JP2022051042A - Linear motion actuator - Google Patents

Linear motion actuator Download PDF

Info

Publication number
JP2022051042A
JP2022051042A JP2020157295A JP2020157295A JP2022051042A JP 2022051042 A JP2022051042 A JP 2022051042A JP 2020157295 A JP2020157295 A JP 2020157295A JP 2020157295 A JP2020157295 A JP 2020157295A JP 2022051042 A JP2022051042 A JP 2022051042A
Authority
JP
Japan
Prior art keywords
output shaft
screw
screw element
thrust
spring receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020157295A
Other languages
Japanese (ja)
Inventor
慎太朗 石川
Shintaro Ishikawa
茂夫 清水
Shigeo Shimizu
広樹 上岡
Hiroki Kamioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2020157295A priority Critical patent/JP2022051042A/en
Priority to PCT/JP2021/034085 priority patent/WO2022059732A1/en
Publication of JP2022051042A publication Critical patent/JP2022051042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

To prevent generation of a lock state in a screw mechanism when an output portion axially collides with a stopper or a mating member during linear motion by a drive mechanism of a linear motion actuator.SOLUTION: A screw mechanism for converting torque of a first screw element 1 into axial thrust of a second screw element 2, and a drive mechanism 3 for imparting the torque to the screw element 1 are supported in a case 4. An output shaft 5 is disposed in a manner that it can be axially reciprocated to the screw elements 1, 2 and the case 4. First and second elastic elements 6, 7 are disposed between the output shaft 5 and the second screw element 2 so that thrust in a forward or backward direction, of the second screw element 2 is transmitted to the output shaft. The first and second elastic elements 6, 7 interlock the second screw element 2 and the output shaft 5 in the same direction when the output shaft 5 can be advanced or retreated, and stop the second screw element 2 by imparting elastic repulsion force equal to the thrust or more to the second screw element 2 when the output shaft 5 cannot be advanced or retreated in the axial direction.SELECTED DRAWING: Figure 1

Description

この発明は、ねじ軸とナットの一方の回転運動を他方の直線運動に変換するねじ機構と、そのねじ軸とナットの一方を正逆回転させる駆動機構とを備える直動アクチュエータに関し、特に、ねじ機構と駆動機構をケースでユニット化したものに関する。 The present invention relates to a linear motion actuator including a screw mechanism that converts one rotary motion of a screw shaft and a nut into a linear motion of the other, and a drive mechanism that rotates one of the screw shaft and the nut in the forward and reverse directions. It relates to a unitized mechanism and drive mechanism in a case.

直動アクチュエータは、ねじ軸を回転させてナットを直動させるねじ軸回転タイプと、ナットを回転させてねじ軸を直動させるナット回転タイプとに大別される。 The linear motion actuator is roughly classified into a screw shaft rotation type in which a screw shaft is rotated to linearly move a nut and a nut rotation type in which a nut is rotated to linearly move a screw shaft.

従来、ねじ機構の直動ねじ要素(ねじ軸回転タイプではナット、ナット回転タイプではねじ軸)が直動アクチュエータの出力部として構成されている。 Conventionally, a linear screw element of a screw mechanism (a nut for a screw shaft rotation type and a screw shaft for a nut rotation type) is configured as an output unit of a linear actuator.

直動アクチュエータの出力部が軸方向に直動するストロークを一定に制限するため、そのストロークの終端位置において直動ねじ要素の軸方向移動を規制することがある。その規制手段としてケースやねじ軸にストッパを設け、出力部である直動ねじ要素をストッパとの当接によって停止させるようにしている(例えば、特許文献1)。 In order to limit the stroke in which the output unit of the linear actuator moves linearly in the axial direction to a certain level, the axial movement of the linear motion screw element may be restricted at the end position of the stroke. As a regulating means, a stopper is provided on the case or the screw shaft so that the linear motion screw element, which is an output unit, is stopped by contact with the stopper (for example, Patent Document 1).

特開2019-157952号公報JP-A-2019-157952

しかしながら、そのストッパの位置が各種誤差の影響により適切でない場合、直動アクチュエータの出力部である直動ねじ要素がストッパに衝突し、回転ねじ要素と直動ねじ要素が噛み込むと、ねじ機構は、その後に駆動機構から回転ねじ要素に逆回転力を与えても直動ねじ要素を移動させることができないロック状態になってしまうことがある。 However, if the position of the stopper is not appropriate due to the influence of various errors, the linear screw element, which is the output part of the linear actuator, collides with the stopper, and when the rotary screw element and the linear screw element are engaged, the screw mechanism is released. After that, even if a reverse rotational force is applied to the rotary screw element from the drive mechanism, the linear screw element may not be able to move, resulting in a locked state.

また、直動アクチュエータの出力部である直動ねじ要素を相手部材と非連結に配置する使用環境も考えられる。このような使用環境の場合、相手部材を直動アクチュエータに対して配置する位置決めの際に軸方向の位置ずれが発生したり、相手部材が直動アクチュエータから独立して軸方向に動いたりすることがある。このため、駆動機構による直動ねじ要素の前進時、直動ねじ要素が相手部材に衝突してねじ機構がロック状態に至る可能性もある。 It is also conceivable to consider a usage environment in which the linear motion screw element, which is the output unit of the linear motion actuator, is arranged in a non-connected manner with the mating member. In such a usage environment, axial misalignment may occur when the mating member is positioned with respect to the linear actuator, or the mating member may move in the axial direction independently of the linear actuator. There is. Therefore, when the linearly driven screw element is advanced by the drive mechanism, the linearly driven screw element may collide with the mating member and the screw mechanism may reach a locked state.

上述の背景に鑑み、この発明が解決しようとする課題は、直動アクチュエータの駆動機構による直動中の出力部がストッパや相手部材と軸方向に衝突した際にねじ機構でのロック状態発生を防止することにある。 In view of the above background, the problem to be solved by the present invention is the generation of a locked state in the screw mechanism when the output unit during linear motion by the drive mechanism of the linear motion actuator collides with the stopper or the mating member in the axial direction. It is to prevent.

上記の課題を達成するため、この発明は、第一ねじ要素の回転力を第二ねじ要素の軸方向の推力に変換するねじ機構と、前記第一ねじ要素に前記回転力を与える駆動機構と、前記駆動機構と前記ねじ機構とを支持するケースとを備える直動アクチュエータにおいて、前記第一ねじ要素、前記第二ねじ要素及び前記ケースに対して軸方向に往復移動可能に配置された出力軸と、前記第二ねじ要素の前進方向の前記推力を前記出力軸まで伝達するように前記出力軸と前記第二ねじ要素との間に配置され、前記出力軸が軸方向に前進可能な状態で前進方向の前記推力を伝達する場合に前記第二ねじ要素と前記出力軸を前進方向に連動させ、前記出力軸が軸方向に前進不可な状態で前進方向の前記推力を伝達する場合に前進方向の前記推力と同等以上の弾性反発力を前記第二ねじ要素に与えて前記第二ねじ要素の前進を停止させる第一弾性要素と、前記第二ねじ要素の後進方向の前記推力を前記出力軸まで伝達するように前記出力軸と前記第二ねじ要素との間に配置され、前記出力軸が軸方向に後進可能な状態で後進方向の前記推力を伝達する場合に前記第二ねじ要素と前記出力軸を後進方向に連動させ、前記出力軸が軸方向に後進不可な状態で後進方向の前記推力を伝達する場合に後進方向の前記推力と同等以上の弾性反発力を前記第二ねじ要素に与えて前記第二ねじ要素の後進を停止させる第二弾性要素と、をさらに備える構成を採用したものである。 In order to achieve the above problems, the present invention comprises a screw mechanism that converts the rotational force of the first screw element into an axial thrust of the second screw element, and a drive mechanism that applies the rotational force to the first screw element. In a linear motion actuator including a case for supporting the drive mechanism and the screw mechanism, an output shaft arranged so as to be reciprocally movable in the axial direction with respect to the first screw element, the second screw element, and the case. And, in a state where the output shaft is arranged between the output shaft and the second screw element so as to transmit the thrust in the forward direction of the second screw element to the output shaft, and the output shaft can move forward in the axial direction. When the second screw element and the output shaft are interlocked in the forward direction when transmitting the thrust in the forward direction, and the forward direction is transmitted when the output shaft cannot move forward in the axial direction. The first elastic element that applies an elastic repulsive force equal to or higher than the thrust of the second screw element to stop the advance of the second screw element, and the thrust in the backward direction of the second screw element is the output shaft. When the output shaft is arranged between the output shaft and the second screw element so as to transmit the thrust in the reverse direction while the output shaft can move backward in the axial direction, the second screw element and the second screw element are transmitted. When the output shaft is interlocked in the reverse direction and the thrust in the reverse direction is transmitted in a state where the output shaft cannot move backward in the axial direction, an elastic repulsive force equal to or higher than the thrust in the reverse direction is applied to the second screw element. A configuration is adopted that further includes a second elastic element that is given to stop the backward movement of the second screw element.

上記構成の採用により、出力軸を直動アクチュエータの出力部とし、駆動機構によって第二ねじ要素が前進又は後進中、出力軸がストッパや相手部材と軸方向に衝突しない場合、第一弾性要素又は第二弾性要素を介した対応方向の推力が出力軸に伝達されて第二ねじ要素の移動方向に出力軸が連動させられる。一方、駆動機構によって第二ねじ要素が前進又は後進中、出力軸がストッパや相手部材と軸方向に衝突した場合、第二ねじ要素が出力軸に対して前進又は後進することになり、その前進又は後進が進むことに伴い、対応側の第一弾性要素又は第二弾性要素が第二ねじ要素から圧縮されて弾性反発力を増し、その弾性反発力が第二ねじ要素の移動方向の推力と同等以上になると、その弾性反発力によって第二ねじ要素の移動が停止させられるので、第一ねじ要素と第二ねじ要素が噛み込まず、これにより、ねじ機構でのロック状態発生が防止される。 By adopting the above configuration, the output shaft is used as the output part of the linear actuator, and when the output shaft does not collide with the stopper or the mating member in the axial direction while the second screw element is moving forward or backward by the drive mechanism, the first elastic element or The thrust in the corresponding direction via the second elastic element is transmitted to the output shaft, and the output shaft is interlocked in the moving direction of the second screw element. On the other hand, if the output shaft collides with the stopper or the mating member in the axial direction while the second screw element is moving forward or backward by the drive mechanism, the second screw element moves forward or backward with respect to the output shaft, and the output shaft moves forward or backward. Or, as the reverse progresses, the corresponding first elastic element or second elastic element is compressed from the second screw element to increase the elastic repulsive force, and the elastic repulsive force becomes the thrust in the moving direction of the second screw element. When it becomes equal to or higher than that, the movement of the second screw element is stopped by the elastic repulsive force, so that the first screw element and the second screw element do not bite, thereby preventing the occurrence of the locked state in the screw mechanism. ..

好ましくは、前記第二ねじ要素は、軸方向に延びる中空軸を有し、前記第一弾性要素と前記第二弾性要素は、前記中空軸の内側と前記出力軸との間に配置されており、前記出力軸は、前記中空軸の内側に向かって突き出た中間ばね受けを有し、前記第二ねじ要素は、前記第一弾性要素を前記中間ばね受けの後端と軸方向に挟む後方ばね受けと、前記第二弾性要素を前記中間ばね受けの前端と軸方向に挟む前方ばね受けとを有するとよい。このようにすると、第一弾性要素と第二弾性要素を第二ねじ要素の中空軸内に保持し、第一ねじ要素と第二ねじ要素の弾性反発力を共通の中間ばね受けで受けて中間ばね受けの傾きを防止しつつ、第二ねじ要素に対する出力軸の移動方向に応じて第一弾性要素と第二弾性要素を伸縮させることができる。 Preferably, the second thread element has a hollow shaft extending in the axial direction, and the first elastic element and the second elastic element are arranged between the inside of the hollow shaft and the output shaft. The output shaft has an intermediate spring receiver protruding inward of the hollow shaft, and the second screw element is a rear spring that axially sandwiches the first elastic element with the rear end of the intermediate spring receiver. It may have a receiver and a front spring receiver that axially sandwiches the second elastic element with the front end of the intermediate spring receiver. In this way, the first elastic element and the second elastic element are held in the hollow shaft of the second screw element, and the elastic repulsive force of the first screw element and the second screw element is received by the common intermediate spring receiver and is intermediate. The first elastic element and the second elastic element can be expanded and contracted according to the moving direction of the output shaft with respect to the second screw element while preventing the spring receiver from tilting.

前記第二ねじ要素の中空軸は、前記ケースに径方向に支持されており、前記出力軸の中間ばね受けは、前記中空軸に径方向に支持されており、前記第二ねじ要素の前方ばね受けは、前記出力軸を径方向に支持しているとよい。このようにすると、中間ばね受けと前方ばね受けを中空軸に対する出力軸の支持構造に利用し、その中空軸をケースで径方向に支持して安定させることができる。 The hollow shaft of the second screw element is radially supported by the case, the intermediate spring receiver of the output shaft is radially supported by the hollow shaft, and the front spring of the second screw element. The receiver may support the output shaft in the radial direction. In this way, the intermediate spring receiver and the front spring receiver can be used for the support structure of the output shaft with respect to the hollow shaft, and the hollow shaft can be supported and stabilized in the radial direction by the case.

前記第二ねじ要素は、前記第一ねじ要素にねじ嵌合されたナットを有し、前記第二ねじ要素の中空軸と前記後方ばね受けは、前記ナットと一体に形成されているとよい。このようにすると、中空軸に出力軸、第一、第二弾性要素を挿入した状態で前方ばね受けをナットに取り付けるだけで、出力軸、第一、第二弾性要素及びナットをサブユニットに組み立てることができる。 The second screw element may have a nut screw-fitted to the first screw element, and the hollow shaft of the second screw element and the rear spring receiver may be integrally formed with the nut. In this way, the output shaft, the first and second elastic elements and the nut can be assembled into the subunit simply by attaching the front spring holder to the nut with the output shaft, the first and second elastic elements inserted in the hollow shaft. be able to.

前記ケースは、前記出力軸との接触によって前記ケースに対する前記出力軸のストロークを一定に制限する前方ストッパ及び後方ストッパを有するとよい。このようにすると、被駆動側の相手部材に依存することなく、出力軸の前進行程及び後進行程のストローク量を直動アクチュエータ単体で正確に定めることができる。 The case may have a front stopper and a rear stopper that constantly limit the stroke of the output shaft with respect to the case by contact with the output shaft. By doing so, the stroke amount of the forward advance and the backward advance of the output shaft can be accurately determined by the linear actuator alone without depending on the mating member on the driven side.

上述のように、この発明は、上記構成の採用により、直動アクチュエータの駆動機構による直動中の出力部としての出力軸がストッパ部や相手部材と軸方向に衝突した際、第一弾性要素又は第二弾性要素の弾性反発力で第一ねじ要素に対する第二ねじ要素の軸方向移動を停止させることが可能なため、ねじ機構でのロック状態発生を防止することができる。 As described above, in the present invention, by adopting the above configuration, when the output shaft as the output portion during linear motion by the drive mechanism of the linear motion actuator collides with the stopper portion or the mating member in the axial direction, the first elastic element. Alternatively, since the elastic repulsive force of the second elastic element can stop the axial movement of the second screw element with respect to the first screw element, it is possible to prevent the occurrence of a locked state in the screw mechanism.

この発明の実施形態に係る直動アクチュエータを示す縦断面図A vertical sectional view showing a linear actuator according to an embodiment of the present invention. 図1のねじ機構付近の拡大図Enlarged view of the vicinity of the screw mechanism in FIG. 図1のIII-III線の断面図Sectional view of line III-III of FIG. 図1の状態から直動アクチュエータの出力軸を前進させた様子を示す縦断面図A vertical sectional view showing a state in which the output shaft of the linear actuator is advanced from the state shown in FIG.

以下、この発明の一例としての実施形態を添付の図1~図4に基づいて説明する。 Hereinafter, embodiments as an example of the present invention will be described with reference to FIGS. 1 to 4 attached.

図1、2に示すこの直動アクチュエータは、第一ねじ要素1の回転力を第二ねじ要素2の軸方向の推力に変換するねじ機構と、第一ねじ要素1に回転力を与える駆動機構3と、駆動機構3と前述のねじ機構とを支持するケース4と、第一ねじ要素1、第二ねじ要素2及びケース4に対して軸方向に往復移動可能に配置された出力軸5と、出力軸5と第二ねじ要素2との間に介在する第一弾性要素6及び第二弾性要素7とを備える。ここで、軸方向とは、第一ねじ要素1の回転軸線に沿った方向のことをいう。以下、その回転軸線に対して直角な方向のことを径方向といい、その回転軸線回りに一周する円周方向を周方向という。 The linear actuators shown in FIGS. 1 and 2 have a screw mechanism that converts the rotational force of the first screw element 1 into an axial thrust of the second screw element 2, and a drive mechanism that applies the rotational force to the first screw element 1. 3, a case 4 that supports the drive mechanism 3 and the above-mentioned screw mechanism, and an output shaft 5 that is arranged so as to be reciprocally movable in the axial direction with respect to the first screw element 1, the second screw element 2, and the case 4. , A first elastic element 6 and a second elastic element 7 interposed between the output shaft 5 and the second screw element 2. Here, the axial direction means the direction along the rotation axis of the first screw element 1. Hereinafter, the direction perpendicular to the rotation axis is referred to as a radial direction, and the circumferential direction that goes around the rotation axis is referred to as a circumferential direction.

第一ねじ要素1は、ケース4に対して回転可能かつ軸方向に移動不可に配置されている。第一ねじ要素1は、雄ねじ部を有するねじ軸8と、ねじ軸8に取り付けられた軸受9と、ねじ軸8に取り付けられた止め輪10とで構成されている。 The first screw element 1 is arranged so as to be rotatable with respect to the case 4 and immovable in the axial direction. The first screw element 1 is composed of a screw shaft 8 having a male screw portion, a bearing 9 attached to the screw shaft 8, and a retaining ring 10 attached to the screw shaft 8.

ねじ軸8は、その雄ねじ部と反対側の端部で開口した中空軸状になっている。軸受9は、ねじ軸8の雄ねじと反対側をケース4に対して回転可能かつ軸方向に移動不可に支持するためのものである。軸受9は、非分離形の転がり軸受からなる。止め輪10は、ねじ軸8に形成された止め輪溝に取り付けられている。軸受9の内輪は、ねじ軸8の肩部と止め輪10とで軸方向に規制されている。軸受9の外輪は、ケース4の肩部と、ケース4に取り付けられた止め輪11とで軸方向に規制されている。止め輪11は、ケース4の内周に形成された止め輪溝に取り付けられている。 The screw shaft 8 has a hollow shaft shape opened at an end opposite to the male screw portion. The bearing 9 is for supporting the side of the screw shaft 8 opposite to the male screw so as to be rotatable and axially immovable with respect to the case 4. The bearing 9 is a non-separable rolling bearing. The retaining ring 10 is attached to a retaining ring groove formed in the screw shaft 8. The inner ring of the bearing 9 is regulated in the axial direction by the shoulder portion of the screw shaft 8 and the retaining ring 10. The outer ring of the bearing 9 is regulated in the axial direction by the shoulder portion of the case 4 and the retaining ring 11 attached to the case 4. The retaining ring 11 is attached to a retaining ring groove formed on the inner circumference of the case 4.

第二ねじ要素2は、ケース4に対して回転不可かつ軸方向に移動可能に配置されている。第二ねじ要素2は、第一ねじ要素1のねじ軸8の雄ねじにねじ嵌合されたナット12と、第二弾性要素7の前端を軸方向に受ける前方ばね受け13と、ナット12の内側に取り付けられた止め輪14とで構成されている。ここで、第二ねじ要素2が軸方向に図中右方へ移動する方向を前進方向とし、第二ねじ要素2が軸方向に図中左方へ移動する方向を後進方向とする。 The second screw element 2 is arranged so as to be non-rotatable and movable in the axial direction with respect to the case 4. The second screw element 2 includes a nut 12 screw-fitted to the male screw of the screw shaft 8 of the first screw element 1, a front spring receiver 13 that receives the front end of the second elastic element 7 in the axial direction, and the inside of the nut 12. It is composed of a retaining ring 14 attached to the. Here, the direction in which the second screw element 2 moves to the right in the figure in the axial direction is the forward direction, and the direction in which the second screw element 2 moves to the left in the figure in the axial direction is the reverse direction.

ナット12には、雌ねじ部12aと、軸方向に延びる中空軸12bと、第一弾性要素6の後端を軸方向に受ける後方ばね受け12cと、第二ねじ要素2の回り止めに使用される複数のピン挿入溝12dとが一体に形成されている。 The nut 12 has a female thread portion 12a, a hollow shaft 12b extending in the axial direction, a rear spring receiver 12c that receives the rear end of the first elastic element 6 in the axial direction, and a detent for the second thread element 2. A plurality of pin insertion grooves 12d are integrally formed.

中空軸12bは、雌ねじ部12aと同軸に前方へ延びる筒状になっている。中空軸12bの内周は、円筒面状になっており、その内径は、雄ねじ部12aの内径よりも大きくなっている。中空軸12bの外径面を含むナット12の外径面は、ケース4の内側に径方向に支持されており、ケース4の内側と軸方向に摺動可能に接触する嵌め合い面になっている。また、この支持により、ナット12は、第一ねじ要素1のねじ軸8と同軸に配置されている。 The hollow shaft 12b has a cylindrical shape that extends forward coaxially with the female thread portion 12a. The inner circumference of the hollow shaft 12b has a cylindrical surface shape, and the inner diameter thereof is larger than the inner diameter of the male screw portion 12a. The outer diameter surface of the nut 12 including the outer diameter surface of the hollow shaft 12b is radially supported inside the case 4, and is a fitting surface that slidably contacts the inside of the case 4 in the axial direction. There is. Further, due to this support, the nut 12 is arranged coaxially with the screw shaft 8 of the first screw element 1.

後方ばね受け12cは、雌ねじ部12aと中空軸12bとの間で内径差を設けるための段差面からなる。ピン挿入溝12dは、ナット12の外側を軸方向に延びている。複数のピン挿入溝12dは、図3に示すように、周方向複数個所に均等配置で形成されている。 The rear spring receiver 12c is formed of a stepped surface for providing an inner diameter difference between the female screw portion 12a and the hollow shaft 12b. The pin insertion groove 12d extends axially from the outside of the nut 12. As shown in FIG. 3, the plurality of pin insertion grooves 12d are formed at a plurality of locations in the circumferential direction evenly arranged.

図1、2に示す前方ばね受け13は、中空軸12bの内側に嵌合されたワッシャからなる。前方ばね受け13は、中空軸12bと、中空軸12bの内側に挿入された出力軸5との間に介在する。前方ばね受け13は、出力軸5を径方向に支持する。前方ばね受け13の内径面は、出力軸5と軸方向に摺動可能に接触する嵌め合い面になっている。止め輪14は、中空軸12bに形成された止め輪溝に取り付けられている。止め輪14は、第二弾性要素7によって生成される弾性反発力に抗して中空軸12bに対する前方ばね受け13の前進を阻止する。 The front spring receiver 13 shown in FIGS. 1 and 2 is composed of a washer fitted inside the hollow shaft 12b. The front spring receiver 13 is interposed between the hollow shaft 12b and the output shaft 5 inserted inside the hollow shaft 12b. The front spring receiver 13 supports the output shaft 5 in the radial direction. The inner diameter surface of the front spring receiver 13 is a fitting surface that slidably contacts the output shaft 5 in the axial direction. The retaining ring 14 is attached to a retaining ring groove formed in the hollow shaft 12b. The retaining ring 14 prevents the forward spring receiver 13 from advancing with respect to the hollow shaft 12b against the elastic rebound force generated by the second elastic element 7.

駆動機構3は、駆動軸15を有する電動モータからなる。駆動機構3は、駆動軸15を正逆回転させることができる。駆動軸15とねじ軸8の中空部は、正逆回転のいずれの回転方向にも回転力を伝達可能に嵌合されている。駆動軸15に取り付けられた回転伝達部材16は、軸受9と径方向に重なる位置でねじ軸8の中空部に径方向に接合されている。尚、回転伝達部材は、二面幅やDカットといった多角形状、またはスプライン等が適用される。駆動機構3の駆動軸15と第一ねじ要素1とを直結した例を示したが、駆動軸と第一ねじ要素とを平行に配置したり、駆動軸と第一ねじ要素間に回転力を伝達する歯車機構を追加したりすることも可能である。 The drive mechanism 3 includes an electric motor having a drive shaft 15. The drive mechanism 3 can rotate the drive shaft 15 in the forward and reverse directions. The hollow portion of the drive shaft 15 and the screw shaft 8 is fitted so as to be able to transmit a rotational force in either the forward or reverse rotation direction. The rotation transmission member 16 attached to the drive shaft 15 is radially joined to the hollow portion of the screw shaft 8 at a position where it radially overlaps with the bearing 9. As the rotation transmission member, a polygonal shape such as a width across flats or a D-cut, a spline, or the like is applied. An example in which the drive shaft 15 of the drive mechanism 3 and the first screw element 1 are directly connected is shown, but the drive shaft and the first screw element are arranged in parallel, or a rotational force is applied between the drive shaft and the first screw element. It is also possible to add a gear mechanism to transmit.

ケース4は、第一ねじ要素1及び第二ねじ要素2を支持するねじケース17と、駆動機構3を支持するモータケース18と、相手装置100と軸方向に突き合わされる前端ケース19とで構成されている。 The case 4 includes a screw case 17 that supports the first screw element 1 and the second screw element 2, a motor case 18 that supports the drive mechanism 3, and a front end case 19 that is abutted with the mating device 100 in the axial direction. Has been done.

ねじケース17の内周は、中空軸12bを含むナット12の外側を径方向に支持して軸方向に案内する。ねじケース17の内周には、図2、3に示すように、複数のピン挿入溝17aが形成されている。ピン挿入溝17aは、ナット12のピン挿入溝12dと径方向に対向するように軸方向に延びている。ナット12のピン挿入溝12dと、ねじケース17のピン挿入溝17aとの間にピン20が挿入されている。複数のピン挿入溝12d、ピン20及びピン挿入溝17aにより、ナット12に回転力が与えられると、ナット12のピン挿入溝12dに回転方向に押されたピン20がねじケース17のピン挿入溝17aと回転方向に係合するため、ナット12はケース4に対して回転することができない。なお、ピンは、径方向に向けて設置してもよいし、ピンを用いずに多角断面形状のナットとねじケースの嵌合構造でナットをねじケースで回り止めしてもよい。 The inner circumference of the screw case 17 supports the outside of the nut 12 including the hollow shaft 12b in the radial direction and guides the screw case 17 in the axial direction. As shown in FIGS. 2 and 3, a plurality of pin insertion grooves 17a are formed on the inner circumference of the screw case 17. The pin insertion groove 17a extends axially so as to face the pin insertion groove 12d of the nut 12 in the radial direction. The pin 20 is inserted between the pin insertion groove 12d of the nut 12 and the pin insertion groove 17a of the screw case 17. When a rotational force is applied to the nut 12 by the plurality of pin insertion grooves 12d, pins 20 and pin insertion grooves 17a, the pins 20 pushed in the rotational direction by the pin insertion grooves 12d of the nut 12 are pin insertion grooves of the screw case 17. Since it engages with 17a in the rotational direction, the nut 12 cannot rotate with respect to the case 4. The pin may be installed in the radial direction, or the nut may be stopped by the screw case with a fitting structure of the nut having a polygonal cross-sectional shape and the screw case without using the pin.

ねじケース17の内周は、出力軸5の後端と軸方向に対向する後方ストッパ17bを有する。後方ストッパ17bは、出力軸5との接触によってケース4に対する出力軸5の後進を停止させる部位であって、ケース4に対する出力軸5の往復移動のストロークLの後進側終端位置(後進限界位置)を定める部位である。後方ストッパ17bは、径方向に沿った段差面からなる。後方ストッパ17bは、ねじケース17の前方開口部の内径をナット12との接触部分の内径よりも大きくすることで段部を形成し、その段部に径方向に沿った段差面を加工することで形成されている。 The inner circumference of the screw case 17 has a rear stopper 17b that faces the rear end of the output shaft 5 in the axial direction. The rear stopper 17b is a portion that stops the reverse movement of the output shaft 5 with respect to the case 4 by contact with the output shaft 5, and is a reverse end position (reverse limit position) of the stroke L of the reciprocating movement of the output shaft 5 with respect to the case 4. It is a part that determines. The rear stopper 17b is formed of a stepped surface along the radial direction. The rear stopper 17b forms a stepped portion by making the inner diameter of the front opening of the screw case 17 larger than the inner diameter of the contact portion with the nut 12, and the stepped portion is machined along the radial direction. Is formed of.

図1、2に示すモータケース18は、ねじケース17の後端側に結合されている。モータケース18は、駆動機構3の駆動軸15と第一ねじ要素1の同軸配置及び結合状態を保つように駆動機構3のモータハウジング部をねじケース17に支持する。 The motor case 18 shown in FIGS. 1 and 2 is coupled to the rear end side of the screw case 17. The motor case 18 supports the motor housing portion of the drive mechanism 3 on the screw case 17 so as to maintain the coaxial arrangement and the coupled state of the drive shaft 15 of the drive mechanism 3 and the first screw element 1.

前端ケース19は、ねじケース17の前端側に結合されている。前端ケース19は、ねじケース17の内周よりも前方に位置する出力軸5の突出部分の周囲を取り囲む内周と、この内周から径方向に延びる終端壁とで構成されている。前端ケース19の終端壁には、前端ケース19を軸方向に貫通する接続孔19aと、出力軸5の前端と軸方向に対向する前方ストッパ19bとが形成されている。 The front end case 19 is coupled to the front end side of the screw case 17. The front end case 19 is composed of an inner circumference that surrounds the periphery of a protruding portion of the output shaft 5 located in front of the inner circumference of the screw case 17, and a terminal wall that extends radially from the inner circumference. The end wall of the front end case 19 is formed with a connection hole 19a that penetrates the front end case 19 in the axial direction and a front stopper 19b that faces the front end of the output shaft 5 in the axial direction.

接続孔19aは、出力軸5と同軸に形成された雌ねじ孔になっている。接続孔19aは、この直動アクチュエータのケース4と相手装置100の相手部材101との位置合わせを適切に定めることを容易にするために形成されている。 The connection hole 19a is a female screw hole formed coaxially with the output shaft 5. The connection hole 19a is formed to facilitate the proper alignment between the case 4 of the linear actuator and the mating member 101 of the mating device 100.

相手部材101は、相手装置100のハウジング102により、軸方向に所定範囲を往復移動可能に支持されている。ハウジング102は、相手部材101を内部に通す中空状の雄ねじ軸を有する。ハウジング102の雄ねじ軸を接続孔19aにねじ込むことにより、前端ケース19とハウジング102とが接続孔19aの周囲で軸方向に突き合わされた状態に締結される。この締結により、ケース4に対する相手部材101の軸方向の位置決めが一定の精度に確保されると共に、第一ねじ要素1、第二ねじ要素2及び出力軸5に対する相手部材101の径方向の位置決めも一定の同軸度に確保される。なお、相手部材101と出力軸5は、各々が独立して軸方向に移動可能な非連結の状態で配置されており、常に軸方向に一体で移動するとは限らない。 The mating member 101 is supported by the housing 102 of the mating device 100 so as to be reciprocally movable within a predetermined range in the axial direction. The housing 102 has a hollow male screw shaft through which the mating member 101 is passed. By screwing the male screw shaft of the housing 102 into the connection hole 19a, the front end case 19 and the housing 102 are fastened so as to be axially abutted around the connection hole 19a. By this fastening, the axial positioning of the mating member 101 with respect to the case 4 is ensured with a certain accuracy, and the radial positioning of the mating member 101 with respect to the first screw element 1, the second screw element 2 and the output shaft 5 is also performed. It is secured at a constant coaxiality. The mating member 101 and the output shaft 5 are arranged in a non-connected state in which they can move independently in the axial direction, and do not always move integrally in the axial direction.

前端ケース19の前方ストッパ19bは、出力軸5との接触によってケース4に対する出力軸5の前進を停止させる部位であって、ケース4に対する出力軸5の往復移動のストロークLの前進側終端位置(前進限界位置)を定める部位である。前方ストッパ19bは、径方向に沿う環状平坦面からなる。 The front stopper 19b of the front end case 19 is a portion that stops the advance of the output shaft 5 with respect to the case 4 by contact with the output shaft 5, and is a forward end position of the stroke L of the reciprocating movement of the output shaft 5 with respect to the case 4. It is a part that determines the forward limit position). The front stopper 19b is formed of an annular flat surface along the radial direction.

出力軸5は、第一ねじ要素1及び第二ねじ要素2に対して軸方向に往復移動可能かつケース4の後方ストッパ17bと前方ストッパ19bとの間で規定された一定のストロークLの範囲内でケース4に対して軸方向に往復移動可能に配置されている。出力軸5は、この直動アクチュエータの出力部となる部位であり、ストロークLは、この直動アクチュエータで相手部材101の軸方向位置を調整可能な駆動範囲に相当する。 The output shaft 5 can reciprocate in the axial direction with respect to the first screw element 1 and the second screw element 2, and is within a constant stroke L defined between the rear stopper 17b and the front stopper 19b of the case 4. It is arranged so that it can be reciprocated in the axial direction with respect to the case 4. The output shaft 5 is a portion serving as an output unit of the linear actuator, and the stroke L corresponds to a drive range in which the axial position of the mating member 101 can be adjusted by the linear actuator.

出力軸5は、棒材21と、中空軸12bの内側に向かって径方向に突き出た中間ばね受け22と、棒材21の後方側に取り付けられた止め輪23と、中空軸12bよりも前方の位置で中空軸12bよりも大径に突出した係合板24と、棒材21の前方側に取り付けられた止め輪25と、棒材21の前端に被せられた先端キャップ26とで構成されている。 The output shaft 5 includes a bar 21, an intermediate spring receiver 22 that protrudes radially toward the inside of the hollow shaft 12b, a retaining ring 23 attached to the rear side of the bar 21, and a front of the hollow shaft 12b. It is composed of an engaging plate 24 protruding larger than the hollow shaft 12b at the position of, a retaining ring 25 attached to the front side of the bar 21, and a tip cap 26 overlaid on the front end of the bar 21. There is.

棒材21は、その軸方向長さの中間部の軸径に比して軸径が小さい軸端部を前方側と後方側とに有する段付き軸状になっている。棒材21の中間部は、前方ばね受け13に径方向に支持されている。 The bar 21 has a stepped shaft shape having shaft ends having a smaller shaft diameter than the shaft diameter of the middle portion of the axial length on the front side and the rear side. The intermediate portion of the bar 21 is radially supported by the front spring receiver 13.

中間ばね受け22は、第一弾性要素6の前端及び第二弾性要素7の後端を軸方向に受ける。中間ばね受け22は、棒材21の後方側の軸端部に嵌合されたワッシャからなる。止め輪23は、棒材21の後方側の軸端部に形成された止め輪溝に取り付けられている。中間ばね受け22は、棒材21の後方側の軸端部と中間部との間に形成された段差面と、止め輪23とにより、棒材21に対して移動不可な状態に規制されている。中間ばね受け22は、中空軸12bに径方向に支持されている。中間ばね受け22の外径面は、中空軸12bと軸方向に摺動可能に接触する嵌め合い面になっている。中間ばね受け22は、棒材21と一体に形成してもよい。 The intermediate spring receiver 22 receives the front end of the first elastic element 6 and the rear end of the second elastic element 7 in the axial direction. The intermediate spring receiver 22 is composed of a washer fitted to a shaft end portion on the rear side of the bar 21. The retaining ring 23 is attached to a retaining ring groove formed at a shaft end on the rear side of the bar 21. The intermediate spring receiver 22 is restricted to a state in which it cannot move with respect to the bar 21 by the stepped surface formed between the shaft end portion and the intermediate portion on the rear side of the bar 21 and the retaining ring 23. There is. The intermediate spring receiver 22 is radially supported by the hollow shaft 12b. The outer diameter surface of the intermediate spring receiver 22 is a fitting surface that is slidably in contact with the hollow shaft 12b in the axial direction. The intermediate spring receiver 22 may be formed integrally with the bar 21.

係合板24は、棒材21の前方側の軸端部に嵌合されたワッシャからなる。止め輪25は、棒材21の前方側の軸端部に形成された止め輪溝に取り付けられている。係合板24は、棒材21の前方側の軸端部と中間部との間に形成された段差面と、止め輪25とにより、棒材21に対して移動不可な状態に規制されている。係合板24は、出力軸5がストロークLの後進側終端位置まで後進した際にねじケース17の後方ストッパ17bと軸方向に接触させるために取り付けられている。 The engaging plate 24 is made of a washer fitted to the shaft end portion on the front side of the bar 21. The retaining ring 25 is attached to a retaining ring groove formed at a shaft end on the front side of the bar 21. The engaging plate 24 is restricted to a state in which it cannot move with respect to the bar 21 by the stepped surface formed between the shaft end portion and the intermediate portion on the front side of the bar 21 and the retaining ring 25. .. The engagement plate 24 is attached so that the output shaft 5 comes into axial contact with the rear stopper 17b of the screw case 17 when the output shaft 5 moves backward to the rearward end position of the stroke L.

先端キャップ26は、棒材21の前方側の軸端部に圧入されている。先端キャップ26は、出力軸5の最も前方の部位である先端部を接続孔19aよりも大径にして、出力軸5がストロークLの前進側終端位置まで前進した際に接続孔19aの周囲で前端ケース19と軸方向に接触させるために取り付けられている。 The tip cap 26 is press-fitted into the shaft end portion on the front side of the bar 21. The tip cap 26 has a tip portion, which is the frontmost portion of the output shaft 5, having a diameter larger than that of the connection hole 19a, and is around the connection hole 19a when the output shaft 5 advances to the forward end position of the stroke L. It is attached for axial contact with the front end case 19.

第一弾性要素6と第二弾性要素7は、中空軸12bの内側と出力軸5との間に配置されている。第一弾性要素6と第二弾性要素7は、それぞれ駆動機構3の最大出力に基づく第二ねじ要素2の推力と同等以上の弾性反発力を生成可能なものである。第一弾性要素6と第二弾性要素7は、それぞれ環状ばねからなる。環状ばねとして、圧縮コイルばねが採用されている。なお、第一弾性要素6と第二弾性要素7には、同一仕様のものが採用されている。第一弾性要素6と第二弾性要素7は、それぞれ複数のばね部材で構成してもよい。 The first elastic element 6 and the second elastic element 7 are arranged between the inside of the hollow shaft 12b and the output shaft 5. The first elastic element 6 and the second elastic element 7 can generate elastic repulsive forces equal to or higher than the thrust of the second screw element 2 based on the maximum output of the drive mechanism 3, respectively. The first elastic element 6 and the second elastic element 7 each consist of an annular spring. A compression coil spring is used as the annular spring. The first elastic element 6 and the second elastic element 7 have the same specifications. The first elastic element 6 and the second elastic element 7 may each be composed of a plurality of spring members.

第一弾性要素6は、中間ばね受け22の後端と、後方ばね受け12cとで軸方向に挟まれている。第二弾性要素7は、中間ばね受け22の前端と、前方ばね受け13とで軸方向に挟まれている。駆動機構3による第二ねじ要素2の前進又は後進の際、第二ねじ要素2の推力が後方ばね受け12c又は前方ばね受け13から第一弾性要素6又は第二弾性要素7に伝達され、さらに第一弾性要素6又は第二弾性要素7から中間ばね受け22に伝達され、さらに棒材21に伝達される。なお、第一弾性要素6と第二弾性要素7が中間ばね受け22の外径側を前後両側から挟んでいるので、中間ばね受け22の外径側に第一弾性要素6及び第二弾性要素7の弾性反発力が作用しても、中間ばね受け22の傾きが抑制され、中空軸12bの内側に食い込む懸念がない。 The first elastic element 6 is axially sandwiched between the rear end of the intermediate spring receiver 22 and the rear spring receiver 12c. The second elastic element 7 is axially sandwiched between the front end of the intermediate spring receiver 22 and the front spring receiver 13. When the second screw element 2 is moved forward or backward by the drive mechanism 3, the thrust of the second screw element 2 is transmitted from the rear spring receiver 12c or the front spring receiver 13 to the first elastic element 6 or the second elastic element 7. It is transmitted from the first elastic element 6 or the second elastic element 7 to the intermediate spring receiver 22 and further transmitted to the bar 21. Since the first elastic element 6 and the second elastic element 7 sandwich the outer diameter side of the intermediate spring receiver 22 from both the front and rear sides, the first elastic element 6 and the second elastic element are on the outer diameter side of the intermediate spring receiver 22. Even if the elastic repulsive force of 7 acts, the inclination of the intermediate spring receiver 22 is suppressed, and there is no concern that the intermediate spring receiver 22 will bite into the inside of the hollow shaft 12b.

第一弾性要素6と第二弾性要素7は、予め所定の圧縮状態で中間ばね受け22と対応の後方ばね受け12c又は前方ばね受け13との間に配置されている。これは、ストッパ19b、17bや相手部材101から抵抗を受けずに出力軸5が前進又は後進する際、後方ばね受け12c又は前方ばね受け13から伝達された推力で第一弾性要素6又は第二弾性要素7が一層軸方向に圧縮されることを避け、第二ねじ要素2の前進又は後進に連動して出力軸5を前進又は後進させ、第二ねじ要素2の前進又は後進に対する出力軸5のストロークの損失を実質的に無くすためである。 The first elastic element 6 and the second elastic element 7 are arranged in advance between the intermediate spring receiver 22 and the corresponding rear spring receiver 12c or the front spring receiver 13 in a predetermined compression state. This is the first elastic element 6 or the second by the thrust transmitted from the rear spring receiver 12c or the front spring receiver 13 when the output shaft 5 moves forward or backward without receiving resistance from the stoppers 19b and 17b and the mating member 101. Avoiding one-layer axial compression of the elastic element 7 and advancing or reversing the output shaft 5 in conjunction with the forward or backward movement of the second screw element 2, the output shaft 5 with respect to the forward or reverse movement of the second screw element 2 This is to substantially eliminate the loss of the stroke.

ここで、図1、2は、第二ねじ要素2が駆動機構3によって最も後退させられた状態を示し、図4は、第二ねじ要素2が駆動機構3によって最も前進させられた状態を示す。駆動機構3による第二ねじ要素2の前後進のストロークは、出力軸5のストロークLよりも長く、その冗長分は、第一弾性要素6と第二弾性要素7を駆動機構3によって圧縮させられる軸方向長さに基づく。 Here, FIGS. 1 and 2 show a state in which the second screw element 2 is most retracted by the drive mechanism 3, and FIG. 4 shows a state in which the second screw element 2 is most retracted by the drive mechanism 3. .. The forward / backward stroke of the second screw element 2 by the drive mechanism 3 is longer than the stroke L of the output shaft 5, and the redundant portion causes the first elastic element 6 and the second elastic element 7 to be compressed by the drive mechanism 3. Based on axial length.

具体的には、駆動機構3による第二ねじ要素2の後進に連動して出力軸5が後進するとき、後進中の出力軸5の係合板24がケース4の後方ストッパ17bに接触すると、出力軸5の後進が停止させられる。このとき、駆動機構3が直ぐに停止することはできず、停止した出力軸5に対して第二ねじ要素2がさらに後進させられる。この後進に伴い、第二弾性要素7の後端が出力軸5の中間ばね受け22に受けられた状態のまま第二弾性要素7の前端が第二ねじ要素2の前方ばね受け13から後方に向かって押されるので、第二弾性要素7が軸方向に圧縮されて弾性反発力を増す一方、中間ばね受け22と後方ばね受け12c間の軸方向間隔が広がるので、第一弾性要素6は伸長することになる。その第二弾性要素7の弾性反発力は、第二弾性要素7の後端が出力軸5の中間ばね受け22に受けられた状態のまま第二弾性要素7の前端、前方ばね受け13、止め輪14、ナット12の順に作用するので、第二ねじ要素2を前方に向かって押す力、すなわち第二ねじ要素2の後進方向の推力に対して逆向きの力として第二ねじ要素2の全体に作用することになる。その弾性反発力が第二ねじ要素2の後進方向の推力と同等以上になると、第二ねじ要素2の後進が停止させられて図1、2の状態となる。このように、出力軸5の後進行程においては、第二弾性要素7の弾性反発力によって第二ねじ要素2の後進が停止させられるので、雌ねじ部12aとねじ軸8間がロック状態になる程に高摩擦状態とならない。 Specifically, when the output shaft 5 moves backward in conjunction with the reverse movement of the second screw element 2 by the drive mechanism 3, when the engaging plate 24 of the output shaft 5 in reverse contact with the rear stopper 17b of the case 4, the output is output. The reverse movement of the shaft 5 is stopped. At this time, the drive mechanism 3 cannot be stopped immediately, and the second screw element 2 is further moved backward with respect to the stopped output shaft 5. Along with this backward movement, the front end of the second elastic element 7 is rearward from the front spring receiver 13 of the second screw element 2 while the rear end of the second elastic element 7 is received by the intermediate spring receiver 22 of the output shaft 5. Since it is pushed toward, the second elastic element 7 is compressed in the axial direction to increase the elastic repulsive force, while the axial distance between the intermediate spring receiver 22 and the rear spring receiver 12c is widened, so that the first elastic element 6 is extended. Will be done. The elastic repulsive force of the second elastic element 7 is the front end of the second elastic element 7, the front spring receiver 13, and the stop while the rear end of the second elastic element 7 is received by the intermediate spring receiver 22 of the output shaft 5. Since the ring 14 and the nut 12 act in this order, the force pushing the second screw element 2 forward, that is, the force opposite to the backward thrust of the second screw element 2, is the entire second screw element 2. Will act on. When the elastic rebound force becomes equal to or higher than the thrust in the backward direction of the second screw element 2, the reverse movement of the second screw element 2 is stopped and the states shown in FIGS. 1 and 2 are obtained. In this way, in the backward progress of the output shaft 5, the backward movement of the second screw element 2 is stopped by the elastic repulsive force of the second elastic element 7, so that the female screw portion 12a and the screw shaft 8 are locked. It does not become a high friction state.

図2の状態から駆動機構3により第二ねじ要素2を前進させる場合、第二ねじ要素2の前方ばね受け13の前進に応じて第二弾性要素7が伸長しつつ出力軸5が第二ねじ要素2に連動して前進することになる。 When the second screw element 2 is advanced by the drive mechanism 3 from the state of FIG. 2, the output shaft 5 is the second screw while the second elastic element 7 is extended according to the advance of the front spring receiver 13 of the second screw element 2. It will move forward in conjunction with element 2.

一方、駆動機構3による第二ねじ要素2の前進に連動して出力軸5が前進するとき、前進中の出力軸5の先端キャップ26がケース4の前方ストッパ19bや相手部材101に衝突すると、出力軸5の前進が停止させられる。このとき、駆動機構3が直ぐに停止することはできず、停止した出力軸5に対して第二ねじ要素2がさらに前進させられる。この前進に伴い、第一弾性要素6の前端が出力軸5の中間ばね受け22に受けられた状態のまま第一弾性要素6の後端が第二ねじ要素2の後方ばね受け12cから前方に向かって押されるので、第一弾性要素6が軸方向に圧縮されて弾性反発力を増す一方、中間ばね受け22と前方ばね受け13間の軸方向間隔が広がるので、第二弾性要素7は伸長することになる。その第一弾性要素6の弾性反発力は、第一弾性要素6の前端が出力軸5の中間ばね受け22に受けられた状態のまま第一弾性要素6の後端、ナット12の後方ばね受け12cの順に作用するので、第二ねじ要素2を後方に向かって押す力、すなわち第二ねじ要素2の前進方向の推力に対して逆向きの力として第二ねじ要素2の全体に作用することになる。その第一弾性要素6の弾性反発力が第二ねじ要素2の前進方向の推力と同等以上になると、第二ねじ要素2の前進が停止させられ、図4の状態となる。このように、出力軸5の前進行程においては、第一弾性要素6の弾性反発力によって第二ねじ要素2の前進が停止させられるので、雌ねじ部12aとねじ軸8間がロック状態になる程に高摩擦状態とならない。 On the other hand, when the output shaft 5 advances in conjunction with the advance of the second screw element 2 by the drive mechanism 3, when the tip cap 26 of the advancing output shaft 5 collides with the front stopper 19b of the case 4 or the mating member 101, The advance of the output shaft 5 is stopped. At this time, the drive mechanism 3 cannot be stopped immediately, and the second screw element 2 is further advanced with respect to the stopped output shaft 5. Along with this advancement, the rear end of the first elastic element 6 moves forward from the rear spring receiver 12c of the second screw element 2 while the front end of the first elastic element 6 is received by the intermediate spring receiver 22 of the output shaft 5. Since it is pushed toward, the first elastic element 6 is compressed in the axial direction to increase the elastic repulsive force, while the axial distance between the intermediate spring receiver 22 and the front spring receiver 13 is widened, so that the second elastic element 7 is extended. Will be done. The elastic repulsive force of the first elastic element 6 is the rear end of the first elastic element 6 and the rear spring receiver of the nut 12 while the front end of the first elastic element 6 is received by the intermediate spring receiver 22 of the output shaft 5. Since it acts in the order of 12c, it acts on the entire second screw element 2 as a force pushing the second screw element 2 backward, that is, a force opposite to the forward thrust of the second screw element 2. become. When the elastic repulsive force of the first elastic element 6 becomes equal to or more than the thrust in the forward direction of the second screw element 2, the advance of the second screw element 2 is stopped, and the state shown in FIG. 4 is obtained. In this way, in the forward progress of the output shaft 5, the advance of the second screw element 2 is stopped by the elastic repulsive force of the first elastic element 6, so that the female screw portion 12a and the screw shaft 8 are locked. It does not become a high friction state.

図4の状態から駆動機構3により第二ねじ要素2を後進させる場合、第二ねじ要素2の後方ばね受け12cの後進に応じて第一弾性要素6が伸長しつつ出力軸5が第二ねじ要素2に連動して後進することになる。 When the second screw element 2 is moved backward by the drive mechanism 3 from the state of FIG. 4, the output shaft 5 is the second screw while the first elastic element 6 is extended according to the backward movement of the rear spring receiver 12c of the second screw element 2. It will move backward in conjunction with element 2.

この直動アクチュエータは、上述のように、ねじ機構の第一ねじ要素1、第二ねじ要素2及びねじ機構を支持するケース4に対して軸方向に往復移動可能に配置された出力軸5と、第二ねじ要素2の前進方向の推力を出力軸5まで伝達するように出力軸5と第二ねじ要素2との間に配置された第一弾性要素6と、第二ねじ要素2の後進方向の推力を出力軸5まで伝達するように出力軸5と第二ねじ要素2との間に配置された第二弾性要素7とを備え、出力軸5が前進可能な状態で第一弾性要素6が前進方向の推力を伝達する場合に第二ねじ要素2と出力軸5を前進方向に連動させ、出力軸5が前進不可な状態で第一弾性要素6が前進方向の推力を伝達する場合に第一弾性要素6が前進方向の推力と同等以上の弾性反発力を第二ねじ要素2に与えて第二ねじ要素2の前進を停止させ、出力軸5が後進可能な状態で第二弾性要素7が後進方向の推力を伝達する場合に第二ねじ要素2と出力軸5を後進方向に連動させ、出力軸5が後進不可な状態で第二弾性要素7が後進方向の推力を伝達する場合に第二弾性要素7が後進方向の推力と同等以上の弾性反発力を第二ねじ要素2に与えて第二ねじ要素2の後進を停止させるので、出力軸5を直動アクチュエータの出力部とし、駆動機構3によって第二ねじ要素2が前進又は後進中、出力軸5がストッパ17b、19bや相手部材101と軸方向に衝突しない場合、第二ねじ要素2の推力が第一弾性要素6又は第二弾性要素7を介して出力軸5に伝達されて第二ねじ要素2の移動方向に出力軸5が連動させられる一方、駆動機構3によって第二ねじ要素2が前進又は後進中、出力軸5がストッパ17b、19bや相手部材101と軸方向に衝突した場合、停止した出力軸5に対する第二ねじ要素2の前進又は後進が進んでいくことにより、対応側の第一弾性要素6又は第二弾性要素7が第二ねじ要素2から圧縮されて弾性反発力を増し、その弾性反発力が第二ねじ要素2の移動方向の推力と同等以上になると、その弾性反発力によって第二ねじ要素2の移動が停止させられるので、第一ねじ要素1と第二ねじ要素2が噛み込まず、ねじ機構でのロック状態発生が防止される。このように、この直動アクチュエータは、駆動機構3による直動中の出力部としての出力軸5がケース4のストッパ17b、19bや、出力軸5で駆動する相手部材101と軸方向に衝突した際にねじ機構でのロック状態発生を防止することができる。 As described above, this linear motion actuator has the output shaft 5 arranged so as to be reciprocally movable in the axial direction with respect to the first screw element 1, the second screw element 2 of the screw mechanism and the case 4 supporting the screw mechanism. , The first elastic element 6 arranged between the output shaft 5 and the second screw element 2 so as to transmit the thrust in the forward direction of the second screw element 2 to the output shaft 5, and the reverse of the second screw element 2. It is provided with a second elastic element 7 arranged between the output shaft 5 and the second screw element 2 so as to transmit a thrust in the direction to the output shaft 5, and the first elastic element is in a state where the output shaft 5 can be advanced. When the second screw element 2 and the output shaft 5 are interlocked in the forward direction when 6 transmits the thrust in the forward direction, and the first elastic element 6 transmits the thrust in the forward direction while the output shaft 5 cannot move forward. The first elastic element 6 applies an elastic repulsive force equal to or higher than the thrust in the forward direction to the second screw element 2 to stop the advance of the second screw element 2, and the second elastic is in a state where the output shaft 5 can move backward. When the element 7 transmits the thrust in the reverse direction, the second screw element 2 and the output shaft 5 are interlocked in the reverse direction, and the second elastic element 7 transmits the thrust in the reverse direction while the output shaft 5 cannot move backward. In this case, the second elastic element 7 applies an elastic repulsive force equal to or higher than the thrust in the reverse direction to the second screw element 2 to stop the second screw element 2 from moving backward. When the output shaft 5 does not collide with the stoppers 17b, 19b or the mating member 101 in the axial direction while the second screw element 2 is moving forward or backward by the drive mechanism 3, the thrust of the second screw element 2 is the first elastic element 6. Alternatively, it is transmitted to the output shaft 5 via the second elastic element 7 and the output shaft 5 is interlocked in the moving direction of the second screw element 2, while the drive mechanism 3 outputs the second screw element 2 while it is moving forward or backward. When the shaft 5 collides with the stoppers 17b, 19b or the mating member 101 in the axial direction, the second screw element 2 advances or moves backward with respect to the stopped output shaft 5, whereby the corresponding first elastic element 6 or When the second elastic element 7 is compressed from the second screw element 2 to increase the elastic repulsive force, and the elastic repulsive force becomes equal to or higher than the thrust in the moving direction of the second screw element 2, the elastic repulsive force causes the second screw. Since the movement of the element 2 is stopped, the first screw element 1 and the second screw element 2 do not engage with each other, and the occurrence of a locked state in the screw mechanism is prevented. As described above, in this linear actuator, the output shaft 5 as the output unit during the linear motion by the drive mechanism 3 collides with the stoppers 17b and 19b of the case 4 and the mating member 101 driven by the output shaft 5 in the axial direction. At this time, it is possible to prevent the occurrence of a locked state in the screw mechanism.

また、この直動アクチュエータは、第二ねじ要素2が軸方向に延びる中空軸12bを有し、第一弾性要素6と第二弾性要素7が中空軸12bの内側と出力軸5との間に配置されており、出力軸5が中空軸12bの内側に向かって突き出た中間ばね受け22を有し、第二ねじ要素2が第一弾性要素6を中間ばね受け22の後端と軸方向に挟む後方ばね受け12cと、第二弾性要素7を中間ばね受け22の前端と軸方向に挟む前方ばね受け13とを有するので、第一弾性要素6と第二弾性要素7を第二ねじ要素2の中空軸12b内に保持し、第一ねじ要素1と第二ねじ要素2の弾性反発力を共通の中間ばね受け22で受けて中間ばね受け22の傾きを防止しつつ、第二ねじ要素2に対する出力軸5の移動方向に応じて第一弾性要素6と第二弾性要素7を伸縮させることができる。 Further, in this linear motion actuator, the second thread element 2 has a hollow shaft 12b extending in the axial direction, and the first elastic element 6 and the second elastic element 7 are located between the inside of the hollow shaft 12b and the output shaft 5. Arranged, the output shaft 5 has an intermediate spring receiver 22 protruding inward of the hollow shaft 12b, and the second thread element 2 axially aligns the first elastic element 6 with the rear end of the intermediate spring receiver 22. Since it has a rear spring receiver 12c for sandwiching the rear spring receiver 12c and a front spring receiver 13 for sandwiching the second elastic element 7 with the front end of the intermediate spring receiver 22 in the axial direction, the first elastic element 6 and the second elastic element 7 are sandwiched by the second screw element 2. The second screw element 2 is held in the hollow shaft 12b of the above, and the elastic repulsive force of the first screw element 1 and the second screw element 2 is received by the common intermediate spring receiver 22 to prevent the intermediate spring receiver 22 from tilting. The first elastic element 6 and the second elastic element 7 can be expanded and contracted according to the moving direction of the output shaft 5.

また、この直動アクチュエータは、第二ねじ要素2の中空軸12bがケース4に径方向に支持されており、出力軸5の中間ばね受け22が中空軸12bに径方向に支持されており、第二ねじ要素2の前方ばね受け13が出力軸5を径方向に支持しているので、中間ばね受け22と前方ばね受け13を中空軸12bに対する出力軸5の支持構造に利用し、その中空軸12bをケース4で径方向に支持して安定させることができる。 Further, in this linear motion actuator, the hollow shaft 12b of the second screw element 2 is radially supported by the case 4, and the intermediate spring receiver 22 of the output shaft 5 is radially supported by the hollow shaft 12b. Since the front spring receiver 13 of the second screw element 2 supports the output shaft 5 in the radial direction, the intermediate spring receiver 22 and the front spring receiver 13 are used for the support structure of the output shaft 5 with respect to the hollow shaft 12b, and the hollow thereof is used. The shaft 12b can be supported and stabilized in the radial direction by the case 4.

また、この直動アクチュエータは、第二ねじ要素2が第一ねじ要素1にねじ嵌合されたナット12を有し、第二ねじ要素2の中空軸12bと後方ばね受け12cがナット12と一体に形成されているので、中空軸12bに出力軸5、第一、第二弾性要素6、7を挿入した状態で前方ばね受け13をナット12に取り付けるだけで、出力軸5、第一、第二弾性要素6、7及びナット12をサブユニットに組み立てることができる。 Further, in this linear motion actuator, the second screw element 2 has a nut 12 screw-fitted to the first screw element 1, and the hollow shaft 12b and the rear spring receiver 12c of the second screw element 2 are integrated with the nut 12. Since the output shaft 5, the first and second elastic elements 6 and 7 are inserted into the hollow shaft 12b, the front spring receiver 13 is simply attached to the nut 12, and the output shaft 5, the first and the second are formed. (Ii) Elastic elements 6, 7 and nuts 12 can be assembled into the subsystem.

また、この直動アクチュエータは、ケース4が出力軸5との接触によってケース4に対する出力軸5のストロークLを一定に制限する前方ストッパ19b及び後方ストッパ17bを有するので、被駆動側の相手部材101に依存することなく、出力軸5の前進行程及び後進行程のストローク量を直動アクチュエータ単体で正確に定めることができる。 Further, since the linear actuator has a front stopper 19b and a rear stopper 17b that limit the stroke L of the output shaft 5 with respect to the case 4 to a constant value when the case 4 comes into contact with the output shaft 5, the driven side mating member 101 The stroke amount of the forward advance and the backward advance of the output shaft 5 can be accurately determined by the linear actuator alone without depending on.

なお、この直動アクチュエータでは、第一ねじ要素1に雄ねじ、第二ねじ要素2に雌ねじを設けたが、第一ねじ要素に雌ねじ、第二ねじ要素に雄ねじを設けたねじ機構に変更することも可能である。この変更は、例えば、第一ねじ要素のねじ軸に中空軸相当の部位を延ばし、この中空軸の内側で出力軸、第一弾性要素、第二弾性要素を保持させることで実現可能である。この直動アクチュエータでは、雌ねじ部12aの径方向肉厚を利用して後方ばね受け12cとする段差面が形成されているので、ねじ軸から中空軸を延長する場合に比して第二ねじ要素2の軸方向長さを抑えることができる。また、ねじ機構として第一ねじ要素1と第二ねじ要素2のねじ山同士が直接に螺合する滑りねじを採用したが、ボールねじを採用することも可能である。 In this linear actuator, the first screw element 1 is provided with a male screw and the second screw element 2 is provided with a female screw. However, the mechanism should be changed to a screw mechanism in which the first screw element has a female screw and the second screw element has a male screw. Is also possible. This change can be realized, for example, by extending a portion corresponding to the hollow shaft to the screw shaft of the first screw element and holding the output shaft, the first elastic element, and the second elastic element inside the hollow shaft. In this linear actuator, a stepped surface is formed as the rear spring receiver 12c by utilizing the radial wall thickness of the female thread portion 12a, so that the second screw element is compared with the case where the hollow shaft is extended from the screw shaft. The axial length of 2 can be suppressed. Further, although a sliding screw in which the threads of the first screw element 1 and the second screw element 2 are directly screwed to each other is adopted as the screw mechanism, a ball screw can also be adopted.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary and not restrictive in all respects. Therefore, the scope of the present invention is shown by the scope of claims rather than the above description, and it is intended that all modifications within the meaning and scope equivalent to the scope of claims are included.

1 第一ねじ要素
2 第二ねじ要素
3 駆動機構
4 ケース
5 出力軸
6 第一弾性要素
7 第二弾性要素
8 ねじ軸
12 ナット
12b 中空軸
12c 後方ばね受け
13 前方ばね受け
17b 後方ストッパ
19b 前方ストッパ
22 中間ばね受け
24 係合板
101 相手部材
1 1st screw element 2 2nd screw element 3 Drive mechanism 4 Case 5 Output shaft 6 1st elastic element 7 2nd elastic element 8 Thread shaft 12 Nut 12b Hollow shaft 12c Rear spring holder 13 Front spring holder 17b Rear stopper 19b Front stopper 22 Intermediate spring holder 24 Engagement plate 101 Mating member

Claims (5)

第一ねじ要素の回転力を第二ねじ要素の軸方向の推力に変換するねじ機構と、前記第一ねじ要素に前記回転力を与える駆動機構と、前記駆動機構と前記ねじ機構とを支持するケースとを備える直動アクチュエータにおいて、
前記第一ねじ要素、前記第二ねじ要素及び前記ケースに対して軸方向に往復移動可能に配置された出力軸と、
前記第二ねじ要素の前進方向の前記推力を前記出力軸まで伝達するように前記出力軸と前記第二ねじ要素との間に配置され、前記出力軸が軸方向に前進可能な状態で前進方向の前記推力を伝達する場合に前記第二ねじ要素と前記出力軸を前進方向に連動させ、前記出力軸が軸方向に前進不可な状態で前進方向の前記推力を伝達する場合に前進方向の前記推力と同等以上の弾性反発力を前記第二ねじ要素に与えて前記第二ねじ要素の前進を停止させる第一弾性要素と、
前記第二ねじ要素の後進方向の前記推力を前記出力軸まで伝達するように前記出力軸と前記第二ねじ要素との間に配置され、前記出力軸が軸方向に後進可能な状態で後進方向の前記推力を伝達する場合に前記第二ねじ要素と前記出力軸を後進方向に連動させ、前記出力軸が軸方向に後進不可な状態で後進方向の前記推力を伝達する場合に後進方向の前記推力と同等以上の弾性反発力を前記第二ねじ要素に与えて前記第二ねじ要素の後進を停止させる第二弾性要素と、をさらに備えることを特徴とする直動アクチュエータ。
It supports a screw mechanism that converts the rotational force of the first screw element into an axial thrust of the second screw element, a drive mechanism that applies the rotational force to the first screw element, and the drive mechanism and the screw mechanism. In a linear actuator with a case,
An output shaft arranged so as to be reciprocally movable in the axial direction with respect to the first screw element, the second screw element, and the case.
The thrust in the forward direction of the second screw element is arranged between the output shaft and the second screw element so as to be transmitted to the output shaft, and the output shaft can be advanced in the axial direction in the forward direction. When the second screw element and the output shaft are interlocked in the forward direction when transmitting the thrust of the above, and when the thrust in the forward direction is transmitted in a state where the output shaft cannot move forward in the axial direction, the said in the forward direction. A first elastic element that applies an elastic repulsive force equal to or greater than the thrust to the second screw element to stop the advance of the second screw element.
The thrust in the reverse direction of the second screw element is arranged between the output shaft and the second screw element so as to be transmitted to the output shaft, and the output shaft can be moved backward in the axial direction in the reverse direction. When the second screw element and the output shaft are interlocked in the reverse direction when transmitting the thrust of the above, and when the thrust in the reverse direction is transmitted in a state where the output shaft cannot move backward in the axial direction, the said in the reverse direction. A linear motion actuator further comprising a second elastic element that applies an elastic repulsive force equal to or higher than a thrust to the second screw element to stop the backward movement of the second screw element.
前記第二ねじ要素は、軸方向に延びる中空軸を有し、
前記第一弾性要素と前記第二弾性要素は、前記中空軸の内側と前記出力軸との間に配置されており、
前記出力軸は、前記中空軸の内側に向かって突き出た中間ばね受けを有し、
前記第二ねじ要素は、前記第一弾性要素を前記中間ばね受けの後端と軸方向に挟む後方ばね受けと、前記第二弾性要素を前記中間ばね受けの前端と軸方向に挟む前方ばね受けとを有する請求項1に記載の直動アクチュエータ。
The second thread element has a hollow shaft extending in the axial direction and has a hollow shaft extending in the axial direction.
The first elastic element and the second elastic element are arranged inside the hollow shaft and between the output shaft.
The output shaft has an intermediate spring holder protruding inward of the hollow shaft.
The second screw element includes a rear spring receiver that axially sandwiches the first elastic element with the rear end of the intermediate spring receiver, and a front spring receiver that axially sandwiches the second elastic element with the front end of the intermediate spring receiver. The linear actuator according to claim 1, wherein the actuator has.
前記第二ねじ要素の中空軸は、前記ケースに径方向に支持されており、
前記出力軸の中間ばね受けは、前記中空軸に径方向に支持されており、
前記第二ねじ要素の前方ばね受けは、前記出力軸を径方向に支持している請求項2に記載の直動アクチュエータ。
The hollow shaft of the second screw element is radially supported by the case.
The intermediate spring receiver of the output shaft is radially supported by the hollow shaft.
The linear actuator according to claim 2, wherein the front spring receiver of the second screw element supports the output shaft in the radial direction.
前記第二ねじ要素は、前記第一ねじ要素にねじ嵌合されたナットを有し、
前記第二ねじ要素の中空軸と前記後方ばね受けは、前記ナットと一体に形成されている請求項2又は3に記載の直動アクチュエータ。
The second thread element has a nut threaded into the first thread element.
The linear actuator according to claim 2 or 3, wherein the hollow shaft of the second screw element and the rear spring receiver are integrally formed with the nut.
前記ケースは、前記出力軸との接触によって前記ケースに対する前記出力軸のストロークを一定に制限する前方ストッパ及び後方ストッパを有する請求項1から4のいずれか1項に記載の直動アクチュエータ。 The linear actuator according to any one of claims 1 to 4, wherein the case has a front stopper and a rear stopper that constantly limit the stroke of the output shaft with respect to the case by contact with the output shaft.
JP2020157295A 2020-09-18 2020-09-18 Linear motion actuator Pending JP2022051042A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020157295A JP2022051042A (en) 2020-09-18 2020-09-18 Linear motion actuator
PCT/JP2021/034085 WO2022059732A1 (en) 2020-09-18 2021-09-16 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020157295A JP2022051042A (en) 2020-09-18 2020-09-18 Linear motion actuator

Publications (1)

Publication Number Publication Date
JP2022051042A true JP2022051042A (en) 2022-03-31

Family

ID=80854675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020157295A Pending JP2022051042A (en) 2020-09-18 2020-09-18 Linear motion actuator

Country Status (1)

Country Link
JP (1) JP2022051042A (en)

Similar Documents

Publication Publication Date Title
US8656798B2 (en) Linear actuator
US20080035360A1 (en) Electric power tool
US20220412441A1 (en) Linear actuator convenient to operate
US9618103B2 (en) Screw actuated press unit
KR20130088865A (en) Output member and multi-shaft drive device
US20140020492A1 (en) Rack shaft supporting device and vehicle steering system
JP2015052387A (en) Ball screw device
US20200124164A1 (en) Compensating arrangement for compensating axial play, and transmission unit
US10858043B2 (en) Lock mechanism of actuator
JP2013154428A (en) Rotary tool
JP2022051042A (en) Linear motion actuator
US9599171B2 (en) One-way clutch and sheet feeding roller
WO2022059732A1 (en) Linear actuator
CN116044909B (en) Bearing pre-tightening device and gear box
US10738837B2 (en) Torque limiter assembly
JP5442057B2 (en) Rotating tool
JP2022051039A (en) Linear motion actuator
US11199275B2 (en) Spool valve
JP2022056925A (en) Linear motion actuator
WO2022154043A1 (en) Linear actuator
US20200147914A1 (en) Press with spindle drive
WO2020179477A1 (en) Linear actuator
JP2022054918A (en) Direct-acting actuator
US9903425B2 (en) Positive mechanical rotary lock
JP2001271897A (en) Friction roller type transmission