JP2022048804A - Chemical cleaning method for boiler - Google Patents

Chemical cleaning method for boiler Download PDF

Info

Publication number
JP2022048804A
JP2022048804A JP2020154831A JP2020154831A JP2022048804A JP 2022048804 A JP2022048804 A JP 2022048804A JP 2020154831 A JP2020154831 A JP 2020154831A JP 2020154831 A JP2020154831 A JP 2020154831A JP 2022048804 A JP2022048804 A JP 2022048804A
Authority
JP
Japan
Prior art keywords
water
cleaning
boiler
pipe
superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020154831A
Other languages
Japanese (ja)
Other versions
JP7095044B2 (en
Inventor
俊一 佐藤
Shunichi Sato
隆二 伊藤
Ryuji Ito
尚弘 篠原
Naohiro Shinohara
富美男 福本
Fumio Fukumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020154831A priority Critical patent/JP7095044B2/en
Publication of JP2022048804A publication Critical patent/JP2022048804A/en
Application granted granted Critical
Publication of JP7095044B2 publication Critical patent/JP7095044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

To prevent inflow of a chemical cleaning liquid to a non-cleaning target apparatus with higher accuracy during chemical cleaning of a boiler.SOLUTION: A chemical cleaning method for a boiler for chemically cleaning a furnace water wall tube of the thermal power generation boiler including an economizer, the furnace water wall tube and a superheater includes: a seal water injection step of injecting seal water to a heat transfer pipe in a non-cleaning part including the superheater to maintain a predetermined water level; and a cleaning step of circulating a chemical cleaning solution to a cleaning target apparatus including the economizer and the furnace water wall tube. During execution of the cleaning step, while the predetermined water level is maintained, the seal water is caused to continuously flow in the heat transfer pipe in the non-cleaning part.SELECTED DRAWING: Figure 4

Description

本発明は、ボイラの化学洗浄方法に関する。 The present invention relates to a method for chemically cleaning a boiler.

火力発電ボイラでは、火力発電ボイラの給水系統の伝熱管や配管内に付着あるいは堆積したスケールを除去するために、定期的に化学洗浄を実施する。火力発電ボイラの化学洗浄は、節炭器から汽水分離器までの洗浄対象機器の間で循環路を設置し、循環路内に酸性の化学洗浄薬液(以下、化洗液と呼ぶ)を流通させることにより、これらの洗浄対象機器の管内のスケールを除去する。 In thermal power generation boilers, chemical cleaning is regularly performed to remove scale adhering to or accumulated in the heat transfer pipes and pipes of the water supply system of the thermal power generation boiler. For chemical cleaning of thermal power generation boilers, a circulation path is installed between the equipment to be cleaned from the economizer to the steam water separator, and an acidic chemical cleaning chemical solution (hereinafter referred to as chemical cleaning solution) is circulated in the circulation path. Thereby, the scale in the pipe of the equipment to be cleaned is removed.

近年、化洗液としてスケール除去の効果が大きい化洗液が用いられるようになっている。しかし、スケール除去効果の大きい化洗液は、スケールの溶解性が高い反面、発泡性が高い。火力発電ボイラの機器内で発泡が生じると、いわゆる「バブルブロック」が発生し、泡が抵抗体となり、化洗液が流れなくなるばかりか、本来、化洗液を流してはならない蒸気系統の、例えば、過熱器等の非洗浄対象機器にまで化洗液が流入するキャリオーバが発生しやすい。そしてこの泡が当該機器で滞留すると、当該機器が酸によるダメージを受ける可能性もある。 In recent years, a lotion having a great effect of removing scale has been used as a lotion. However, the chemical lotion having a large scale removing effect has high scale solubility but high foaming property. When foaming occurs in the equipment of a thermal power boiler, so-called "bubble block" is generated, and the foam becomes a resistor, and not only does the lotion stop flowing, but also the steam system that should not flow the lotion. For example, carryover is likely to occur in which the chemical lotion flows into non-cleaning equipment such as a superheater. If this foam stays in the device, the device may be damaged by acid.

洗浄対象機器を洗浄する際、過熱器側へ化洗液のベーパや飛沫が流入することを防止するために、最上流部の過熱器(一次過熱器)にのみ水張りを行った後、洗浄対象機器を化学洗浄する方法が知られている(例えば、特許文献1参照)。 When cleaning the equipment to be cleaned, in order to prevent the vapor of the chemical washing liquid from flowing into the superheater side, only the superheater (primary superheater) in the uppermost stream is filled with water, and then the cleaning target is used. A method for chemically cleaning an apparatus is known (see, for example, Patent Document 1).

特開2015-230150号公報Japanese Patent Application Laid-Open No. 2015-230150

特許文献1に開示の技術では、汽水分離器の洗浄液と同一レベルまで一次過熱器に水(シール水)を張ることにより、キャリオーバを防ごうとしている。 The technique disclosed in Patent Document 1 attempts to prevent carryover by filling the primary superheater with water (sealing water) to the same level as the cleaning liquid of the brackish water separator.

しかしながら、特許文献1に記載の技術によれば、汽水分離器に泡が充満すると、化洗液は押し出され、それに伴い、一次過熱器内のシール水も押し出され、化洗液と化洗液による泡とが混入したシール水は、二次過熱器および三次過熱器等の非洗浄対象機器へと至る。これにより、過熱器の伝熱管が化洗液と接触して腐食する可能性がある。 However, according to the technique described in Patent Document 1, when the steam water separator is filled with bubbles, the chemical lotion is extruded, and accordingly, the seal water in the primary superheater is also extruded, so that the chemical lotion and the chemical lotion are extruded. The sealing water mixed with the foam from the above reaches the non-cleaning target equipment such as the secondary superheater and the tertiary superheater. As a result, the heat transfer tube of the superheater may come into contact with the chemical washing liquid and corrode.

本発明は、上記事情に鑑みてなされたもので、ボイラの化学洗浄時に、非洗浄対象機器への化洗液の流入をより高い確度で防止することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent the inflow of chemical washing liquid into a non-cleaning target device with higher accuracy during chemical cleaning of a boiler.

本発明は、節炭器と火炉水壁管と過熱器とを備える火力発電ボイラの前記火炉水壁管を化学洗浄するボイラの化学洗浄方法であって、前記過熱器を含む非洗浄部内の伝熱管にシール水を予め定めた水位を維持するよう注入するシール水注入ステップと、前記節炭器と前記火炉水壁管とを含む洗浄対象機器に化学洗浄薬液を循環させる洗浄ステップと、を備え、前記洗浄ステップを実行中に、前記予め定めた水位を維持しながら、前記非洗浄部内の前記伝熱管に前記シール水を流し続けることを特徴とする。 The present invention is a method for chemically cleaning a boiler that chemically cleans the furnace water wall pipe of a thermal power generation boiler including a coal saver, a furnace water wall pipe, and a superheater, and is a transmission in a non-cleaning portion including the superheater. It is provided with a seal water injection step of injecting seal water into a hot tube so as to maintain a predetermined water level, and a cleaning step of circulating a chemical cleaning agent solution to a device to be cleaned including the coal saver and the furnace water wall tube. During the cleaning step, the sealing water is continuously flowed to the heat transfer tube in the non-cleaning portion while maintaining the predetermined water level.

本発明によれば、ボイラの化学洗浄時に、非洗浄対象機器への化洗液の流入をより高い確度で防止できる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to prevent the inflow of the chemical washing liquid into the non-cleaning target device with higher accuracy during the chemical cleaning of the boiler. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

第一実施形態の火力発電ボイラが用いられる発電プラントの給水系統および蒸気系統の系統図である。It is a system diagram of the water supply system and the steam system of the power plant which uses the thermal power generation boiler of 1st Embodiment. 第一実施形態の火力発電ボイラの概略図である。It is a schematic diagram of the thermal power generation boiler of 1st Embodiment. 第一実施形態の火力発電ボイラのボイラ伝熱面構成図である。It is a boiler heat transfer surface block diagram of the thermal power generation boiler of 1st Embodiment. 第一実施形態の火力発電ボイラの化学洗浄時の配管を説明するための説明図である。It is explanatory drawing for demonstrating the piping at the time of chemical cleaning of the thermal power generation boiler of 1st Embodiment. 第一実施形態の火力発電ボイラの化学洗浄時の水位計測を説明するための説明図である。It is explanatory drawing for demonstrating the water level measurement at the time of the chemical cleaning of the thermal power generation boiler of 1st Embodiment. 第一実施形態の化学洗浄方法のフローチャートである。It is a flowchart of the chemical cleaning method of 1st Embodiment. 第一実施形態の化学洗浄時の給水と化洗液との流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of water supply and chemical washing liquid at the time of chemical washing of 1st Embodiment. 第一実施形態の排水性状監視処理のフローチャートである。It is a flowchart of the wastewater property monitoring process of 1st Embodiment. 第一実施形態の変形例の火力発電ボイラの化学洗浄時の配管を説明するための説明図である。It is explanatory drawing for demonstrating the piping at the time of chemical cleaning of the thermal power generation boiler of the modification of 1st Embodiment. 第一実施形態の変形例の火力発電ボイラの化学洗浄時の配管を説明するための説明図である。It is explanatory drawing for demonstrating the piping at the time of chemical cleaning of the thermal power generation boiler of the modification of 1st Embodiment. 第一実施形態の変形例の火力発電ボイラの化学洗浄前の冷却時の水の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of water at the time of cooling before the chemical cleaning of the thermal power generation boiler of the modification of 1st Embodiment. (a)は、汽水分離器を持たない定圧貫流型の火力発電ボイラの、従来の化学洗浄時の配管を、(b)は、ケージ後上部管寄におけるスラッジの流れを、それぞれ説明するための説明図である。(A) is for explaining the piping for conventional chemical cleaning of a constant pressure once-through thermal power generation boiler without a brackish water separator, and (b) is for explaining the flow of sludge near the upper pipe after the cage. It is explanatory drawing. 汽水分離器を持たない定圧貫流型の火力発電ボイラの、従来の化学洗浄時の他の配管例を説明するための説明図である。It is explanatory drawing for demonstrating another piping example at the time of the conventional chemical cleaning of the constant pressure once flow type thermal power generation boiler which does not have a brackish water separator. (a)は、第二実施形態の火力発電ボイラの化学洗浄時の配管を、(b)は、ケージ後上部管寄におけるスラッジの流れを、説明するための説明図である。(A) is an explanatory diagram for explaining the piping at the time of chemical cleaning of the thermal power generation boiler of the second embodiment, and (b) is an explanatory diagram for explaining the flow of sludge near the upper pipe after the cage.

以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that the present invention is not limited to this embodiment, and when there are a plurality of embodiments, the present invention also includes a combination of the respective embodiments.

<<第一実施形態>>
本発明の第一実施形態を説明する。
<< First Embodiment >>
The first embodiment of the present invention will be described.

[発電プラントの全体構成]
本実施形態に係る火力発電ボイラ(以下、「ボイラ」という)が用いられる発電プラントは、ボイラから排出された燃焼ガス(排ガス)が流れる排ガス系統と、ボイラが生成する蒸気が流れる蒸気系統と、復水器によって復水された水が流れる給水系統と、を備える。
[Overall configuration of power plant]
The power generation plant in which the thermal power generation boiler (hereinafter referred to as "boiler") according to the present embodiment has an exhaust gas system in which combustion gas (exhaust gas) discharged from the boiler flows, a steam system in which steam generated by the boiler flows, and a steam system in which steam generated by the boiler flows. It is equipped with a water supply system through which the water restored by the condenser flows.

排ガス系統は、ボイラが有する火炉の下部に設けられた複数のバーナから発生した高温の燃焼ガスを煙突へと導くための系統である。燃焼ガスは、ボイラ内に設けられた排ガス流路を通って、排ガス流路出口から低温の排ガスとしてボイラの外部に排出される。 The exhaust gas system is a system for guiding the high-temperature combustion gas generated from a plurality of burners provided in the lower part of the furnace of the boiler to the chimney. The combustion gas is discharged to the outside of the boiler as low-temperature exhaust gas from the exhaust gas flow path outlet through the exhaust gas flow path provided in the boiler.

蒸気系統は、ボイラで生成された蒸気が流れる系統であり、給水系統は、復水器によって復水された水をボイラに供給するための系統である。以下、発電プラント101の給水系統と蒸気系統とを図面を用いて説明する。なお、本実施形態で用いるボイラ100は、「変圧貫流ボイラ」である。 The steam system is a system through which steam generated by the boiler flows, and the water supply system is a system for supplying the water restored by the condenser to the boiler. Hereinafter, the water supply system and the steam system of the power plant 101 will be described with reference to the drawings. The boiler 100 used in this embodiment is a "transformer once-through boiler".

図1は、この発電プラント101の給水系統および蒸気系統の一例を示す図である。本図に示すように、本実施形態の発電プラント101は、燃料を燃焼させ、該燃焼の熱によって蒸気(過熱蒸気)を発生させるボイラ100と、ボイラ100が発生した蒸気を用いてタービンを回転させることにより発電機を駆動させて発電する蒸気タービン160(高圧タービン161、中圧タービン162、低圧タービン163)と、蒸気タービンからの排気蒸気を水に戻してボイラ100に供給する給水ライン(主給水管216)と、を備える。 FIG. 1 is a diagram showing an example of a water supply system and a steam system of the power plant 101. As shown in this figure, the power generation plant 101 of the present embodiment rotates a turbine using a boiler 100 that burns fuel and generates steam (superheated steam) by the heat of the combustion, and the steam generated by the boiler 100. A steam turbine 160 (high-pressure turbine 161, medium-pressure turbine 162, low-pressure turbine 163) that drives a generator to generate power, and a water supply line (mainly) that returns the exhaust steam from the steam turbine to water and supplies it to the boiler 100. A water supply pipe 216) is provided.

ボイラ100は、節炭器(ECO)129と、火炉水壁管222と、汽水分離器130と、過熱器140と、再熱器150と、を備える。過熱器140および再熱器150は、下流から上流に複数段備えてもよい。本実施形態では、過熱器140は、一次過熱器141、二次過熱器142および三次過熱器143の三段構成とする(図2参照)。 The boiler 100 includes an economizer (ECO) 129, a furnace water wall pipe 222, a brackish water separator 130, a superheater 140, and a reheater 150. The superheater 140 and the reheater 150 may be provided in a plurality of stages from the downstream to the upstream. In the present embodiment, the superheater 140 has a three-stage configuration of a primary superheater 141, a secondary superheater 142, and a tertiary superheater 143 (see FIG. 2).

蒸気タービン160は、それぞれ、発電機102を回転駆動させるための所定の仕事を行う、高圧タービン(HPT)161と、中圧タービン(IPT)162と、低圧タービン(LPT)163と、を備える。 The steam turbine 160 includes a high-pressure turbine (HPT) 161, a medium-pressure turbine (IPT) 162, and a low-pressure turbine (LPT) 163, each of which performs a predetermined task for rotationally driving the generator 102.

主給水管216上には、復水器170と、復水ポンプ181と、低圧給水加熱器(低圧ヒータ)182と、脱気器183と、給水ポンプ184と、高圧給水加熱器(高圧ヒータ)185とが設けられる。 On the main feed water pipe 216, there are a condenser 170, a condenser pump 181, a low pressure feed water heater (low pressure heater) 182, a deaerator 183, a water supply pump 184, and a high pressure feed water heater (high pressure heater). 185 and are provided.

上記構成を有する発電プラント101では、節炭器129で、供給された水を燃焼ガスとの熱交換により予熱する。節炭器129で予熱された水は、火炉水壁管222において、壁に形成された炉壁管を通すことにより水-蒸気2相流体となる。火炉水壁管222において生成された水-蒸気2相流体は、第一連絡管225を介して汽水分離器130に送られて、飽和蒸気と飽和水とに分離される。ここで、飽和蒸気は過熱器140へ、飽和水は飽和水管217を通り復水器170へ、それぞれ、導かれる。 In the power plant 101 having the above configuration, the economizer 129 preheats the supplied water by heat exchange with the combustion gas. The water preheated by the economizer 129 becomes a water-steam two-phase fluid by passing through the furnace wall pipe formed on the wall in the furnace water wall pipe 222. The water-steam two-phase fluid generated in the furnace water wall pipe 222 is sent to the brackish water separator 130 via the first connecting pipe 225 and separated into saturated steam and saturated water. Here, the saturated steam is guided to the superheater 140, and the saturated water is guided to the condenser 170 through the saturated water pipe 217.

汽水分離器130で分離された飽和蒸気は、燃焼ガスとの熱交換により過熱器140で過熱され、生成された過熱蒸気は、主蒸気管212を経由して高圧タービン161に導入される。主蒸気管212には、主蒸気止弁262が設けられる(図3参照)。 The saturated steam separated by the steam water separator 130 is superheated by the superheater 140 by heat exchange with the combustion gas, and the generated superheated steam is introduced into the high-pressure turbine 161 via the main steam pipe 212. The main steam pipe 212 is provided with a main steam check valve 262 (see FIG. 3).

高圧タービン161で所定の仕事を行った蒸気は、低温再熱蒸気管213を経由して再熱器150に導かれる。再熱器150では、高圧タービン161で所定の仕事を行った蒸気を再過熱する。再熱器150で過熱された蒸気は、高温再熱蒸気管214を経由して中圧タービン162および低圧タービン163に供給され、そこで、それぞれ仕事を行い、発電機102を駆動する。 The steam that has performed the predetermined work in the high-pressure turbine 161 is guided to the reheater 150 via the low-temperature reheat steam pipe 213. The reheater 150 reheats the steam that has performed the predetermined work in the high pressure turbine 161. The steam superheated by the reheater 150 is supplied to the medium pressure turbine 162 and the low pressure turbine 163 via the high temperature reheat steam pipe 214, where they work and drive the generator 102.

低圧タービン163で仕事を終えた蒸気は、タービン排気管215によって復水器170に導入される。復水器170で凝縮した復水は、汽水分離器130から送られた飽和水とともに復水ポンプ181によって低圧ヒータ182を通過した後、脱気器183に送られ、復水中のガス成分が除去される。脱気器183を経た復水は、さらに給水ポンプ184によって昇圧された後、高圧ヒータ185に送給されて加熱され、最終的には、ボイラ100へ還流される。 The steam that has finished its work in the low pressure turbine 163 is introduced into the condenser 170 by the turbine exhaust pipe 215. The condensate condensed in the condenser 170 passes through the low pressure heater 182 by the condensate pump 181 together with the saturated water sent from the brackish water separator 130, and then sent to the deaerator 183 to remove the gas component in the condensate. Will be done. The condensate that has passed through the deaerator 183 is further boosted by the water supply pump 184, then fed to the high-pressure heater 185 to be heated, and finally returned to the boiler 100.

[ボイラの全体構成]
次に、ボイラ100について説明する。図2は、本実施形態のボイラ100の全体構成の概略図である。ここでは、本実施形態に関連する構成についてのみ説明する。本図に示すように、ボイラ100は、燃料を燃焼する火炉120と、火炉120内で発生した燃焼ガスの流路に関して火炉120の後側に副側壁部121を介して配置された後部伝熱部(ケージ部)123と、火炉120および後部伝熱部123の天井部122と、を備える。
[Overall composition of boiler]
Next, the boiler 100 will be described. FIG. 2 is a schematic diagram of the overall configuration of the boiler 100 of the present embodiment. Here, only the configuration related to the present embodiment will be described. As shown in this figure, the boiler 100 has a furnace 120 for burning fuel and a rear heat transfer arranged on the rear side of the furnace 120 via a sub-side wall portion 121 with respect to the flow path of the combustion gas generated in the furnace 120. A portion (cage portion) 123 and a ceiling portion 122 of the furnace 120 and the rear heat transfer portion 123 are provided.

後部伝熱部123内には、一次過熱器141および節炭器129が設置される。また、火炉120内で発生した燃焼ガスが後部伝熱部123に向かう位置には、二次過熱器142および三次過熱器143が設置される。一次過熱器141は、横置き伝熱面を備えた、いわゆる横置き型の熱交換器であり、二次過熱器142および三次過熱器143は、吊下げ型の伝熱面を備えた、いわゆる吊下げ型の熱交換器である。本実施形態のボイラ100においては、三次過熱器143がボイラ100の蒸気配管系統上の最終段に設けられる最終過熱器である。なお、火炉120および後部伝熱部123の所要の部分には、再熱器150等の他の熱交換器が設置される。 A primary superheater 141 and an economizer 129 are installed in the rear heat transfer unit 123. Further, a secondary superheater 142 and a tertiary superheater 143 are installed at positions where the combustion gas generated in the furnace 120 faces the rear heat transfer unit 123. The primary superheater 141 is a so-called horizontal heat exchanger provided with a horizontal heat transfer surface, and the secondary superheater 142 and the tertiary superheater 143 are provided with a suspended heat transfer surface, so-called. It is a hanging type heat exchanger. In the boiler 100 of the present embodiment, the tertiary superheater 143 is the final superheater provided in the final stage on the steam piping system of the boiler 100. Other heat exchangers such as the reheater 150 are installed in the required parts of the furnace 120 and the rear heat transfer unit 123.

次に、このボイラ100内の給水系統の詳細について説明する。図3は、ボイラ100のボイラ伝熱面構成図である。ここでは、本実施形態に関連する構成についてのみ説明する。例えば、再熱器150等は省略する。本図に示すように、ボイラ100に給水されたボイラ水は、まず、給水弁266を有する主給水管216から節炭器129に供給される。節炭器129内では供給された水が節炭器129内を通る間に燃焼ガスから熱吸収を行い、水冷壁下降管221に供給される。水冷壁下降管221を経た水は、火炉120の火炉水壁管222を通り、火炉120内の熱を吸収しながら上昇する。ここで、ボイラ水は飽和温度近くまで加熱される。 Next, the details of the water supply system in the boiler 100 will be described. FIG. 3 is a boiler heat transfer surface configuration diagram of the boiler 100. Here, only the configuration related to the present embodiment will be described. For example, the reheater 150 and the like are omitted. As shown in this figure, the boiler water supplied to the boiler 100 is first supplied to the economizer 129 from the main water supply pipe 216 having the water supply valve 266. In the economizer 129, the supplied water absorbs heat from the combustion gas while passing through the economizer 129, and is supplied to the water-cooled wall descent pipe 221. The water that has passed through the water-cooled wall descending pipe 221 passes through the furnace water wall pipe 222 of the furnace 120 and rises while absorbing the heat in the furnace 120. Here, the boiler water is heated to near the saturation temperature.

火炉水壁管222を上昇する間に火炉120内の熱を吸収し、昇温された高温のボイラ水は、液相の高温水と気相の蒸気の混合流体(水-蒸気2相流体)となる。この混合流体は、第一連絡管225を経てボイラ100の上方に設けた汽水分離器130に流入し、蒸気と水に分離される。 The hot boiler water that has been heated by absorbing the heat in the furnace 120 while ascending the furnace water wall tube 222 is a mixed fluid of liquid phase high temperature water and vapor phase steam (water-steam two-phase fluid). Will be. This mixed fluid flows into the brackish water separator 130 provided above the boiler 100 via the first connecting pipe 225, and is separated into steam and water.

分離された水は、汽水分離器貯水タンク(ドレンタンク)131から飽和水管217を介して、再度、主給水管216に循環される。 The separated water is circulated again from the brackish water separator water storage tank (drain tank) 131 to the main water supply pipe 216 via the saturated water pipe 217.

一方、汽水分離器130で分離された蒸気は、飽和蒸気管211を介して一次過熱器141に流入し、その後、火炉120上部に設けた二次過熱器142および三次過熱器143を順に経て過熱された後、主蒸気管212および主蒸気止弁262を介して高圧タービン161に送られる。 On the other hand, the steam separated by the steam separator 130 flows into the primary superheater 141 through the saturated steam pipe 211, and then superheats through the secondary superheater 142 and the tertiary superheater 143 provided on the upper part of the furnace 120 in order. After that, it is sent to the high pressure turbine 161 via the main steam pipe 212 and the main steam stop valve 262.

[化学洗浄時の構成]
このような構成を有するボイラ100では、給水系統の節炭器129から汽水分離器130を化学洗浄する。以下、化学洗浄を行う部位(機器)を、洗浄対象機器と呼ぶ。化学洗浄は、ボイラ100の運転を停止し、主蒸気止弁262を閉じ、仮設の配管を設置し、洗浄対象機器に化洗液を循環させて行う。以下、化学洗浄時に設置される仮設の配管等の構成を説明する。
[Composition during chemical cleaning]
In the boiler 100 having such a configuration, the brackish water separator 130 is chemically cleaned from the economizer 129 of the water supply system. Hereinafter, the part (equipment) for which chemical cleaning is performed is referred to as a cleaning target device. Chemical cleaning is performed by stopping the operation of the boiler 100, closing the main steam check valve 262, installing a temporary pipe, and circulating the chemical cleaning liquid in the equipment to be cleaned. Hereinafter, the configuration of temporary piping and the like installed during chemical cleaning will be described.

図4は、図3のボイラ100に、化学洗浄のために設置した仮設の配管等を説明するための図である。なお、仮設の配管等は破線で示す。なお、仮設の配管は、例えば、予め接続先の配管に化学洗浄時に仮設の配管を接続するための口(例えばブラインドフランジで閉じられたフランジ接続部)が設けられ、その口を開放して接続する。 FIG. 4 is a diagram for explaining a temporary pipe or the like installed in the boiler 100 of FIG. 3 for chemical cleaning. Temporary pipes, etc. are shown by broken lines. For the temporary piping, for example, a port for connecting the temporary piping at the time of chemical cleaning (for example, a flange connection portion closed by a blind flange) is provided in advance in the connection destination pipe, and the port is opened for connection. do.

まず、飽和水管217から主給水管216へ循環配管の、再循環弁267および給水弁266を迂回するように第一仮設管311を設ける。また、第一仮設管311には、仮設循環ポンプ(洗浄ポンプ)312を設ける。洗浄ポンプ312は、第一仮設管311に供給される水あるいは化洗液を循環させる。洗浄ポンプ312により化洗液を、第一仮設管311、主給水管216、節炭器129、水冷壁下降管221、火炉水壁管222、第一連絡管225、汽水分離器130、汽水分離器貯水タンク131、および飽和水管217において循環させることにより、スケールが除去される。 First, a first temporary pipe 311 is provided from the saturated water pipe 217 to the main water supply pipe 216 so as to bypass the recirculation valve 267 and the water supply valve 266 of the circulation pipe. Further, a temporary circulation pump (cleaning pump) 312 is provided in the first temporary pipe 311. The washing pump 312 circulates the water or the chemical washing liquid supplied to the first temporary pipe 311. The chemical washing liquid is separated by the washing pump 312 into the first temporary pipe 311, the main water supply pipe 216, the coal saver 129, the water cooling wall descending pipe 221 and the furnace water wall pipe 222, the first connecting pipe 225, the steam water separator 130, and the steam water separation. The scale is removed by circulating in the water storage tank 131 and the saturated water pipe 217.

なお、第一仮設管311には、洗浄ポンプ312の前段に加熱器314を、後段にスラッジ除去装置315を設けてもよい。加熱器314は、循環させる流体を加熱する。また、スラッジ除去装置315は、化洗液に含まれる、洗浄対象機器から除去されたスケールを回収する装置である。 The first temporary pipe 311 may be provided with a heater 314 in the front stage of the cleaning pump 312 and a sludge removing device 315 in the rear stage. The heater 314 heats the circulating fluid. Further, the sludge removing device 315 is a device for recovering the scale contained in the chemical washing liquid and removed from the equipment to be cleaned.

また、本実施形態では、過熱器140にシール水(水張水)を供給するために、補給水タンク333から、三次過熱器143よりも下流側かつ主蒸気止弁262よりも上流側の主蒸気管212に、第二仮設管331を接続する。主蒸気管212の第二仮設管331の接続口を、シール水供給口339と呼ぶ。また、第二仮設管331には、供給弁334が設けられ、補給水タンク333と供給弁334との間には、シール水を供給する過熱器シールポンプ332が設けられる。 Further, in the present embodiment, in order to supply the seal water (filled water) to the superheater 140, the main is downstream from the make-up water tank 333 to the tertiary superheater 143 and upstream from the main steam stop valve 262. The second temporary pipe 331 is connected to the steam pipe 212. The connection port of the second temporary pipe 331 of the main steam pipe 212 is referred to as a seal water supply port 339. Further, the second temporary pipe 331 is provided with a supply valve 334, and a superheater seal pump 332 for supplying seal water is provided between the make-up water tank 333 and the supply valve 334.

また、図4に示すように、汽水分離器130から一次過熱器141に接続される飽和蒸気管211に、仮設水面計321が設けられる。仮設水面計321は、過熱器140に供給されるシール水の水位を監視することにより、シール水の供給と排出のバランスを監視するために設けられる。仮設水面計321は、水面計チューブ322と弁323とにより構成される。 Further, as shown in FIG. 4, a temporary water level gauge 321 is provided in the saturated steam pipe 211 connected from the brackish water separator 130 to the primary superheater 141. The temporary water level gauge 321 is provided to monitor the balance between the supply and discharge of the seal water by monitoring the water level of the seal water supplied to the superheater 140. The temporary water level gauge 321 is composed of a water level gauge tube 322 and a valve 323.

さらに、本実施形態では、飽和蒸気管211に、一次過熱器入口ドレン弁342を有する仮設排水管341が接続される。飽和蒸気管211の仮設排水管341の接続口を、シール水排水口349と呼ぶ。補給水タンク333から第二仮設管331を通り、シール水供給口339から過熱ラインに供給されるシール水は、シール水排水口349からこの仮設排水管341を介して排出される。また、汽水分離器130から化洗液が押し出された場合、その化洗液もこの仮設排水管341を介して排出される。以下、シール水が注入されるシール水供給口339から過熱器140を通り、シール水が排出されるシール水排水口349までを、シール水を注入する系として非洗浄部と呼ぶ。 Further, in the present embodiment, a temporary drain pipe 341 having a primary superheater inlet drain valve 342 is connected to the saturated steam pipe 211. The connection port of the temporary drainage pipe 341 of the saturated steam pipe 211 is referred to as a seal water drainage port 349. The seal water supplied from the make-up water tank 333 to the superheat line through the second temporary pipe 331 and from the seal water supply port 339 is discharged from the seal water drain port 349 via the temporary drain pipe 341. Further, when the chemical washing liquid is extruded from the brackish water separator 130, the chemical washing liquid is also discharged through the temporary drain pipe 341. Hereinafter, the area from the seal water supply port 339 into which the seal water is injected to the seal water drain port 349 through which the seal water is discharged through the superheater 140 is referred to as a non-cleaning unit as a system for injecting the seal water.

図5に、本実施形態の汽水分離器130、過熱器140、仮設水面計321および一次過熱器入口ドレン弁342との鉛直方向の位置について説明する。本図に示すように、仮設水面計321は、天井部122の上部に位置する一次過熱器141と二次過熱器142とを接続する連絡管212aよりも鉛直方向上方に設けられることが望ましい。シール水は、本図に示すように、仮設水面計321でその水位を監視され、常に所定の水位(水封監視レベル)が保たれるよう、補給水タンク333から供給される。水封監視レベルは、連絡管212aよりも上方に設定される。なお、水位は、例えば、水面計チューブ322内の水面の位置をカメラで撮影し、その映像を別室のモニタ等で監視する。 FIG. 5 describes the vertical positions of the brackish water separator 130, the superheater 140, the temporary water level gauge 321 and the primary superheater inlet drain valve 342 of the present embodiment. As shown in this figure, it is desirable that the temporary water level gauge 321 is provided vertically above the connecting pipe 212a connecting the primary superheater 141 and the secondary superheater 142 located above the ceiling portion 122. As shown in this figure, the seal water is supplied from the make-up water tank 333 so that the water level is monitored by the temporary water level meter 321 and the predetermined water level (water seal monitoring level) is always maintained. The water seal monitoring level is set above the connecting pipe 212a. As for the water level, for example, the position of the water surface in the water level gauge tube 322 is photographed by a camera, and the image is monitored by a monitor or the like in a separate room.

なお、化洗液は、第一仮設管311に仮設の供給管394を設け、当該供給管を介して薬液タンクから供給される。 The chemical lotion is supplied from the chemical liquid tank through the temporary supply pipe 394 provided in the first temporary pipe 311.

また、シール水には、例えば、ヒドラジン(N2H4)を100ppm(100mg/L)の濃度で含む水を用いる。 Further, as the sealing water, for example, water containing hydrazine (N2H4) at a concentration of 100 ppm (100 mg / L) is used.

[化学洗浄時の手順]
次に、本実施形態の化学洗浄の流れを説明する。図6は、本実施形態の化学洗浄時の手順を示すフローである。
[Procedure for chemical cleaning]
Next, the flow of chemical cleaning of this embodiment will be described. FIG. 6 is a flow showing a procedure at the time of chemical cleaning of the present embodiment.

まず、ボイラ100の運転停止後、例えば、一次過熱器141の温度が100℃以下程度にまで降温した後、主蒸気止弁262を閉とし、非洗浄部(伝熱管)に、水封監視レベルまでシール水を注入する(ステップS1101)。ここでは、供給弁334を開け、補給水タンク333から、第二仮設管331を経て、主蒸気管212のシール水供給口339からシール水を供給し、過熱器140(一次過熱器141、二次過熱器142、三次過熱器143)に、シール水を張る。水位は、弁323を開け、仮設水面計321を監視することにより把握する。 First, after the operation of the boiler 100 is stopped, for example, after the temperature of the primary superheater 141 is lowered to about 100 ° C. or less, the main steam check valve 262 is closed, and the water seal monitoring level is applied to the non-cleaning part (heat transfer tube). Inject sealing water up to (step S1101). Here, the supply valve 334 is opened, and the seal water is supplied from the make-up water tank 333 through the second temporary pipe 331 and the seal water supply port 339 of the main steam pipe 212, and the superheater 140 (primary superheater 141, 2) is supplied. Fill the secondary superheater 142 and the tertiary superheater 143) with sealing water. The water level is grasped by opening the valve 323 and monitoring the temporary water level meter 321.

その後、一次過熱器入口ドレン弁342を開け、シール水の水位を維持しながら、過熱ラインへのシール水(追張水)の供給および排出を開始する(ステップS1102)。追張水を含むシール水は、図7の太線で示すように、補給水タンク333から、第二仮設管331を経て、シール水供給口339から非洗浄部に供給され、三次過熱器143、二次過熱器142、一次過熱器141から飽和蒸気管211を経て、飽和蒸気管211のシール水排水口349から、仮設排水管341を経て排出される。 After that, the drain valve 342 at the inlet of the primary superheater is opened, and the supply and discharge of the seal water (additional water) to the superheat line is started while maintaining the water level of the seal water (step S1102). As shown by the thick line in FIG. 7, the seal water containing the additional water is supplied from the make-up water tank 333 to the non-cleaning portion from the seal water supply port 339 via the second temporary pipe 331, and the tertiary superheater 143. It is discharged from the secondary superheater 142 and the primary superheater 141 via the saturated steam pipe 211, from the sealed water drain port 349 of the saturated steam pipe 211, and through the temporary drain pipe 341.

ここで追張するシール水(追張水)は、補給水タンク333から、例えば、流量1t/hで供給する。そして、仮設水面計321の水面計チューブ322内の水位が一定となるよう、一次過熱器入口ドレン弁342の開度を調整する。 The seal water (tension water) to be added up here is supplied from the make-up water tank 333, for example, at a flow rate of 1 t / h. Then, the opening degree of the primary superheater inlet drain valve 342 is adjusted so that the water level in the water level gauge tube 322 of the temporary water level gauge 321 becomes constant.

その後、洗浄対象機器の化学洗浄を開始する(ステップS1103)。ここでは、給水弁266と、再循環弁267とを閉とし、汽水分離器130に化洗液を添加した後、洗浄ポンプ312を作動させる。そうすると、図7に破線で示すように、汽水分離器130内の化洗液は、汽水分離器貯水タンク131、第一仮設管311、主給水管216、節炭器129、火炉120の火炉水壁管222、および第一連絡管225を介して汽水分離器130に循環し、この間の汽水分離器130、汽水分離器貯水タンク131、節炭器129、火炉水壁管222が化学洗浄される。 After that, chemical cleaning of the device to be cleaned is started (step S1103). Here, the water supply valve 266 and the recirculation valve 267 are closed, the chemical washing liquid is added to the brackish water separator 130, and then the washing pump 312 is operated. Then, as shown by the broken line in FIG. 7, the chemical washing liquid in the brackish water separator 130 is the brackish water separator water storage tank 131, the first temporary pipe 311, the main water supply pipe 216, the coal saving device 129, and the furnace water of the furnace 120. It circulates to the brackish water separator 130 via the wall pipe 222 and the first connecting pipe 225, during which the brackish water separator 130, the brackish water separator water storage tank 131, the coal saving device 129, and the furnace water wall pipe 222 are chemically cleaned. ..

なお、この間、仮設排水管341に設置される水質監視計器392を監視することにより、排水性状監視処理を行う。 During this period, the drainage property monitoring process is performed by monitoring the water quality monitoring instrument 392 installed in the temporary drainage pipe 341.

所定時間化学洗浄を行った後、洗浄ポンプ312を停止し、パージ水にて洗浄を行う(ステップS1104)。ここでは、例えば、まず、過熱器140の系内の残留水を、過熱器シールポンプ332によりシール水供給口339からパージ水を供給し、過熱器140の系をパージ(逆流による押出し排出)する。次に汽水分離器130、汽水分離器貯水タンク131、火炉水壁管222、節炭器129等にパージ水を流し、仮設排水管341から排水することにより、系内に残留している化洗液を押し出す。 After performing chemical cleaning for a predetermined time, the cleaning pump 312 is stopped and cleaning is performed with purged water (step S1104). Here, for example, first, the residual water in the system of the superheater 140 is supplied with purged water from the seal water supply port 339 by the superheater seal pump 332, and the system of the superheater 140 is purged (extruded and discharged by backflow). .. Next, purged water is flowed through the brackish water separator 130, the brackish water separator water storage tank 131, the furnace water wall pipe 222, the economizer 129, etc., and drained from the temporary drain pipe 341 to carry out the chemical washing remaining in the system. Push out the liquid.

系内に残留していた化洗液の押出しが終了した後は、仮設配管を撤去し、起動操作を行ってボイラ100の運転を再開する。 After the extrusion of the chemical washing liquid remaining in the system is completed, the temporary pipe is removed, the start operation is performed, and the operation of the boiler 100 is restarted.

[排水性状監視処理]
次に、ステップS1103の排水性状監視処理の流れを、図8を用いて説明する。本実施形態では、電導度とpHを監視し、必要に応じて供給するシール水の量(追張量)を増減したり、脱酸素中和剤の濃度を増減させたりする。
[Drainage property monitoring process]
Next, the flow of the wastewater property monitoring process in step S1103 will be described with reference to FIG. In the present embodiment, the conductivity and pH are monitored, and the amount of sealing water (tension amount) to be supplied is increased or decreased, or the concentration of the deoxidizing neutralizing agent is increased or decreased as necessary.

上述のように、化学洗浄中、洗浄終了までの間、補給水タンク333からの補給水に仮設の供給管393を介して脱酸素中和剤を注入して所定濃度に調整したシール水を、過熱器シールポンプ332を用いて供給する。まず、予め定めた流量(1t/h)(初期量)で供給する(ステップS1211)。その後、化学洗浄が所定の洗浄時間を経過、そして化学洗浄液中の溶出鉄濃度などが終了判定基準を満たすまで、以下の処理を継続する(ステップS1212)。 As described above, during chemical cleaning and until the end of cleaning, the seal water adjusted to a predetermined concentration by injecting a deoxidizing neutralizing agent into the make-up water from the make-up water tank 333 via a temporary supply pipe 393 is provided. It is supplied using a superheater seal pump 332. First, it is supplied at a predetermined flow rate (1 t / h) (initial amount) (step S1211). After that, the following processing is continued until the chemical cleaning elapses a predetermined cleaning time and the elution iron concentration in the chemical cleaning solution meets the end determination criteria (step S1212).

仮設排水管341に設けられた水質監視計器392で、排水されるシール水の電導度およびpHを計測し、電導度が上昇傾向またはpHが低下傾向であるかを判別する(ステップS1201)。電導度が上昇傾向またはpHが低下傾向でなければ(S1201;No)、正常と判断し、ステップS1212へ戻り、そのまま処理を継続する。 The water quality monitoring instrument 392 provided in the temporary drainage pipe 341 measures the electric conductivity and pH of the sealed water to be drained, and determines whether the electric conductivity tends to increase or decrease (step S1201). If the electric conductivity does not tend to increase or the pH does not tend to decrease (S1201; No), it is determined to be normal, the process returns to step S1212, and the process is continued as it is.

一方、電導度が上昇傾向またはpHが低下傾向を示した場合(S1201;Yes)、化洗液が流入傾向にあると判別し、追張するシール水の供給流量を所定量、増量する(ステップS1202)。ここでは、1t/hから、20t/h(最大値)へ、徐々に増量する。 On the other hand, when the electric conductivity tends to increase or the pH tends to decrease (S1201; Yes), it is determined that the chemical washing liquid tends to flow in, and the supply flow rate of the sealing water to be added is increased by a predetermined amount (step). S1202). Here, the amount is gradually increased from 1 t / h to 20 t / h (maximum value).

増量中、最大量となるまで(ステップS1203)、連続的に、シール水排水の電導度およびpHを計測し、その傾向が静定であるか否かを判別する(ステップS1204)。電導度が上昇又はpHが低下する傾向が継続している場合(S1204;Yes)、ステップS1202へ戻り、供給流量を増量する。一方、電導度が上昇傾向またはpHが低下する傾向が見られないようになれば(S1204;No)、シール水の電導度が静定したと判別し、供給流量を、徐々に、初期値(ここでは、1t/h)に戻し(ステップS1208)ながら、ステップS1201へ戻り、処理を継続する。 During the increase, the conductivity and pH of the sealed water drainage are continuously measured until the maximum amount is reached (step S1203), and it is determined whether or not the tendency is statically indeterminate (step S1204). If the tendency of the conductivity to increase or the pH to decrease continues (S1204; Yes), the process returns to step S1202 to increase the supply flow rate. On the other hand, when the tendency of increasing the electric conductivity or the tendency of decreasing the pH is not observed (S1204; No), it is determined that the electric conductivity of the sealing water has settled, and the supply flow rate is gradually set to the initial value (S1204; No). Here, while returning to 1t / h) (step S1208), the process returns to step S1201 and the process is continued.

一方、供給流量を最大値まで増加させても電導度の上昇傾向またはpHの低下傾向が改善しない場合(S1203;Yes)、すなわち、電導度の上昇またはpHの低下傾向がさらに継続しているか判断し(ステップS1214)、継続している場合(S1214;Yes)、脱酸素中和剤の濃度を、所定量上げる(ステップS1205)。ここでは、例えば、ヒドラジン(N2H4)を500ppm(最大濃度)まで増加させる。なお、供給流量を最大値まで増加させても電導度の上昇またはpHの低下傾向がさらに継続していない場合(S1214;No)は、ステップS1212へ戻り、処理を継続する。 On the other hand, when the increasing tendency of the electric conductivity or the decreasing tendency of the pH does not improve even if the supply flow rate is increased to the maximum value (S1203; Yes), that is, it is determined whether the increasing tendency of the electric conductivity or the decreasing tendency of the pH continues. (Step S1214), if continuing (S1214; Yes), the concentration of the deoxidizing neutralizing agent is increased by a predetermined amount (step S1205). Here, for example, hydrazine (N2H4) is increased to 500 ppm (maximum concentration). If the tendency of increasing the conductivity or decreasing the pH does not continue even if the supply flow rate is increased to the maximum value (S1214; No), the process returns to step S1212 and the process is continued.

濃度増加中、最大濃度となるまで(ステップS1206)、所定時間毎に、シール水の電導度およびpHを計測し、その傾向が静定であるか否かを判別する(ステップS1207)、電導度が上昇又はpHが低下する傾向が継続している場合(S1207;Yes)、ステップS1205へ戻り、濃度を増加させる。一方、電導度が上昇傾向又はpHが低下する傾向が見られないようになれば(S1207;No)、シール水排水の電導度やpHが静定したと判別し、供給流量および濃度を、徐々に初期値(ここでは、100ppm、1t/h)に戻し(ステップS1213)、ステップS1214へ戻る。 While the concentration is increasing, the conductivity and pH of the seal water are measured at predetermined time intervals until the maximum concentration is reached (step S1206), and it is determined whether or not the tendency is static (step S1207). If the tendency of increasing or decreasing pH continues (S1207; Yes), the process returns to step S1205 and the concentration is increased. On the other hand, if the electric conductivity does not tend to increase or the pH does not decrease (S1207; No), it is determined that the electric conductivity and pH of the sealed water drainage have settled, and the supply flow rate and concentration are gradually increased. The initial value (here, 100 ppm, 1 t / h) is returned to (step S1213), and the process returns to step S1214.

脱酸素中和剤の濃度を最大濃度まで上げても電導度やpHが改善しない場合(S1209;Yes)、すなわち、pH閾値TH1(例えば、5)を超える酸性を示す場合(pH<5;S1209;Yes)は、最終手段へ移行する決定を行い、それを実施する(ステップS1210)。一方、酸性度がpH閾値TH1を超えていない場合(pH≧5;S1209;No)は、改善したと判断し、そのままステップS1212へ戻る。 When the conductivity and pH do not improve even if the concentration of the deoxidizing neutralizer is increased to the maximum concentration (S1209; Yes), that is, when the acidity exceeds the pH threshold TH1 (for example, 5) (pH <5; S1209). Yes) makes a decision to move to the last resort and implements it (step S1210). On the other hand, when the acidity does not exceed the pH threshold TH1 (pH ≧ 5; S1209; No), it is determined that the acidity has improved, and the process returns to step S1212 as it is.

なお、電導度とpHとは相関関係にあり、例えば、シール水のpHが、pH閾値TH1の5まで低下した場合、最終的な手段として例えば100t/hでシール水供給口339より過熱器140を逆洗することにより過熱器140を保護しながら、化学洗浄を継続する。 There is a correlation between the conductivity and the pH. For example, when the pH of the sealing water drops to 5 of the pH threshold TH1, the superheater 140 from the sealing water supply port 339 as a final means, for example, at 100 t / h. Continue chemical cleaning while protecting the superheater 140 by backwashing.

本実施形態によれば、ボイラ100の化学洗浄方法において、ボイラ100の非洗浄部に、予め定めた水位である水封監視レベルを維持するよう注入するシール水注入ステップと、節炭器129と火炉水壁管222とを含む洗浄対象機器に化学洗浄薬液(化洗液)を循環させる洗浄ステップと、を備え、洗浄ステップを実行中に、水封監視レベルに水位を維持しながら、非洗浄部にシール水を流し続ける。 According to the present embodiment, in the chemical cleaning method of the boiler 100, a seal water injection step of injecting water into the non-cleaning portion of the boiler 100 so as to maintain a water seal monitoring level which is a predetermined water level, and a coal saving device 129. A cleaning step for circulating a chemical cleaning agent solution (chemical cleaning solution) to the equipment to be cleaned including the furnace water wall tube 222 is provided, and non-cleaning is performed while maintaining the water level at the water seal monitoring level during the cleaning step. Continue to flush the seal water to the part.

このように、本実施形態によれば、化学洗浄中、過熱ラインにシール水を流し続ける。そして、過熱器140と、化洗液が流通している汽水分離器130とを接続する飽和蒸気管211に仮設排水管341を設け、非洗浄部に流すシール水をそこから排出する。したがって、仮に化洗液の発泡や、発生蒸気に同伴されることにより、化洗液が飽和蒸気管211内に流入しても、流水の圧力で仮設排水管341に押し流すことができる。したがって、部分的な機器への静的な水張りに比べて、非洗浄部の全ルートにシール水を動的に流通させるため、ボイラ100において、非洗浄対象機器への化洗液の流入を高い確度で防止することができる。したがって、非洗浄対象機器であるボイラ100の過熱器140を化洗液から保護でき、ボイラ100全体の構造の健全性を維持できる。 As described above, according to the present embodiment, the sealing water is continuously flowed to the superheated line during the chemical cleaning. Then, a temporary drain pipe 341 is provided in the saturated steam pipe 211 connecting the superheater 140 and the brackish water separator 130 in which the chemical washing liquid is distributed, and the sealing water flowing to the non-washing portion is discharged from there. Therefore, even if the chemical washing liquid flows into the saturated steam pipe 211 due to the foaming of the chemical washing liquid or being accompanied by the generated steam, it can be flushed to the temporary drainage pipe 341 by the pressure of the running water. Therefore, compared to static water filling to a partial device, the seal water is dynamically distributed to all routes of the non-cleaning part, so that the inflow of the chemical washing liquid to the non-cleaning target device is high in the boiler 100. It can be prevented with accuracy. Therefore, the superheater 140 of the boiler 100, which is a non-cleaning target device, can be protected from the chemical washing liquid, and the soundness of the structure of the entire boiler 100 can be maintained.

また、化学洗浄中、電導度およびpHを常時監視するため、化洗液や化洗液の泡の非洗浄対象機器への流入を早期に察知でき、迅速に対応できる。さらに、化学洗浄を簡易な仮設配管のみで実現でき、特段の封止部材が不要であるため作業も簡便である。このため、作業期間を短縮できる。また、消泡剤などの薬液の注入量の低減もしくは不要となるため、コスト的にも有利である。 In addition, since the conductivity and pH are constantly monitored during chemical cleaning, it is possible to detect the inflow of chemical lotion or chemical lotion into non-cleaning equipment at an early stage, and it is possible to respond promptly. Furthermore, chemical cleaning can be realized only with simple temporary piping, and the work is simple because no special sealing member is required. Therefore, the work period can be shortened. In addition, the injection amount of a chemical solution such as an antifoaming agent is reduced or unnecessary, which is advantageous in terms of cost.

<変形例1>
上記実施形態では、シール水を、主蒸気管212に接続される第二仮設管331から供給するが、洗浄開始後の追張は、ここからに限定されない。例えば、図9に示すように、各過熱器140の、スプレ水系統から供給してもよい。スプレ水系統から供給を行う場合、主蒸気管212からのシール水の注入は行わない。
<Modification 1>
In the above embodiment, the sealing water is supplied from the second temporary pipe 331 connected to the main steam pipe 212, but the follow-up after the start of cleaning is not limited to this. For example, as shown in FIG. 9, it may be supplied from the spray water system of each superheater 140. When supplying from the spray water system, the seal water is not injected from the main steam pipe 212.

なお、スプレ水系統からのシール水の供給は、主蒸気管212のシール水供給口339からの供給よりも、一次過熱器141に近いため、シール水注入によるタイムラグが少なく、より効率的にシール水を注入できる。一次過熱器141への到達時間が短いため、特に、排水性状監視処理時のシール水の濃度変更時に効果的である。 Since the supply of the seal water from the spray water system is closer to the primary superheater 141 than the supply from the seal water supply port 339 of the main steam pipe 212, the time lag due to the injection of the seal water is small and the seal is more efficiently sealed. Water can be injected. Since the time to reach the primary superheater 141 is short, it is particularly effective when the concentration of the seal water is changed during the wastewater property monitoring process.

例えば、排水性状監視処理時、ステップS1203において、シール水を最大量(20t/h)まで供給しても、改善が見込めず、脱酸素中和剤の濃度を増加させるタイミングで、シール水の供給口を主蒸気管212からスプレ水系統に変更する。例えば、主蒸気管212からヒドラジンの濃度の高いシール水を供給しても、二次過熱器142や三次過熱器143に保有されているシール水により、一次過熱器141まで到達するのに時間がかかる。しかしながら、スプレ水系統から供給することにより、ヒドラジンの濃度の高いシール水を、短時間で一次過熱器141に供給することができる。 For example, during the wastewater property monitoring process, even if the seal water is supplied up to the maximum amount (20 t / h) in step S1203, no improvement is expected, and the seal water is supplied at the timing of increasing the concentration of the deoxidizing neutralizer. Change the mouth from the main steam pipe 212 to the spray water system. For example, even if the sealing water having a high concentration of hydrazine is supplied from the main steam pipe 212, it takes time to reach the primary superheater 141 due to the sealing water held in the secondary superheater 142 and the tertiary superheater 143. It takes. However, by supplying from the spray water system, the sealing water having a high concentration of hydrazine can be supplied to the primary superheater 141 in a short time.

<変形例2>
また、補給水タンク333から供給するシール水を温めてもよい。この場合、図10に示すように、第二仮設管331に、加熱器335を追設する。加熱器335は、例えば、補給水タンク333と過熱器シールポンプ332との間に設ける。加熱器335は、第一仮設管311の加熱器314同様、例えば、補助ボイラである蒸気ヘッダ313を熱源とする。
<Modification 2>
Further, the seal water supplied from the make-up water tank 333 may be warmed. In this case, as shown in FIG. 10, a heater 335 is additionally attached to the second temporary pipe 331. The heater 335 is provided, for example, between the make-up water tank 333 and the superheater seal pump 332. The heater 335 uses, for example, the steam header 313, which is an auxiliary boiler, as a heat source, like the heater 314 of the first temporary pipe 311.

上記実施形態では、非洗浄部に供給されるシール水は、常温(例えば、30℃程度)である。本変形例では、これを、加熱器335で80℃~90℃まで加熱し、温水として供給する。 In the above embodiment, the sealing water supplied to the non-cleaning portion is at room temperature (for example, about 30 ° C.). In this modification, this is heated to 80 ° C. to 90 ° C. with a heater 335 and supplied as hot water.

このように構成することで、主蒸気止弁262に、常温のシール水が流入することを回避でき、主蒸気止弁262を、冷水による熱衝撃から保護できる。一般に、主蒸気止弁262が、常温のシール水に触れても熱応力で破損しない程度まで冷却されるには、4日程度かかる。本変形例によれば、シール水の温度が高いため、この期間を短縮することができる。 With such a configuration, it is possible to prevent the sealing water at room temperature from flowing into the main steam check valve 262, and the main steam check valve 262 can be protected from the thermal shock caused by cold water. Generally, it takes about 4 days for the main steam check valve 262 to be cooled to such an extent that it is not damaged by thermal stress even if it comes into contact with the sealing water at room temperature. According to this modification, the temperature of the sealing water is high, so that this period can be shortened.

<変形例3>
工期を短縮しつつ主蒸気止弁262の熱破壊を回避する手法は変形例2に限定されない。例えば、ボイラ100の停止後、加熱器314で加熱した温水を冷却水として、ボイラ100全体に通し、ボイラを冷却後、化学洗浄作業を開始してもよい。
<Modification 3>
The method of avoiding thermal destruction of the main steam check valve 262 while shortening the construction period is not limited to the modified example 2. For example, after stopping the boiler 100, hot water heated by the heater 314 may be used as cooling water and passed through the entire boiler 100 to cool the boiler, and then the chemical cleaning operation may be started.

この場合の温水の流通ルートを、図11に示す。ボイラ100の停止後、再循環弁267および給水弁266を閉じ、系内の冷水を温水に昇温する。まず、加熱器314と洗浄ポンプ312とにより系内の冷水を、火炉水壁管222を循環させて温水に昇温する。昇温後の温水を汽水分離器130から飽和蒸気管211を介して過熱器140に通水して、主蒸気管212の水張を行う。 The distribution route of hot water in this case is shown in FIG. After the boiler 100 is stopped, the recirculation valve 267 and the water supply valve 266 are closed, and the temperature of the cold water in the system is raised to hot water. First, the cold water in the system is circulated through the furnace water wall pipe 222 by the heater 314 and the cleaning pump 312 to raise the temperature to hot water. The hot water after the temperature rise is passed from the brackish water separator 130 to the superheater 140 via the saturated steam pipe 211 to fill the main steam pipe 212 with water.

これにより、主蒸気止弁262を冷水による熱衝撃から保護し、早期に主蒸気管212に水張を行うことができるため、化学洗浄の手順を早期に開始することができる。 As a result, the main steam check valve 262 can be protected from the thermal shock caused by cold water, and the main steam pipe 212 can be filled with water at an early stage, so that the chemical cleaning procedure can be started at an early stage.

<<第二実施形態>>
次に、本発明の第二実施形態を説明する。本実施形態は、汽水分離器130を備えない定圧貫流ボイラ100a(以下、単に「定圧貫流ボイラ100a」と呼ぶ。)の例である。第一実施形態と同じものには、同じ符号を付す。
<< Second Embodiment >>
Next, the second embodiment of the present invention will be described. This embodiment is an example of a constant pressure once-through boiler 100a (hereinafter, simply referred to as "constant pressure once-through boiler 100a") without a brackish water separator 130. The same as those in the first embodiment are designated by the same reference numerals.

図12(a)に示すように、汽水分離器130を備えない定圧貫流ボイラ100aでは、火炉水壁管222は、ケージ出口連絡管232、ケージ後上部管寄234、一次過熱器入口下降管231を経て一次過熱器141に接続される。火炉水壁管222で高温となったボイラ水は、ケージ出口連絡管232を経てケージ後上部管寄234に到達し、一部は一次過熱器入口下降管231を経て過熱器140へ、一部は、一次過熱器バイパス管233へ向かう。 As shown in FIG. 12A, in the constant pressure once-through boiler 100a not provided with the brackish water separator 130, the furnace water wall pipe 222 has a cage outlet connecting pipe 232, a cage rear upper pipe 234, and a primary superheater inlet descending pipe 231. Is connected to the primary superheater 141. The boiler water that became hot in the furnace water wall pipe 222 reaches the upper pipe side 234 after the cage via the cage outlet connecting pipe 232, and partly reaches the superheater 140 via the primary superheater inlet descending pipe 231. Heads for the primary superheater bypass tube 233.

化学洗浄時は、給水弁266を閉とし、洗浄ポンプ312を作動させる。そうすると、図12(a)に太線で示すように、化洗液は、第一仮設管311に設けられた仮設の供給管394(不図示)を介して供給され、第一仮設管311、主給水管216、節炭器129、火炉120の火炉水壁管222を経て、ケージ出口連絡管232に合流し、ケージ後上部管寄234に到達する。そして、一次過熱器バイパス管233から分岐する第一仮設管311に戻されることにより循環し、節炭器129、火炉水壁管222が化学洗浄される。 At the time of chemical cleaning, the water supply valve 266 is closed and the cleaning pump 312 is operated. Then, as shown by the thick line in FIG. 12 (a), the chemical washing liquid is supplied through the temporary supply pipe 394 (not shown) provided in the first temporary pipe 311. It joins the cage outlet connecting pipe 232 through the water supply pipe 216, the coal saver 129, and the furnace water wall pipe 222 of the furnace 120, and reaches the upper pipe side 234 after the cage. Then, it circulates by being returned to the first temporary pipe 311 branching from the primary superheater bypass pipe 233, and the economizer 129 and the furnace water wall pipe 222 are chemically cleaned.

ここで、図12(b)は、ケージ後上部管寄234の断面細である。本図に示すように、定圧貫流ボイラ100aでは、ケージ後上部管寄234に対し、一次過熱器バイパス管233が鉛直方向上向きに接続され、一次過熱器入口下降管231は、下向きに接続される。このため、定圧貫流ボイラ100aの化学洗浄時に移動してきたスケールは、ケージ出口連絡管232などからケージ後上部管寄234に流入する。このとき、ケージ後上部管寄234の内部での流速低下による粒子の分級作用により、パウダースケールなどの微粒子(微粒スラッジ)は、高流速で、一次過熱器バイパス管233より定圧貫流ボイラ100aの系外へ移送される。一方、フレーク状スケールなどの粗粒子(粗粒スラッジ)は、低流速で、下向きに接続される一次過熱器入口下降管231にて一次過熱器141へ移送される。 Here, FIG. 12B is a thin cross section of the rear upper pipe side 234 of the cage. As shown in this figure, in the constant pressure once-through boiler 100a, the primary superheater bypass pipe 233 is connected vertically upward to the cage rear upper pipe 234, and the primary superheater inlet descending pipe 231 is connected downward. .. Therefore, the scale that has moved during the chemical cleaning of the constant pressure once-through boiler 100a flows into the cage rear upper pipe side 234 from the cage outlet connecting pipe 232 or the like. At this time, due to the particle classification action due to the decrease in flow velocity inside the cage rear upper pipe 234, fine particles (fine particle sludge) such as powder scale are released from the primary superheater bypass pipe 233 at a high flow velocity, and the system of the constant pressure once-through boiler 100a. Transferred to the outside. On the other hand, coarse particles (coarse grain sludge) such as flake-shaped scales are transferred to the primary superheater 141 by the primary superheater inlet descending pipe 231 connected downward at a low flow velocity.

一般に、一次過熱器141は、全体としてU字構造(ポケット構造)になっているため、構造的にスラッジが堆積しやすい。すなわち、ケージ後上部管寄234から一次過熱器入口下降管231により搬送されたフレーク状の粗粒スラッジは、U字構造の出口側となる管において、低流速時や流動停止時に沈降し、ベンド部に沈積する。 Generally, since the primary superheater 141 has a U-shaped structure (pocket structure) as a whole, sludge tends to accumulate structurally. That is, the flake-shaped coarse-grain sludge conveyed from the cage rear upper pipe side 234 by the primary superheater inlet descent pipe 231 settles and bends at low flow velocity or when the flow stops in the pipe on the outlet side of the U-shaped structure. Accumulate in the part.

従来は、これを防ぐため、図13に示すように、第二仮設管331と一次過熱器入口下降管231とを接続する仮設接続管391を設け、シール水を一次過熱器入口下降管231に供給している。しかしながら、この流量では、フレーク状の大きなスラッジの混入を防ぐことはできない。 Conventionally, in order to prevent this, as shown in FIG. 13, a temporary connection pipe 391 for connecting the second temporary pipe 331 and the primary superheater inlet lowering pipe 231 is provided, and the seal water is supplied to the primary superheater inlet lowering pipe 231. We are supplying. However, at this flow rate, it is not possible to prevent the mixing of large flaky sludge.

本実施形態では、これを防ぐため、図14(a)に示すように、第一仮設管311から分岐して一次過熱器入口下降管231に至る第三仮設管351を設ける。第三仮設管351は、第一仮設管311のスラッジ除去装置315と、主給水管216との接続部との間に接続される。また、第三仮設管351には、弁352と、流量計353とが設けられる。なお。第一仮設管の第三仮設管351との分岐部と主給水管216との接続部との間にも、弁316および流量計317が設けられる。 In the present embodiment, in order to prevent this, as shown in FIG. 14A, a third temporary pipe 351 that branches from the first temporary pipe 311 and reaches the primary superheater inlet descending pipe 231 is provided. The third temporary pipe 351 is connected between the sludge removing device 315 of the first temporary pipe 311 and the connection portion between the main water supply pipe 216. Further, the third temporary pipe 351 is provided with a valve 352 and a flow meter 353. note that. A valve 316 and a flow meter 317 are also provided between the branch portion of the first temporary pipe with the third temporary pipe 351 and the connection portion with the main water supply pipe 216.

化学洗浄時は、弁352および弁316を開とし、スラッジ除去装置315でスラッジを除去後の化洗液を、第三仮設管351を介して一次過熱器入口下降管231に送る。従来例に比べて流体の供給量が多いため、図14(b)に示すように、ケージ後上部管寄234において、一次過熱器入口下降管231からの流量が増加し、一次過熱器入口下降管231への大きなフレーク状のスラッジの混入を押し戻すことができる。第三仮設管351を介して供給する化洗液の流量は、流量計353と流量計317とで監視する。 At the time of chemical cleaning, the valve 352 and the valve 316 are opened, and the chemical washing liquid after removing the sludge by the sludge removing device 315 is sent to the primary superheater inlet lowering pipe 231 via the third temporary pipe 351. Since the amount of fluid supplied is larger than that of the conventional example, as shown in FIG. 14 (b), the flow rate from the primary superheater inlet descent pipe 231 increases at the cage rear upper pipe side 234, and the primary superheater inlet descends. It is possible to push back the mixing of large flake-like sludge into the tube 231. The flow rate of the chemical washing liquid supplied through the third temporary pipe 351 is monitored by the flow meter 353 and the flow meter 317.

なお、従来例においても、大量のシール水を供給することで、フレーク状のスラッジを沈降させることなく浮遊させることができる。しかしながら、この場合、補給水タンク333から供給するシール水が化洗液と混ざり、化洗液の濃度が低下し、ボイラスケールの溶解除去能力が大きく低下する。しかしながら、本実施形態によれば、化洗液をシール水として供給するため、化洗液濃度の低下を防止でき、溶解除去能力も維持できる。 Even in the conventional example, by supplying a large amount of sealing water, the flake-shaped sludge can be suspended without settling. However, in this case, the seal water supplied from the make-up water tank 333 mixes with the chemical washing liquid, the concentration of the chemical washing liquid decreases, and the ability to dissolve and remove the boiler scale greatly decreases. However, according to the present embodiment, since the chemical washing liquid is supplied as sealing water, it is possible to prevent a decrease in the chemical washing liquid concentration and maintain the dissolving and removing ability.

なお、本実施形態においても、第一実施形態同様、補給水タンク333から主蒸気止弁262よりも上流側の主蒸気管212に、第二仮設管331を接続する。第二仮設管331には、供給弁334が設けられ、補給水タンク333と供給弁334との間には、過熱器シールポンプ332が設けられる。また、本実施形態では、過熱器140と、洗浄対象である火炉水壁管222を接続する一次過熱器入口下降管231に、一次過熱器入口ドレン弁342を有する仮設排水管341が接続される。 Also in this embodiment, as in the first embodiment, the second temporary pipe 331 is connected from the make-up water tank 333 to the main steam pipe 212 on the upstream side of the main steam check valve 262. The second temporary pipe 331 is provided with a supply valve 334, and a superheater seal pump 332 is provided between the make-up water tank 333 and the supply valve 334. Further, in the present embodiment, a temporary drainage pipe 341 having a primary superheater inlet drain valve 342 is connected to the primary superheater inlet descending pipe 231 connecting the superheater 140 and the furnace water wall pipe 222 to be cleaned. ..

化学洗浄時は、シール水を補給水タンク333から所定の流量で供給し続けるとともに、仮設排水管341から排出され、過熱ラインに化洗液が進入することを防ぐ。 During chemical cleaning, the seal water is continuously supplied from the make-up water tank 333 at a predetermined flow rate, and is discharged from the temporary drain pipe 341 to prevent the chemical cleaning liquid from entering the overheating line.

なお、本実施形態では、水位計を設置する代わりに、シール水が所定の水位に保たれているか否かを、流量計353、395、396の流量を監視することにより把握する。流量計353は、第三仮設管351に設置される。また、流量計395は、シール水の供給量を監視するために第二仮設管331に設置されるシール水供給口流量計であり、流量計396は、シール水の排水量を監視するために仮設排水管341に設置されるシール水排出口流量計である。ここでは、両流量計395、396の流量を監視する。例えば、供給量<排出量の場合は一次過熱器入口下降管231から酸液を引き込むことになり、供給量>排出量の場合はシール水が一次過熱器入口下降管231を介して酸液に混じり酸液濃度を薄める。本実施形態では、シール水の供給量と排出量とを一致させることにより、一次過熱器入口下降管231から一次過熱器141への酸液の侵入を防ぐ。 In this embodiment, instead of installing a water level gauge, whether or not the seal water is maintained at a predetermined water level is grasped by monitoring the flow rate of the flow meters 353, 395, and 396. The flow meter 353 is installed in the third temporary pipe 351. Further, the flow meter 395 is a seal water supply port flow meter installed in the second temporary pipe 331 to monitor the supply amount of seal water, and the flow meter 396 is temporarily installed to monitor the drainage amount of seal water. It is a sealed water discharge port flow meter installed in the drain pipe 341. Here, the flow rates of both flow meters 395 and 396 are monitored. For example, if the supply amount is less than the discharge amount, the acid solution is drawn from the primary superheater inlet lowering pipe 231. Dilute the mixed acid solution concentration. In the present embodiment, by matching the supply amount and the discharge amount of the seal water, the invasion of the acid liquid from the primary superheater inlet descending pipe 231 into the primary superheater 141 is prevented.

このように、本実施形態によれば、定圧貫流ボイラ100aにおいても、第一実施形態同様、化学洗浄中、過熱ラインにシール水を流し続ける。そして、過熱器140と化洗液が流通している火炉水壁管222とを接続する一次過熱器入口下降管231に仮設排水管341を設け、過熱ラインに流すシール水をそこから排出する。したがって、仮に化洗液の発泡や、発生蒸気に同伴されることにより、化洗液が一次過熱器入口下降管231内に流入しても、流水の圧力で仮設排水管341に押し流すことができる。 As described above, according to the present embodiment, even in the constant pressure once-through boiler 100a, the sealing water continues to flow to the superheated line during the chemical cleaning as in the first embodiment. Then, a temporary drainage pipe 341 is provided in the primary superheater inlet descending pipe 231 connecting the superheater 140 and the furnace water wall pipe 222 in which the chemical washing liquid is distributed, and the seal water flowing to the superheater line is discharged from there. Therefore, even if the chemical washing liquid flows into the primary superheater inlet lowering pipe 231 due to the foaming of the chemical washing liquid or being accompanied by the generated steam, it can be flushed to the temporary drainage pipe 341 by the pressure of the running water. ..

このため、本実施形態によれば、簡易な仮設配管の設置により、定圧貫流ボイラ100aにおいて、非洗浄対象機器への化洗液の流入を完全に防止することができる。したがって、ボイラ100の非洗浄対象機器を化洗液から保護でき、構造の健全性を維持できる。 Therefore, according to the present embodiment, it is possible to completely prevent the inflow of the chemical washing liquid into the non-cleaning target device in the constant pressure once-through boiler 100a by installing a simple temporary pipe. Therefore, the non-cleaning target device of the boiler 100 can be protected from the chemical washing liquid, and the soundness of the structure can be maintained.

また、本実施形態によれば、さらに、定圧貫流ボイラ100aにおいて、化学洗浄時に、化洗液を一次過熱器入口下降管231に供給する。これにより、一次過熱器入口下降管231の流量が増大し、一次過熱器141へのスラッジの混入を低減することができる。 Further, according to the present embodiment, in the constant pressure once-through boiler 100a, the chemical washing liquid is supplied to the primary superheater inlet lowering pipe 231 at the time of chemical washing. As a result, the flow rate of the primary superheater inlet lowering pipe 231 is increased, and the mixing of sludge into the primary superheater 141 can be reduced.

なお、本実施形態においても、第一実施形態の変形例1から3を適用してもよい。 In this embodiment as well, modifications 1 to 3 of the first embodiment may be applied.

<変形例4>
また、例えば、制御部(コントローラ)を設け、上記各実施形態および変形例の化学洗浄時の給水制御処理および/または排水性状監視処理を、制御部により行うよう構成してもよい。この場合、仮設水面計321等にセンサを設け、センサからの信号に応じて制御部は、一次過熱器入口ドレン弁342の開度を調整する制御信号や、過熱器シールポンプ332の回転を制御する制御信号等を出力する。
<Modification example 4>
Further, for example, a control unit (controller) may be provided, and the water supply control process and / or the drainage property monitoring process at the time of chemical cleaning of each of the above-described embodiments and modifications may be performed by the control unit. In this case, a sensor is provided in the temporary water level gauge 321 or the like, and the control unit controls the control signal for adjusting the opening degree of the primary superheater inlet drain valve 342 and the rotation of the superheater seal pump 332 in response to the signal from the sensor. Outputs control signals and the like.

100:ボイラ、100a:定圧貫流ボイラ、101:発電プラント、102:発電機、120:火炉、121:副側壁部、122:天井部、123:後部伝熱部、129:節炭器、130:汽水分離器、131:汽水分離器貯水タンク、140:過熱器、141:一次過熱器、142:二次過熱器、143:三次過熱器、150:再熱器、160:蒸気タービン、161:高圧タービン、162:中圧タービン、163:低圧タービン、170:復水器、181:復水ポンプ、182:低圧ヒータ、183:脱気器、184:給水ポンプ、185:高圧ヒータ、
211:飽和蒸気管、212:主蒸気管、212a:連絡管、213:低温再熱蒸気管、214:高温再熱蒸気管、215:タービン排気管、216:主給水管、217:飽和水管、221:水冷壁下降管、222:火炉水壁管、225:第一連絡管、231:一次過熱器入口下降管、232:ケージ出口連絡管、233:一次過熱器バイパス管、234:ケージ後上部管寄、262:主蒸気止弁、266:給水弁、267:再循環弁、
311:第一仮設管、312:洗浄ポンプ、313:蒸気ヘッダ、314:加熱器、315:スラッジ除去装置、316:弁、317:流量計、321:仮設水面計、322:水面計チューブ、323:弁、331:第二仮設管、332:過熱器シールポンプ、333:補給水タンク、334:供給弁、335:加熱器、339:シール水供給口、341:仮設排水管、342:一次過熱器入口ドレン弁、349:シール水排水口、351:第三仮設管、352:弁、353:流量計、391:仮設接続管、392:水質監視計器、393:供給管、394:供給管、395:流量計、396:流量計
100: Boiler, 100a: Constant pressure once-through boiler, 101: Power plant, 102: Generator, 120: Fire furnace, 121: Sub-side wall, 122: Ceiling, 123: Rear heat transfer part, 129: Coal saver, 130: Steam water separator, 131: steam water separator water storage tank, 140: superheater, 141: primary superheater, 142: secondary superheater, 143: tertiary superheater, 150: reheater, 160: steam turbine, 161: high pressure Turbine, 162: Medium pressure turbine, 163: Low pressure turbine, 170: Water recovery device, 181: Recovery pump, 182: Low pressure heater, 183: Boiler, 184: Water supply pump, 185: High pressure heater,
211: Saturated steam pipe, 212: Main steam pipe, 212a: Connecting pipe, 213: Low temperature reheated steam pipe, 214: High temperature reheated steam pipe, 215: Turbine exhaust pipe, 216: Main water supply pipe, 217: Saturated water pipe, 221: Water cooling wall descent pipe 222: Furnace water wall pipe 225: First connecting pipe, 231: Primary superheater inlet descent pipe 232: Cage outlet connecting pipe 233: Primary superheater bypass pipe 234: Cage rear upper part Pipe, 262: Main steam stop valve, 266: Water supply valve, 267: Recirculation valve,
311: First temporary pipe, 312: Cleaning pump, 313: Steam header, 314: Heater, 315: Sludge remover, 316: Valve, 317: Flow meter, 321: Temporary water level gauge, 322: Water level gauge tube, 323 : Valve, 331: Second temporary pipe, 332: Superheater seal pump, 333: Makeup water tank, 334: Supply valve, 335: Heater, 339: Seal water supply port, 341: Temporary drainage pipe, 342: Primary overheating Instrument inlet drain valve, 349: Sealed water drainage port, 351: Third temporary pipe, 352: Valve, 353: Flow meter, 391: Temporary connection pipe, 392: Water quality monitoring instrument, 393: Supply pipe, 394: Supply pipe, 395: Flow meter, 396: Flow meter

Claims (7)

節炭器と火炉水壁管と過熱器とを備える火力発電ボイラの前記火炉水壁管を化学洗浄するボイラの化学洗浄方法であって、
前記過熱器を含む非洗浄部内の伝熱管にシール水を予め定めた水位を維持するよう注入するシール水注入ステップと、
前記節炭器と前記火炉水壁管とを含む洗浄対象機器に化学洗浄薬液を循環させる洗浄ステップと、を備え、
前記洗浄ステップを実行中に、前記予め定めた水位を維持しながら、前記非洗浄部内の前記伝熱管に前記シール水を流し続ける、ボイラの化学洗浄方法。
A method for chemically cleaning a boiler that chemically cleans the furnace water wall pipe of a thermal power generation boiler equipped with an economizer, a furnace water wall pipe, and a superheater.
A seal water injection step of injecting seal water into a heat transfer tube in a non-cleaning portion including a superheater so as to maintain a predetermined water level, and a seal water injection step.
A cleaning step of circulating a chemical cleaning agent solution to the equipment to be cleaned including the economizer and the water wall pipe of the furnace is provided.
A method for chemically cleaning a boiler, in which the sealing water is continuously flowed through the heat transfer tube in the non-cleaning portion while maintaining the predetermined water level during the cleaning step.
請求項1記載のボイラの化学洗浄方法であって、
前記洗浄ステップでは、前記シール水を、前記非洗浄部内の前記過熱器よりも下流のシール水供給口から供給し、前記非洗浄部内の前記過熱器よりも上流のシール水排水口から排水する、ボイラの化学洗浄方法。
The method for chemically cleaning a boiler according to claim 1.
In the cleaning step, the sealing water is supplied from the sealing water supply port downstream of the superheater in the non-cleaning section, and drained from the sealing water drain port upstream of the superheater in the non-cleaning section. Boiler chemical cleaning method.
請求項2記載のボイラの化学洗浄方法であって、
前記火力発電ボイラは、前記火炉水壁管に連絡管を介して接続されるとともに、前記過熱器に飽和蒸気管を介して接続される汽水分離器を備え、
前記シール水排水口は、前記飽和蒸気管に設けられる、ボイラの化学洗浄方法。
The method for chemically cleaning a boiler according to claim 2.
The thermal power generation boiler includes a brackish water separator connected to the furnace water wall pipe via a connecting pipe and connected to the superheater via a saturated steam pipe.
The sealed water drain port is a method for chemically cleaning a boiler provided in the saturated steam pipe.
請求項3記載のボイラの化学洗浄方法であって、
前記水位は、前記飽和蒸気管の、前記シール水排水口より上流で計測される、ボイラの化学洗浄方法。
The method for chemically cleaning a boiler according to claim 3.
The water level is a method for chemically cleaning a boiler, which is measured upstream of the sealed water drainage port of the saturated steam pipe.
請求項2記載のボイラの化学洗浄方法であって、
前記シール水排水口は、前記火炉水壁管と前記過熱器とを接続する過熱器入口下降管に設けられるボイラの化学洗浄方法。
The method for chemically cleaning a boiler according to claim 2.
The sealed water drainage port is a method for chemically cleaning a boiler provided in a superheater inlet descending pipe that connects the superheater water wall pipe and the superheater.
請求項1から5のいずれか1項に記載のボイラの化学洗浄方法であって、
前記シール水注入ステップにおいて、前記シール水を、前記化学洗浄薬液を加熱する加熱器の熱を用いて、前記火力発電ボイラの主蒸気止弁を熱衝撃から保護可能な温度まで加熱して供給する、ボイラの化学洗浄方法。
The method for chemically cleaning a boiler according to any one of claims 1 to 5.
In the seal water injection step, the seal water is supplied by heating the main steam stop valve of the thermal power generation boiler to a temperature that can be protected from thermal impact by using the heat of a heater that heats the chemical cleaning chemical solution. , Chemical cleaning method of boiler.
請求項1から5のいずれか1項に記載のボイラの化学洗浄方法であって、
前記シール水注入ステップの前に、前記化学洗浄薬液を加熱する加熱器と前記火炉水壁管の熱とを用いて冷水を昇温し、主蒸気管に水張を行う、ボイラの化学洗浄方法。
The method for chemically cleaning a boiler according to any one of claims 1 to 5.
Prior to the sealing water injection step, a method for chemically cleaning a boiler in which cold water is heated by using a heater for heating the chemical cleaning chemical solution and the heat of the furnace water wall tube to fill the main steam tube with water. ..
JP2020154831A 2020-09-15 2020-09-15 Boiler chemical cleaning method Active JP7095044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020154831A JP7095044B2 (en) 2020-09-15 2020-09-15 Boiler chemical cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020154831A JP7095044B2 (en) 2020-09-15 2020-09-15 Boiler chemical cleaning method

Publications (2)

Publication Number Publication Date
JP2022048804A true JP2022048804A (en) 2022-03-28
JP7095044B2 JP7095044B2 (en) 2022-07-04

Family

ID=80844444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154831A Active JP7095044B2 (en) 2020-09-15 2020-09-15 Boiler chemical cleaning method

Country Status (1)

Country Link
JP (1) JP7095044B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138601A (en) * 1985-12-09 1987-06-22 石川島播磨重工業株式会社 Acid cleaning method of boiler
JP2013170762A (en) * 2012-02-21 2013-09-02 Shikoku Electric Power Co Inc Chemical cleaning method of main steam pipe or reheat steam pipe
JP2015230150A (en) * 2014-06-06 2015-12-21 栗田エンジニアリング株式会社 Chemical cleaning method of boiler
JP2022020375A (en) * 2020-07-20 2022-02-01 栗田工業株式会社 Chemical cleaning method of boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138601A (en) * 1985-12-09 1987-06-22 石川島播磨重工業株式会社 Acid cleaning method of boiler
JP2013170762A (en) * 2012-02-21 2013-09-02 Shikoku Electric Power Co Inc Chemical cleaning method of main steam pipe or reheat steam pipe
JP2015230150A (en) * 2014-06-06 2015-12-21 栗田エンジニアリング株式会社 Chemical cleaning method of boiler
JP2022020375A (en) * 2020-07-20 2022-02-01 栗田工業株式会社 Chemical cleaning method of boiler

Also Published As

Publication number Publication date
JP7095044B2 (en) 2022-07-04

Similar Documents

Publication Publication Date Title
JP6303836B2 (en) Chemical cleaning method for boiler
RU2467250C2 (en) Operating method of combined-cycle turbine plant, and combined-cycle turbine plant designed for that purpose
KR100367919B1 (en) Heat recovery steam generator
KR100367918B1 (en) Heat recovery steam generator
JP7183639B2 (en) Boiler chemical cleaning method
JP6148815B2 (en) Hybrid water treatment for high temperature steam generators.
CN103017133B (en) Start-up Systems for Direct-through Boilers with circulating pump and starting method thereof
US1612854A (en) Feed-water-temperature regulator
JP2007085294A (en) Steam turbine plant and its operating method
JP7095044B2 (en) Boiler chemical cleaning method
JP7119898B2 (en) Boiler chemical cleaning method
JP7363695B2 (en) Boiler chemical cleaning method
JP5113425B2 (en) Boiler feed water control device
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP2001183493A (en) In-plant steam facilities in nuclear power plant
JP2622096B2 (en) Combined refuse power plant with controllable feedwater temperature
JP7472622B2 (en) Chemical cleaning method for boilers
JP7272006B2 (en) Boiler chemical cleaning method
JP2009275997A (en) Condensate recovery device
JP2955085B2 (en) Transformer once-through boiler
JPS5845402A (en) Water hammer prevention type waste-heat recovery boiler
JP2021063593A (en) Chemical cleaning method for boiler
JP2007064501A (en) Steaming method for boiler plant, boiler plant, and steaming device for boiler plant
JP2006226697A (en) Cooling controller, cooling control method and plant using cooling controller
JPH10246402A (en) Boiler and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R150 Certificate of patent or registration of utility model

Ref document number: 7095044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150