JP2022047038A - Cerebral vasospasm inhibitor - Google Patents

Cerebral vasospasm inhibitor Download PDF

Info

Publication number
JP2022047038A
JP2022047038A JP2020152739A JP2020152739A JP2022047038A JP 2022047038 A JP2022047038 A JP 2022047038A JP 2020152739 A JP2020152739 A JP 2020152739A JP 2020152739 A JP2020152739 A JP 2020152739A JP 2022047038 A JP2022047038 A JP 2022047038A
Authority
JP
Japan
Prior art keywords
rage
cerebral vasospasm
cerebral
subarachnoid hemorrhage
neutrophils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020152739A
Other languages
Japanese (ja)
Inventor
宏史 石井
Hiroshi Ishii
修 堀
Osamu Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2020152739A priority Critical patent/JP2022047038A/en
Publication of JP2022047038A publication Critical patent/JP2022047038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

To elucidate the mechanism that the rupture of cerebral aneurysm in subarachnoid hemorrhage causes cerebral artery to twitch, leading to encephalopathy, and to provide a cerebral vasospasm inhibitor based on the mechanism and to further provide a novel cerebral vasospasm inhibitor screening method.MEANS FOR SOLVING THE PROBLEM: We have discovered the mechanism that a hematoma from the rupture of cerebral aneurysm causes the release of danger signals (DAMPs), a neutrophil and/or macrophage in bone marrow or blood binds to DAMPs through RAGE and is thus activated, and further migrates to cerebral blood vessels, causing cerebral vasospasm, and have completed the inventive cerebral vasospasm inhibitor targeting the mechanism.SELECTED DRAWING: None

Description

本発明は、脳血管攣縮抑制剤又は神経機能治療剤、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤、くも膜下出血後の好中球及び/若しくはマクロファージの活性化抑制剤又は脳動脈への遊走抑制剤、くも膜下出血の治療剤、並びに、脳血管攣縮抑制剤又は神経機能治療剤のスクリーニング方法に関する。 The present invention is an agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function, an agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage, an agent for suppressing activation of neutrophils and / or macrophages after subarachnoid hemorrhage, or the brain. The present invention relates to a method for screening an agent for suppressing migration to arteries, a therapeutic agent for subarachnoid hemorrhage, and an agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function.

(SAH)
くも膜下出血(SAH)は、主に脳動脈瘤の破裂により発症する脳卒中であり、多くのSAH患者は脳血管攣縮と呼ばれる脳動脈の攣縮を起こし脳障害に至ることが知られている。しかしSAH後の脳血管攣縮の原因は不明であった。脳血管攣縮に対してRhoキナーゼ阻害剤が臨床現場で使用されているが、有意な治療予後改善には至っていない。
(SAH)
Subarachnoid hemorrhage (SAH) is a stroke mainly caused by the rupture of a cerebral aneurysm, and it is known that many SAH patients cause cerebral artery spasm called cerebral vasospasm, leading to brain damage. However, the cause of cerebral vasospasm after SAH was unknown. Although Rho-kinase inhibitors have been used in clinical practice for cerebral vasospasm, they have not significantly improved the therapeutic prognosis.

(RAGE)
終末糖化産物受容体(receptor for advanced glycation endproducts; RAGE)は、免疫グロブリンスーパーファミリーに属する1回膜貫通型受容体である。同RAGEは、炎症や疾患に関連する様々なリガンドに結合するマルチリガンド受容体である(非特許文献1)。
くも膜下出血のラットモデルにて脳の神経細胞と脳内免疫細胞であるマイクログリア(中枢神経系グリア細胞)でRAGEの発現が上昇することが報告されている(非特許文献2)。
くも膜下出血ラットモデルにてRAGE阻害剤であるFPS-ZM1を腹腔内投与すると1日目は症状が改善したが3日目はその効果が無くなった。NF-kBに依存する脳内炎症は軽減する一方で、神経細胞が死にやすくなることが報告されている(非特許文献3)。
(RAGE)
Advanced glycation endproducts (RAGE) are single-transmembrane receptors belonging to the immunoglobulin superfamily. The RAGE is a multi-ligand receptor that binds to various ligands associated with inflammation and disease (Non-Patent Document 1).
It has been reported that the expression of RAGE is increased in nerve cells in the brain and microglia (central nervous system glia cells), which are immune cells in the brain, in a rat model of submucosal hemorrhage (Non-Patent Document 2).
Intraperitoneal administration of the RAGE inhibitor FPS-ZM1 in a rat model of subarachnoid hemorrhage improved the symptoms on the first day, but the effect disappeared on the third day. It has been reported that while NF-kB-dependent intracerebral inflammation is reduced, nerve cells are more likely to die (Non-Patent Document 3).

くも膜下出血患者において、脳血管攣縮により重症化した群では、血液中の内在性RAGE阻害剤レベルが少なかったことから患者重症度とRAGEシグナルの関与が示唆されたが(非特許文献4)、本発明の脳血管攣縮抑制剤に含まれている有効成分は知られていない。 In patients with subarachnoid hemorrhage, the level of endogenous RAGE inhibitor in the blood was low in the group aggravated by cerebral vasospasm, suggesting the involvement of patient severity and RAGE signal (Non-Patent Document 4). The active ingredient contained in the vasospasm inhibitor of the present invention is not known.

Daffu et al, Int J Mol Sci. 2013,14(10):19891-910. doi:10.3390/ijms141019891.Daffu et al, Int J Mol Sci. 2013,14 (10): 19891-910. Doi: 10.3390 / ijms141019891. Li et al, Brain Res. 2014;1543:315-323. doi:10.1016/j.brainres.2013.11.023.Li et al, Brain Res. 2014; 1543: 315-323. doi: 10.1016 / j.brainres. 2013.11.023. Li et al, Mol Neurobiol. 2017;54(1):755-767. doi:10.1007/s12035-016-9703-y.Li et al, Mol Neurobiol. 2017; 54 (1): 755-767. doi: 10.1007 / s12035-016-9703-y. Aida et al, J Neurosurg. 2019, 1.aop: 1-9. doi:10.3171/2019.8.JNS191269.Aida et al, J Neurosurg. 2019, 1.aop: 1-9. Doi: 10.3171/2019.8.JNS191269.

くも膜下出血における脳動脈瘤の破裂後、脳動脈が攣縮し、脳障害に至る原因となるメカニズムは不明であった。
本発明は、これらのメカニズムを解明し、さらに該メカニズムに基づく脳血管攣縮抑制剤を提供することを課題とする。さらには、新規脳血管攣縮抑制剤のスクリーニング方法を提供することを課題とする。
After the rupture of a cerebral aneurysm in subarachnoid hemorrhage, the mechanism that causes the cerebral artery to contract and lead to cerebral damage was unknown.
An object of the present invention is to elucidate these mechanisms and to provide a cerebral vasospasm inhibitor based on the mechanisms. Furthermore, it is an object to provide a screening method for a novel cerebral vasospasm inhibitor.

本発明者らは、「脳動脈瘤の破裂によりできた血腫からデンジャーシグナルであるdamage-associated molecular patterns (DAMPs)が放出され、骨髄又は血液中の好中球及び/又はマクロファージがRAGEを介してDAMPsと結合することにより活性化し、さらに脳血管へ遊走し、脳血管攣縮を引き起こすメカニズム」を見出し、該メカニズムを標的とした本発明の脳血管攣縮抑制剤を完成した。 The present inventors "released damage-associated molecular patterns (DAMPs), which are Danger signals, from a hematoma formed by a ruptured cerebral aneurysm, and neutrophils and / or macrophages in the bone marrow or blood are mediated by RAGE. We have found "a mechanism that activates by binding to DAMPs, further migrates to the cerebral blood vessels, and causes cerebral vasospasm", and completed the cerebral vasospasm inhibitor of the present invention targeting the mechanism.

すなわち、本発明は以下の通りである。
1.くも膜下出血後の脳血管攣縮における骨髄又は血液中の好中球及び/若しくはマクロファージの活性化又は脳動脈への遊走を阻害する化合物を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
2.前記脳血管攣縮がくも膜下出血後24時間以内の脳血管攣縮である、前項1に記載のくも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
3.下記式(1)で表される化合物又は薬理学的に許容される塩を有効成分として含む、脳血管攣縮抑制剤又は神経機能治療剤。

Figure 2022047038000001
4.前記脳血管攣縮はくも膜下出血後の脳血管攣縮である、前項3に記載の脳血管攣縮抑制剤又は神経機能治療剤。
5.前記脳血管攣縮はくも膜下出血後の骨髄又は血液中の好中球及び/若しくはマクロファージの活性化に起因する、前項4に記載の脳血管攣縮抑制剤又は神経機能治療剤。
6.前記脳血管攣縮はくも膜下出血後の骨髄又は血液中の好中球及び/若しくはマクロファージの脳動脈への遊走に起因する、前項4に記載の脳血管攣縮抑制剤又は神経機能治療剤。
7.下記式(1)で表される化合物又は薬理学的に許容される塩を有効成分として含む、くも膜下出血後の好中球及び/若しくはマクロファージの活性化抑制剤又は脳動脈への遊走抑制剤。
Figure 2022047038000002
8.下記式(1)で表される化合物又は薬理学的に許容される塩を有効成分として含む、くも膜下出血の治療剤。
Figure 2022047038000003
9.好中球エラスターゼ阻害作用を有する物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
10.以下のいずれか1以上の物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
(1)Pyrazole-5-carboxamides
(2)soluble RAGE(可溶性RAGE, sRAGE)
(3)FPS-ZM1
(4)4,6-bisphenyl-2-(3-alkoxyanilino)pyrimidine
(5)Azeliragon
11.以下のいずれか1以上の物質を判定することを特徴とする、脳血管攣縮抑制剤又は神経機能治療剤のスクリーニング方法。
(1)RAGEとDIAPH1の結合を阻害する物質を判定する
(2)好中球及び/若しくはマクロファージの遊走又は活性化を阻害する物質を判定する
(3)好中球のエラスターゼ活性を阻害する物質を判定する
(4)RAGEの活性を阻害する物質を判定する
(5)DAMPsとRAGEの結合を阻害する物質を判定する
(6)RAGEからRhoの活性化を阻害する物質を判定する
(7)RAGEに依存したNETosisを抑制する物質を判定する
(8)Racの活性化を阻害する物質を判定する
(9)Cdc42の活性化を阻害する物質を判定する That is, the present invention is as follows.
1. 1. An inhibitor of cerebral vasospasm after subarachnoid hemorrhage, which comprises a compound as an active ingredient that inhibits activation of neutrophils and / or macrophages in bone marrow or blood or migration to cerebral arteries in cerebral vasospasm after subarachnoid hemorrhage. Or a neurological function therapeutic agent.
2. 2. The agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage according to item 1 above, wherein the cerebral vasospasm is cerebral vasospasm within 24 hours after subarachnoid hemorrhage.
3. 3. A cerebral vasospasm inhibitor or a therapeutic agent for neurological function containing a compound represented by the following formula (1) or a pharmacologically acceptable salt as an active ingredient.
Figure 2022047038000001
4. The cerebral vasospasm inhibitor or neurological function therapeutic agent according to item 3 above, wherein the cerebral vasospasm is a cerebral vasospasm after subarachnoid hemorrhage.
5. The vasospasm inhibitor or neurological function therapeutic agent according to item 4 above, which is caused by activation of neutrophils and / or macrophages in bone marrow or blood after subarachnoid hemorrhage.
6. The cerebral vasospasm inhibitor or neurological function therapeutic agent according to item 4 above, which is caused by the migration of neutrophils and / or macrophages in bone marrow or blood after subarachnoid hemorrhage to the cerebral arteries.
7. An agent for suppressing the activation of neutrophils and / or macrophages after subarachnoid hemorrhage or an agent for suppressing the migration of macrophages to the cerebral artery, which comprises a compound represented by the following formula (1) or a pharmacologically acceptable salt as an active ingredient. ..
Figure 2022047038000002
8. A therapeutic agent for subarachnoid hemorrhage containing a compound represented by the following formula (1) or a pharmacologically acceptable salt as an active ingredient.
Figure 2022047038000003
9. An agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage, which comprises a substance having an inhibitory effect on neutrophil elastase as an active ingredient.
10. An agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage, which comprises any one or more of the following substances as an active ingredient.
(1) Pyrazole-5-carboxamides
(2) Soluble RAGE (Soluble RAGE, sRAGE)
(3) FPS-ZM1
(4) 4,6-bisphenyl-2- (3-alkoxyanilino) pyrimidine
(5) Azeliragon
11. A method for screening a cerebral vasospasm inhibitor or a neurological function therapeutic agent, which comprises determining any one or more of the following substances.
(1) Determine the substance that inhibits the binding of RAGE and DIAPH1 (2) Determine the substance that inhibits the migration or activation of neutrophils and / or macrophages (3) Determine the substance that inhibits the elastase activity of neutrophils (4) Determine the substance that inhibits the activity of RAGE (5) Determine the substance that inhibits the binding between DAMPs and RAGE (6) Determine the substance that inhibits the activation of Rho from RAGE (7) Determine the substance that suppresses RAGE-dependent NETosis (8) Determine the substance that inhibits the activation of Rac (9) Determine the substance that inhibits the activation of Cdc42

本発明のくも膜下出血後の脳血管攣縮における骨髄又は血液中由来の好中球及び/若しくはマクロファージの活性化又は脳動脈への遊走を阻害する作用を有する物質を有効成分とする脳血管攣縮抑制剤は、くも膜下出血後の脳血管攣縮を抑制し、さらに神経機能を改善する効果を有する。
また、好中球及び/若しくはマクロファージの活性化又は脳動脈への遊走を阻害する作用は、脳血管攣縮抑制効果及び神経機能改善効果を有する。よって、該作用を阻害する物質をスクリーニングすることにより、新規脳血管攣縮抑制剤を得ることができる。
Suppression of cerebral vasospasm containing a substance having an action of inhibiting activation of neutrophils and / or macrophages derived from bone marrow or blood or migration to cerebral arteries in cerebral vasospasm after submucosal hemorrhage of the present invention. The agent has the effect of suppressing cerebral vasospasm after subepithelial hemorrhage and further improving nerve function.
In addition, the action of inhibiting activation of neutrophils and / or macrophages or migration to cerebral arteries has an effect of suppressing cerebral vasospasm and an effect of improving nerve function. Therefore, a novel cerebral vasospasm inhibitor can be obtained by screening for a substance that inhibits the action.

RAGEノックアウトマウスの神経学的症状。Neurological symptoms of RAGE knockout mice. RAGEノックアウトマウスの脳血管攣縮像の改善結果(拡大図枠内の矢頭にて図示)。Improvement results of cerebral vasospasm in RAGE knockout mice (shown by the arrowhead in the enlarged frame). RAGEノックアウトマウスの脳血管攣縮及び細動脈走行の改善結果。Improvement results of cerebral vasospasm and arteriole running in RAGE knockout mice. SAH後のRAGE mRNA発現の評価結果(LCA=左脳動脈、RCA=右脳動脈、LCx=左大脳皮質、RCx=右大脳皮質、LHi=左海馬、RHi=右海馬、それぞれの左バー:Sham、右バー:SAH)。Evaluation results of RAGE mRNA expression after SAH (LCA = left cerebral artery, RCA = right cerebral artery, LCx = left cerebral cortex, RCx = right cerebral cortex, LHi = left hippocampus, RHi = right hippocampus, each left bar: Sham, right Bar: SAH). 血管特異的RAGEノックアウトマウスにおける評価結果。Evaluation results in blood vessel-specific RAGE knockout mice. 末梢血中の白血球及び免疫系臓器におけるRAGE mRNA発現解析の結果(左上グラフ、左下グラフ及び中央グラフはWTのSAHモデルである。右上の折れ線グラフは末梢血中の白血球の結果であり、RAGE-/-ではRAGE mRNA発現が上昇しないことを示している。右下の棒グラフはWTのモデルであり、Spleenは脾臓、LNsはリンパ節、BMは骨髄を意味し、それぞれの左バーはSham、右バーはSAHを示す)。Results of RAGE mRNA expression analysis in peripheral blood leukocytes and immune system organs (upper left graph, lower left graph and center graph are SAH models of WT. Upper right broken line graph is the result of leukocytes in peripheral blood, RAGE- / -Indicates that RAGE mRNA expression does not increase. The lower right bar graph is a model of WT, Spleen means spleen, LNs means lymph nodes, BM means bone marrow, and the left bars are Sham and right. The bar indicates SAH). SAH後の脳動脈に集積する好中球の免疫染色の観察結果。Observation results of immunostaining of neutrophils accumulated in the cerebral arteries after SAH. GFPマウス由来の骨髄細胞を移植したRAGEノックアウトマウスの神経学的症状。Neurological symptoms of RAGE knockout mice transplanted with bone marrow cells derived from GFP mice. GFPマウス由来の骨髄細胞を移植したRAGEノックアウトマウスの脳血管攣縮の定量データ。Quantitative data on cerebral vasospasm in RAGE knockout mice transplanted with bone marrow cells derived from GFP mice. GFPマウス由来の骨髄細胞を移植したRAGEノックアウトマウスのSAH後の免疫染色の観察結果。Observation results of immunostaining after SAH in RAGE knockout mice transplanted with bone marrow cells derived from GFP mice. RAGEノックアウトマウス及びGFPマウスのparabiosis(並体結合実験)のSAH後の脳血管攣縮の評価結果。Evaluation results of cerebral vasospasm after SAH in parabiosis (parallel binding experiment) of RAGE knockout mice and GFP mice. 好中球特異的RAGEノックアウトマウスのSAH後の神経学スコアの評価結果及び脳血管攣縮の定量データ。Evaluation results of neurological scores after SAH and quantitative data of cerebral vasospasm in neutrophil-specific RAGE knockout mice. トランスウェル遊走アッセイにおける好中球の核染色の観察結果。図中の「Neut」はneutrophil(好中球)を示し、本明細書において多形核細胞(PMN)と同義である。また、「Clot」は血腫、「WBC WT」は野生型の好中球、及び「WBC RAGE-/-」はRAGEノックアウト好中球を示す。Observations of nuclear staining of neutrophils in the transwell migration assay. "Neut" in the figure indicates neutrophil (neutrophil) and is synonymous with polymorphonuclear cell (PMN) in the present specification. "Clot" indicates hematoma, "WBC WT" indicates wild-type neutrophils, and "WBC RAGE-/-" indicates RAGE knockout neutrophils. トランスウェル遊走アッセイにおいて血腫へ遊走した好中球の数。図中の「PMN」は多形核細胞を示し、本明細書において好中球と同義である。The number of neutrophils that migrated to the hematoma in the transwell migration assay. "PMN" in the figure indicates a polymorphonuclear cell and is synonymous with neutrophil in the present specification. トランスウェル遊走アッセイにおいて血腫へ遊走した好中球のうち好中球細胞外トラップ(NET、NETs)による細胞死であるNETosisを起こした数。The number of neutrophils that migrated to hematomas in the transwell migration assay that caused NETosis, which is cell death due to extracellular traps (NETs, NETs). SAH後の神経学スコア及び脳血管攣縮に対するCompound 11の改善効果。Improvement effect of Compound 11 on neurological score and cerebral vasospasm after SAH. 骨髄由来好中球(PMN)及びマクロファージ(MN)を用いたRhoプルダウンアッセイにおけるウェスタンブロットの結果。図中の「Rhotekin RBD」はRhotekin RBD, agaroseを示す。Results of Western blotting in Rho pull-down assay with bone marrow-derived neutrophils (PMN) and macrophages (MN). “Rhotekin RBD” in the figure indicates Rhotekin RBD, agarose. 好中球エラスターゼ(Neutrophil elastase; NE)阻害剤のマウス投与実験における神経学スコア(左図)及び脳血管攣縮(右図)の評価結果。Evaluation results of neurological score (left figure) and cerebral vasospasm (right figure) in a mouse administration experiment of a neutrophil elastase (NE) inhibitor. esRAGEマウスを用いた実験における神経学スコア(左図)及び脳血管攣縮(右図)の評価結果。Evaluation results of neurological score (left figure) and cerebral vasospasm (right figure) in experiments using esRAGE mice. くも膜下出血後の脳血管攣縮発症機構の概念図。Conceptual diagram of the onset mechanism of cerebral vasospasm after subarachnoid hemorrhage.

(本発明の対象)
本発明の対象は、脳血管攣縮抑制剤又は神経機能治療剤、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤、くも膜下出血後の好中球及び/若しくはマクロファージの活性化抑制剤又は脳動脈への遊走抑制剤、くも膜下出血の治療剤、並びに、脳血管攣縮抑制剤又は神経機能治療剤のスクリーニング方法である。
(Subject of the present invention)
The subject of the present invention is an agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function, an agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after submucosal hemorrhage, and an agent for suppressing activation of neutrophils and / or macrophages after submucosal hemorrhage. Alternatively, it is a screening method for an agent for suppressing migration to cerebral arteries, a therapeutic agent for submucosal hemorrhage, and an agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function.

米国ニューヨーク大学のSchmidt教授によりRAGEの細胞内シグナル伝達因子として細胞骨格関連分子DIAPH1が同定された(Hudson et al, J Biol Chem. 2008, 283(49):34457-68. doi:10.1074/jbc.M801465200.)。更にRAGEとDIAPH1の結合を阻害する化合物の探索により、C末端RAGEへの直接結合を示す13種類のRAGE/DIAPH1阻害化合物が発見された(Manigrasso et al, Sci Rep. 2016, 6:22450. doi:10.1038/srep22450.)。
本発明は、Schmidt教授が開発した13種類のRAGE/DIAPH1阻害化合物のうち予備実験から最も効果が期待された下記式(1)で表される化合物について、後述する実施例により骨髄又は血液中由来の好中球及び/若しくはマクロファージのRAGEシグナルの抑制を介して脳血管攣縮を抑制・軽減し、神経機能を改善することを確認した。
The cytoskeleton-related molecule DIAPH1 was identified as an intracellular signal transduction factor for RAGE by Professor Schmidt of New York University in the United States (Hudson et al, J Biol Chem. 2008, 283 (49): 34457-68. Doi: 10.1074 / jbc. M801465200.). Furthermore, by searching for compounds that inhibit the binding of RAGE and DIAPH1, 13 types of RAGE / DIAPH1 inhibitory compounds showing direct binding to C-terminal RAGE were discovered (Manigrasso et al, Sci Rep. 2016, 6: 22450. Doi. 10.1038 / srep22450.).
The present invention relates to a compound represented by the following formula (1), which is expected to be most effective from preliminary experiments among 13 types of RAGE / DIAPH1 inhibitory compounds developed by Professor Schmidt, and is derived from bone marrow or blood according to an example described later. It was confirmed that cerebral vasospasm was suppressed / reduced and nerve function was improved through suppression of RAGE signals of neutrophils and / or macrophages.

Figure 2022047038000004
Figure 2022047038000004

(くも膜下出血後の脳血管攣縮抑制剤)
本発明のくも膜下出血後の脳血管攣縮抑制剤(以後、「本発明の抑制剤」と略する場合がある)は、くも膜下出血後のいかなる時期の脳血管攣縮も対象とするが、例えば、くも膜下出血後24時間以内、くも膜下出血後0~24時間後、3~24時間後若しくは12~24時間後、又は、24時間後以降、48時間後以降の脳血管攣縮を対象とする。
なお、抑制とは、脳血管攣縮を治療、予防、再発予防、軽減、完治等を含む。
(Inhibitor of cerebral vasospasm after subarachnoid hemorrhage)
The cerebral vasospasm inhibitor after subarachnoid hemorrhage of the present invention (hereinafter, may be abbreviated as "inhibitor of the present invention") covers cerebral vasospasm at any time after subarachnoid hemorrhage, for example. , Within 24 hours after subarachnoid hemorrhage, 0 to 24 hours after subarachnoid hemorrhage, 3 to 24 hours or 12 to 24 hours, or 24 hours or later, 48 hours or later. ..
In addition, suppression includes treatment, prevention, recurrence prevention, alleviation, complete cure, etc. of cerebral vasospasm.

(骨髄又は血液中の好中球及び/若しくはマクロファージ)
本発明の抑制剤における「好中球及び/若しくはマクロファージ」は、下記の実施例に示すように、脳血管攣縮に関与する好中球及び/若しくはマクロファージは、骨髄又は血液由来であることを確認している。
また、好中球及び/若しくはマクロファージの活性化の阻害とは、これらの増殖、遊走、炎症、攻撃を抑制することを意味する。増殖、遊走、炎症及び攻撃は、公知の方法により測定することができる。
(Neutrophils and / or macrophages in bone marrow or blood)
The "neutrophils and / or macrophages" in the inhibitor of the present invention confirm that the neutrophils and / or macrophages involved in cerebral vasospasm are derived from bone marrow or blood, as shown in the following examples. is doing.
In addition, inhibition of activation of neutrophils and / or macrophages means suppression of their proliferation, migration, inflammation and aggression. Proliferation, migration, inflammation and aggression can be measured by known methods.

(本発明の抑制剤の有効成分)
本発明の抑制剤の有効成分は、骨髄又は血液中の好中球及び/若しくはマクロファージの活性化又は脳動脈への遊走を阻害する作用を有するのであれば、高分子化合物であってもよいし低分子化合物であってもよい。
高分子化合物の例としては、例えばタンパク質、核酸物質が挙げられ、具体的には抗体、抗体断片、ペプチド、siRNA又はshRNAなどが挙げられる。低分子化合物と高分子化合物を含む物質であってもよい。
好ましい有効成分の一例として、式(1)で表される化合物を確認している。加えて、式(1)で表される化合物の効果を阻害しない式(1)の薬理学的に許容される塩(例、付加塩、塩酸塩)も好ましい。
(Active ingredient of the inhibitor of the present invention)
The active ingredient of the inhibitor of the present invention may be a polymer compound as long as it has an action of inhibiting activation of neutrophils and / or macrophages in bone marrow or blood or migration to cerebral arteries. It may be a low molecular weight compound.
Examples of the polymer compound include, for example, proteins and nucleic acid substances, and specific examples thereof include antibodies, antibody fragments, peptides, siRNA, shRNA and the like. It may be a substance containing a small molecule compound and a high molecular weight compound.
As an example of a preferable active ingredient, the compound represented by the formula (1) has been confirmed. In addition, pharmacologically acceptable salts of formula (1) (eg, addition salts, hydrochlorides) that do not inhibit the effect of the compound represented by formula (1) are also preferred.

(対象)
本発明の抑制剤の投与対象は、ヒト及び非ヒト哺乳動物である。好ましい非ヒト哺乳動物として、ペットや家畜等が挙げられる。
(subject)
The target of administration of the inhibitor of the present invention is humans and non-human mammals. Preferred non-human mammals include pets, livestock and the like.

(投与方法、剤形)
本発明の抑制剤の投与経路に特に制限はないが、好ましい投与経路として、経静脈、経口、経皮、経粘膜(口腔、直腸、膣等)が挙げられる。
経口投与用製剤としては、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤(ドライシロップ剤)、経口ゼリー剤などが挙げられる。経皮投与用又は経粘膜投与用製剤としては、貼付剤、軟膏剤等が挙げられる。
錠剤、カプセル剤、顆粒剤及び散剤等は、腸溶性製剤とすることができる。例えば、錠剤、顆粒剤、散剤に腸溶性のコーティングを施す。腸溶性コーティング剤としては、胃難溶性腸溶性コーティング剤を用いることができる。
本発明の抑制剤は、有効成分の他に、投与形態に応じて、薬理学的に許容しうる担体を含ませることができる。薬理学的に許容しうる担体としては、例えば賦形剤、崩壊剤若しくは崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、基剤、溶解剤若しくは溶解補助剤、等張化剤、pH調節剤、安定化剤、噴射剤、および粘着剤等を挙げることができる。
(Administration method, dosage form)
The administration route of the inhibitor of the present invention is not particularly limited, but preferred administration routes include intravenous, oral, transdermal, and transmucosa (oral cavity, rectum, vagina, etc.).
Examples of the pharmaceutical product for oral administration include tablets, capsules, granules, powders, syrups (dry syrups), oral jellies and the like. Examples of the preparation for transdermal administration or transmucosal administration include patches, ointments and the like.
Tablets, capsules, granules, powders and the like can be enteric-soluble preparations. For example, tablets, granules and powders are coated with an enteric coating. As the enteric coating agent, a gastric sparingly soluble enteric coating agent can be used.
In addition to the active ingredient, the inhibitor of the present invention can contain a pharmacologically acceptable carrier depending on the dosage form. Pharmacologically acceptable carriers include, for example, excipients, disintegrants or disintegrant aids, binders, lubricants, coating agents, dyes, diluents, bases, solubilizers or solubilizers, isotonic. Examples thereof include agents, pH adjusters, stabilizers, propellants, adhesives and the like.

本発明の抑制剤の投与量及び投与回数は、投与対象、その年齢、体重、性別、目的(予防用か治療用か等)、症状の重篤度、剤形、投与経路等の条件によって適宜変化しうる。ヒトに投与する場合、式(1)で表される化合物の投与量は、例えば、1日当たり、約0.0001 mg/kg体重~10 mg/kg体重投与される。また、投与回数は、1日当たり1回又は複数回、又は数日に1回であってもよい。例えば、1日当たり1~3回、1~2回、又は1回であってよい。
本発明の抑制剤は、医薬品、医薬部外品、医療機器、衛生用品、食品、飲料、サプリメントにすることができる。
The dose and frequency of administration of the inhibitor of the present invention are appropriately determined depending on the conditions such as the subject to be administered, its age, body weight, sex, purpose (preventive or therapeutic, etc.), severity of symptoms, dosage form, administration route, and the like. Can change. When administered to humans, the dose of the compound represented by the formula (1) is, for example, about 0.0001 mg / kg body weight to 10 mg / kg body weight per day. In addition, the number of administrations may be once or more than once per day, or once every few days. For example, it may be 1 to 3 times, 1 to 2 times, or 1 time per day.
The inhibitor of the present invention can be a drug, a quasi drug, a medical device, a sanitary product, a food, a beverage, or a supplement.

(治療方法)
本発明は、本発明の好中球及び/若しくはマクロファージの活性化又は脳動脈への遊走を阻害する作用を有する化合物を有効成分とする脳血管攣縮抑制剤を用いることによる、くも膜下出血後の脳血管攣縮の予防方法及び/又は治療方法も対象とする。
(Method of treatment)
The present invention is based on the use of a cerebral vasospasm inhibitor containing a compound having an action of inhibiting activation of neutrophils and / or macrophages of the present invention or migration to cerebral arteries as an active ingredient, after subarachnoid hemorrhage. Methods for preventing and / or treating cerebral vasospasm are also covered.

(くも膜下出血後の好中球及び/若しくはマクロファージの活性化抑制剤又は脳動脈への遊走抑制剤)
本発明のくも膜下出血後の好中球及び/若しくはマクロファージの活性化抑制剤又は脳動脈への遊走抑制剤は、上記述べた本発明の抑制剤と同様の有効成分、対象、投与方法、剤形、治療方法を採用することができる。
(An inhibitor of activation of neutrophils and / or macrophages after subarachnoid hemorrhage or an agent of migration to cerebral arteries)
The agent for suppressing the activation of neutrophils and / or macrophages after subarachnoid hemorrhage or the agent for suppressing the migration of macrophages to the cerebral artery of the present invention is the same active ingredient, subject, administration method and agent as the above-mentioned inhibitor of the present invention. Shapes and treatment methods can be adopted.

(くも膜下出血後の神経機能治療剤)
本発明のくも膜下出血後の神経機能治療剤は、上記述べた本発明の抑制剤と同様の有効成分、対象、投与方法、剤形、治療方法を採用することができる。
なお、神経機能の治療とは、改善、予防、再発予防、軽減、完治等を含むが特に限定されない。
(Treatment for neurological function after subarachnoid hemorrhage)
As the therapeutic agent for neurological function after subarachnoid hemorrhage of the present invention, the same active ingredient, subject, administration method, dosage form, and therapeutic method as the inhibitor of the present invention described above can be adopted.
The treatment of nerve function includes, but is not limited to, improvement, prevention, recurrence prevention, alleviation, complete cure, and the like.

(くも膜下出血治療剤)
本発明のくも膜下出血治療剤は、上記述べた本発明の抑制剤と同様の有効成分、対象、投与方法、剤形、治療方法を採用することができる。
なお、くも膜下出血の治療とは、改善、予防、再発予防、軽減、完治等を含むが特に限定されない。
(Therapeutic agent for subarachnoid hemorrhage)
As the therapeutic agent for subarachnoid hemorrhage of the present invention, the same active ingredients, subjects, administration methods, dosage forms, and therapeutic methods as those of the inhibitor of the present invention described above can be adopted.
The treatment of subarachnoid hemorrhage includes, but is not limited to, improvement, prevention, recurrence prevention, alleviation, complete cure, and the like.

(好中球エラスターゼ阻害作用を有する物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤)
本発明における「好中球エラスターゼ阻害作用を有する物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤」は、好中球のエラスターゼ活性を阻害する効果を有する物質が含まれていれば特に限定されない。好中球のエラスターゼ活性を阻害する効果を有する物質として、例えば、シベレスタットナトリウム水和物、trypsin Inhibitor、soybean、3,4 dichloroisocoumarin、elastatinal、N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone、SSR 69071、Sivelestat sodium tetrahydrate、1-(3-methylbenzoyl)-1H-indazole-3-carbonitrile、sirtinol等が挙げられる。
(An inhibitor of cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage, which contains a substance having an inhibitory effect on neutrophil elastase as an active ingredient)
The "agent for suppressing cerebral vasospasm after subarachnoid hemorrhage or a therapeutic agent for neurological function, which contains a substance having an inhibitory effect on neutrophil elastase as an active ingredient" in the present invention is a substance having an effect of inhibiting the elastase activity of neutrophils. Is not particularly limited as long as it is included. Substances that have the effect of inhibiting the elastase activity of neutrophils include, for example, sivelestat sodium hydrate, trypsin Inhibitor, soybean, 3,4 dichloroisocoumarin, elastatinal, N- (Methoxysuccinyl) -Ala-Ala-Pro-Val- Examples thereof include chloromethyl ketone, SSR 69071, Sivelestat sodium tetrahydrate, 1- (3-methylbenzoyl) -1H-indazole-3-carbonitrile, sirtinol and the like.

(RAGE阻害作用を有する物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤)
本発明における「RAGE阻害作用を有する物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤」は、RAGEの活性を阻害する効果を有する物質が含まれていれば特に限定されない。RAGEを阻害する効果を有する物質として、例えば、sRAGE、FPS-ZM1、Pyrazole-5-carboxamides、4,6-bisphenyl-2-(3-alkoxyanilino)pyrimidine、Azeliragon (TTP488)等が挙げられる。
(Cerebral vasospasm inhibitor or neurological function therapeutic agent after subarachnoid hemorrhage containing a substance having a RAGE inhibitory effect as an active ingredient)
The "agent for suppressing cerebral vasospasm or therapeutic agent for neurological function after subarachnoid hemorrhage, which contains a substance having an RAGE inhibitory action as an active ingredient" in the present invention is long as it contains a substance having an effect of inhibiting the activity of RAGE. Not particularly limited. Examples of the substance having an effect of inhibiting RAGE include sRAGE, FPS-ZM1, Pyrazole-5-carboxamides, 4,6-bisphenyl-2- (3-alkoxyanilino) pyrimidine, Azeliragon (TTP488) and the like.

(スクリーニング方法)
本発明の脳血管攣縮抑制剤又は神経機能治療剤のスクリーニング方法は、以下を対象とする。
〇RAGEとDIAPH1の結合を阻害する物質を判定する
〇好中球及び/若しくはマクロファージの遊走又は活性化を阻害する物質を判定する
〇好中球のエラスターゼ活性を阻害する物質を判定する
〇RAGEの活性を阻害する物質を判定する
〇HMGB1を始めとするDAMPsとRAGEの結合を阻害する物質を判定する
〇RAGEからRhoの活性化を阻害する物質を判定する
〇RAGEに依存したNETosisを抑制する物質を判定する
〇Racの活性化を阻害する物質を判定する
〇Cdc42の活性化を阻害する物質を判定する
なお、好中球細胞外トラップ(NET、NETs)は活性化した好中球が細菌や組織に対して自己のDNAと消化酵素等蛋白質の複合体を攻撃対象に対して投じる細胞外繊維のネットワークを意味する。加えて、NET、NETsに際する細胞死をNETosisと称する。
(Screening method)
The screening method for the cerebral vasospasm inhibitor or the therapeutic agent for neurological function of the present invention targets the following.
〇 Determining substances that inhibit the binding of RAGE and DIAPH1 〇 Determining substances that inhibit neutrophil and / or macrophage migration or activation 〇 Determining substances that inhibit neutrophil elastase activity 〇 RAGE Determine substances that inhibit activity 〇 Determine substances that inhibit the binding of DAMPs and RAGE such as HMGB1 〇 Determine substances that inhibit Rho activation from RAGE 〇 Substances that suppress RAGE-dependent NETosis 〇 Determine the substance that inhibits the activation of Rac 〇 Determine the substance that inhibits the activation of Cdc42 In the neutrophil extracellular traps (NET, NETs), the activated neutrophils are bacteria or It means a network of extracellular fibers that throw a complex of self DNA and proteins such as digestive enzymes into a tissue against an attack target. In addition, cell death during NET and NETs is called NETosis.

「RAGEとDIAPH1の結合を阻害する物質を判定する」とは、例えば下記のいずれか1以上の工程を含んでもよい。
(a-1)被験物質の存在下において、被験者の生物学的試料由来のDIAPH1のRAGEに対する結合能又はRAGEのDIAPH1に対する結合能(RAGE/DIAPH1結合能)を測定する工程、及び
(a-2)上記(a-1)の結果に基づいて、RAGEとDIAPH1の結合を阻害する作用(RAGE/DIAPH1結合阻害作用)を有する被験物質を選択する工程。
上記方法の工程(a-1)における結合能の測定は、自体公知の方法、例えば、バインディングアッセイ、表面プラズモン共鳴を利用する方法(例えば、Biacore(登録商標)の使用)により行われ得る。
上記方法の工程(a-1)は、さらに、被験物質の存在下において測定した結合能と、RAGE/DIAPH1結合阻害作用を有しない対照物質存在下において測定したRAGE/DIAPH1結合能とを比較すること、及び/又は、複数の被験物質について測定した結合能を比較することを含んでもよい。
The phrase "determining a substance that inhibits the binding between RAGE and DIAPH1" may include, for example, any one or more of the following steps.
(A-1) A step of measuring the binding ability of DIAPH1 derived from a biological sample of a subject to RAGE or the binding ability of RAGE to DIAPH1 (RAGE / DIAPH1 binding ability) in the presence of a test substance, and (a-2). ) A step of selecting a test substance having an action of inhibiting the binding between RAGE and DIAPH1 (RAGE / DIAPH1 binding inhibitory action) based on the result of (a-1) above.
The measurement of the binding ability in the step (a-1) of the above method can be performed by a method known per se, for example, a binding assay, a method utilizing surface plasmon resonance (for example, the use of Biacore® ) .
The step (a-1) of the above method further compares the binding ability measured in the presence of the test substance with the RAGE / DIAPH1 binding ability measured in the presence of a control substance having no RAGE / DIAPH1 binding inhibitory effect. And / or may include comparing the binding capacity measured for multiple test substances.

「好中球及び/若しくはマクロファージの遊走又は活性化を阻害する物質を判定する」とは、例えば下記のいずれか1以上の工程を含んでもよい。
(b-1)被験物質の存在下において、被験者の生物学的試料由来の好中球又はマクロファージの血腫への遊走又は活性化を測定する工程、及び
(b-2)上記(b-1)の結果に基づいて、好中球及び/若しくはマクロファージの遊走又は活性化を阻害する作用を有する被験物質を選択する工程。
上記方法の工程(b-1)における血腫への遊走又は活性化の測定は、自体公知の方法、例えば、細胞遊走アッセイ(例えば、transwell(Corning(登録商標))を用いた遊走アッセイ)により行われ得る。
上記方法の工程(b-1)は、さらに、被験物質の存在下において測定した好中球又はマクロファージの血腫への遊走又は活性化と、好中球及び/若しくはマクロファージの遊走又は活性化を阻害する作用を有しない対照物質存在下において測定した好中球又はマクロファージの血腫への遊走又は活性化とを比較すること、及び/又は、複数の被験物質について測定した好中球又はマクロファージの血腫への遊走又は活性化を比較することを含んでもよい。
"Determining a substance that inhibits migration or activation of neutrophils and / or macrophages" may include, for example, any one or more of the following steps.
(B-1) A step of measuring the migration or activation of neutrophils or macrophages derived from a biological sample of a subject to a hematoma in the presence of a test substance, and (b-2) the above (b-1). A step of selecting a test substance having an action of inhibiting the migration or activation of neutrophils and / or macrophages based on the results of.
Measurement of migration or activation to hematoma in step (b-1) of the above method is carried out by a method known per se, for example, a cell migration assay (eg, migration assay using transwell (Corning® ) ). It can be.
Step (b-1) of the above method further inhibits the migration or activation of neutrophils or macrophages to hematoma and the migration or activation of neutrophils and / or macrophages measured in the presence of the test substance. Compare with migration or activation of neutrophils or macrophages to hematomas measured in the presence of a control that has no effect and / or to neutrophils or macrophages hematoma measured for multiple test substances. May include comparing migration or activation of.

(被験物質)
上記スクリーニングで使用する治療剤候補物質となる被験物質としては任意の物質を使用することができる。被験物質の種類は特に限定されず、個々の低分子合成化合物(例えばsiRNA)でもよいし、天然物抽出物中に存在する化合物でもよく、合成ペプチドでもよい。
被験物質は、化合物ライブラリー、ファージディスプレーライブラリー又はコンビナトリアルライブラリーでもよい。化合物ライブラリー、ファージディスプレーライブラリー及びコンビナトリアルライブラリーの構築は当業者に公知であり、また市販の化合物ライブラリーを使用することもできる。
(Test substance)
Any substance can be used as the test substance as a candidate substance for the therapeutic agent used in the above screening. The type of the test substance is not particularly limited, and may be an individual small molecule synthetic compound (for example, siRNA), a compound present in a natural product extract, or a synthetic peptide.
The test substance may be a compound library, a phage display library or a combinatorial library. Construction of compound libraries, phage display libraries and combinatorial libraries is known to those of skill in the art, and commercially available compound libraries can also be used.

(被験者・生物学的試料)
本発明において、被験者は、哺乳類全般(ヒト、ネコ、イヌ、ウマを含む)を含み、さらに、健常者、くも膜下出血の患者、くも膜下出血の疑いがある人、くも膜下出血が将来発生する人も含む。
また、生物学的試料は、特に限定されないが、脾臓、リンパ節、末梢血、血液成分(血清、血漿、血球、白血球、好中球など)、間葉細胞、幹細胞、生検試料、iPS細胞、初代培養細胞、唾液、尿、髄液、涙液、汗、毛髪、組織由来の成分を含む。
(Subject / biological sample)
In the present invention, the subjects include all mammals (including humans, cats, dogs, and horses), and also healthy subjects, patients with subarachnoid hemorrhage, persons suspected of having subarachnoid hemorrhage, and subarachnoid hemorrhage will occur in the future. Including people.
The biological sample is not particularly limited, but is limited to spleen, lymph node, peripheral blood, blood components (serum, plasma, blood cells, leukocytes, neutrophils, etc.), mesenchymal cells, stem cells, biopsy samples, iPS cells. , Contains components derived from primary cultured cells, plasma, urine, medullary fluid, tears, sweat, hair, and tissues.

以下に具体例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。なお、以下の実施例は、金沢大学の遺伝子組換え実験安全管理委員会及び動物実験委員会の承認を受けた。実施例に使用した材料及び方法は以下の通りである。 The present invention will be described in detail below with reference to specific examples, but the present invention is not limited to these examples. The following examples were approved by the Kanazawa University Genetic Recombination Experiment Safety Management Committee and the Animal Experiment Committee. The materials and methods used in the examples are as follows.

(くも膜下出血マウスモデルの作製)
C57BL/6Jバックグラウンドマウスを用いマイクロフィラメントを左外頸動脈スタンプより挿入、内頸動脈を経由して前大脳動脈-中大脳動脈分岐部で穿破させることによりくも膜下出血を作製した。
(Creation of a mouse model of subarachnoid hemorrhage)
Using a C57BL / 6J background mouse, a microfilament was inserted from the left external carotid artery stamp and pierced at the anterior cerebral artery-middle cerebral artery bifurcation via the internal carotid artery to create submucosal hemorrhage.

(マウス神経学スコアの計測方法)
神経行動機能は修正Garcia神経学スコアを用い計測した。評価は6項目の検査よりなりそれぞれ3点満点とし、点数が高いほど機能が良いとした。6項目は、四肢の自発活動、自発運動、前肢の差し伸ばし、登り運動、固有受容感覚、そして髭刺激反応から構成している(参考: Liu et al, Mol Neurobiol. 2015, 53(7):4529-38. doi:10.1007/s12035-015-986-9.)。
(Measurement method of mouse neurology score)
Neurobehavioral function was measured using the modified Garcia neurology score. The evaluation consisted of 6 inspections, each with a maximum of 3 points, and the higher the score, the better the function. The six items consist of limb spontaneous activity, spontaneous movement, forelimb extension, climbing movement, proprioceptive sensation, and whiskers stimulating response (Reference: Liu et al, Mol Neurobiol. 2015, 53 (7): 4529-38. Doi: 10.1007 / s12035-015-986-9.).

(RAGE阻害剤 Compound 11)
RAGE/DIAPH1阻害化合物は、米国ニューヨーク大学Schmidt教授がRAGEの細胞内シグナル伝達因子として細胞骨格関連分子DIAPH1を同定し(参考: Hudson et al, J Biol Chem. 2008, 283(49):34457-68. doi:10.1074/jbc.M801465200.)、更にRAGEとDIAPH1の結合を阻害する化合物を探索することにより発見したものである(参考: Manigrasso et al, Sci Rep. 2016, 6:22450. doi:10.1038/srep22450.)。
本発明者らは、開発者のSchmidt教授に許可を得て金沢大学山本靖彦教授が合成したRAGE/DIAPH1阻害化合物の1つであるCompound 11(C11:式(1)で表される化合物)の分与を受けた。
(RAGE inhibitor Compound 11)
For the RAGE / DIAPH1 inhibitor compound, Professor Schmidt of New York University in the United States identified the cytoskeleton-related molecule DIAPH1 as an intracellular signal transduction factor for RAGE (reference: Hudson et al, J Biol Chem. 2008, 283 (49): 34457-68). . doi: 10.1074 / jbc.M801465200.), And was discovered by searching for a compound that inhibits the binding between RAGE and DIAPH1 (reference: Manigrasso et al, Sci Rep. 2016, 6: 22450. Doi: 10.1038. /srep22450.).
The present inventors of Compound 11 (C11: a compound represented by the formula (1)), which is one of the RAGE / DIAPH1 inhibitory compounds synthesized by Professor Yasuhiko Yamamoto of Kanazawa University with the permission of the developer, Professor Schmidt. Received a share.

(共培養実験)
上層の底に3μmの小さなポアを持つ隔壁培養皿であるtranswell(Corning(登録商標))を用い、下層の皿に血腫を、上層の皿にLPS刺激をした好中球を撒き、37℃にて45分間培養した。
(Co-culture experiment)
Using transwell (Corning® ) , which is a partition culture dish with a small pore of 3 μm at the bottom of the upper layer, hematoma was sprinkled on the lower dish and LPS-stimulated neutrophils were sprinkled on the upper dish, and the temperature was raised to 37 ° C. Was cultured for 45 minutes.

本発明者らは、以下の確認を行った。
(RAGEノックアウトマウスの神経学的症状)
RAGEノックアウトマウス(RAGE-/-)及び対照の野生型マウス(WT)のくも膜下出血(SAH)マウスモデルを作製し、前述の修正Garcia神経学スコアを算出した。
該算出結果により、RAGEノックアウトマウスでは、SAH12時間後及び24時間後において、顕著に神経学症状が改善することが確認できた(図1)。
The present inventors have made the following confirmations.
(Neurologic symptoms of RAGE knockout mice)
Subarachnoid hemorrhage (SAH) mouse models of RAGE knockout mice (RAGE -/- ) and control wild-type mice (WT) were generated and the above-mentioned modified Garcia neurology scores were calculated.
From the calculation results, it was confirmed that in RAGE knockout mice, the neurological symptoms were remarkably improved 12 hours and 24 hours after SAH (Fig. 1).

(脳血管攣縮の改善)
RAGEノックアウトマウス(RAGE-/-)及び対照の野生型マウス(WT)のくも膜下出血(SAH)マウスモデル、並びに野生型マウスの偽手術(sham)個体をそれぞれSAH24時間後に、4%PFAによる心臓灌流固定後に、墨汁入りゼラチンを灌流することで脳底部の主幹脳動脈の攣縮血管を評価した。
該評価により、脳血管攣縮及び細動脈の総距離がRAGEノックアウトマウスにおいて顕著に改善していることが確認できた(図2)。
さらに、左側内頸動脈(ICA)の直径や左側大脳細動脈の総距離(total vascular length of left cortex)を定量化した結果、RAGEノックアウトマウスにおいて血管攣縮および細動脈走行の改善を示した(図3)。
(Improvement of cerebral vasospasm)
Subarachnoid hemorrhage (SAH) mouse models of RAGE knockout mice (RAGE -/- ) and control wild-type mice (WT), and sham individuals of wild-type mice 24 hours after SAH, respectively, with 4% PFA heart After perfusion fixation, perfusion of gelatin containing ink was used to evaluate the spasmodic blood vessels of the main cerebral artery at the bottom of the brain.
The evaluation confirmed that cerebral vasospasm and total arteriole distance were significantly improved in RAGE knockout mice (Fig. 2).
Furthermore, as a result of quantifying the diameter of the left internal carotid artery (ICA) and the total vascular length of left cortex, it was shown that vasospasm and arteriole running were improved in RAGE knockout mice (Fig.). 3).

(SAH後のRAGE mRNA発現の評価)
野生型マウスのくも膜下出血(SAH)マウスモデル、並びに野生型マウスの偽手術(sham)個体をそれぞれSAH12時間後にRAGE mRNA発現レベルを評価した。
該評価結果により、RAGE mRNA発現は、SAH12時間後に脳動脈と大脳皮質・海馬で上昇した(図4)。
(Evaluation of RAGE mRNA expression after SAH)
A mouse model of subarachnoid hemorrhage (SAH) in wild-type mice and a sham-operated (sham) individual in wild-type mice were evaluated for RAGE mRNA expression levels 12 hours after SAH, respectively.
Based on the evaluation results, RAGE mRNA expression increased in the cerebral arteries and the cerebral cortex / hippocampus 12 hours after SAH (Fig. 4).

(血管特異的RAGEノックアウトマウスにおける評価)
脳血管攣縮及びこれによる脳障害は、脳血管が発現するRAGEによるものと仮説を立てた。この仮説を検証するために、血管特異的RAGEノックアウトマウスを用いて評価した。詳しくは、対照群マウス(野生型マウスに対応するRAGEfl/fl)及び血管内皮細胞特異的RAGEノックアウトマウス(Tie2Cre RAGEfl/fl)において神経学スコアを算出し、左側内頸動脈(ICA)の直径を定量化した。
該評価結果により、意外なことに神経学的スコアと脳血管攣縮の程度に差異はないものであった。つまり、脳血管に発現するRAGEは、くも膜下出血の病態に関わらないことを確認した(図5)。
(Evaluation in blood vessel-specific RAGE knockout mice)
It was hypothesized that cerebrovascular spasm and the resulting brain damage were due to the RAGE expressed by the cerebrovascular. To test this hypothesis, vascular-specific RAGE knockout mice were used for evaluation. Specifically, neurological scores were calculated in control group mice (RAGE fl / fl corresponding to wild-type mice) and vascular endothelial cell-specific RAGE knockout mice (Tie2 Cre RAGE fl / fl ), and left internal carotid artery (ICA). The diameter of the was quantified.
Surprisingly, there was no difference in the neurological score and the degree of cerebral vasospasm from the evaluation results. That is, it was confirmed that RAGE expressed in the cerebrovascular disease is not related to the pathological condition of subarachnoid hemorrhage (Fig. 5).

(炎症細胞及び免疫系における解析)
RAGEノックアウトマウス(RAGE-/-)及び対照の野生型マウス(WT)のくも膜下出血(SAH)マウスモデル、並びに野生型マウスの偽手術(sham)個体において、抹消血中の白血球及び免疫系臓器においてRAGE mRNA発現レベルを評価した。
RT-qPCRによりSAH後の抹消血中の好中球及びマクロファージを含む白血球、および免疫系の臓器である脾臓、リンパ節においてRAGE mRNA発現が上昇し、また白血球において細胞骨格制御蛋白質であるRhoA及びRock1のmRNA発現も上昇することを確認した(図6)。
免疫染色したSAH後の炎症・免疫細胞を観察した。超急性期の3時間において、好中球が内頸動脈の管腔内外に集積したが、RAGEノックアウトマウスでは集積を確認できなかった(図7)。また、24時間において、内頸動脈外壁に大量の好中球が集積しているのに対して、RAGEノックアウトマウスでは殆ど集積を確認できなかった(図7)。
(Analysis in inflammatory cells and immune system)
Leukocytes and immune system organs in peripheral blood in RAGE knockout mice (RAGE -/- ) and control wild-type mice (WT) subarachnoid hemorrhage (SAH) mouse models, as well as wild-type mouse sham individuals. The RAGE mRNA expression level was evaluated in.
RT-qPCR increased RAGE mRNA expression in leukocytes containing neutrophils and macrophages in peripheral blood after SAH, and in the immune system organs spleen and lymph nodes, and in leukocytes the cytoskeletal regulatory protein RhoA and It was confirmed that the mRNA expression of Rock1 was also increased (Fig. 6).
Inflammation and immune cells after immunostaining SAH were observed. Neutrophils accumulated in and out of the lumen of the internal carotid artery during the 3 hours of the hyperacute phase, but accumulation could not be confirmed in RAGE knockout mice (Fig. 7). In addition, a large amount of neutrophils were accumulated on the outer wall of the internal carotid artery at 24 hours, whereas the accumulation was hardly confirmed in RAGE knockout mice (Fig. 7).

(免疫系RAGEの評価)
ドナーとして、RAGE遺伝子自体は野生型であるGFPマウス由来の骨髄細胞を、レシピエントとして野生型(WT)或いはRAGEノックアウトマウス(RAGE-/-)に移植してから、くも膜下出血(SAH)マウスモデルを作製した。
RAGEノックアウトマウスにおいて、神経学的スコア及び脳血管攣縮の程度が野生型と同程度まで悪化したために、炎症・免疫細胞におけるRAGEがくも膜下出血後の病態を司るということが分かった(図8、図9)。
さらに、GFPマウス由来の骨髄細胞を移植したRAGEノックアウトマウスは、免疫染色にてSAH後に好中球の集積を引き起こしたことを確認した(図10)。
本実施例の結果により、脳血管攣縮及びこれによる脳障害は、骨髄由来の免疫細胞のRAGEに起因することを確認した。
(Evaluation of immune system RAGE)
As a donor, bone marrow cells derived from GFP mice, whose RAGE gene itself is wild type, are transplanted into wild type (WT) or RAGE knockout mice (RAGE -/- ) as recipients, and then subarachnoid hemorrhage (SAH) mice. A model was created.
In RAGE knockout mice, the neurological score and the degree of cerebral vasospasm deteriorated to the same extent as the wild type, indicating that RAGE in inflammatory and immune cells controls the pathological condition after subarachnoid hemorrhage (Fig. 8, Fig. 8,). FIG. 9).
Furthermore, it was confirmed by immunostaining that RAGE knockout mice transplanted with bone marrow cells derived from GFP mice caused neutrophil accumulation after SAH (Fig. 10).
From the results of this example, it was confirmed that cerebral vasospasm and the resulting brain damage are caused by RAGE of bone marrow-derived immune cells.

(parabiosisにおける評価)
野生型(WT)及びRAGEノックアウトマウス(RAGE-/-)に野生型GFPマウスを並体接合即ちparabiosisを行うことで末梢循環を共有した上でくも膜下出血(SAH)マウスモデルを作製し、解析した。該解析結果では、RAGEノックアウトマウスは脳血管攣縮の改善が認められなかった(図11)。これは骨髄移植実験の結果(図9)に合致した。
本実施例の結果により、免疫系のRAGEがSAH後の脳血管攣縮に関与することを確認した。
(Evaluation in parabiosis)
A mouse model of subarachnoid hemorrhage (SAH) was created and analyzed after sharing the peripheral circulation by parabiosis of wild-type GFP mice with wild-type (WT) and RAGE knockout mice (RAGE -/- ). did. The analysis results showed that RAGE knockout mice did not improve cerebral vasospasm (Fig. 11). This was consistent with the results of the bone marrow transplant experiment (Fig. 9).
From the results of this example, it was confirmed that RAGE of the immune system is involved in cerebral vasospasm after SAH.

(好中球特異的RAGEノックアウトマウスにおける評価)
好中球特異的RAGEノックアウトマウスを用いてくも膜下出血(SAH)マウスモデルを作製し、神経学的症状を評価した。
対照群マウス(野生型マウスに対応するRAGEfl/fl)及び好中球特異的RAGEノックアウトマウス(LysMCre RAGEfl/fl)において神経学スコアを算出し、左側内頸動脈(ICA)の直径を定量化した。
該評価結果により、好中球特異的RAGEノックアウトマウスは、対称群と比較して神経症状及び脳血管攣縮が改善した(図12)。
以上により、SAH後の脳血管攣縮及びこれによる脳障害は、免疫系細胞の中でも特に好中球のRAGEに起因することを確認した。尚、攣縮血管に集積する細胞の殆どは好中球である(図7)が、LysMはマクロファージにも発現するためマクロファージのRAGEも同病態に関わる可能性がある。
(Evaluation in neutrophil-specific RAGE knockout mice)
A mouse model of subarachnoid hemorrhage (SAH) was generated using neutrophil-specific RAGE knockout mice and evaluated for neurological symptoms.
Neurological scores were calculated in control group mice (RAGE fl / fl corresponding to wild-type mice) and neutrophil-specific RAGE knockout mice (LysM Cre RAGE fl / fl ) to determine the diameter of the left internal carotid artery (ICA). Quantified.
Based on the evaluation results, neutrophil-specific RAGE knockout mice had improved neurological symptoms and cerebral vasospasm as compared with the symmetric group (Fig. 12).
From the above, it was confirmed that cerebral vasospasm after SAH and the resulting brain damage are caused by RAGE of neutrophils among immune system cells. Most of the cells that accumulate in the spasm blood vessels are neutrophils (Fig. 7), but since LysM is also expressed in macrophages, macrophage RAGE may also be involved in the same pathology.

(好中球の血餅へのトランスウェル遊走アッセイ)
上層の皿にLPS刺激をした野生型(WT)マウス及びRAGEノックアウトマウス(RAGE-/-)由来の1×105個の好中球、又はIgG、抗HMGB1中和抗体(αHMGB1、HMGB1に対する阻害効果を持った抗体)、溶媒(Vehicle)若しくはCompound 11(RAGEi C11)を添加した1×105個の野生型好中球を撒き、下層の皿に血腫を置き、トランスウェル遊走アッセイを行った。
RAGEノックアウトマウスの好中球の血腫への遊走は、野生型マウスの好中球とは異なり、抑制された(図13)。
トランスウェルアッセイの結果、血腫(clot)への移動が、RAGEノックアウトマウス、抗HMGB1中和抗体(αHMGB1)を添加した野生型マウス、Compound 11を添加した野生型マウスの好中球(多形核細胞(PMN))では阻害された(図14)。
また、移動した好中球(多形核細胞)における好中球細胞外トラップによる細胞死(Netosis)が、RAGEノックアウトマウス、抗HMGB1中和抗体(αHMGB1)を添加した野生型マウス、Compound 11を添加した野生型マウスの好中球において阻害された(図15)。
これらの結果から、好中球はRAGEに依存して血腫に遊走し、Netosisを起こし、この好中球の遊走およびNetosisはRAGEのリガンドであるHMGB1の阻害、及びRAGE阻害剤Compound 11により抑制されることを確認した。
(Transwell migration assay for neutrophil blood clots)
Inhibition of 1 × 10 5 neutrophils from wild-type (WT) mice and RAGE knockout mice (RAGE -/- ), or IgG and anti-HMGB1 neutralizing antibodies (αHMGB1 and HMGB1), which were LPS-stimulated on the upper dish. 1 × 10 5 wild-type neutrophils supplemented with effective antibody), solvent (Vehicle) or Compound 11 (RAGEi C11) were sprinkled, hematoma was placed on the lower dish, and transwell migration assay was performed. ..
The migration of neutrophils to hematoma in RAGE knockout mice was suppressed, unlike neutrophils in wild-type mice (Fig. 13).
As a result of the transwell assay, transfer to hematoma (clot) was performed by RAGE knockout mice, wild-type mice supplemented with anti-HMGB1 neutralizing antibody (αHMGB1), and neutrophils (polymorphonuclear nucleus) of wild-type mice supplemented with Compound 11. It was inhibited in cells (PMN)) (Fig. 14).
In addition, cell death (Netosis) due to neutrophil extracellular traps in migrated neutrophils (polymorphonuclear cells) resulted in RAGE knockout mice, wild-type mice supplemented with anti-HMGB1 neutralizing antibody (αHMGB1), and Compound 11. It was inhibited in neutrophils of added wild-type mice (Fig. 15).
From these results, neutrophils migrate to hematomas in a RAGE-dependent manner, causing Netosis, and this neutrophil migration and Netosis are suppressed by inhibition of the RAGE ligand HMGB1 and the RAGE inhibitor Compound 11. I was sure that.

本実施例では、Compound 11(C11)のくも膜下出血(SAH)後の神経機能の改善の確認、脳血管攣縮抑制作用の確認、さらには該作用の機構を確認した。
C11を5 mg/kgの量にて、野生型マウスにSAHを作製と同時に、そしてSAH作製後12時間と2回腹腔内投与した。対照群の野生型マウスには溶媒のエタノール・ピーナッツオイル混合液を腹腔内投与した。そして同マウスの評価を行った結果、C11の投与がSAH後の神経学スコア及び脳血管攣縮を改善することを確認した(図16)。
以上図13~図16の結果により、C11は、RAGEシグナルの抑制を介し、くも膜下出血の軽減効果、脳血管攣縮の軽減効果及び神経機能の改善効果を有することを確認した。
In this example, improvement of neural function after subarachnoid hemorrhage (SAH) of Compound 11 (C11) was confirmed, cerebral vasospasm inhibitory action was confirmed, and the mechanism of the action was confirmed.
C11 was intraperitoneally administered to wild-type mice at a dose of 5 mg / kg at the same time as SAH preparation and 12 hours after SAH preparation. Wild-type mice in the control group were intraperitoneally administered with a mixed solution of ethanol and peanut oil as a solvent. As a result of evaluation of the same mice, it was confirmed that administration of C11 improved the neurological score and cerebral vasospasm after SAH (Fig. 16).
From the results of FIGS. 13 to 16, it was confirmed that C11 has an effect of reducing subarachnoid hemorrhage, an effect of reducing cerebral vasospasm, and an effect of improving nerve function through suppression of RAGE signal.

(骨髄由来好中球及びマクロファージを用いたRhoプルダウンアッセイ)
C57BL/6Jバックグラウンドの野生型およびRAGEノックアウトマウスを用い、骨髄からヒストパック(メルク)による濃度勾配遠心分離により好中球及びマクロファージを分離した。そして分離した好中球およびマクロファージにLPS刺激を1時間加え、Rhoプルダウンアッセイキット(メルク)を用いて活性化型Rhoシグナルを検出した。
LPS刺激を加えた好中球及びマクロファージの活性化型RhoをRhotekin RBD Agarose Beasds(Rhoと結合する蛋白質であるRhotekinのRho結合領域RBDが付いたアガロースビーズ)を用いたウェスタンブロットで検出したところ、図17に示すように野生型(WT)好中球(PMN)で発現上昇していたのに対して、RAGEノックアウト(RAGE-/-)好中球では発現が顕著に低下していた。
また同様の傾向をマクロファージ(MN)でも認めたが野生型の発現自体は好中球より低かった。これらのことから活性化好中球及びマクロファージでは、RAGEの下流シグナル分子として細胞内のRhoが活性化されていると考えられる。
現在くも膜下出血(SAH)後の脳血管攣縮予防薬として臨床において頻用されている塩酸ファスジルがある。この薬剤は、血管平滑筋のRhoの上流分子Rhoキナーゼを標的とすると考えられている。実際にはSAH発症数日後に投与される塩酸ファスジルだが、顕著に患者予後を改善するという結論は得られていない。
本実施例では、従来の脳血管攣縮予防薬の治療機序とは異なる早い病日(特に、5時間以内、15時間以内、24時間以内、36時間以内、48時間以内、62時間以内)での好中球のRAGE/Rhoシグナルを標的とすることができるので、従来の予防薬と比較して優れた脳血管攣縮治療法となり得ることができる。
加えて、Rhoと同じくRhoファミリー低分子G蛋白質であるRac及びCdc42もRhoと同じ挙動を示すと考えられるので、好中球及び/若しくはマクロファージのRac及びCdc42のシグナルも脳血管攣縮の治療標的となりうる。
(Rho pull-down assay using bone marrow-derived neutrophils and macrophages)
Neutrophils and macrophages were isolated from bone marrow by concentration gradient centrifugation with histopac (Merck) using wild-type and RAGE knockout mice with C57BL / 6J background. LPS stimulation was applied to the isolated neutrophils and macrophages for 1 hour, and activated Rho signals were detected using the Rho pull-down assay kit (Merck).
LPS-stimulated activated Rho of neutrophils and macrophages was detected by Western blot using Rhotekin RBD Agarose Beasds (Agarose beads with Rho binding region RBD of Rhotekin, a protein that binds to Rho). As shown in FIG. 17, the expression was increased in wild-type (WT) neutrophils (PMN), whereas the expression was significantly decreased in RAGE knockout (RAGE − / − ) neutrophils.
A similar tendency was also observed in macrophages (MN), but wild-type expression itself was lower than that of neutrophils. From these facts, it is considered that intracellular Rho is activated as a downstream signal molecule of RAGE in activated neutrophils and macrophages.
Currently, there is fasdil hydrochloride, which is frequently used clinically as a preventive drug for cerebral vasospasm after subarachnoid hemorrhage (SAH). This drug is thought to target Rho-kinase, an upstream molecule of Rho in vascular smooth muscle. Although fasdil hydrochloride is actually administered several days after the onset of SAH, it has not been concluded that it significantly improves the patient's prognosis.
In this example, on an early illness day (especially within 5 hours, within 15 hours, within 24 hours, within 36 hours, within 48 hours, within 62 hours), which is different from the treatment mechanism of the conventional vasospasm preventive drug. Since it can target the RAGE / Rho signal of neutrophils, it can be an excellent treatment for cerebral vasospasm compared with conventional prophylactic agents.
In addition, the Rho family of small G proteins, Rac and Cdc42, like Rho, are thought to behave in the same way as Rho, so signals from neutrophils and / or macrophages Rac and Cdc42 are also therapeutic targets for cerebral vasospasm. sell.

(好中球エラスターゼ阻害剤のマウス投与実験)
好中球エラスターゼ阻害剤(NE(=neutrophil elastase)阻害剤)であるSivelestat (sodium salt hydrate) (既に全身性炎症反応症候群に伴う急性肺障害の治療目的にて臨床適応されている)(Cayman Chemical Companyより購入) を25 mg/kgの量にて野生型マウスにくも膜下出血(SAH)作製と同時に、そしてSAH作製後6時間と2回腹腔内投与した。対照群の野生型マウスには溶媒のPBSのみを腹腔内投与した。そしてSAH後12時間、24時間の神経学スコアを計測し、24時間後に4%PFAを心臓灌流して固定し、墨汁入りゼラチンを引き続き灌流して脳底部の主幹脳動脈の攣縮を観察、評価した。
NE阻害剤を投与したマウス群では、Vehicle(溶媒)投与群に比べて神経学スコアが改善し(図18左図)、脳血管攣縮の程度が軽減された(図18右図)。したがって、好中球のNEを介して、脳血管攣縮および脳損傷を誘導していることが示唆された。
これにより、NE阻害作用を有する物質(NE阻害剤)は、くも膜下出血の治療剤(軽減剤)、脳血管攣縮の抑制剤および神経機能の改善剤となる。
(Neutral administration experiment of neutrophil elastase inhibitor)
Sivelestat (sodium salt hydrate), a neutrophil elastase inhibitor (NE (= neutrophil elastase) inhibitor) (already clinically indicated for the treatment of acute lung injury associated with systemic inflammatory response syndrome) (Cayman Chemical) (Purchased from Company) was intraperitoneally administered to wild-type mice at an amount of 25 mg / kg at the same time as the preparation of subarachnoid hemorrhage (SAH) and 6 hours after the preparation of SAH. Only the solvent PBS was intraperitoneally administered to the control group of wild-type mice. Then, 12 hours and 24 hours after SAH, the neurological score was measured, and 24 hours later, 4% PFA was perfused and fixed in the heart, and gelatin containing ink was continuously perfused to observe and evaluate the spasm of the main cerebral artery at the bottom of the brain. did.
In the mouse group to which the NE inhibitor was administered, the neurological score was improved and the degree of cerebral vasospasm was reduced (Fig. 18, right figure) as compared with the Vehicle (solvent) -administered group. Therefore, it was suggested that NE of neutrophils induces cerebral vasospasm and brain injury.
As a result, the substance having an NE inhibitory action (NE inhibitor) becomes a therapeutic agent (alleviating agent) for subarachnoid hemorrhage, an inhibitor for cerebral vasospasm, and an agent for improving nerve function.

(esRAGEマウスを用いた実験)
内在性のRAGE阻害タンパク質である分泌型RAGE(endogenous secretory RAGE; esRAGE)を強制発現するトランスジェニックマウスのesRAGEマウスを金沢大学山本靖彦教授から分与を受けた。野生型マウスとesRAGEマウスを用いてくも膜下出血(SAH)を作製した。そしてSAH後12時間、24時間の神経学スコアを計測し、24時間後に4%PFAを心臓灌流して固定し、墨汁入りゼラチンを引き続き灌流して脳底部の主幹脳動脈の攣縮を観察、評価した。
esRAGEマウス群では、野生型マウス群に比べて神経学スコアが改善し(図19左図)、脳血管攣縮の程度が軽減された(図19右図)。すなわち、分泌型RAGEによりRAGEを阻害することでマウスにおける治療効果があることが確認された。
これにより、RAGE阻害作用を有する物質(RAGE阻害剤)は、くも膜下出血の治療剤(軽減剤)、脳血管攣縮の抑制剤および神経機能の改善剤となる。
(Experiment using esRAGE mouse)
We received a donation from Professor Yasuhiko Yamamoto of Kanazawa University for esRAGE mice, which are transgenic mice that forcibly express secretory RAGE (endogenous secretory RAGE; esRAGE), which is an endogenous RAGE inhibitory protein. Subarachnoid hemorrhage (SAH) was generated using wild-type and esRAGE mice. Then, 12 hours and 24 hours after SAH, the neurological score was measured, and 24 hours later, 4% PFA was perfused and fixed in the heart, and gelatin containing ink was continuously perfused to observe and evaluate the spasm of the main cerebral artery at the bottom of the brain. did.
In the esRAGE mouse group, the neurological score was improved (Fig. 19, left figure) and the degree of cerebral vasospasm was reduced (Fig. 19, right figure) as compared with the wild-type mouse group. That is, it was confirmed that there is a therapeutic effect in mice by inhibiting RAGE by secretory RAGE.
As a result, the substance having an RAGE inhibitory action (RAGE inhibitor) becomes a therapeutic agent (alleviating agent) for subarachnoid hemorrhage, an inhibitor for cerebral vasospasm, and an agent for improving nerve function.

(総論)
本実施例1~7の結果により、くも膜下出血後の脳血管攣縮の起因は、以下であると考える(参照:図20)。
1)DAMPsは脳動脈瘤の破裂によりできた血腫から放出される。
2)骨髄又は血液中の好中球及び/又はマクロファージのRAGEがDAMPsと結合する。
3)DAMPsと結合した好中球及び/又はマクロファージは活性化し、脳血管へ遊走する。
4)脳血管へ遊走した好中球及び/又はマクロファージは脳血管攣縮を引き起こす。
これにより、上記1)~4)のいずれかの工程を阻害する物質は、くも膜下出血の抑制剤又は治療剤、くも膜下出血後の脳血管攣縮の抑制剤又は治療剤、及び、くも膜下出血後の神経機能の改善剤又は治療剤となり得る。
(General)
Based on the results of Examples 1 to 7, the causes of cerebral vasospasm after subarachnoid hemorrhage are considered to be as follows (see: FIG. 20).
1) DAMPs are released from hematomas formed by the rupture of a cerebral aneurysm.
2) RAGE of neutrophils and / or macrophages in bone marrow or blood binds to DAMPs.
3) Neutrophils and / or macrophages bound to DAMPs are activated and migrate to cerebral blood vessels.
4) Neutrophils and / or macrophages that migrate to the cerebral blood vessels cause cerebral vasospasm.
As a result, the substances that inhibit any of the steps 1) to 4) above are an agent or therapeutic agent for subarachnoid hemorrhage, an agent or therapeutic agent for cerebral vasospasm after subarachnoid hemorrhage, and subarachnoid hemorrhage. It can be a later agent for improving or treating nerve function.

Claims (11)

くも膜下出血後の脳血管攣縮における骨髄又は血液中の好中球及び/若しくはマクロファージの活性化又は脳動脈への遊走を阻害する化合物を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
An inhibitor of cerebral vasospasm after subarachnoid hemorrhage, which comprises a compound as an active ingredient that inhibits activation of neutrophils and / or macrophages in bone marrow or blood or migration to cerebral arteries in cerebral vasospasm after subarachnoid hemorrhage. Or a neurological function therapeutic agent.
前記脳血管攣縮がくも膜下出血後24時間以内の脳血管攣縮である、請求項1に記載のくも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
The agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage according to claim 1, wherein the cerebral vasospasm is cerebral vasospasm within 24 hours after subarachnoid hemorrhage.
下記式(1)で表される化合物又は薬理学的に許容される塩を有効成分として含む、脳血管攣縮抑制剤又は神経機能治療剤。
Figure 2022047038000005
A cerebral vasospasm inhibitor or a therapeutic agent for neurological function containing a compound represented by the following formula (1) or a pharmacologically acceptable salt as an active ingredient.
Figure 2022047038000005
前記脳血管攣縮はくも膜下出血後の脳血管攣縮である、請求項3に記載の脳血管攣縮抑制剤又は神経機能治療剤。
The cerebral vasospasm inhibitor or neurological function therapeutic agent according to claim 3, wherein the cerebral vasospasm is a cerebral vasospasm after subarachnoid hemorrhage.
前記脳血管攣縮はくも膜下出血後の骨髄又は血液中の好中球及び/若しくはマクロファージの活性化に起因する、請求項4に記載の脳血管攣縮抑制剤又は神経機能治療剤。
The cerebral vasospasm inhibitor or neurological function therapeutic agent according to claim 4, which is caused by activation of neutrophils and / or macrophages in bone marrow or blood after subarachnoid hemorrhage.
前記脳血管攣縮はくも膜下出血後の骨髄又は血液中の好中球及び/若しくはマクロファージの脳動脈への遊走に起因する、請求項4に記載の脳血管攣縮抑制剤又は神経機能治療剤。
The cerebral vasospasm inhibitor or neurological function therapeutic agent according to claim 4, wherein the cerebral vasospasm is caused by the migration of neutrophils and / or macrophages in the bone marrow or blood after subarachnoid hemorrhage to the cerebral artery.
下記式(1)で表される化合物又は薬理学的に許容される塩を有効成分として含む、くも膜下出血後の好中球及び/若しくはマクロファージの活性化抑制剤又は脳動脈への遊走抑制剤。
Figure 2022047038000006
An agent for suppressing the activation of neutrophils and / or macrophages after subarachnoid hemorrhage or an agent for suppressing the migration of macrophages to the cerebral artery, which comprises a compound represented by the following formula (1) or a pharmacologically acceptable salt as an active ingredient. ..
Figure 2022047038000006
下記式(1)で表される化合物又は薬理学的に許容される塩を有効成分として含む、くも膜下出血の治療剤。
Figure 2022047038000007
A therapeutic agent for subarachnoid hemorrhage containing a compound represented by the following formula (1) or a pharmacologically acceptable salt as an active ingredient.
Figure 2022047038000007
好中球エラスターゼ阻害作用を有する物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
An agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage, which comprises a substance having an inhibitory effect on neutrophil elastase as an active ingredient.
以下のいずれか1以上の物質を有効成分として含む、くも膜下出血後の脳血管攣縮抑制剤又は神経機能治療剤。
(1)Pyrazole-5-carboxamides
(2)soluble RAGE
(3)FPS-ZM1
(4)4,6-bisphenyl-2-(3-alkoxyanilino)pyrimidine
(5)Azeliragon
An agent for suppressing cerebral vasospasm or a therapeutic agent for neurological function after subarachnoid hemorrhage, which comprises any one or more of the following substances as an active ingredient.
(1) Pyrazole-5-carboxamides
(2) Soluble RAGE
(3) FPS-ZM1
(4) 4,6-bisphenyl-2- (3-alkoxyanilino) pyrimidine
(5) Azeliragon
以下のいずれか1以上の物質を判定することを特徴とする、脳血管攣縮抑制剤又は神経機能治療剤のスクリーニング方法。
(1)RAGEとDIAPH1の結合を阻害する物質を判定する
(2)好中球及び/若しくはマクロファージの遊走又は活性化を阻害する物質を判定する
(3)好中球のエラスターゼ活性を阻害する物質を判定する
(4)RAGEの活性を阻害する物質を判定する
(5)DAMPsとRAGEの結合を阻害する物質を判定する
(6)RAGEからRhoの活性化を阻害する物質を判定する
(7)RAGEに依存したNETosisを抑制する物質を判定する
(8)Racの活性化を阻害する物質を判定する
(9)Cdc42の活性化を阻害する物質を判定する
A method for screening a cerebral vasospasm inhibitor or a neurological function therapeutic agent, which comprises determining any one or more of the following substances.
(1) Determine the substance that inhibits the binding of RAGE and DIAPH1 (2) Determine the substance that inhibits the migration or activation of neutrophils and / or macrophages (3) Determine the substance that inhibits the elastase activity of neutrophils (4) Determine the substance that inhibits the activity of RAGE (5) Determine the substance that inhibits the binding between DAMPs and RAGE (6) Determine the substance that inhibits the activation of Rho from RAGE (7) Determine the substance that suppresses RAGE-dependent NETosis (8) Determine the substance that inhibits the activation of Rac (9) Determine the substance that inhibits the activation of Cdc42
JP2020152739A 2020-09-11 2020-09-11 Cerebral vasospasm inhibitor Pending JP2022047038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020152739A JP2022047038A (en) 2020-09-11 2020-09-11 Cerebral vasospasm inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020152739A JP2022047038A (en) 2020-09-11 2020-09-11 Cerebral vasospasm inhibitor

Publications (1)

Publication Number Publication Date
JP2022047038A true JP2022047038A (en) 2022-03-24

Family

ID=80780133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020152739A Pending JP2022047038A (en) 2020-09-11 2020-09-11 Cerebral vasospasm inhibitor

Country Status (1)

Country Link
JP (1) JP2022047038A (en)

Similar Documents

Publication Publication Date Title
JP6527565B2 (en) Method for treating hair loss disorders
Bi et al. Mitochondrial damage‐induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease‐associated plaque vulnerability
Piao et al. AMPA receptors promote perivascular glioma invasion via β1 integrin–dependent adhesion to the extracellular matrix
Wang et al. Overexpressed CISD2 has prognostic value in human gastric cancer and promotes gastric cancer cell proliferation and tumorigenesis via AKT signaling pathway
JP2005536186A (en) Lymphatic and vascular endothelial cell genes
US20060234271A1 (en) Methods for the diagnosis and treatment of metastatic prostate tumors
Lin et al. Yin yang 1 is a novel regulator of pulmonary fibrosis
Firsanov et al. Dynamics of γH2AX formation and elimination in mammalian cells after X-irradiation
Chen et al. Knockdown of circROBO2 attenuates acute myocardial infarction through regulating the miR-1184/TRADD axis
Huang et al. Everolimus inhibits PI3K/Akt/mTOR and NF-kB/IL-6 signaling and protects seizure-induced brain injury in rats
Leonard et al. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation
JP2018513353A (en) Biomarker for vascular disease diagnosis and use thereof
CN110464844B (en) Application of ALOX12 inhibitor in preparation of medicine for treating cardiac ischemia-reperfusion injury
García-Bea et al. Metabotropic glutamate receptor 3 (mGlu3; mGluR3; GRM3) in schizophrenia: Antibody characterisation and a semi-quantitative western blot study
Asensio-Lopez et al. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI
Zhu et al. Extracellular Vesicle‐Derived circITGB1 Regulates Dendritic Cell Maturation and Cardiac Inflammation via miR‐342‐3p/NFAM1
Virk et al. TGFβ1 induces resistance of human lung myofibroblasts to cell death via down‐regulation of TRPA1 channels
Zhang et al. A novel signaling pathway: fibroblast nicotinic receptor α1 binds urokinase and promotes renal fibrosis
US20070208074A1 (en) Methods and compositions for treating and preventing tumors
US20150335739A1 (en) Methods for treating inflammation
Urbschat et al. Systemic TLR2 antibody application in renal ischaemia and reperfusion injury decreases AKT phosphorylation and increases apoptosis in the mouse kidney
Bates et al. Therapeutic potential of inhibitory VEGF splice variants
WO2011129427A1 (en) Diagnostic agent and therapeutic agent for cancer
JP2022047038A (en) Cerebral vasospasm inhibitor
Liu et al. Anti-angiogenic action of 5, 5-diphenyl-2-thiohydantoin-N10 (DPTH-N10)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230819