JP2022052676A - Metal crack inspection device using magnetic sensor - Google Patents

Metal crack inspection device using magnetic sensor Download PDF

Info

Publication number
JP2022052676A
JP2022052676A JP2020170792A JP2020170792A JP2022052676A JP 2022052676 A JP2022052676 A JP 2022052676A JP 2020170792 A JP2020170792 A JP 2020170792A JP 2020170792 A JP2020170792 A JP 2020170792A JP 2022052676 A JP2022052676 A JP 2022052676A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
coil
magnetic sensor
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020170792A
Other languages
Japanese (ja)
Inventor
啓二 塚田
Keiji Tsukada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020170792A priority Critical patent/JP2022052676A/en
Publication of JP2022052676A publication Critical patent/JP2022052676A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a metal crack inspection device that can obtain a defect signal directly above a crack in a metallic structure or a metal material, such as a steel plate, regardless of the location of the crack.SOLUTION: In a non-destructive inspection device that detects a magnetic field of eddy current generated in a metal inspected object by applying an AC magnetic field to the inspected object with magnetic sensors, as an application method, a linear wiring parallel to a surface of the inspected object is provided, and a pair of magnetic sensors having a sensitivity axis for detecting a magnetic field perpendicular to the surface of the inspected object are provided at axisymmetric positions across the linear wiring. As a first-order differential magnetic sensor that takes difference by the pair of magnetic sensors, a change in the magnetic field due to a crack in the magnetic field created by the eddy current is detected.SELECTED DRAWING: Figure 2

Description

本発明は、金属製の被検査体に交流磁場を印加することで被検査体に渦電流を生じさせ、この渦電流によって生じる2次的磁場を検出して被検査体の欠陥を探傷する磁気センサを用いた金属き裂検査装置に関する。 According to the present invention, an AC magnetic field is applied to a metal object to be inspected to generate an eddy current in the object to be inspected, and a secondary magnetic field generated by this eddy current is detected to detect defects in the object to be inspected. The present invention relates to a metal crack inspection device using a sensor.

従来、金属製構造物等の被検査体に生じた欠陥を磁気的に検査する方法として、渦電流探傷法や漏洩磁束探傷法が知られている。特に、渦電流探傷法では、印加コイルを用いて被検査体に交流磁場を印加することで被検査体に渦電流を発生させており、この被検査体に生じた渦電流が、被検査体に生じている傷などの欠陥の存在によって乱れることを利用して検査している。この渦電流の乱れの検出は、印加コイル自身のインダクタンス変化としてとらえるものや、印加コイルとは別に設けられた検出コイルを含む磁気センサで検出しているものがある。ここで、磁気センサとしてはホール素子、磁気抵抗素子(MR)、磁気インピーダンス素子(MI)等の薄膜デバイスがあり、検出コイルも広義の分類としては磁気センサに含まれる。 Conventionally, an eddy current flaw detection method and a leakage magnetic flux flaw detection method are known as methods for magnetically inspecting defects generated in an inspected object such as a metal structure. In particular, in the eddy current flaw detection method, an eddy current is generated in the inspected object by applying an AC magnetic field to the inspected object using an applied coil, and the eddy current generated in the inspected object is the eddy current in the inspected object. It is inspected by utilizing the fact that it is disturbed by the presence of defects such as scratches on the magnet. The eddy current turbulence may be detected as a change in the inductance of the applied coil itself, or may be detected by a magnetic sensor including a detection coil provided separately from the applied coil. Here, the magnetic sensor includes a thin film device such as a Hall element, a magnetoresistive element (MR), and a magnetic impedance element (MI), and the detection coil is also included in the magnetic sensor as a broad classification.

表面き裂検査には、一般的には磁気センサとして検出コイルが使われている。検出コイルを用いた方法では、検出コイルの感度の周波数特性は周波数に比例する特性をもっているため、低周波では低感度となり、特に直流では感度がゼロになるため計測ができなくなる。このため、検出コイルを用いた渦電流検査方法では印加磁場の周波数を数10kHz以上の高い周波数にして検査している。印加磁場の周波数はその印加磁場が金属の内部に到達する距離パラメータとして表皮深さに関係し、表皮深さは周波数の平方根に反比例する関係がある。このため、検出コイルを用いた渦電流探傷法は、被検査体の表面に生じるき裂の検査に広く用いられている。検出コイルを用いた検査は表面のき裂に限定されるが、その反面、検出コイルは磁束密度にコイル面積をかけた磁束を計測しているので、広い面積での異常をとらえることができるのと、コイル形状を例えば環境磁場をキャンセルできる一次微分コイルや2次微分など様々なコイル形状として自由に取ることができる。 For surface crack inspection, a detection coil is generally used as a magnetic sensor. In the method using the detection coil, since the frequency characteristic of the sensitivity of the detection coil has a characteristic proportional to the frequency, the sensitivity becomes low at a low frequency, and the sensitivity becomes zero especially at a direct current, so that the measurement cannot be performed. Therefore, in the eddy current inspection method using the detection coil, the frequency of the applied magnetic field is set to a high frequency of several tens of kHz or more for inspection. The frequency of the applied magnetic field is related to the skin depth as a distance parameter that the applied magnetic field reaches the inside of the metal, and the skin depth is inversely proportional to the square root of the frequency. Therefore, the eddy current flaw detection method using the detection coil is widely used for inspecting cracks generated on the surface of the object to be inspected. Inspection using the detection coil is limited to cracks on the surface, but on the other hand, the detection coil measures the magnetic flux obtained by multiplying the magnetic flux density by the coil area, so it is possible to detect abnormalities over a wide area. The coil shape can be freely taken as various coil shapes such as a first-order differential coil and a second-order differential that can cancel the environmental magnetic flux.

薄膜デバイスの磁気センサでは磁束密度として局所的な位置の磁場を検出することができる。このため、詳細な磁場分布を計測することができる。しかし、鉄鋼材などの被検査体の局所的な着磁の分布などの磁気雑音まで検出してしまうため、除去する場合には複数の磁気センサを使い、各磁気センサの出力の差分など演算処理する方法がとられたりする。このように検出手段としてコイルや薄膜デバイスの磁気センサをどのように使うかは、き裂検査装置において、その測定対象や検査要求仕様に合わせて使う選択する必要がある。 The magnetic sensor of the thin film device can detect the magnetic field at a local position as the magnetic flux density. Therefore, a detailed magnetic field distribution can be measured. However, since it detects magnetic noise such as the distribution of local magnetism of the object to be inspected such as steel, multiple magnetic sensors are used to remove it, and arithmetic processing such as the difference in the output of each magnetic sensor is performed. The way to do it is taken. In this way, how to use the magnetic sensor of the coil or thin film device as the detection means needs to be selected in the crack inspection device according to the measurement target and the inspection requirement specifications.

検査装置の最適化をするうえで、使用する磁気センサの選択とともに被検査体への印加磁場の与え方と、磁気センサの配置の最適化が重要である。印加磁場の与え方として、一般的には被検査体の表面に印加コイルの中心軸が垂直な方向を向く上置コイルが用いられている。この場合、被検査体に発生する渦電流の分布は上置コイルの形状のように、例えば円状の印加コイルでは円状になる。また、四角いコイルのコイルの中心軸が被検査体の表面と平行になり、かつ一辺が被検体表面に平行なタンジェンシャルコイルでは、平行な一辺近くに渦電流が集中的に流れる効果がある(例えば非特許文献1)。コイルを使わずに被検体表面に平行に配置したワイヤで印加する印加ワイヤ方法もある(非特許文献2)。これもタンジェンシャルコイルと同様に印加ワイヤに平行に渦電流が発生する。 In optimizing the inspection device, it is important to select the magnetic sensor to be used, how to apply the applied magnetic field to the object to be inspected, and to optimize the arrangement of the magnetic sensor. As a method of applying the applied magnetic field, an upper coil is generally used in which the central axis of the applied coil faces the surface of the object to be inspected in a direction perpendicular to the central axis. In this case, the distribution of the eddy current generated in the object to be inspected becomes circular, for example, in the circular application coil, like the shape of the upper coil. Further, in a tangential coil in which the central axis of the coil of the square coil is parallel to the surface of the object to be inspected and one side is parallel to the surface of the subject, there is an effect that eddy currents flow intensively near one parallel side ( For example, Non-Patent Document 1). There is also an application wire method in which a wire arranged parallel to the surface of the subject is applied without using a coil (Non-Patent Document 2). Similar to the tangential coil, an eddy current is generated in parallel with the applied wire.

上置コイルに対して検出コイルを用いたものでは、印加用の上置コイルの中心軸と同じ向きに中心軸を向けた検出コイルを用いることが多い。薄膜デバイスの磁気センサも同様に磁気センサの磁場検出方向を上置コイルの中心軸に合わせたものが多い。一方、上置コイルの中心軸から外して同じ側に2つの磁気センサを配置して各磁気センサの出力の差動をとるものがある(非特許文献3)。この場合、上置コイルの面積より小さい領域でのき裂による渦電流分布の変化をとらえることができる。さらに印加ワイヤの場合、印加ワイヤの直上で薄膜デバイスの磁気センサの感度軸が直交するように配置している。これにより、磁気センサへの印加ワイヤによる印加磁場の結合が弱くなり、渦電流により発生した2次的磁場である信号を精度よく検出することができる。また、印加ワイヤにより局所的な部分に磁場を印加することができるので、微小欠陥を検出することができる。 When a detection coil is used for the upper coil, a detection coil whose central axis is oriented in the same direction as the central axis of the upper coil for application is often used. Similarly, many magnetic sensors of thin film devices have the magnetic field detection direction of the magnetic sensor aligned with the central axis of the upper coil. On the other hand, there is one in which two magnetic sensors are arranged on the same side by removing from the central axis of the upper coil to take the differential of the output of each magnetic sensor (Non-Patent Document 3). In this case, changes in the eddy current distribution due to cracks in a region smaller than the area of the upper coil can be captured. Further, in the case of the applied wire, the sensitivity axes of the magnetic sensor of the thin film device are arranged so as to be orthogonal to each other directly above the applied wire. As a result, the coupling of the applied magnetic field by the applied wire to the magnetic sensor is weakened, and the signal which is the secondary magnetic field generated by the eddy current can be detected accurately. Further, since a magnetic field can be applied to a local portion by the application wire, minute defects can be detected.

印加ワイヤとして8の字の微分コイルを印加コイルとして用いて、その隣り合った辺を合わせて直線状配線としてものがある。検出用磁気センサとして一次微分の検出コイルを2つ接続して2次微分コイルとして直線状配線の上に配置したものがある(非特許文献4)。また8の字の印加コイルと8の字の検出コイルを直交するように配置したものもある(特許文献1、2)。 As the application wire, a figure eight differential coil is used as the application coil, and the adjacent sides thereof are combined to form a linear wiring. As a detection magnetic sensor, there is one in which two detection coils of the first derivative are connected and arranged on a linear wiring as a second derivative coil (Non-Patent Document 4). In some cases, the figure 8 application coil and the figure 8 detection coil are arranged so as to be orthogonal to each other (Patent Documents 1 and 2).

特開2019-39779JP-A-2019-39779 国際公開第WO00/08458号明細書International Publication No. WO00 / 08458

日本非破壊検査協会、″渦電流探傷試験 I″、pp.32-43Japan Nondestructive Testing Association, "Eddy Current Testing I", pp. 32-43 Keiji Tsukada,Hiroto Shobu,Yuto Goda,Takumi Kobara,Kenji Sakai,Toshihiko Kiwa,and Mohd Mawardi Saari,“Integrated magnetic sensor probe and excitation wire for nondestructive detection of submillimeter defects”,IEEE Magnetics Letters,vol.10,No.1,pp.8105105-1-5(2019)Keiji Tsukada, Hiroto Shobu, Yuto Goda, Takumi Kobara, Kenji Sakai, Toshihiko Kiwa, and Mohd Mawardi Saari, "Integrated magnetic sensor probe and excitation wire for nondestructive detection of submillimeter defects", IEEE Magnetics Letters, vol. 10, No. 1, pp. 8105105-1-5 (2019) Keiji Tsukada,Minoru Hayashi,Yoshihiro Nakamura,Kenji Sakai,and Toshihiko Kiwa,“Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures”,IEEE Transactions on Magnetics,vol.54,No.11,6202205(2018)Keiji Tsukada, Minoru Hayashi, Yoshihiro Nakamura, Kenji Sakai, and Toshihiko Kiwa, "Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures", IEEE Transactions on Magnetics, vol. 54, No. 11,6202205 (2018) 日本非破壊検査協会 平成30年度秋季講演大会講演論文集、合田悠斗、平田哲朗、堺健司、紀和利彦、塚本晃、田辺圭一、塚田 啓二、2次微分検出コイルを用いた鉄鋼構造物の高リフトオフき裂検査法の開発、2018年Proceedings of the 2018 Autumn Lecture Meeting of the Japan Nondestructive Inspection Association, Yuto Goda, Tetsuro Hirata, Kenji Sakai, Toshihiko Kiwa, Akira Tsukamoto, Keiichi Tanabe, Keiji Tsukada Development of lift-off crack inspection method, 2018

一般的にき裂が発生すると最初は局所的であったものが時間とともに長く伸展していく。この場合、き裂がどのように伸びているか知る必要がある。しかし、従来の渦電流検査方法の多くでは、き裂の端部で欠陥信号が得られるが、き裂の中間の箇所では欠陥信号が得られない、あるいは微弱になる問題があった。印加コイルの中に中心軸から離れた磁気センサを同じ側に2つ配置してその差分をとる方法では、き裂の中間でも信号が得られた。しかし、得られる信号のパターンがき裂にそった両脇に分離した信号変化となり、き裂直上に最も大きな信号が得られなかった。このため、磁気センサプローブを2次元的にスキャンニングさせて画像化させた場合、き裂の形状に合った磁場パターンが得られなかった。 Generally, when a crack occurs, what was initially localized grows longer over time. In this case, you need to know how the crack is growing. However, in many of the conventional eddy current inspection methods, a defect signal is obtained at the end of the crack, but there is a problem that the defect signal cannot be obtained or becomes weak at the middle portion of the crack. In the method of arranging two magnetic sensors away from the central axis in the applied coil on the same side and taking the difference, a signal was obtained even in the middle of the crack. However, the pattern of the obtained signal was a signal change separated on both sides along the crack, and the largest signal could not be obtained immediately above the crack. Therefore, when the magnetic sensor probe was two-dimensionally scanned and imaged, a magnetic field pattern matching the shape of the crack could not be obtained.

また、道路の鋼床版のようにコンクリートやアスファルトなどの舗装に覆われた部分では、き裂検査器を道路の上から使って検査しようとすると、磁気センサと鋼床版との間の距離つまりリフトオフが大きくなるため、き裂による渦電流が作る検出磁場が小さくなる問題があった。このため、磁気センサとして超高感度な超伝導量子干渉素子(SQUID)を用いて微弱な磁場を検出する方法があった(特許文献1)。 Also, in areas covered with pavement such as concrete and asphalt, such as road slabs, the distance between the magnetic sensor and the steel slab when trying to inspect using a crack inspector from above the road. That is, since the lift-off becomes large, there is a problem that the detected magnetic field generated by the eddy current due to the crack becomes small. Therefore, there is a method of detecting a weak magnetic field by using an ultrasensitive superconducting quantum interference element (SQUID) as a magnetic sensor (Patent Document 1).

8の字の印加コイルの合わさった辺を直線状配線とし、2次微分検出コイルを用いたものでは、多くの巻き数の一次微分を重ね合わせているため両者の位置関係がずれてバランスが取りにくいことがあった。また直線状配線に2次微分コイルの半分が位置しているため、直線状配線とき裂の方向が平行な場合は信号変化が得られない問題があった。さらには、検出コイルの構造が複雑になり多チャンネル化すると詳細な亀裂の形状を検知するための画像化が困難である問題があった。また、8の字の印加コイルと8の字の検出コイルを直交するように配置したものはき裂の方向性により検出できない方向があった。 In the case where the side where the applied coil of the figure 8 is combined is linear wiring and the second derivative detection coil is used, the first derivative of many turns is overlapped, so that the positional relationship between the two is deviated and balanced. It was sometimes difficult. Further, since half of the second derivative coil is located in the linear wiring, there is a problem that the signal change cannot be obtained when the direction of the crack is parallel to the linear wiring. Further, when the structure of the detection coil becomes complicated and the number of channels is increased, there is a problem that it is difficult to image the detailed crack shape. Further, in the case where the figure 8 application coil and the figure 8 detection coil were arranged so as to be orthogonal to each other, there was a direction that could not be detected due to the direction of the crack.

き裂を画像化するためには、印加コイルと磁気センサの組み合わせからなる磁気プローブを複数本並べたマルチチャンネル磁気センサプローブを用いたラインスキャンニングする方法が、一本の磁気プローブを2次元的スキャンニングする方法より検査速度が速いのと検査位置精度が高い。しかし、マルチチャンネル磁気センサプローブを形成した場合、構造が煩雑になることと隣り合った印加コイルによる印加磁場分布が変化するため、得られるデータが一本の磁気プローブを用いたときと異なることがおこるため、その配置に注意を要した。 In order to image cracks, a method of line scanning using a multi-channel magnetic sensor probe in which multiple magnetic probes consisting of a combination of an applied coil and a magnetic sensor are arranged is a two-dimensional method for one magnetic probe. The inspection speed is faster and the inspection position accuracy is higher than the scanning method. However, when a multi-channel magnetic sensor probe is formed, the structure becomes complicated and the applied magnetic field distribution due to the adjacent applied coil changes, so that the obtained data may differ from that when a single magnetic probe is used. Because it happened, it was necessary to pay attention to its arrangement.

本発明者は、このような現状に鑑み、大きなリフトオフの検査条件でも大きな信号変化が得られるとともに長いき裂の直上の全領域で印加コイルの方向性に関係なく大きな信号変化が得られ、得られた結から画像化が容易な磁気プローブの開発を行って、本発明を成すに至ったものである。 In view of this situation, the present inventor can obtain a large signal change even under a large lift-off inspection condition, and can obtain a large signal change in the entire region directly above a long crack regardless of the direction of the applied coil. The present invention was achieved by developing a magnetic probe that can be easily imaged from the resulting result.

本発明の磁気センサを用いた金属き裂検査装置は、被検査体に交流磁場を印加することで金属製の被検査体に生じさせた渦電流の磁場を磁気センサで検出して行う非破壊検査装置において、印加方法として被検査体表面に平行な直線状配線を設け、この直線状配線をまたがり線対称の位置に、被検査体の表面に垂直な磁場を検出する感度軸を持つ一対の磁気センサを設け、一対の磁気センサにより差分を取る一次微分磁気センサとして、渦電流が作る磁場におけるき裂による磁場変化を検出するものである。 The metal crack inspection device using the magnetic sensor of the present invention is non-destructive by detecting the magnetic field of the eddy current generated in the metal object to be inspected by applying an AC magnetic field to the object to be inspected. In the inspection device, as an application method, a pair of linear wirings parallel to the surface of the inspected object are provided, and a pair of sensitivity axes having a sensitivity axis for detecting a magnetic field perpendicular to the surface of the inspected object at a line-symmetrical position straddling the linear wiring. As a primary differential magnetic sensor provided with a magnetic sensor and taking a difference by a pair of magnetic sensors, it detects a change in the magnetic field due to a crack in a magnetic field created by an eddy current.

さらに、本発明の非破壊検査用磁気センサでは、以下の点にも特徴を有するものである。
(1)複数個の一次微分磁気センサを直線状配線に沿って並べた磁気センサアレイとしたこと。
(2)一対の磁気センサにおいて、直線状配線が作る磁場方向と逆の磁場を発生させるキャンセルコイルをそれぞれの磁気センサに設けたこと。
Further, the magnetic sensor for non-destructive inspection of the present invention is also characterized in the following points.
(1) A magnetic sensor array in which a plurality of primary differential magnetic sensors are arranged along a linear wiring.
(2) In a pair of magnetic sensors, each magnetic sensor is provided with a cancel coil that generates a magnetic field opposite to the magnetic field direction created by the linear wiring.

本発明によれば、直線状配線で被検査体に磁場を印加しているので、直線状の渦電流を発生させることができる。この直線状渦電流がき裂の伸展方向に対して垂直でも平行でも様々な角度に対して、渦電流の変化を発生させることができる。ここで、直線状配線をまたがって一対の磁気センサを配置させその差分つまり一次微分磁気センサの構成をとることにより、き裂直上で大きな信号変化を得ることができる。渦電流が作る磁場は被検査体と磁気センサの距離が大きくなるにつれて磁場強度が弱くなるとともに空間的に広がってくる。ここで直線状配線をまたがって一対の磁気センサを配置しているので、この両者の離れた磁気センサにより、直線状配線と一対の磁気センサから構成される磁気プローブと被検体の距離であるリフトオフが大きく広がった磁場分布を効率よく検出することができる。 According to the present invention, since the magnetic field is applied to the object to be inspected by the linear wiring, a linear eddy current can be generated. This linear eddy current can generate changes in the eddy current at various angles, whether perpendicular or parallel to the crack extension direction. Here, by arranging a pair of magnetic sensors across the linear wiring and adopting the difference, that is, the configuration of the first-order differential magnetic sensor, a large signal change can be obtained immediately above the crack. The magnetic field created by the eddy current becomes spatially wider as the magnetic field strength becomes weaker as the distance between the object to be inspected and the magnetic sensor increases. Since a pair of magnetic sensors are arranged across the linear wiring here, the distance between the magnetic probe composed of the linear wiring and the pair of magnetic sensors and the subject is lifted off by the magnetic sensors separated from each other. It is possible to efficiently detect the magnetic field distribution that has spread greatly.

さらに一次微分磁気センサを直線状配線に沿って複数個配置したことにより、き裂の画像化が容易になった。この画像化においてき裂直上で大きな信号変化が得られるので、き裂形状に対応した信号の分布が得られるので、き裂形状を認識できる。ここで、直線状配線が作る印加磁場は被検査体だけでなく、一対の磁気センサそれぞれにも印加されてしまう。そのため、磁気センサに入ってくる印加磁場を除去するキャンセルコイルを設けることにより、磁気センサに結合してしまう印加磁場成分を少なくすることができる。このキャンセルコイルにより磁場センサが検出する信号において渦電流によって生じた磁場成分の比率、つまりSNの高い信号を得ることができる。 Furthermore, by arranging a plurality of primary differential magnetic sensors along the linear wiring, it became easy to image cracks. In this imaging, a large signal change can be obtained just above the crack, so that the signal distribution corresponding to the crack shape can be obtained, and the crack shape can be recognized. Here, the applied magnetic field created by the linear wiring is applied not only to the object to be inspected but also to each of the pair of magnetic sensors. Therefore, by providing a cancel coil that removes the applied magnetic field entering the magnetic sensor, it is possible to reduce the applied magnetic field component coupled to the magnetic sensor. With this cancel coil, it is possible to obtain a signal having a high SN, that is, a ratio of the magnetic field components generated by the eddy current in the signal detected by the magnetic field sensor.

本発明に係る金属き裂検査装置の概略説明図である。It is a schematic explanatory drawing of the metal crack inspection apparatus which concerns on this invention. 本発明に係る金属き裂検査装置の磁気センサプローブの概略説明図である。It is a schematic explanatory drawing of the magnetic sensor probe of the metal crack inspection apparatus which concerns on this invention. 本発明に係る図2における磁気センサプローブを用いて、鋼板に人工き裂を設けた被検査体を、磁気センサプローブにおける直線状配線がき裂と直交するようにしてラインスキャンニングした時の検出信号の位相変化を示したものである。Using the magnetic sensor probe shown in FIG. 2 according to the present invention, a detection signal is obtained when an inspected object having an artificial crack in a steel plate is line-scanned so that the linear wiring in the magnetic sensor probe is orthogonal to the crack. It shows the phase change of. 本発明に係る金属き裂検査装置におけるマルチチャンネルの一次微分型磁気センサを用いたマルチチャンネル磁気センサプローブの概略説明図である。It is a schematic explanatory drawing of the multi-channel magnetic sensor probe using the multi-channel primary differential type magnetic sensor in the metal crack inspection apparatus which concerns on this invention. 本発明に係るマルチチャンネル磁気センサプローブを用いて、鋼板に人工き裂を設けた被検査体をスキャンニングした時の検出信号の位相変化をマッピングしたものである。Using the multi-channel magnetic sensor probe according to the present invention, the phase change of the detection signal when scanning an object to be inspected in which an artificial crack is provided in a steel plate is mapped. 本発明に係るマルチチャンネル磁気センサプローブを90度回転させて、鋼板に人工き裂を設けた被検査体をスキャンニングした時の検出信号の位相変化をマッピングしたものである。The multi-channel magnetic sensor probe according to the present invention is rotated 90 degrees to map the phase change of the detection signal when scanning an object to be inspected having an artificial crack in a steel plate. 本発明に係る直線状配線をタンジェンシャルコイルの一辺として用いたマルチチャンネル磁気センサプローブの概略説明図である。It is a schematic explanatory drawing of the multi-channel magnetic sensor probe which used the linear wiring which concerns on this invention as one side of a tangential coil. 本発明に係る直線状配線を8の字コイルの隣り合った辺として用いたマルチチャンネル磁気センサプローブの概略説明図である。It is a schematic explanatory drawing of the multi-channel magnetic sensor probe which used the linear wiring which concerns on this invention as the adjacent side of the figure 8 coil. 本発明に係る図2における磁気センサプローブにおいて各磁気センサにキャンセルコイルを設けた磁気センサプローブの概略説明図である。It is a schematic explanatory drawing of the magnetic sensor probe which provided the cancellation coil in each magnetic sensor in the magnetic sensor probe of FIG. 2 which concerns on this invention. 本発明に係る図9における印加磁場とキャンセルコイルが作る磁場の関係図である。It is a relationship diagram of the applied magnetic field in FIG. 9 which concerns on this invention, and the magnetic field created by a cancel coil.

本発明の非破壊検査用磁気センサ及び非破壊検査装置では、被検査体に印加する交流磁場を、交流電流が通電される直線状配線によって生じさせているもので、印加磁場によって発生した渦電流の変化を、直線状配線をまたがって両側にある1組の磁気センサの差動出力を計測することにより、き裂の検査ができる金属き裂検査装置である。 In the non-destructive inspection magnetic sensor and non-destructive inspection device of the present invention, the AC magnetic field applied to the object to be inspected is generated by a linear wiring in which an AC current is applied, and an eddy current generated by the applied magnetic field is generated. It is a metal crack inspection device that can inspect cracks by measuring the differential output of a set of magnetic sensors on both sides across a linear wiring.

以下において、本発明の実施形態を、添付する図面を参照して詳細に説明する。同様の用途及び機能を有する部材には同符号を付してその説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Members having similar uses and functions are designated by the same reference numerals and the description thereof will be omitted.

本発明の非破壊検査装置は、図1に示すように、被検査体Tに印加する交流磁場を生じさせる交流電源20と、交流磁場によって被検査体Tに生じさせた渦電流の磁場を検出する磁気センサプローブ30と、この磁気センサプローブ30の出力信号を解析する信号解析機21とを備えている。磁気センサプローブ30は磁気センサ用電源22で駆動されている。信号解析機21では交流電源20の信号をトリガーとして、磁気センサプローブ30の出力信号をロックイン検波して、信号の強度と位相を解析している。被検査体Tとして、放電加工によって長さ20mmの貫通した人工き裂欠陥dを形成した板厚が7mmの鋼板を用いた。 As shown in FIG. 1, the non-destructive inspection apparatus of the present invention detects an AC power source 20 that generates an AC magnetic field applied to the inspected object T and a magnetic field of eddy current generated in the inspected object T by the AC magnetic field. The magnetic sensor probe 30 is provided with a signal analyzer 21 for analyzing the output signal of the magnetic sensor probe 30. The magnetic sensor probe 30 is driven by the magnetic sensor power supply 22. The signal analyzer 21 uses the signal of the AC power supply 20 as a trigger to lock in and detect the output signal of the magnetic sensor probe 30, and analyzes the signal strength and phase. As the body T to be inspected, a steel plate having a thickness of 7 mm having an artificial crack defect d having a length of 20 mm formed by electric discharge machining was used.

磁気センサプローブは、図2に示すように、被検査体Tに近いところで被検体表面(x-y平面)に平行な直線状配線31を設けており、交流電源20により駆動している。直線状配線31をまたぐように両脇には線対称の位置に磁気センサ32a,32bを一組設置して、これら磁気センサ32a,32bは被検査体Tの表面に垂直な方向、図ではz方向の磁場を検出している。一組の磁気センサ32a,32bの出力を差動アンプ23によって差信号と増幅の処理をしており、この一組の磁気センサ32a,32bによる構成により一次微分型磁気センサ33を形成している。 As shown in FIG. 2, the magnetic sensor probe is provided with a linear wiring 31 parallel to the surface of the subject (xy plane) near the object T to be inspected, and is driven by the AC power supply 20. A set of magnetic sensors 32a and 32b are installed on both sides so as to straddle the linear wiring 31 at line-symmetrical positions, and these magnetic sensors 32a and 32b are oriented in the direction perpendicular to the surface of the object T to be inspected, z in the figure. The magnetic field in the direction is detected. The outputs of the set of magnetic sensors 32a and 32b are processed for difference signals and amplification by the differential amplifier 23, and the first-order differential magnetic sensor 33 is formed by the configuration of the set of magnetic sensors 32a and 32b. ..

磁気センサとしては、本実施形態では薄膜型磁気センサである異方性磁気抵抗素子(AMR)を用いた。AMR以外にも、トンネル型MR素子、巨大MR素子、MI素子、あるいはホール素子や、検出コイルを利用することができる。検出コイルの場合、磁気センサを2つ使うのではなく、8の字のように互いに逆向きに巻かれたコイルが直列に接続された、一つのコイルで一次微分型磁気センサになるものをそのまま使うことができる。 As the magnetic sensor, an anisotropic magnetoresistive element (AMR), which is a thin film type magnetic sensor, was used in this embodiment. In addition to AMR, tunnel type MR elements, giant MR elements, MI elements, Hall elements, and detection coils can be used. In the case of the detection coil, instead of using two magnetic sensors, the coil that is wound in opposite directions like a figure eight is connected in series, and one coil becomes a first-order differential magnetic sensor as it is. Can be used.

直線状配線31は交流電源20とつなぐため、被検査体Tに印加磁場を印加する必要がないところは自由に配線することができる。ここでは図2に示すように、直線状配線31の両脇で被検査体Tから離れる方向に配置してコ字状の配線パターンを形成している。 Since the linear wiring 31 is connected to the AC power supply 20, wiring can be freely performed where it is not necessary to apply an applied magnetic field to the object T to be inspected. Here, as shown in FIG. 2, the linear wiring 31 is arranged on both sides in a direction away from the inspected body T to form a U-shaped wiring pattern.

信号解析機21は、本実施形態では所用のプログラムをインストールしたパーソナルコンピュータで構成しているが、ロックインアンプなどのアナログ回路でよって行ってもよい。 In the present embodiment, the signal analyzer 21 is configured by a personal computer in which the required program is installed, but it may be performed by an analog circuit such as a lock-in amplifier.

上述した非破壊検査装置を用い、人工き裂欠陥dを形成した被検査体Tで、人工き裂dの長さ方向と直線状配線31が直交して、人工き裂欠陥dの中央部を横切るように磁気センサプローブ30をラインスキャニングさせた場合の信号の位相変化のグラフを図3に示す。交流電源20から出力する交流電流は、10mAで50kHzとした。図3に示すように、き裂直上で信号変化が最も大きい、つまりき裂の位置と対応した信号が得られていることがわかる。ここで信号としては、ロックイン検波により、信号を実数成分と虚数成分の2つの直交した成分が得られ、これらの信号から信号強度および位相で表示することができる。また、x軸を実数成分およびy軸では虚数成分のリサージュ波形にして表示する方法もある。このリサージュ波形での表示方法は、ペンシルタイプのように細い磁気センサプローブで、検査場所をなするように検査するときに向いている方法である。しかし、検査方法と検査結果の判断に技能が必要とされる。 In the inspected object T in which the artificial crack defect d is formed by using the above-mentioned non-destructive inspection device, the linear wiring 31 is orthogonal to the length direction of the artificial crack d, and the central portion of the artificial crack defect d is formed. FIG. 3 shows a graph of the phase change of the signal when the magnetic sensor probe 30 is line-scanned so as to cross. The alternating current output from the alternating current power supply 20 was set to 50 kHz at 10 mA. As shown in FIG. 3, it can be seen that the signal with the largest signal change immediately above the crack is obtained, that is, the signal corresponding to the position of the crack is obtained. Here, as a signal, lock-in detection obtains two orthogonal components, a real number component and an imaginary number component, and these signals can be displayed in terms of signal strength and phase. There is also a method of displaying a Lissajous waveform of a real number component on the x-axis and an imaginary number component on the y-axis. This Lissajous waveform display method is a method suitable for inspecting so as to make an inspection place with a thin magnetic sensor probe such as a pencil type. However, skill is required to judge the test method and test result.

本発明ではき裂の中央部でもき裂の場所と対応した信号変化が得られたので、この特徴を生かすためだれでもわかりやすい画像化ができようにマルチチャンネルの磁気センサプローブを作製した。図4に示すようにマルチチャンネルの磁気センサプローブ30aでは一次微分磁気センサを直線状配線31aに複数個並べたセンサアレイを形成している。図では3つの一次微分磁気センサ33a,33b,33cを用いているが、特に個数に制限はなく検査する領域に合わせてチャンネルを決定することができる。 In the present invention, a signal change corresponding to the location of the crack was obtained even in the central part of the crack, and in order to take advantage of this feature, a multi-channel magnetic sensor probe was manufactured so that anyone could easily understand the image. As shown in FIG. 4, the multi-channel magnetic sensor probe 30a forms a sensor array in which a plurality of primary differential magnetic sensors are arranged in a linear wiring 31a. In the figure, three first-order differential magnetic sensors 33a, 33b, 33c are used, but the number is not particularly limited and the channel can be determined according to the region to be inspected.

図5には10チャンネルの磁気センサプローブ30bを図中y方向にスキャンニングして得られたデータを画像化したものを示している。人工き裂欠陥dの方向と直線状配線の方向は直交している。位相の変化を画像化したもので、人工き裂欠陥dの大きさに一致した信号変化が得られている。このように本磁気センサプローブは欠陥の位置と対応した信号変化がき裂の端部だけでなく中間の位置でも同様に得られる特徴からき裂の形状を検査できる特徴がある。 FIG. 5 shows an image of data obtained by scanning a 10-channel magnetic sensor probe 30b in the y direction in the figure. The direction of the artificial crack defect d and the direction of the linear wiring are orthogonal to each other. The change in phase is imaged, and the signal change corresponding to the size of the artificial crack defect d is obtained. As described above, this magnetic sensor probe has a feature that the shape of the crack can be inspected from the feature that the signal change corresponding to the position of the defect can be obtained not only at the end of the crack but also at the intermediate position.

図6には10チャンネルの磁気センサプローブ30bを人工き裂欠陥dの方向と直線状配線の方向は同じ方向で図中y方向にスキャンニングして得られたデータを画像化したものを示している。ここでは人工き裂欠陥の長さに対して磁気センサプローブの長さが足らないため、2つの領域でスキャンニングしている。位相の変化を画像化したもので、図5と同様に人工き裂欠陥dの大きさに一致した信号変化が得られている。このように本磁気センサプローブにより、欠陥の方向と関係なくき裂の形状を検査できる特徴がある。これにより、だれでもがわかりやすい検査結果が得られるようになっている。 FIG. 6 shows an image of data obtained by scanning a 10-channel magnetic sensor probe 30b in the y direction in the figure in the same direction as the direction of the artificial crack defect d and the direction of the linear wiring. There is. Here, since the length of the magnetic sensor probe is not enough for the length of the artificial crack defect, scanning is performed in two regions. It is an image of the phase change, and the signal change corresponding to the size of the artificial crack defect d is obtained as in FIG. As described above, this magnetic sensor probe has a feature that the shape of a crack can be inspected regardless of the direction of the defect. This makes it possible for anyone to obtain easy-to-understand test results.

図7には第3の実施例を示している。先の実施例では一本の直線状配線を用いていたが、電流の許容値には制限がある。道路の鋼床版のように舗装が厚いためリフトオフが大きい場合では印加磁場強度の減衰が大きくなる。そのため、さらに強い磁場を印加したい場合では、図7のように複数本の直線状配線31bを用いる必要がある。複数本の構成する方法として、被検査体にコイル面が垂直なタンジェンシャルコイル34を用いる方法がある。この場合コイルを形成しているが、被検査体から遠い部分の辺が作る磁場は影響が少ない。 FIG. 7 shows a third embodiment. In the previous embodiment, one linear wiring was used, but the allowable value of the current is limited. Since the pavement is thick like a steel deck of a road, the attenuation of the applied magnetic field strength becomes large when the lift-off is large. Therefore, when it is desired to apply a stronger magnetic field, it is necessary to use a plurality of linear wirings 31b as shown in FIG. As a method of constructing a plurality of coils, there is a method of using a tangential coil 34 whose coil surface is perpendicular to the object to be inspected. In this case, a coil is formed, but the magnetic field created by the side far from the object to be inspected has little effect.

複数本の直線状配線を形成する方法として図8に示すように、8の字コイル35を用いる方法がある。ここで、電流の流し方は図中の矢印のように逆相になるようにする必要がある。これにより両者のコイルが接している辺では同一方向となり、複数本の直線状配線31cとすることができる。この構成の場合、直線状配線以外のコイルの辺の周辺でも磁場を被検査体Tに印加することになるが、直線状配線31cから離れているので影響は少ない。 As shown in FIG. 8, as a method of forming a plurality of linear wirings, there is a method of using a figure eight coil 35. Here, it is necessary to make the current flow in the opposite phase as shown by the arrow in the figure. As a result, the sides where the two coils are in contact are in the same direction, and a plurality of linear wirings 31c can be formed. In the case of this configuration, the magnetic field is applied to the object T to be inspected even around the side of the coil other than the linear wiring, but the influence is small because it is separated from the linear wiring 31c.

以上の実施例での一次微分磁気センサは直線状配線をまたがって線対称な位置に磁気センサを配置する構成となっている。この場合、各磁気センサには渦電流で発生した磁気信号だけでなく、直線状配線に流した交流電流が作る印加磁場も直接検出され、それぞれの磁気センサ出力の差動を取ると、環境などの磁気雑音は減衰させることができるものの、印加磁場は取り除くことができない。そのために、図9に示すように、一次微分型磁気センサ33dにおける各磁気センサ32c,32dに結合する印加磁場を取り除くためのキャンセルコイル36a,36bを設けた。このキャンセルコイル36a,36bの動作方法を図10に示している。直線状配線31dには交流電流を流すので、直線状配線31dの周りにはアンペールの法則で表せるように円環状に回転した印加磁場が発生する。図には交流電流なので、ある瞬間の電流方向と印加磁場の方向を示している。図手前の磁気センサにはz軸の負方向に印加磁場がかかっている。一方、奥側の磁気センサにはz軸の正方向に印加磁場がかかっている。このため、2つの磁気センサの差動を取ると印加磁場による信号が2倍となってしまい、渦電流による磁気信号のほかに大きなオフセット信号が乗ってしまう。そのため、キャンセルコイルにより、手前の磁気センサには印加磁場と反対方向であるz軸での正の方向のキャンセル磁場を発生させ、奥側の磁気センサにはz軸の負の方向のキャンセル磁場を発生させることにより、印加磁場の影響を低減することができる。このキャンセルコイルを各磁気センサに設けることにより高いSNの信号を検出できるようになる。 The first-order differential magnetic sensor in the above embodiment has a configuration in which the magnetic sensor is arranged at a line-symmetrical position across the linear wiring. In this case, not only the magnetic signal generated by the eddy current but also the applied magnetic field created by the AC current flowing through the linear wiring is directly detected in each magnetic sensor, and if the differential of each magnetic sensor output is taken, the environment etc. Although the magnetic noise of the can be attenuated, the applied magnetic field cannot be removed. Therefore, as shown in FIG. 9, cancel coils 36a and 36b for removing the applied magnetic field coupled to the magnetic sensors 32c and 32d in the first-order differential magnetic sensor 33d are provided. The operation method of the cancel coils 36a and 36b is shown in FIG. Since an alternating current is passed through the linear wiring 31d, an applied magnetic field rotated in an annular shape is generated around the linear wiring 31d so as to be represented by Ampere's law. Since the figure is an alternating current, the direction of the current and the direction of the applied magnetic field at a certain moment are shown. An applied magnetic field is applied to the magnetic sensor in the foreground of the figure in the negative direction of the z-axis. On the other hand, an applied magnetic field is applied to the magnetic sensor on the back side in the positive direction of the z-axis. Therefore, if the differential between the two magnetic sensors is taken, the signal due to the applied magnetic field is doubled, and a large offset signal is carried in addition to the magnetic signal due to the eddy current. Therefore, the cancel coil generates a cancel magnetic field in the positive direction on the z-axis opposite to the applied magnetic field in the front magnetic sensor, and a cancel magnetic field in the negative direction in the z-axis in the back magnetic sensor. By generating it, the influence of the applied magnetic field can be reduced. By providing this cancel coil in each magnetic sensor, it becomes possible to detect a high SN signal.

本発明の構成で一対の磁気センサの距離を自由に設計できるので、道路の鋼床版の検査のように大きなリフトオフの場合、空間的に広がった渦電流による磁場をとらえることができる。例えば80mmのリフトオフの場合、一次微分磁気センサの各磁気センサ間距離を同じ程度離すことによってき裂による信号変化を大きく検出できるようになった。 Since the distance between the pair of magnetic sensors can be freely designed with the configuration of the present invention, it is possible to capture the magnetic field due to the spatially spread eddy current in the case of a large lift-off such as inspection of a steel deck of a road. For example, in the case of a lift-off of 80 mm, it has become possible to detect a large signal change due to a crack by separating the distances between the magnetic sensors of the first-order differential magnetic sensor by the same degree.

被検査体は平面としたので、直線状配線は直交座標上一軸としたが、被検査体が例えば円筒状のパイプとした場合は、直線状配線は円筒の円周上にそった形状の配線でもよく、様々な形態をとることができる。 Since the object to be inspected is a flat surface, the linear wiring is uniaxial in Cartesian coordinates, but if the object to be inspected is a cylindrical pipe, for example, the linear wiring is a wiring that is shaped along the circumference of the cylinder. However, it can take various forms.

本発明の非破壊検査用磁気センサ及び非破壊検査装置は、金属性の構造物や、鋼板などの金属素材に生じるき裂欠陥の検出に広く用いることができる。特に、複雑な形状箇所があるところでのき裂の伸展状況の判定が困難であった鉄鋼製の構造物、たとえば橋梁やビル、工場プラント、発電設備、あるいは鉄道などの幅広い分野において欠陥検出の検査を可能とすることができ、効果的な維持管理を可能とすることができる。 The magnetic sensor for non-destructive inspection and the non-destructive inspection apparatus of the present invention can be widely used for detecting crack defects generated in metallic structures and metal materials such as steel plates. In particular, defect detection inspection in a wide range of fields such as steel structures where it was difficult to determine the growth status of cracks where there are complicated shapes, such as bridges and buildings, factory plants, power generation equipment, and railways. Can be made possible, and effective maintenance can be made possible.

20 交流電源
21 信号解析機
22 磁気センサ用電源
23 差動アンプ
30,30a,30b,30c,30d 磁気センサプローブ
31,31a,31b,31c,31d 直線状配線
32a,32b,32c,32d 磁気センサ
33,33a,33b,33c,33d 一次微分型磁気センサ
34 タンジェンシャルコイル
35 8の字コイル
36a,36b キャンセルコイル
T 被検査体
d 人工き裂欠陥
20 AC power supply 21 Signal analyzer 22 Power supply for magnetic sensor 23 Differential amplifier 30, 30a, 30b, 30c, 30d Magnetic sensor probe 31, 31a, 31b, 31c, 31d Linear wiring 32a, 32b, 32c, 32d Magnetic sensor 33 , 33a, 33b, 33c, 33d Primary differential magnetic sensor 34 Tungential coil 358-shaped coil 36a, 36b Cancellation coil T Inspected object d Artificial crack defect

Claims (5)

金属製の被検査体に交流磁場を印加することで前記被検査体に生じさせた渦電流により発生した磁場を磁気センサで検出し、き裂を検知する非破壊検査装置において、
直線状配線を設け、この直線状配線に交流電流を通電することで前記交流磁場を生じさせ、前記直線状配線をまたがって線対称の位置に一対の前記磁気センサを配置し前記一対の磁気センサの出力の差分を計測する1次微分型磁気センサを設けた金属き裂検査装置。
In a non-destructive inspection device that detects cracks by detecting the magnetic field generated by the eddy current generated in the inspected object by applying an AC magnetic field to the metal inspected object with a magnetic sensor.
A linear wiring is provided, and an alternating current is applied to the linear wiring to generate the alternating magnetic field. The pair of magnetic sensors are arranged at line-symmetrical positions across the linear wiring and the pair of magnetic sensors. A metal crack inspection device equipped with a first-order differential magnetic sensor that measures the difference in the output of.
前記直線状配線に沿って前記1次微分型磁気センサを複数個並べた金属き裂検査装置 A metal crack inspection device in which a plurality of the first-order differential magnetic sensors are arranged along the linear wiring. 前記直線状配線は、コイル面を前記被検体に対して垂直に配置したタンジェンシャルコイルを用い、前記タンジェンシャルコイルの前記被検体に最も近い平行な部分とした請求項1および2に記載の金属き裂検査装置。 The metal according to claims 1 and 2, wherein the linear wiring uses a tangential coil in which a coil surface is arranged perpendicular to the subject, and the tangential coil is a parallel portion closest to the subject. Crack inspection device. 逆方向に前記交流電流を通電する一対のコイルによる8の字コイルの一辺どうしを近接させて、近接させた前記微分コイルの一辺を前記直線状配線とした請求項1から3に記載の金属き裂検査装置。 The metal according to claim 1 to 3, wherein one side of a figure eight coil made of a pair of coils energizing an alternating current in the opposite direction is brought close to each other, and one side of the differential coil brought close to each other is used as the linear wiring. Crack inspection device. 前記一次微分型磁気センサのそれぞれの前記磁気センサに前記交流磁場をキャンセルさせる、あるいは減衰させるキャンセルコイルを設けた請求項1から4に記載の金属き裂検査装置。 The metal crack inspection apparatus according to claim 1 to 4, wherein each of the first-order differential magnetic sensors is provided with a cancel coil that cancels or attenuates the AC magnetic field.
JP2020170792A 2020-09-23 2020-09-23 Metal crack inspection device using magnetic sensor Pending JP2022052676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020170792A JP2022052676A (en) 2020-09-23 2020-09-23 Metal crack inspection device using magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020170792A JP2022052676A (en) 2020-09-23 2020-09-23 Metal crack inspection device using magnetic sensor

Publications (1)

Publication Number Publication Date
JP2022052676A true JP2022052676A (en) 2022-04-04

Family

ID=80948756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020170792A Pending JP2022052676A (en) 2020-09-23 2020-09-23 Metal crack inspection device using magnetic sensor

Country Status (1)

Country Link
JP (1) JP2022052676A (en)

Similar Documents

Publication Publication Date Title
Tsukada et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures
JP4487082B1 (en) Magnetic flux leakage flaw detection method and apparatus
US6150809A (en) Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials
JP6083613B2 (en) Magnetic nondestructive inspection equipment
Ge et al. Analysis of signals for inclined crack detection through alternating current field measurement with a U-shaped probe
Ru et al. Structural coupled electromagnetic sensing of defects diagnostic system
JP2018071983A (en) Magnetic nondestructive inspection method and magnetic nondestructive inspection device
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
CN103675094A (en) Non-destructive testing device
Wang et al. Multi-frequency imaging with non-linear calibration of magnetoresistance sensors for surface and buried defects inspection
Jun et al. Nondestructive evaluation of austenitic stainless steel using CIC-MFL and LIHaS
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
Zhang et al. Mechanism study for directivity of TR probe when applying Eddy current testing to ferro-magnetic structural materials
JPH04269653A (en) Leakage magnetic flux detector
Postolache et al. GMR based eddy current sensing probe for weld zone testing
JP2022052676A (en) Metal crack inspection device using magnetic sensor
JP2017067743A (en) Non-destructive inspection device and non-destructive inspection method
Butin et al. New NDE perspectives with magnetoresistance array technologies–from research to industrial applications
Aguila-Munoz et al. Crack detection in steel using a GMR-based MFL probe with radial magnetization
JP2016197085A (en) Magnetic flaw detection method
Okolo et al. Finite element method and experimental investigation for hairline crack detection and characterization
Wang et al. AC Magnetic Flux Leakage Testing with Real-Time Liftoff Compensation Using Double Layer Parallel-Cable Probe
Reig et al. High-Spatial Resolution Giant Magnetoresistive Sensors-Part I: Application in Non-Destructive Evaluation
JP2021001813A (en) Nondestructive inspection magnetic sensor and nondestructive inspection device
JP7450305B1 (en) Inspection equipment and inspection method