JP2022048987A - Adsorption tower, temperature measurement method of adsorbent, separation drive force calculation method of target gas, degradation state determination method of adsorbent and operation method of pressure swing adsorption equipment - Google Patents

Adsorption tower, temperature measurement method of adsorbent, separation drive force calculation method of target gas, degradation state determination method of adsorbent and operation method of pressure swing adsorption equipment Download PDF

Info

Publication number
JP2022048987A
JP2022048987A JP2021134403A JP2021134403A JP2022048987A JP 2022048987 A JP2022048987 A JP 2022048987A JP 2021134403 A JP2021134403 A JP 2021134403A JP 2021134403 A JP2021134403 A JP 2021134403A JP 2022048987 A JP2022048987 A JP 2022048987A
Authority
JP
Japan
Prior art keywords
adsorbent
temperature
adsorption tower
temperature change
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021134403A
Other languages
Japanese (ja)
Inventor
正大 田部
Masahiro Tabe
伸行 紫垣
Nobuyuki Shigaki
たかし 原岡
Takashi Haraoka
康弘 茂木
Yasuhiro Mogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022048987A publication Critical patent/JP2022048987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

To provide an adsorption tower, a temperature measurement method of an adsorbent, a separation drive force calculation method of a target gas, a degradation state determination method of the adsorbent and an operation method of pressure swing adsorption equipment where the temperature of the adsorbent can be accurately measured suppressing pressure loss and at a low cost when separating the target gas from a raw material gas by a pressure swing adsorption method.SOLUTION: An adsorption tower 1 in pressure swing adsorption equipment comprises: an adsorption tower body 11 filled with an adsorbent adsorbing a target gas component; a thermocouple insertion pipe 12 set over the total length of the adsorption tower body 11 in parallel to the flow direction of a gas in the adsorption tower body 11; a thermocouple 13 being inserted into the thermocouple insertion pipe 12 and measuring the temperature of the adsorbent A in the adsorption tower body 11; and a thermocouple position movement control means 14 where the position of the thermocouple 13 in the thermocouple insertion pipe 12 is moved and the thermocouple 13 can measure the temperature of the adsorbent A at an arbitrary position in the thermocouple insertion pipe 12.SELECTED DRAWING: Figure 1

Description

本発明は、吸着塔、吸着剤の温度測定方法、目的ガスの分離動力算出方法、吸着剤の劣化状況の判定方法および圧力スイング吸着設備の運転方法に関する。 The present invention relates to an adsorption tower, a method for measuring the temperature of an adsorbent, a method for calculating the separation power of a target gas, a method for determining a deterioration state of an adsorbent, and a method for operating a pressure swing adsorption facility.

従来、原料ガスに含まれる目的のガス成分を分離回収する方法として、圧力スイング吸着(Pressure Swing Adsorption、PSA)法が知られている。PSA法は、吸着剤へのガス成分の吸着量、ガス種および分圧の差を利用したガス分離方法であり、主に目的ガス成分を吸着剤に吸着させる吸着工程、吸着剤への目的ガス成分の吸着率を高める洗浄工程、目的ガス成分を吸着剤から脱着させて高濃度の目的ガスを分離回収する脱着工程とからなる。 Conventionally, a pressure swing adsorption (PSA) method is known as a method for separating and recovering a target gas component contained in a raw material gas. The PSA method is a gas separation method that utilizes the difference in the amount of gas component adsorbed on the adsorbent, the gas type, and the partial pressure. It consists of a cleaning step of increasing the adsorption rate of the component and a desorption step of desorbing the target gas component from the adsorbent to separate and recover the high-concentration target gas.

通常、実機スケールのPSAにおける目的ガスの分離回収に要する電力消費量は、真空ポンプ、昇圧器などの電力使用量から算出される。一方、ラボスケールのPSAでは、真空ポンプの吸引圧をニードルバルブの開度に応じた吸引流量変化にて調整するため、真空ポンプの出力との直接的な相関が取れない。 Normally, the power consumption required for the separation and recovery of the target gas in the PSA of the actual machine scale is calculated from the power consumption of the vacuum pump, the booster, and the like. On the other hand, in the lab scale PSA, since the suction pressure of the vacuum pump is adjusted by the change of the suction flow rate according to the opening degree of the needle valve, a direct correlation with the output of the vacuum pump cannot be obtained.

吸着工程において吸着剤に対してガス成分が吸着する際の吸着熱の発生、および脱着工程において真空ポンプで吸引脱着する際に、脱着ガス量に応じた吸着熱が発生して吸着剤の温度が変化する現象が知られている(例えば、非特許文献1参照)。真空ポンプの動力は発生した吸着熱に比例すると考えられることから、PSAの1サイクル当たりの吸着剤の温度変化(ΔT)から求まる吸着熱から目的ガスの分離動力を近似的に算出できると考えられる。 In the adsorption process, heat of adsorption is generated when the gas component is adsorbed to the adsorbent, and in the desorption process, heat of adsorption is generated according to the amount of desorbed gas when suction and desorption with a vacuum pump, and the temperature of the adsorbent rises. A changing phenomenon is known (see, for example, Non-Patent Document 1). Since the power of the vacuum pump is considered to be proportional to the generated heat of adsorption, it is considered that the separation power of the target gas can be approximately calculated from the heat of adsorption obtained from the temperature change (ΔT) of the adsorbent per cycle of PSA. ..

温度変化ΔTは、吸着剤に対するガス吸着量が多いほど絶対値が増加し、ガス吸着量は吸着塔の原料ガス供給口側から排出口側に向かって減少することから、ガス吸着量と同様に吸着塔の原料ガス供給口側から排出口側に向かって次第に減少していく傾向を示す。 The absolute value of the temperature change ΔT increases as the amount of gas adsorbed on the adsorbent increases, and the amount of gas adsorbed decreases from the raw material gas supply port side to the discharge port side of the adsorption tower. It shows a tendency to gradually decrease from the raw material gas supply port side to the discharge port side of the adsorption tower.

上記温度変化ΔTの測定方法として、吸着剤を充填した吸着塔の内部に熱電対を挿入し、吸着塔内の高さ位置に応じた吸着剤の温度変化ΔTを測定する方法がある。また、吸着塔内の高さ位置における温度変化ΔTを測定することによって、目的ガス成分が吸着剤の充填領域に対してどの高さ位置まで吸着しているかを間接的に測定することができ、目的ガスの破過を未然に防ぐことができる。 As a method for measuring the temperature change ΔT, there is a method of inserting a thermocouple inside the adsorption tower filled with the adsorbent and measuring the temperature change ΔT of the adsorbent according to the height position in the adsorption tower. Further, by measuring the temperature change ΔT at the height position in the adsorption tower, it is possible to indirectly measure to what height position the target gas component is adsorbed with respect to the filling region of the adsorbent. It is possible to prevent the target gas from breaking out.

例えば、特許文献1および特許文献2には、PSA法において、吸着操作中の吸着塔の温度変化を熱電対によって測定した値に基づいて、運転条件を自動制御し、目的ガスの破過を防ぐような温度測定の方法が提案されている。 For example, in Patent Document 1 and Patent Document 2, in the PSA method, the operating conditions are automatically controlled based on the values measured by the thermocouple in the temperature change of the adsorption tower during the adsorption operation to prevent the target gas from breaking. Such a method of temperature measurement has been proposed.

また、吸着塔内の所定の高さ位置における温度変化を測定することによって、吸着剤の経時的な劣化状態を間接的に測定することができる。例えば、特許文献3には、PSA法において、吸着塔に具備した熱電対により吸着剤の温度変化を測定することによって、吸着剤の寿命および劣化を判定する方法が提案されている。 Further, by measuring the temperature change at a predetermined height position in the adsorption tower, the deterioration state of the adsorbent over time can be indirectly measured. For example, Patent Document 3 proposes a method of determining the life and deterioration of an adsorbent by measuring a temperature change of the adsorbent with a thermocouple provided in the adsorption tower in the PSA method.

特開平5-155603号公報Japanese Unexamined Patent Publication No. 5-155603 特開2014-73461号公報Japanese Unexamined Patent Publication No. 2014-73461 特開平8-117541号公報Japanese Unexamined Patent Publication No. 8-117541

友村政臣、野北舜介、化学工学論文集、1987年13巻2号、p.139-144Masaomi Tomomura, Shunsuke Nokita, Journal of Chemical Engineering, 1987, Vol. 13, No. 2, p. 139-144

これまで、PSA法において、吸着塔に充填した吸着剤の温度変化の測定値に基づいて吸着工程および脱着工程を調整することによって、目的ガスを所望以上の濃度および回収率で分離回収方法が検討されてきた。ところが、特許文献1に記載された方法では、吸着剤の種類はゼオライト、非ゼオライト系多孔質酸性酸化物、活性炭または分子ふるいカーボンに限定した塩素ガスの分離回収方法であるため、分離回収する塩素ガスに対して、副成分ガスとのΔTの差が十分に大きくなければΔTを精密に測定できない問題がある。 So far, in the PSA method, a method for separating and recovering the target gas at a concentration and recovery rate higher than desired has been investigated by adjusting the adsorption step and the desorption step based on the measured values of the temperature change of the adsorbent filled in the adsorption tower. It has been. However, in the method described in Patent Document 1, since the type of adsorbent is a method for separating and recovering chlorine gas limited to zeolite, non-zeolite-based porous acidic oxide, activated carbon or molecular sieve carbon, chlorine to be separated and recovered. There is a problem that ΔT cannot be measured accurately unless the difference in ΔT from the subcomponent gas is sufficiently large with respect to the gas.

また、特許文献2および特許文献3に記載された方法では、吸着剤の温度変化を測定するための熱電対を挿入する管の数を熱電対の本数に合わせる必要があり、設備費が増加する問題がある。また、熱電対はガスの流通方向に対して垂直に挿入されるため、ガスの流通が阻害されることによる圧損などの問題もある。 Further, in the methods described in Patent Document 2 and Patent Document 3, it is necessary to match the number of tubes into which thermocouples for measuring the temperature change of the adsorbent are inserted with the number of thermocouples, which increases the equipment cost. There's a problem. Further, since the thermocouple is inserted perpendicular to the gas flow direction, there is a problem such as pressure loss due to the obstruction of the gas flow.

本発明は、上記課題を鑑みてなされたものであり、その目的とするところは、圧力スイング吸着法により原料ガスから目的ガスを分離する際に、吸着剤の温度を、圧損を抑制して低コストで精確に測定することができる吸着塔、吸着剤の温度測定方法、目的ガスの分離動力算出方法、吸着剤の劣化状況の判定方法および圧力スイング吸着設備の運転方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to lower the temperature of the adsorbent by suppressing pressure loss when separating the target gas from the raw material gas by the pressure swing adsorption method. It is an object of the present invention to provide an adsorption tower that can be accurately measured at cost, a method for measuring the temperature of an adsorbent, a method for calculating the separation power of a target gas, a method for determining a deterioration status of an adsorbent, and a method for operating a pressure swing adsorption facility.

上記課題を解決する本発明は、以下の通りである。 The present invention that solves the above problems is as follows.

[1]圧力スイング吸着設備の吸着塔であって、
目的のガス成分を吸着する吸着剤が充填された吸着塔本体と、
前記吸着塔本体におけるガスの流通方向に対して平行に前記吸着塔本体の全長にわたって設置された熱電対挿入管と、
前記熱電対挿入管に挿入され、前記吸着塔本体内の前記吸着剤の温度を測定する熱電対と、
前記熱電対挿入管内での前記熱電対の位置を移動させて、前記熱電対が前記熱電対挿入管内の任意の位置で前記吸着剤の温度を測定することを可能にする熱電対位置移動制御手段と、
を具えることを特徴とする吸着塔。
[1] A suction tower of a pressure swing suction facility.
The main body of the adsorption tower filled with an adsorbent that adsorbs the target gas component,
A thermocouple insertion tube installed over the entire length of the adsorption tower body parallel to the gas flow direction in the adsorption tower body.
A thermocouple inserted into the thermocouple insertion tube and measuring the temperature of the adsorbent in the main body of the adsorption tower.
Thermocouple position movement control means that moves the position of the thermocouple in the thermocouple insertion tube to allow the thermocouple to measure the temperature of the adsorbent at any position in the thermocouple insertion tube. When,
A suction tower characterized by having.

[2]前記[1]に記載の吸着塔内の前記吸着剤の温度を測定する方法であって、
前記吸着塔本体内のガスの流通方向に沿って少なくとも3点以上の測定点にて圧力スイング1サイクルでの前記吸着剤の温度を測定する第1の測温ステップと、
前記第1の測温ステップにおいて測定された前記吸着剤の温度について前記圧力スイング1サイクルでの前記吸着剤の温度変化ΔTを算出する第1の吸着剤温度変化算出ステップと、
を有することを特徴とする吸着剤の温度測定方法。
[2] The method for measuring the temperature of the adsorbent in the adsorbent according to the above [1].
The first temperature measurement step of measuring the temperature of the adsorbent in one cycle of the pressure swing at at least three measurement points along the gas flow direction in the adsorption tower main body.
A first adsorbent temperature change calculation step for calculating the temperature change ΔT of the adsorbent in one cycle of the pressure swing with respect to the temperature of the adsorbent measured in the first temperature measurement step.
A method for measuring the temperature of an adsorbent, which comprises.

[3]前記第1の吸着剤温度変化算出ステップにおいて前記測定点毎に得られた温度変化ΔTのうち、値が最も小さい温度変化ΔTが測定された最小吸着剤温度変化点を決定する最小吸着剤温度変化点決定ステップと、
前記最小吸着剤温度変化点決定ステップにおいて決定された前記最小吸着剤温度変化点と、前記吸着塔本体における最も原料ガス供給口側の測定点との間に複数の測定点を等間隔で設けて各測定点で前記吸着剤の温度を測定する第2の測温ステップと、
前記第2の測温ステップにおいて測定された前記吸着剤の温度について、圧力スイング1サイクルの前記吸着剤の温度変化ΔTを算出する第2の吸着剤温度変化算出ステップと、
をさらに有する、前記[2]に記載の吸着剤の温度測定方法。
[3] Of the temperature change ΔT obtained for each measurement point in the first adsorbent temperature change calculation step, the minimum adsorption for determining the minimum adsorbent temperature change point in which the temperature change ΔT having the smallest value is measured. The agent temperature change point determination step and
A plurality of measurement points are provided at equal intervals between the minimum adsorbent temperature change point determined in the minimum adsorbent temperature change point determination step and the measurement point on the most raw material gas supply port side in the adsorption tower main body. A second temperature measurement step of measuring the temperature of the adsorbent at each measurement point,
With respect to the temperature of the adsorbent measured in the second temperature measurement step, the second adsorbent temperature change calculation step for calculating the temperature change ΔT of the adsorbent in one cycle of the pressure swing, and the second adsorbent temperature change calculation step.
The method for measuring the temperature of the adsorbent according to the above [2].

[4]圧力スイング吸着法における目的ガスの分離動力を算出する方法であって、
吸着剤の比熱Cpads(J/kg・K)、吸着剤の質量Mads(kg)、目的ガスの吸着量Mgas(kg)および前記[2]または[3]に記載の吸着塔内の吸着剤の温度測定方法によって測定された前記吸着剤温度変化ΔT(K)、電力換算係数Cを用いて、前記目的ガスの分離動力Wgas(Wh/kg-gas)を以下の式(A)を用いて算出することを特徴とする目的ガスの分離動力算出方法。ここで、前記電力換算係数Cは、エネルギー(J)を電力量(Wh)に変換する係数である。

Figure 2022048987000002
[4] A method of calculating the separation power of the target gas in the pressure swing adsorption method.
Specific heat Cpads (J / kg · K) of the adsorbent, mass Mads (kg) of the adsorbent, adsorption amount M gas (kg) of the target gas, and in the adsorption tower according to the above [2] or [3]. Using the adsorbent temperature change ΔT (K) measured by the adsorbent temperature measuring method and the power conversion coefficient C, the separation power W gas (Wh / kg-gas) of the target gas is calculated by the following formula (A). A method for calculating the separation power of a target gas, which is characterized by using. Here, the electric power conversion coefficient C is a coefficient for converting energy (J) into electric energy (Wh).
Figure 2022048987000002

[5]圧力スイング吸着設備における吸着剤の劣化状況を判定する方法であって、
前記[2]または[3]に記載の吸着塔内の吸着剤の温度測定方法によって前記吸着塔本体内の前記測定点での前記吸着剤の温度変化ΔTの時間変化を求め、
所定の目的ガス回収率が達成できなくなった段階で、ガス分離開始時から前記温度変化ΔTが減少した領域の吸着剤が劣化していると判定することを特徴とする吸着剤の劣化状況の判定方法。
[5] A method for determining the deterioration status of the adsorbent in the pressure swing adsorption equipment.
The time change of the temperature change ΔT of the adsorbent at the measurement point in the adsorption tower main body was obtained by the method for measuring the temperature of the adsorbent in the adsorption tower according to the above [2] or [3].
Determining the deterioration status of the adsorbent, which is characterized in that it is determined that the adsorbent in the region where the temperature change ΔT has decreased from the start of gas separation is deteriorated at the stage when the predetermined target gas recovery rate cannot be achieved. Method.

[6]圧力スイング吸着設備の運転方法であって、
前記[5]に記載の吸着剤の劣化状況の判定方法によって劣化した吸着剤が充填された領域を特定する劣化吸着剤特定ステップと、
特定された前記領域に充填された吸着剤のみを交換する吸着剤交換ステップと、
を有することを特徴とする圧力スイング吸着設備の運転方法。
[6] This is a method of operating the pressure swing suction equipment.
A deterioration adsorbent specifying step for specifying a region filled with the adsorbent deteriorated by the method for determining the deterioration status of the adsorbent according to the above [5], and a step for specifying the deteriorated adsorbent.
An adsorbent exchange step of exchanging only the adsorbent filled in the identified region, and an adsorbent exchange step.
A method of operating a pressure swing adsorption facility, characterized in that it has.

本発明によれば、圧力スイング吸着法により原料ガスから目的ガスを分離する際に、吸着剤の温度を、圧損を抑制して低コストで精確に測定することができる。 According to the present invention, when the target gas is separated from the raw material gas by the pressure swing adsorption method, the temperature of the adsorbent can be accurately measured at low cost by suppressing pressure loss.

本発明による圧力スイング吸着設備の吸着塔の一例を示す図である。It is a figure which shows an example of the suction tower of the pressure swing suction equipment by this invention. 本発明による吸着塔が適用可能な圧力スイング吸着設備の一例を示す図である。It is a figure which shows an example of the pressure swing suction equipment to which the suction tower by this invention is applicable. 吸着塔(吸着塔本体)内の高さ位置と吸着剤の圧力スイング1サイクルでの温度変化との関係の模式図である。It is a schematic diagram of the relationship between the height position in the adsorption tower (the main body of the adsorption tower) and the temperature change in one cycle of the pressure swing of the adsorbent. サイクルタイムが100秒の場合について圧力スイング1サイクルにおける吸着剤の温度変化を示す図であり、(a)は測定点が5点、(b)は測定点が20点の場合に対するものである。It is a figure which shows the temperature change of the adsorbent in one cycle of a pressure swing in the case of a cycle time of 100 seconds, (a) is for the case of 5 measurement points, (b) is for the case of 20 measurement points. サイクルタイムが300秒の場合について圧力スイング1サイクルにおける吸着剤の温度変化を示す図であり、(a)は測定点が5点、(b)は測定点が20点の場合に対するものである。It is a figure which shows the temperature change of the adsorbent in one cycle of a pressure swing in the case of a cycle time of 300 seconds, (a) is for the case of 5 measurement points, (b) is for the case of 20 measurement points.

(圧力スイング吸着設備の吸着塔)
以下、図面を参照して、本発明の実施形態について説明する。図1は、本発明による圧力スイング吸着設備の吸着塔の一例を示している。図1に示した吸着塔1は、吸着塔本体11と、熱電対挿入管12と、熱電対13と、熱電対位置移動制御手段14とを具える。
(Suction tower of pressure swing suction equipment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a suction tower of a pressure swing suction facility according to the present invention. The suction tower 1 shown in FIG. 1 includes a suction tower main body 11, a thermocouple insertion tube 12, a thermocouple 13, and a thermocouple position movement control means 14.

吸着塔本体11は、吸着塔1の本体を構成する筒状の部材であり、その内部には最下部からビーズB、スポンジS1が順次配置され、その上に目的ガス成分を吸着する吸着剤Aが充填されている。吸着剤Aの上には、スポンジS1、ビーズB、スポンジS1より目の粗いスポンジS2が順次充填されている。ビーズBは、吸着塔本体11の下部に接続された原料ガス供給管(図示せず)からの原料ガスが吸着塔本体11内に均一に分散させるために設けられている。原料ガスとしては、製鉄所の副生ガスを使用することができ、例えば高炉ガスを好適に使用することができる。 The adsorption tower main body 11 is a tubular member constituting the main body of the adsorption tower 1, and beads B and sponge S1 are sequentially arranged from the bottom inside the adsorption tower main body 11, and an adsorbent A that adsorbs a target gas component on the beads B and a sponge S1. Is filled. The adsorbent A is sequentially filled with the sponge S1, the beads B, and the sponge S2 having a coarser mesh than the sponge S1. The beads B are provided so that the raw material gas from the raw material gas supply pipe (not shown) connected to the lower part of the adsorption tower main body 11 is uniformly dispersed in the adsorption tower main body 11. As the raw material gas, a by-product gas from a steel mill can be used, and for example, a blast furnace gas can be preferably used.

熱電対挿入管12は、吸着塔本体11内のガス(原料ガス)の流通方向に対して平行に(すなわち、吸着塔本体11の側壁面(吸着塔本体11の長さ方向)に沿って)吸着塔本体11の全長にわたって設置されており、内部に熱電対13が挿入可能に構成されている。熱電対挿入管12は、PSA設備の運転時に生じる熱などに対して十分な耐性を有する材料で構成されていれば特に限定されないが、吸着塔本体11内の任意の位置での吸着剤Aの熱を熱電対13に良好に伝達できるように、熱伝導率が高い金属などの材料で構成することが好ましい。 The thermocouple insertion tube 12 is parallel to the flow direction of the gas (raw material gas) in the adsorption tower main body 11 (that is, along the side wall surface of the adsorption tower main body 11 (the length direction of the adsorption tower main body 11)). It is installed over the entire length of the suction tower main body 11, and is configured so that the thermocouple 13 can be inserted inside. The thermocouple insertion tube 12 is not particularly limited as long as it is made of a material having sufficient resistance to heat generated during the operation of the PSA facility, but the adsorbent A at an arbitrary position in the adsorption tower main body 11 is used. It is preferably made of a material such as a metal having high thermal conductivity so that heat can be transferred to the thermocouple 13 well.

熱電対13は、熱電対挿入管12の内部に挿入し、熱電対位置移動制御手段14によって、熱電対挿入管12内を吸着塔本体11の長さ方向に沿って移動可能に構成されており、吸着塔本体11内の長さ方向の任意の位置で吸着剤Aの温度を測定することができる。熱電対13としては、公知の適切なものを使用することができる。 The thermocouple 13 is inserted inside the thermocouple insertion tube 12, and is configured to be movable in the thermocouple insertion tube 12 along the length direction of the suction tower main body 11 by the thermocouple position movement control means 14. , The temperature of the adsorbent A can be measured at an arbitrary position in the adsorption tower main body 11 in the length direction. As the thermocouple 13, a known appropriate one can be used.

なお、本発明において、吸着塔本体11内の所定の位置での吸着剤Aの温度は、熱電対13を上記所定の位置に配置して測定された温度を意味している。 In the present invention, the temperature of the adsorbent A at a predetermined position in the adsorption tower main body 11 means the temperature measured by arranging the thermocouple 13 at the predetermined position.

熱電対位置移動制御手段14は、熱電対13を熱電対挿入管12の内部で移動させることができるように構成されている。 The thermocouple position movement control means 14 is configured so that the thermocouple 13 can be moved inside the thermocouple insertion tube 12.

図2は、本発明による吸着塔が適用可能なPSA吸着設備の一例を示している。図2に示した2塔式のPSA設備では、原料ガス供給口および原料ガス排出口を具えた吸着塔1を具え、真空ポンプによって吸引減圧されるのと並行して、不純物ガス、回収ガスに分離回収される。原料ガスは、原料ガス供給口から吸着塔1内に導入され、吸着塔1内で所定の圧力に加圧されることによって、吸着剤Aに目的とするガス成分が選択的に吸着される。 FIG. 2 shows an example of a PSA adsorption facility to which the adsorption tower according to the present invention can be applied. The two-tower type PSA facility shown in FIG. 2 is equipped with an adsorption tower 1 equipped with a raw material gas supply port and a raw material gas discharge port, and in parallel with being sucked and depressurized by a vacuum pump, it can be used as an impurity gas and a recovered gas. Separated and collected. The raw material gas is introduced into the adsorption tower 1 from the raw material gas supply port, and is pressurized to a predetermined pressure in the adsorption tower 1, so that the target gas component is selectively adsorbed on the adsorbent A.

吸着剤Aに吸着した目的ガス成分を分離回収するために、真空ポンプによって吸着塔1内を減圧することによって、高純度の目的ガス成分を分離回収することができる。目的ガス成分以外のガス成分は、吸着剤Aに吸着されづらいため、脱着工程の吸引開始初期から回収される。目的ガス成分は遅れて脱着されるため、時間差で高純度の目的ガスを回収することができる。 In order to separate and recover the target gas component adsorbed on the adsorbent A, the inside of the adsorption tower 1 can be depressurized by a vacuum pump to separate and recover the high-purity target gas component. Since the gas components other than the target gas component are difficult to be adsorbed by the adsorbent A, they are recovered from the initial stage of suction in the desorption step. Since the target gas component is desorbed with a delay, the target gas with high purity can be recovered with a time lag.

このように、本発明による吸着塔1においては、熱電対挿入管12が吸着塔本体11内のガスの流通方向に対して平行に吸着塔本体11の全長にわたって設置されており、熱電対13が熱電対挿入管12内で吸着塔本体11内の任意の位置に移動可能に構成されている。これにより、熱電対13による吸着剤Aの温度の測定点を任意に決定することができ、測定点の制限が設けられず、所定の位置での吸着剤Aの温度変化ΔTを測定することができる。その結果、吸着塔本体11に充填された吸着剤充填領域を細分化してより高精度なΔTの測定が可能になる。 As described above, in the adsorption tower 1 according to the present invention, the thermocouple insertion tube 12 is installed parallel to the gas flow direction in the adsorption tower main body 11 over the entire length of the adsorption tower main body 11, and the thermocouple 13 is installed. It is configured to be movable to an arbitrary position in the suction tower main body 11 in the thermocouple insertion tube 12. As a result, the measurement point of the temperature of the adsorbent A by the thermocouple 13 can be arbitrarily determined, the measurement point is not limited, and the temperature change ΔT of the adsorbent A at a predetermined position can be measured. can. As a result, the adsorbent-filled region filled in the adsorption tower main body 11 can be subdivided to enable more accurate measurement of ΔT.

同時に、原料ガスを構成する各ガス種の吸着度合いに大きな差がない場合においても、精密なΔTを測定可能となることから、目的ガスの回収率を維持するためのPSA法において、運転条件を設定することが可能となる。 At the same time, since accurate ΔT can be measured even when there is no large difference in the degree of adsorption of each gas type constituting the raw material gas, the operating conditions are set in the PSA method for maintaining the recovery rate of the target gas. It becomes possible to set.

さらに、特許文献2および特許文献3のように熱電対がガスの流通方向に導入されている場合に比べて、ガスの流通が阻害されるのを抑制して圧損を低減することができ、目的ガスの濃度および回収率に与える影響を低減することができる。 Further, as compared with the case where the thermocouple is introduced in the gas flow direction as in Patent Documents 2 and 3, it is possible to suppress the obstruction of the gas flow and reduce the pressure loss. The effect on the gas concentration and recovery rate can be reduced.

(吸着塔内の吸着剤の温度測定方法)
次に、本発明による吸着塔内の吸着剤の温度を測定する方法について説明する。本発明による吸着塔内の吸着剤の温度測定方法は、上述した本発明による吸着塔1内のガスの流通方向に沿って少なくとも3点以上の測定点において圧力スイング1サイクルでの吸着剤Aの温度を測定する第1の測温ステップと、第1の測温ステップにおいて測定された吸着剤A温度について圧力スイング1サイクルでの吸着剤Aの温度変化ΔTを算出する第1の吸着剤温度変化算出ステップとを有することを特徴とする。
(Method of measuring the temperature of the adsorbent in the adsorption tower)
Next, a method for measuring the temperature of the adsorbent in the adsorption tower according to the present invention will be described. The method for measuring the temperature of the adsorbent in the adsorption tower according to the present invention is the method for measuring the temperature of the adsorbent A in one cycle of the pressure swing at at least three measurement points along the gas flow direction in the adsorption tower 1 according to the present invention described above. For the first temperature measurement step for measuring the temperature and the temperature of the adsorbent A measured in the first temperature measurement step, the temperature change ΔT of the adsorbent A in one cycle of the pressure swing is calculated. It is characterized by having a calculation step.

上述のように、本発明によるPSA設備の吸着塔においては、熱電対挿入管12が吸着塔本体11内のガスの流通方向に対して平行に吸着塔本体11の全長にわたって設置されており、熱電対13が熱電対挿入管12内で吸着塔本体11内の任意の位置に移動可能に構成されている。そこで、まず、吸着塔本体11内のガスの流通方向に沿って少なくとも3点以上の測定点において圧力スイング1サイクルでの吸着剤Aの温度を測定する(第1の測温ステップ)。 As described above, in the adsorption tower of the PSA facility according to the present invention, the thermocouple insertion tube 12 is installed parallel to the gas flow direction in the adsorption tower main body 11 over the entire length of the adsorption tower main body 11. The pair 13 is configured to be movable at an arbitrary position in the suction tower main body 11 in the thermocouple insertion tube 12. Therefore, first, the temperature of the adsorbent A in one cycle of the pressure swing is measured at at least three or more measurement points along the gas flow direction in the adsorption tower main body 11 (first temperature measurement step).

上記3点以上の測定点としては、原料ガス供給口に最も近い箇所、回収ガス排出口に最も近い箇所、およびそれらの中間の箇所とすることが好ましい。また、後述する実施例に示すように、測定箇所の数は多い方が、上記ΔTの値を用いた分析精度が高まるため、好ましい。 It is preferable that the three or more measurement points are the points closest to the raw material gas supply port, the points closest to the recovery gas discharge port, and the points in between. Further, as shown in Examples described later, it is preferable that the number of measurement points is large because the analysis accuracy using the value of ΔT is improved.

次に、第1の測温ステップにおいて測定された吸着剤A温度について、圧力スイング1サイクルでの吸着剤Aの温度変化ΔTを算出する(第1の吸着剤温度変化算出ステップ)。こうして得られたΔTに基づいて、原料ガスから目的ガス成分を分離回収する際の動力の算出、吸着剤の劣化状況の判定などを行うことができる。 Next, for the adsorbent A temperature measured in the first temperature measurement step, the temperature change ΔT of the adsorbent A in one cycle of the pressure swing is calculated (first adsorbent temperature change calculation step). Based on the ΔT thus obtained, it is possible to calculate the power when separating and recovering the target gas component from the raw material gas, determine the deterioration status of the adsorbent, and the like.

なお、上記吸着剤の温度の測定は、2段階に分けて行ってもよい。具体的には、まず第1段階において、上述した第1の測温ステップおよび第1の吸着剤温度変化算出ステップを行う。これにより、吸着塔1(吸着塔本体11)内のΔTの傾向を把握することができる。次いで、第2段階において、第1の吸着剤温度変化算出ステップにおいて測定点毎に得られた温度変化ΔTのうち、値が最も小さい温度変化ΔTが測定された最小吸着剤温度変化点を決定する(最小吸着剤温度変化点決定ステップ)。 The temperature of the adsorbent may be measured in two steps. Specifically, first, in the first step, the above-mentioned first temperature measurement step and the first adsorbent temperature change calculation step are performed. This makes it possible to grasp the tendency of ΔT in the suction tower 1 (suction tower main body 11). Next, in the second step, among the temperature change ΔT obtained for each measurement point in the first adsorbent temperature change calculation step, the minimum adsorbent temperature change point at which the smallest value is measured is determined. (Minimum adsorbent temperature change point determination step).

続いて、最小吸着剤温度変化点決定ステップにおいて決定された最小吸着剤温度変化点と、吸着塔本体における最も原料ガス供給口側の測定点との間において、上述した第1の測温ステップおよび吸着剤温度変化算出ステップと同じステップを繰り返す。具体的には、上記最小吸着剤温度変化点と、吸着塔本体における最も原料ガス供給口側の測定点との間において、第1の複数の測定点を等間隔で設けて各測定点で吸着剤の温度を測定する(第2の測温ステップ)。そして、第2の測温ステップにおいて測定された吸着剤Aの温度について、圧力スイング1サイクルの吸着剤Aの温度変化ΔTを算出する(第2の吸着剤温度変化算出ステップ)。 Subsequently, between the minimum adsorbent temperature change point determined in the minimum adsorbent temperature change point determination step and the measurement point on the most raw material gas supply port side in the adsorption tower main body, the above-mentioned first temperature measurement step and Repeat the same steps as the adsorbent temperature change calculation step. Specifically, a plurality of first measurement points are provided at equal intervals between the minimum adsorbent temperature change point and the measurement point on the most raw material gas supply port side in the adsorption tower body, and adsorption is performed at each measurement point. The temperature of the agent is measured (second temperature measurement step). Then, with respect to the temperature of the adsorbent A measured in the second temperature measurement step, the temperature change ΔT of the adsorbent A in one cycle of the pressure swing is calculated (second adsorbent temperature change calculation step).

こうして、測温工程および吸着剤温度変化算出ステップを1回だけ行う場合に比べて、吸着塔1(吸着塔本体11)内におけるΔTの傾向を把握した上で、ΔTの変動がある領域に限定して吸着剤Aの温度を測定してPSA1サイクルにおけるΔTを算出することができる。その結果、ΔTを用いた目的ガス成分の分離動力の算出や、吸着剤の劣化判定をより高精度に行うことができる。 In this way, as compared with the case where the temperature measurement step and the adsorbent temperature change calculation step are performed only once, after grasping the tendency of ΔT in the adsorption tower 1 (adsorption tower main body 11), it is limited to the region where the ΔT fluctuates. Then, the temperature of the adsorbent A can be measured to calculate ΔT in the PSA1 cycle. As a result, it is possible to calculate the separation power of the target gas component using ΔT and determine the deterioration of the adsorbent with higher accuracy.

(目的ガスの分離動力算出方法)
続いて、本発明による目的ガスの分離動力算出方法について説明する。本発明による目的ガスの分離動力算出方法は、吸着剤の比熱Cpads(J/kg・K)、吸着剤の質量Mads(kg)、目的ガスの吸着量Mgas(kg)および上述した本発明による吸着塔内の吸着剤の温度測定方法によって測定された吸着剤の温度変化ΔT(K)、電力換算係数Cを用いて、目的ガスの分離動力Wgas(Wh/kg-gas)を以下の式(A)を用いて算出することを特徴とする。ここで、上記電力換算係数Cは、エネルギー(J)を電力量(Wh)に変換する係数であり、3600(J)=1(Wh)の関係がある。

Figure 2022048987000003
(Calculation method of separation power of target gas)
Subsequently, a method for calculating the separation power of the target gas according to the present invention will be described. The method for calculating the separation power of the target gas according to the present invention includes the specific heat C pads (J / kg · K) of the adsorbent, the mass Mads (kg) of the adsorbent, the adsorption amount M gas (kg) of the target gas, and the above-mentioned book. Using the temperature change ΔT (K) of the adsorbent measured by the method for measuring the temperature of the adsorbent in the adsorption tower according to the invention and the power conversion coefficient C, the separation power W gas (Wh / kg-gas) of the target gas is as follows. It is characterized in that it is calculated using the formula (A) of. Here, the electric power conversion coefficient C is a coefficient for converting energy (J) into electric energy (Wh), and has a relationship of 3600 (J) = 1 (Wh).
Figure 2022048987000003

上記式(A)の右辺の和(シグマ)は、温度変化ΔTの数(すなわち、吸着剤Aの温度の測定点の数)について行う。また、吸着剤の質量Madsは、吸着塔内に充填された吸着剤A全体の質量を、吸着剤Aの温度の測定点の数で割った値を入力する。 The sum (sigma) of the right side of the above formula (A) is performed with respect to the number of temperature change ΔT (that is, the number of measurement points of the temperature of the adsorbent A). Further, for the mass Mads of the adsorbent, a value obtained by dividing the mass of the entire adsorbent A filled in the adsorption tower by the number of measurement points of the temperature of the adsorbent A is input.

こうして、吸着塔1(吸着塔本体11)内に充填された吸着剤AのPSA1サイクルでの温度変化ΔTの値に基づいて、目的ガスの分離動力を高精度に算出することができる。 In this way, the separation power of the target gas can be calculated with high accuracy based on the value of the temperature change ΔT of the adsorbent A filled in the adsorption tower 1 (adsorption tower main body 11) in the PSA1 cycle.

(吸着剤の劣化状況の判定方法)
続いて、本発明による吸着剤の劣化状況の判定方法について説明する。本発明による吸着剤の劣化状況の判定方法は、圧力スイング吸着設備における吸着剤の劣化状況を判定する方法であって、上述した本発明による吸着塔内の吸着剤の温度測定方法によって吸着塔本体11内の測定点での吸着剤Aの温度変化ΔTの時間変化を求め、所定の目的ガス回収率が達成できなくなった段階で、ガス分離開始時から温度変化ΔTが減少した領域の吸着剤Aが劣化していると判定することを特徴とする。
(Method of determining the deterioration status of the adsorbent)
Subsequently, a method for determining the deterioration state of the adsorbent according to the present invention will be described. The method for determining the deterioration status of the adsorbent according to the present invention is a method for determining the deterioration status of the adsorbent in the pressure swing adsorption facility, and the adsorption tower main body is determined by the above-mentioned method for measuring the temperature of the adsorbent in the adsorption tower according to the present invention. The time change of the temperature change ΔT of the adsorbent A at the measurement point in 11 is obtained, and when the predetermined target gas recovery rate cannot be achieved, the adsorbent A in the region where the temperature change ΔT has decreased from the start of gas separation. Is characterized in that it is determined that the gas has deteriorated.

PSA運転を実施する上で、吸着剤Aにおける細孔の目詰まり、化学反応などによる結晶細孔の減少などによって、吸着剤Aの吸着性能の劣化が進行する。図3は、吸着塔1(吸着塔本体11)内の高さ位置hと吸着剤AのPSA1サイクルでの温度変化ΔTとの関係の模式図を示している。吸着塔1(吸着塔本体11)内の高さ位置hにおいて、吸着剤Aの温度変化ΔTの測定点のうち、A点は原料ガス供給側に最も近い測定点、B点は排出口側に最も近い測定点である。図3は、状態a→b→cの順に吸着剤Aの吸着性能が劣化していく様子を示している。 In carrying out the PSA operation, the adsorption performance of the adsorbent A deteriorates due to clogging of the pores in the adsorbent A, reduction of crystal pores due to a chemical reaction, or the like. FIG. 3 shows a schematic diagram of the relationship between the height position h in the adsorption tower 1 (adsorption tower main body 11) and the temperature change ΔT of the adsorbent A in the PSA1 cycle. At the height position h in the adsorption tower 1 (adsorption tower main body 11), among the measurement points of the temperature change ΔT of the adsorbent A, the point A is the measurement point closest to the raw material gas supply side, and the point B is on the discharge port side. The closest measurement point. FIG. 3 shows how the adsorption performance of the adsorbent A deteriorates in the order of the states a → b → c.

吸着剤Aは、原料ガス供給口側に近い領域では、目的ガス成分を吸着する度合いが高いため、劣化する進行度合いも高い。一方、原料ガス排出口側に近い領域では、目的ガス成分を吸着する度合いが低いため、劣化する進行度合いも低い。 Since the adsorbent A has a high degree of adsorbing the target gas component in the region near the raw material gas supply port side, the degree of deterioration is also high. On the other hand, in the region near the raw material gas discharge port side, the degree of adsorption of the target gas component is low, so the degree of deterioration is also low.

吸着剤Aが劣化するにつれて目的ガス成分の吸着量が減少するため、原料ガス供給口側のA点での温度変化ΔTは、I→II→IIIの順で減少する。一方、B点では、原料ガス供給口側から吸着されずに通過してきた目的ガス成分が吸着剤Aに吸着されるため、I’→II’→III’の順で増加する傾向を示す。 As the adsorbent A deteriorates, the amount of the target gas component adsorbed decreases, so that the temperature change ΔT at point A on the raw material gas supply port side decreases in the order of I → II → III. On the other hand, at point B, since the target gas component that has passed through without being adsorbed from the raw material gas supply port side is adsorbed by the adsorbent A, it tends to increase in the order of I'→ II'→ III'.

ここで、目的ガス成分が破過しない条件を状態aであると仮定した場合、B点におけるΔTminから温度変化上昇が確認された場合には、目的ガス成分が破過していると言うことができる。ただし、目的ガス成分が破過している場合であっても、所定の目的ガス回収率が達成できていれば問題はない。 Here, assuming that the condition that the target gas component does not break is the state a, if the temperature change rise is confirmed from ΔT min at the point B, it means that the target gas component has broken. Can be done. However, even if the target gas component is broken, there is no problem as long as the predetermined target gas recovery rate can be achieved.

そこで、本発明においては、上述した本発明による吸着塔内の吸着剤の温度測定方法によって吸着塔本体11内の測定点での吸着剤Aの温度変化ΔTの時間変化を求め、所定の目的ガス回収率が達成できなくなった段階で、ガス分離開始時から温度変化ΔTが減少した領域の吸着剤Aが劣化していると判定する。 Therefore, in the present invention, the time change of the temperature change ΔT of the adsorbent A at the measurement point in the adsorption tower main body 11 is obtained by the above-mentioned method for measuring the temperature of the adsorbent in the adsorption tower according to the present invention, and the predetermined target gas is obtained. When the recovery rate cannot be achieved, it is determined that the adsorbent A in the region where the temperature change ΔT has decreased from the start of gas separation has deteriorated.

なお、上記所定の目的ガス回収率が達成できなくなった段階は、例えば、全ての測定点での温度変化ΔTの合計値に基づいて判定することができる。 The stage at which the predetermined target gas recovery rate cannot be achieved can be determined, for example, based on the total value of the temperature changes ΔT at all the measurement points.

(圧力スイング吸着設備の運転方法)
次に、本発明による圧力スイング吸着設備の運転方法について説明する。本発明による圧力スイング吸着設備の運転方法は、上述した本発明による吸着剤の劣化状況の判定方法によって劣化した吸着剤が充填された領域を特定する劣化吸着剤特定ステップと、特定された前記領域に充填された吸着剤のみを交換する吸着剤交換ステップと、を有することを特徴とする。
(Operation method of pressure swing adsorption equipment)
Next, the operation method of the pressure swing suction equipment according to the present invention will be described. The operation method of the pressure swing adsorption facility according to the present invention includes a deterioration adsorbent specifying step for specifying a region filled with the adsorbent deteriorated by the above-mentioned method for determining the deterioration status of the adsorbent according to the present invention, and the specified region. It is characterized by having an adsorbent exchange step for exchanging only the adsorbent filled in.

上述した本発明による本発明による吸着剤の劣化状況の判定方法によって劣化した吸着剤が充填された領域を把握することができる。これにより、劣化した吸着剤のみを交換して、コストを抑制して圧力スイング吸着設備の運転を行うことができる。 The region filled with the deteriorated adsorbent can be grasped by the above-mentioned method for determining the deterioration state of the adsorbent according to the present invention. As a result, only the deteriorated adsorbent can be replaced, and the cost can be suppressed to operate the pressure swing adsorbent.

以下、本発明の実施例について説明するが、本発明は実施例に限定されない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the examples.

図1に記載した吸着塔1(内径400mm×高さ255mm、吸着剤Aの充填高さ200mm)を有する、図2に示した2塔式のPSA実験装置を用いて、本発明の効果を実証する実験を行った。吸着剤Aとしては、市販の13Xゼオライトを使用した。吸着剤Aの充填高さに対して温度の測定点を5点、10点、20点設け、各測定点は等間隔に配置した。吸着圧50kPaG、脱着圧-95kPaG、サイクルタイムは100秒および300秒とした。また、原料ガスとしては、N濃度41%、CO濃度37%、CO濃度1%、H濃度21%の混合ガスを用い、マスフローコントローラー(MFC)で流量3.0NL/分に制御して供給した。そして、分離回収する目的ガスはCOとし、分離回収したCOの質量を用いて、式(A)からCOの分離動力を算出した。 The effect of the present invention is demonstrated by using the two-tower type PSA experimental apparatus shown in FIG. 2 having the adsorption tower 1 (inner diameter 400 mm × height 255 mm, filling height of adsorbent A 200 mm) described in FIG. An experiment was conducted. As the adsorbent A, a commercially available 13X zeolite was used. Five, 10, and 20 temperature measurement points were provided with respect to the filling height of the adsorbent A, and the measurement points were arranged at equal intervals. The adsorption pressure was 50 kPaG, the desorption pressure was -95 kPaG, and the cycle times were 100 seconds and 300 seconds. As the raw material gas, a mixed gas having an N 2 concentration of 41%, a CO 2 concentration of 37%, a CO concentration of 1%, and an H 2 concentration of 21% was used, and the flow rate was controlled to 3.0 NL / min by a mass flow controller (MFC). And supplied. Then, the target gas to be separated and recovered was CO 2 , and the separation power of CO 2 was calculated from the formula (A) using the mass of the separated and recovered CO 2 .

図4はサイクルタイム100秒、図5はサイクルタイム300秒の場合に対する測定点毎の吸着剤Aの温度変化ΔTを示している。図4および図5において、(a)は測定点が5点の場合、(b)は測定点が20点の場合に対する結果を示している。 FIG. 4 shows the temperature change ΔT of the adsorbent A for each measurement point when the cycle time is 100 seconds and FIG. 5 shows the cycle time of 300 seconds. In FIGS. 4 and 5, (a) shows the results for the case where the measurement points are 5 points, and FIG. 5 (b) shows the results for the case where the measurement points are 20 points.

図4(a)と図4(b)とを比較すると、吸着剤Aの温度変化ΔTが一定値(ΔTmin)になる測定点が複数存在し、吸着剤Aが充填された領域に対してCOが吸着剤に吸着した領域が狭いことが分かる。これに対して、図5(a)と図5(b)とを比較すると、吸着剤Aの温度変化が一定値(ΔTmin)になる測定点が複数存在せず、吸着剤Aが充填された領域においてCOが広く吸着していることが分かる。算出したCOの分離動力は、サイクルタイム100秒運転時において、測定点が5点の場合と20点の場合とでは9%、10点の場合と20点の場合とでは5%の差が生じたが、サイクルタイム300秒運転時において、5点の場合と20点の場合とでは2%、10点の場合と20点の場合とでは1%の差まで縮小することが明らかとなった。従って、ΔTmin以上の吸着剤Aの温度変化を示す領域を20点設定して温度を測定することによって、測定点が5点および10点の場合に比べて、CO分離動力をより精確に算出できることが分かった。 Comparing FIG. 4A and FIG. 4B, there are a plurality of measurement points at which the temperature change ΔT of the adsorbent A becomes a constant value (ΔT min ), and the region filled with the adsorbent A has a plurality of measurement points. It can be seen that the region where CO 2 is adsorbed by the adsorbent is narrow. On the other hand, when FIG. 5A and FIG. 5B are compared, there are no multiple measurement points at which the temperature change of the adsorbent A becomes a constant value (ΔT min ), and the adsorbent A is filled. It can be seen that CO 2 is widely adsorbed in the region. The calculated CO 2 separation power has a difference of 9% between the case of 5 measurement points and the case of 20 points, and 5% between the case of 10 points and the case of 20 points when the cycle time is 100 seconds. However, it was clarified that the difference between 5 points and 20 points was 2%, and the difference between 10 points and 20 points was 1% when the cycle time was 300 seconds. .. Therefore, by setting 20 points in the region showing the temperature change of the adsorbent A of ΔT min or more and measuring the temperature, the CO 2 separation power can be more accurately compared to the case where the measurement points are 5 points and 10 points. It turned out that it can be calculated.

サイクルタイム300秒の場合に、吸着剤Aとして、新品の13Xゼオライトおよび使用済みの13Xゼオライトの2種を用意し、PSA運転を実施した。吸着剤Aの充填領域において、原料ガス供給口側から10mmの位置での温度変化ΔT、中央位置での温度変化ΔT、原料ガス排出口から100mmの位置での温度変化ΔTの3点について、温度変化を測定した後、各位置での温度変化と、目的ガスであるCOの回収率、分離動力との関連性を比較した。 When the cycle time was 300 seconds, two kinds of new 13X zeolite and used 13X zeolite were prepared as the adsorbent A, and PSA operation was carried out. In the filling region of the adsorbent A, there are three points: temperature change ΔT s at a position 10 mm from the raw material gas supply port side, temperature change ΔT c at the center position, and temperature change ΔT m at a position 100 mm from the raw material gas discharge port. After measuring the temperature change, the relationship between the temperature change at each position, the recovery rate of CO 2 which is the target gas, and the separation power was compared.

測定結果は、新品の吸着剤を使用した場合、ΔT=12℃、ΔT=11℃、ΔT=6℃、CO回収率=70%、分離動力=0.19Wh/g-COとなった。これに対して、使用済みの吸着剤を使用した場合、ΔT=9℃、ΔT=8℃、ΔT=7℃、CO回収率=60%、分離動力=0.21Wh/g-COとなった。この結果から、使用済み吸着剤使用時における原料ガス供給口から10mm位置の吸着剤の吸着性能が劣化したことが確認され、吸着剤が新品か使用済みかによって吸着剤Aの充填領域の各位置における温度変化が変動し、図3に示したような挙動を示すことが確認された。 The measurement results show that when a new adsorbent is used, ΔT s = 12 ° C, ΔT c = 11 ° C, ΔT m = 6 ° C, CO 2 recovery rate = 70%, separation power = 0.19Wh / g-CO 2 It became. On the other hand, when a used adsorbent was used, ΔT s = 9 ° C, ΔT c = 8 ° C, ΔT m = 7 ° C, CO 2 recovery rate = 60%, separation power = 0.21 Wh / g-. It became CO 2 . From this result, it was confirmed that the adsorption performance of the adsorbent at the position 10 mm from the raw material gas supply port when the used adsorbent was used was deteriorated, and each position of the filling region of the adsorbent A was determined depending on whether the adsorbent was new or used. It was confirmed that the temperature change in the above fluctuated and the behavior as shown in FIG. 3 was exhibited.

次いで、使用済み吸着剤を使用した実験において、吸着剤Aの充填領域のうち、中央位置から原料ガス供給口までの半分量を新品の吸着剤に交換して再度実験を行った。その結果、ΔT=12℃、ΔT=10℃、ΔT=6℃、CO回収率=70%、分離動力=0.19Wh/g-COとなり、新品の吸着剤を全量使用した場合と同等の結果となった。このように、本発明の吸着剤の劣化状況の判定方法によって吸着剤の劣化状況を把握し、劣化した吸着剤のみを選択的に交換することによって、コストを抑制してPSA設備を運転できることを示している。 Then, in the experiment using the used adsorbent, half of the filled area of the adsorbent A from the central position to the raw material gas supply port was replaced with a new adsorbent, and the experiment was performed again. As a result, ΔT s = 12 ° C., ΔT c = 10 ° C., ΔT m = 6 ° C., CO 2 recovery rate = 70%, separation power = 0.19 Wh / g-CO 2 , and the entire amount of the new adsorbent was used. The result was the same as the case. In this way, it is possible to control the cost and operate the PSA equipment by grasping the deterioration status of the adsorbent by the method for determining the deterioration status of the adsorbent of the present invention and selectively replacing only the deteriorated adsorbent. Shows.

本発明によれば、圧力スイング吸着法により原料ガスから目的ガスを分離する際に、吸着剤の温度を、圧損を抑制して低コストで精確に測定することができる。 According to the present invention, when the target gas is separated from the raw material gas by the pressure swing adsorption method, the temperature of the adsorbent can be accurately measured at low cost by suppressing pressure loss.

1 吸着塔
11 吸着塔本体
12 熱電対挿入管
13 熱電対
14 熱電対位置移動制御手段
A 吸着剤
B ビーズ
S1,S2 スポンジ
1 Adsorption tower 11 Adsorption tower body 12 Thermocouple insertion tube 13 Thermocouple 14 Thermocouple position movement control means A Adsorbent B Beads S1, S2 Sponge

Claims (6)

圧力スイング吸着設備の吸着塔であって、
目的のガス成分を吸着する吸着剤が充填された吸着塔本体と、
前記吸着塔本体におけるガスの流通方向に対して平行に前記吸着塔本体の全長にわたって設置された熱電対挿入管と、
前記熱電対挿入管に挿入され、前記吸着塔本体内の前記吸着剤の温度を測定する熱電対と、
前記熱電対挿入管内での前記熱電対の位置を移動させて、前記熱電対が前記熱電対挿入管内の任意の位置で前記吸着剤の温度を測定することを可能にする熱電対位置移動制御手段と、
を具えることを特徴とする吸着塔。
It is a suction tower of pressure swing suction equipment.
The main body of the adsorption tower filled with an adsorbent that adsorbs the target gas component,
A thermocouple insertion tube installed over the entire length of the adsorption tower body parallel to the gas flow direction in the adsorption tower body.
A thermocouple inserted into the thermocouple insertion tube and measuring the temperature of the adsorbent in the main body of the adsorption tower.
Thermocouple position movement control means that moves the position of the thermocouple in the thermocouple insertion tube to allow the thermocouple to measure the temperature of the adsorbent at any position in the thermocouple insertion tube. When,
A suction tower characterized by having.
請求項1に記載の吸着塔内の前記吸着剤の温度を測定する方法であって、
前記吸着塔本体内のガスの流通方向に沿って少なくとも3点以上の測定点にて圧力スイング1サイクルでの前記吸着剤の温度を測定する第1の測温ステップと、
前記第1の測温ステップにおいて測定された前記吸着剤の温度について前記圧力スイング1サイクルでの前記吸着剤の温度変化ΔTを算出する第1の吸着剤温度変化算出ステップと、
を有することを特徴とする吸着剤の温度測定方法。
The method for measuring the temperature of the adsorbent in the adsorbent according to claim 1.
The first temperature measurement step of measuring the temperature of the adsorbent in one cycle of the pressure swing at at least three measurement points along the gas flow direction in the adsorption tower main body.
A first adsorbent temperature change calculation step for calculating the temperature change ΔT of the adsorbent in one cycle of the pressure swing with respect to the temperature of the adsorbent measured in the first temperature measurement step.
A method for measuring the temperature of an adsorbent, which comprises.
前記第1の吸着剤温度変化算出ステップにおいて前記測定点毎に得られた温度変化ΔTのうち、値が最も小さい温度変化ΔTが測定された最小吸着剤温度変化点を決定する最小吸着剤温度変化点決定ステップと、
前記最小吸着剤温度変化点決定ステップにおいて決定された前記最小吸着剤温度変化点と、前記吸着塔本体における最も原料ガス供給口側の測定点との間に複数の測定点を等間隔で設けて各測定点で前記吸着剤の温度を測定する第2の測温ステップと、
前記第2の測温ステップにおいて測定された前記吸着剤の温度について、圧力スイング1サイクルの前記吸着剤の温度変化ΔTを算出する第2の吸着剤温度変化算出ステップと、
をさらに有する、請求項2に記載の吸着剤の温度測定方法。
Of the temperature change ΔT obtained for each measurement point in the first adsorbent temperature change calculation step, the minimum adsorbent temperature change for determining the minimum adsorbent temperature change point in which the temperature change ΔT having the smallest value is measured is determined. Point determination step and
A plurality of measurement points are provided at equal intervals between the minimum adsorbent temperature change point determined in the minimum adsorbent temperature change point determination step and the measurement point on the most raw material gas supply port side in the adsorption tower main body. A second temperature measurement step of measuring the temperature of the adsorbent at each measurement point,
With respect to the temperature of the adsorbent measured in the second temperature measurement step, the second adsorbent temperature change calculation step for calculating the temperature change ΔT of the adsorbent in one cycle of the pressure swing, and the second adsorbent temperature change calculation step.
The method for measuring the temperature of an adsorbent according to claim 2, further comprising.
圧力スイング吸着法における目的ガスの分離動力を算出する方法であって、
吸着剤の比熱Cpads(J/kg・K)、吸着剤の質量Mads(kg)、目的ガスの吸着量Mgas(kg)および請求項2または3に記載の吸着塔内の吸着剤の温度測定方法によって測定された前記吸着剤温度変化ΔT(K)、電力換算係数Cを用いて、前記目的ガスの分離動力Wgas(Wh/kg-gas)を以下の式(A)を用いて算出することを特徴とする目的ガスの分離動力算出方法。ここで、前記電力換算係数Cは、エネルギー(J)を電力量(Wh)に変換する係数である。
Figure 2022048987000004
It is a method of calculating the separation power of the target gas in the pressure swing adsorption method.
The specific heat Cpads (J / kg · K) of the adsorbent, the mass Mads (kg) of the adsorbent, the adsorption amount M gas (kg) of the target gas, and the adsorbent in the adsorbent according to claim 2 or 3. Using the adsorbent temperature change ΔT (K) and the power conversion coefficient C measured by the temperature measuring method, the separation power W gas (Wh / kg-gas) of the target gas was obtained using the following formula (A). A method for calculating the separation power of a target gas, which is characterized by calculation. Here, the electric power conversion coefficient C is a coefficient for converting energy (J) into electric energy (Wh).
Figure 2022048987000004
圧力スイング吸着設備における吸着剤の劣化状況を判定する方法であって、
請求項2または3に記載の吸着塔内の吸着剤の温度測定方法によって前記吸着塔本体内の前記測定点での前記吸着剤の温度変化ΔTの時間変化を求め、
所定の目的ガス回収率が達成できなくなった段階で、ガス分離開始時から前記温度変化ΔTが減少した領域の吸着剤が劣化していると判定することを特徴とする吸着剤の劣化状況の判定方法。
It is a method of determining the deterioration status of the adsorbent in the pressure swing adsorption equipment.
The time change of the temperature change ΔT of the adsorbent at the measurement point in the adsorption tower main body is obtained by the method for measuring the temperature of the adsorbent in the adsorption tower according to claim 2 or 3.
Determining the deterioration status of the adsorbent, which is characterized in that it is determined that the adsorbent in the region where the temperature change ΔT has decreased from the start of gas separation is deteriorated at the stage when the predetermined target gas recovery rate cannot be achieved. Method.
圧力スイング吸着設備の運転方法であって、
請求項5に記載の吸着剤の劣化状況の判定方法によって劣化した吸着剤が充填された領域を特定する劣化吸着剤特定ステップと、
特定された前記領域に充填された吸着剤のみを交換する吸着剤交換ステップと、
を有することを特徴とする圧力スイング吸着設備の運転方法。
It is a method of operating the pressure swing suction equipment.
A deteriorated adsorbent specifying step for specifying a region filled with the adsorbent deteriorated by the method for determining the deterioration state of the adsorbent according to claim 5.
An adsorbent exchange step of exchanging only the adsorbent filled in the identified region, and an adsorbent exchange step.
A method of operating a pressure swing adsorption facility, characterized in that it has.
JP2021134403A 2020-09-15 2021-08-19 Adsorption tower, temperature measurement method of adsorbent, separation drive force calculation method of target gas, degradation state determination method of adsorbent and operation method of pressure swing adsorption equipment Pending JP2022048987A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154702 2020-09-15
JP2020154702 2020-09-15

Publications (1)

Publication Number Publication Date
JP2022048987A true JP2022048987A (en) 2022-03-28

Family

ID=80844354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021134403A Pending JP2022048987A (en) 2020-09-15 2021-08-19 Adsorption tower, temperature measurement method of adsorbent, separation drive force calculation method of target gas, degradation state determination method of adsorbent and operation method of pressure swing adsorption equipment

Country Status (1)

Country Link
JP (1) JP2022048987A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186484A (en) * 1987-01-28 1988-08-02 Nikon Corp Apparatus for removing reactive material
JPH08117541A (en) * 1994-10-18 1996-05-14 Nippon Steel Corp Method for judging life and deterioration of adsorbent
WO2017038397A1 (en) * 2015-08-31 2017-03-09 日立化成株式会社 Exhaust-gas treatment equipment and gas-capture-material deterioration-state estimating method
JP2020022947A (en) * 2018-08-01 2020-02-13 パナソニックIpマネジメント株式会社 Adsorption completion determination method of carbon dioxide adsorption apparatus and carbon dioxide adsorption apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186484A (en) * 1987-01-28 1988-08-02 Nikon Corp Apparatus for removing reactive material
JPH08117541A (en) * 1994-10-18 1996-05-14 Nippon Steel Corp Method for judging life and deterioration of adsorbent
WO2017038397A1 (en) * 2015-08-31 2017-03-09 日立化成株式会社 Exhaust-gas treatment equipment and gas-capture-material deterioration-state estimating method
JP2020022947A (en) * 2018-08-01 2020-02-13 パナソニックIpマネジメント株式会社 Adsorption completion determination method of carbon dioxide adsorption apparatus and carbon dioxide adsorption apparatus

Similar Documents

Publication Publication Date Title
US7744676B2 (en) TSA process
EP2210640B1 (en) Oxygen concentrator
EP2111905B1 (en) Improvements in cyclical swing adsorption processes
EP1452221A1 (en) Gas supplying method and system
JPH07194919A (en) Method of adjusting vacuum pressure swing type adsorber
JP5902920B2 (en) Nitrogen gas production method, gas separation method and nitrogen gas production apparatus
JP6649040B2 (en) Gas separation equipment
EP3185987B1 (en) Method of drying a hydrogen gas mixture produced by an electrochemical hydrogen compressor
TW201733633A (en) Oxygen concentrator
US10427090B2 (en) Control of swing adsorption process cycle time with ambient CO2 monitoring
JP5061482B2 (en) Method for separating and recovering carbon monoxide in source gas
WO2011093246A1 (en) Combustible gas enrichment device
JP2022048987A (en) Adsorption tower, temperature measurement method of adsorbent, separation drive force calculation method of target gas, degradation state determination method of adsorbent and operation method of pressure swing adsorption equipment
JP2023146122A (en) Recovery device, recovery method and computer program
JP2009518826A5 (en)
JP2005270953A (en) Method for separating mixture gas, and device for separating nitrogen gas and system for consuming nitrogen gas
JP3167087B2 (en) Adsorbent life / deterioration determination method
JP5529558B2 (en) Combustible gas concentrator
JP3570732B2 (en) Method and apparatus for concentrating chlorine gas
JP6975625B2 (en) Acetylene gas supply device for vacuum carburizing furnace and its supply method
JP5715427B2 (en) Propylene gas separation and recovery method
WO2022270439A1 (en) Gas separation facility and gas separation method
US20230311053A1 (en) Displacement purge adsorption process for separating CO2 from another gas
JP5451422B2 (en) Combustible gas concentrator
JP4908997B2 (en) Pressure fluctuation adsorption gas separation method and separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231107