control. When the unique controlled mathematical model is not known, the mathematical model is often identified from the time series data. At that time, in the digital age, time-series data is generally obtained only as discrete data. Therefore, it is necessary to obtain the transfer function in classical control and the discrete equation of state in modern control from the discrete-time time series data.

以下には、複数の変数からなる離散時間時系列データから、離散変数ベクトルの状態方程式を得る方法を示す。 The following shows how to obtain the equation of state of a discrete-variable vector from discrete-time time-series data consisting of a plurality of variables.

一般に制御対象の振る舞いは、1ステップ前だけではなくて、何ステップ前からの動作の履歴でないとその特性を十分に表現できない場合が多い。したがって、まず最初に何ステップ前からの履歴としてモデル式を得る必要がある。本発明では線形回帰モデリング手法の一般的なものであるAR (Auto Regressive:自己回帰)モデル式を用いる。

Figure 2022053418000004
In general, the behavior of a controlled object is not limited to one step before, but in many cases, its characteristics cannot be fully expressed unless the operation history is from several steps before. Therefore, first of all, it is necessary to obtain the model formula as the history from several steps before. In the present invention, an AR (Auto Regressive) model formula, which is a general method of linear regression modeling, is used.
Figure 2022053418000004

次に、上記(1)式を現代制御理論の離散型状態方程式の形式にするには、

Figure 2022053418000005
Next, in order to make the above equation (1) into the form of the discrete equation of state of modern control theory,
Figure 2022053418000005

Figure 2022053418000006
Figure 2022053418000006

Figure 2022053418000007
Figure 2022053418000007

Figure 2022053418000008
Figure 2022053418000008

Figure 2022053418000009
Figure 2022053418000009

さて、現代制御理論における定番の最適レギュレータ制御方式では、評価関数を、制御期間中を通じて積算値が最小とするように、状態変数をフィードバックして制御する。この評価関数は、状態変数ベクトルおよび操作変数ベクトルの各要素に応じたペナルティ係数をかけて積算し、期間中の積算値を最小となるよう操作変数を出力して制御する。PID制御など古典制御理論では、各時点の被制御量と目標値の差を瞬時瞬時フィードバックして操作量を出力するのと対照的である。 By the way, in the standard optimum regulator control method in modern control theory, the evaluation function is controlled by feeding back the state variable so that the integrated value is minimized throughout the control period. This evaluation function multiplies the penalty coefficient according to each element of the state variable vector and the manipulated variable vector to integrate, and outputs and controls the manipulated variable so that the integrated value during the period is minimized. In classical control theory such as PID control, the difference between the controlled variable and the target value at each time point is instantly fed back and the manipulated variable is output.

現代制御理論の最適レギュレータ制御方式では、評価関数の計算式においてペナルティとなる変数が必ず2乗して積算されるという制約がある。その理由は、最適レギュレータは状態変数がベクトルとなっているため、行列計算の2次形式にすることによりスカラー量の2乗としてペナルティを計算する仕組みとなっているからである。 In the optimum regulator control method of modern control theory, there is a restriction that variables that are penalties in the calculation formula of the evaluation function are always squared and integrated. The reason is that since the state variable of the optimum regulator is a vector, the penalty is calculated as the square of the scalar quantity by making it a quadratic form of matrix calculation.

なお、ペナルティを与える変数(複数)は、互いに相反関係にあったり、優先度が異なる場合がある。本発明の場合でも、電力と室温偏差は優先度で差をつけたい。最適レギュレータ制御方式の評価関数式では、ペナルティを与える状態変数と操作変数に対してそれぞれ優先度係数をかけて計算する仕組みとなっている。 The variables that give a penalty may have a contradictory relationship with each other or have different priorities. Even in the case of the present invention, it is desired to make a difference in priority between electric power and room temperature deviation. In the evaluation function formula of the optimal regulator control method, the state variable and the operation variable that give a penalty are calculated by multiplying them by the priority coefficient.

Figure 2022053418000010
Figure 2022053418000010

Figure 2022053418000011
Figure 2022053418000011

Figure 2022053418000012
Figure 2022053418000012

(7)式の状態変数ペナルティ係数が行列になっているのは、状態変数ベクトルの個々の要素である状態変数ごとに、ペナルティ係数を変えて2乗スカラー量の総和を得るためである。 The reason why the state variable penalty coefficient in Eq. (7) is a matrix is to obtain the sum of the squared scalar quantities by changing the penalty coefficient for each state variable that is an individual element of the state variable vector.

ここまで述べてきた内容は、現代制御理論の公知の従来技術である。本発明の独創的な部分は、

Figure 2022053418000013
The contents described so far are known conventional techniques of modern control theory. The original part of the present invention is
Figure 2022053418000013

今回独自に定義した「シフト状態変数ベクトル」は現時刻の変数値と、過去の時刻の変数値から構成されており、過去の値にペナルティはかけないので、(7)式の行列のその部分は0としてある。

Figure 2022053418000014
The "shift state variable vector" uniquely defined this time consists of the variable value of the current time and the variable value of the past time, and no penalty is applied to the past value, so that part of the matrix in Eq. (7) Is set to 0.
Figure 2022053418000014

Figure 2022053418000015
Figure 2022053418000015

その意図を以下に説明する。従来の最適レギュレータでは、全ての変数を一律2次形式で計算する評価関数が、ベクトルからスカラーを得る2次形式演算の仕組み上不可欠であった。しかし、状態変数ベクトルの要素である状態変数(複数)のなかには、応用上、ペナルティを1乗で評価したい場合もある。しかし、従来技術ではやむなく2乗で計算評価されて制御していた。 The intention will be explained below. In the conventional optimum regulator, an evaluation function that calculates all variables in a uniform quadratic form was indispensable for the mechanism of quadratic form operation to obtain a scalar from a vector. However, some state variables (plural) that are elements of a state variable vector may want to evaluate the penalty in the first power for application purposes. However, in the conventional technology, it is unavoidably calculated and evaluated by the square and controlled.

Figure 2022053418000016
Figure 2022053418000016

Figure 2022053418000017
Figure 2022053418000017

即ち、フィードバック制御間隔ごとに時々刻々、電力料金と室温偏差2乗値で評価関数を計算評価しつつ、それらのバランスを取って最適レギュレータ制御方式を実行できる仕組みを作ることができた。 That is, it was possible to create a mechanism that can execute the optimum regulator control method by balancing the evaluation function while calculating and evaluating the evaluation function based on the power charge and the room temperature deviation squared value every moment at each feedback control interval.

それでは次に,制御期間を通じて評価関数を最小化するような,状態変数のベクトルフィードバックおよび時々刻々の最適な操作変数値を決定するアルゴリズムを説明する。このアルゴリズムは現代制御理論の最適レギュレータの標準方法であり本発明の独創部分ではない。 Next, we explain the vector feedback of the state variables and the algorithm that determines the optimum instrumental variable value from moment to moment so that the evaluation function is minimized throughout the control period. This algorithm is the standard method of the optimum regulator of modern control theory and is not an original part of the present invention.

本発明では、制御時間区間内では空調制御は設定温度近くに整定していくものと仮定する。つまり、対象にたいして適切な空調能力を持っているという仮定なので妥当と言える。制御時間区間内で徐々に整定する場合、最適レギュレータにおける最適状態ベクトルフィードバックは、Riccati方程式を解くことで数学的に求められることは現代制御理論で既知な手続きである。 In the present invention, it is assumed that the air conditioning control is set close to the set temperature within the control time interval. In other words, it is reasonable because it is assumed that the target has an appropriate air conditioning capacity. It is a well-known procedure in modern control theory that the optimal state vector feedback in an optimal regulator can be mathematically obtained by solving the Riccati equation when it is gradually set within the control time interval.

(5)式、(6)式、(8)式を用いて、また、制御期間において定常状態になると近似することにより、以下に示す(9)式の 離散時刻型Riccati方程式が得られることは公知である。 The discrete time-type Riccati equation of Eq. (9) shown below can be obtained by using Eqs. (5), (6), and (8), and by approximating that the steady state is reached during the control period. It is known.

Figure 2022053418000018
Figure 2022053418000018

Figure 2022053418000019
Figure 2022053418000019

現代制御理論により、Riccati方程式(9)式の解である状態フィードバック行列を満足するように、各状態変数をフィードバック制御すれば、それが、(8)の評価関数を最小化する制御となるということは証明されている。 According to modern control theory, if each state variable is feedback-controlled so as to satisfy the state feedback matrix that is the solution of the Riccati equation (9), it will be the control that minimizes the evaluation function of (8). That has been proven.

Figure 2022053418000020
Figure 2022053418000020

Figure 2022053418000021
Figure 2022053418000021

即ち、最適レギュレータ評価関数の2乗という数式制約のみから平方根電力定義して解決するのみならず、状態変数の過去経歴も考慮して制御するという最適レギュレータの特長を生かせる発明である。 That is, it is an invention that not only defines and solves the square root power from only the mathematical constraint of the square of the optimum regulator evaluation function, but also makes the best use of the feature of the optimum regulator that it controls by considering the past history of the state variable.

つまり、上式(11)で示される状態フィードバックによる操作量で制御することにより、(8)式の評価関数の積算値が制御期間中で最適に制御されることが、現代制御理論で保証されていることになる。 In other words, modern control theory guarantees that the integrated value of the evaluation function of Eq. (8) is optimally controlled during the control period by controlling by the manipulated variable by the state feedback shown in Eq. (11) above. It will be.

Figure 2022053418000022
Figure 2022053418000022

Figure 2022053418000023
Figure 2022053418000023

即ち、最適制御レギュレータ制御で、時々刻々制御周期分の電力料金そのものを評価しつつ、制御することを可能とした。最適レギュレータは評価関数内で状態変数が2乗される仕組みなので、本発明を利用しないと状態変数である電力の2乗になってしまい、ペナルティ係数行列要素q11に料金単価を代入していても電力料金そのものにならなかった。つまり、電気料金単価q11を乗じて積算されるので、電力料金金額そのものを時々刻々評価しつつ最適制御することが可能となる。 That is, with the optimum control regulator control, it is possible to control while evaluating the power charge itself for the control cycle from moment to moment. Since the optimal regulator is a mechanism in which the state variable is squared in the evaluation function, if the present invention is not used, it will be the square of the power that is the state variable, and the charge unit price is assigned to the penalty coefficient matrix element q 11 . However, it did not become the electricity charge itself. In other words, since it is calculated by multiplying the electricity charge unit price q 11 , it is possible to perform optimal control while evaluating the electricity charge amount itself from moment to moment.

ビル空調管理の観点からは、前記3項目のバランスを取る係数、すなわち、電力料金ペナルティ係数q11、室温偏差ペナルティ係数q22、および、操作量変化ペナルティ係数Rを相対的に調整することにより3項目の重要度を選択して、電力量と室温快適度を最適なバランスで制御可能となった。 From the viewpoint of building air conditioning management, the coefficients that balance the above three items, that is, the electric power charge penalty coefficient q 11 , the room temperature deviation penalty coefficient q 22 , and the operation amount change penalty coefficient R are relatively adjusted 3 By selecting the importance of the item, it became possible to control the amount of power and room temperature comfort in the optimum balance.

さらに、電力料金ペナルティ係数q11をその時点の電力料金単価そのものに設定することにより、評価関数の電力量ペナルティ項積算値が電力料金(あるいはその定数倍)とすることができる。つまり,需要家側の観点からは,室温の快適さを維持できる範囲で電力料金の削減金額を時々刻々把握可能となる。将来電力料金が数十分で大きく変動するリアルタイム電力料金制度が導入されたばあいでも、数十分毎に電力料金と室温偏差というトレードオフを需要家にとって最も望ましい割合に調整する制御ができるようになる。 Further, by setting the electric power charge penalty coefficient q 11 to the electric power charge unit price itself at that time, the integrated value of the electric energy penalty term of the evaluation function can be set as the electric power charge (or a constant multiple thereof). In other words, from the consumer's point of view, it becomes possible to grasp the amount of reduction in electricity charges from moment to moment as long as the comfort of room temperature can be maintained. Even if a real-time electricity tariff system is introduced in which electricity tariffs fluctuate significantly in the future, it will be possible to control the trade-off between electricity tariffs and room temperature deviation to the most desirable ratio for consumers every tens of minutes. become.

次に本発明における「平方根電力変数」を採用したときと、従来の電力変数を使用したときの空調システムの制御における、1分毎離散時間と電力の関係を図1及び図2に、1分毎離散時間と室温の関係を図3及び図4に示す。 Next, the relationship between the discrete time per minute and the power in the control of the air conditioning system when the "square root power variable" in the present invention is adopted and when the conventional power variable is used is shown in FIGS. 1 and 2 for 1 minute. The relationship between each discrete time and the room temperature is shown in FIGS. 3 and 4.

図1から図4に示すように、従来技術に比較して、本発明による最適レギュレータによる制御では、電力(すなわち電気料金)、室温のいずれにおいても滑らかな制御が実現され、空調システムに係る新しい制御方法を提案することができた。 As shown in FIGS. 1 to 4, in comparison with the prior art, the control by the optimum regulator according to the present invention realizes smooth control at both electric power (that is, electricity charges) and room temperature, and is new to the air conditioning system. I was able to propose a control method.

以上説明した実施形態では、空調システムにおいて利用する例を説明したが、フィードバック制御を行うものであれば、他の装置やシステムにおいて用いられるものに、本発明の最適レギュレータを適用してもよい。 In the embodiment described above, an example of use in an air conditioning system has been described, but the optimum regulator of the present invention may be applied to one used in other devices or systems as long as it performs feedback control.

Claims (1)

共通空間の室温及び消費電力を調整するように構成される空調システムを、制御する最適レギュレータであって、
Figure 2022053418000024
An optimal regulator that controls an air conditioning system configured to regulate room temperature and power consumption in a common space.
Figure 2022053418000024
JP2020160253A 2020-09-24 2020-09-24 Optimum regulator Pending JP2022053418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020160253A JP2022053418A (en) 2020-09-24 2020-09-24 Optimum regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020160253A JP2022053418A (en) 2020-09-24 2020-09-24 Optimum regulator

Publications (1)

Publication Number Publication Date
JP2022053418A true JP2022053418A (en) 2022-04-05

Family

ID=80963061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020160253A Pending JP2022053418A (en) 2020-09-24 2020-09-24 Optimum regulator

Country Status (1)

Country Link
JP (1) JP2022053418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278496B1 (en) * 2022-05-18 2023-05-19 三菱電機株式会社 Refrigeration cycle state prediction device, refrigeration cycle control device, and refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7278496B1 (en) * 2022-05-18 2023-05-19 三菱電機株式会社 Refrigeration cycle state prediction device, refrigeration cycle control device, and refrigeration cycle device
WO2023223444A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Refrigeration cycle state predicting device, refrigeration cycle control device, and refrigeration cycle device

Similar Documents

Publication Publication Date Title
US10809676B2 (en) Building HVAC system with multi-level model predictive control
Shao et al. A framework for incorporating demand response of smart buildings into the integrated heat and electricity energy system
Liao et al. A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer
EP3009899B1 (en) Allocation of energy production changes to meet demand changes
Salsbury et al. Predictive control methods to improve energy efficiency and reduce demand in buildings
Kim et al. Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation
Mahdavi et al. Modelling and control of ensembles of variable-speed air conditioning loads for demand response
JP5908302B2 (en) Storage energy storage optimization device, optimization method and optimization program
Blaauwbroek et al. Decentralized resource allocation and load scheduling for multicommodity smart energy systems
Rajasekhar et al. A survey of computational intelligence techniques for air-conditioners energy management
US20150066229A1 (en) Method and system for controlling an energy management installation
Vašak et al. Modular hierarchical model predictive control for coordinated and holistic energy management of buildings
Shabshab et al. Demand smoothing in military microgrids through coordinated direct load control
CN114512994A (en) Frequency modulation method, system, equipment and medium for cluster temperature control load system
KR20140075614A (en) Method for making smart energy consumption indicator
Abdulaal et al. A linear optimization based controller method for real-time load shifting in industrial and commercial buildings
Mohammad et al. Transactive control of industrial heating–ventilation–air-conditioning units in cold-storage warehouses for demand response
Ju et al. Hierarchical control of air-conditioning loads for flexible demand response in the short term
JP2023543216A (en) Method and device for controlling a compressor room
Vedullapalli et al. Optimal demand response in a building by battery and HVAC scheduling using model predictive control
Godina et al. Model predictive control technique for energy optimization in residential sector
CN110686380A (en) Method and device for regulating and controlling air conditioner load cluster
JP2022053418A (en) Optimum regulator
Bharati et al. Hierarchical optimization framework for demand dispatch in building-grid systems
EP4123864A1 (en) A system for controlling energy supply and/or consumption from an energy network