JP2022046180A - Surface treatment device - Google Patents

Surface treatment device Download PDF

Info

Publication number
JP2022046180A
JP2022046180A JP2020152104A JP2020152104A JP2022046180A JP 2022046180 A JP2022046180 A JP 2022046180A JP 2020152104 A JP2020152104 A JP 2020152104A JP 2020152104 A JP2020152104 A JP 2020152104A JP 2022046180 A JP2022046180 A JP 2022046180A
Authority
JP
Japan
Prior art keywords
layer
conductor layer
foil
liquid chamber
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020152104A
Other languages
Japanese (ja)
Other versions
JP2022046180A5 (en
Inventor
豊樹 佐藤
Toyoki Sato
孝男 寺山
Takao Terayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKADO TECHNOS KK
Original Assignee
MIKADO TECHNOS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIKADO TECHNOS KK filed Critical MIKADO TECHNOS KK
Priority to JP2020152104A priority Critical patent/JP2022046180A/en
Publication of JP2022046180A publication Critical patent/JP2022046180A/en
Publication of JP2022046180A5 publication Critical patent/JP2022046180A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

To reduce the restriction of a member conducting a power source part and a conductor layer.SOLUTION: A surface treatment device comprises: an electrode; a mounting base capable of mounting the object to be treated formed with a conductor layer on the surface; a housing arranged so as to face the mounting base and formable a liquid chamber at the inside; a solution feed part capable of feeding an electrolytic solution into the liquid chamber; an ion conductive film arranged between the liquid chamber and the mounting base; a foil-shaped member arranged between the ion conductive film and the object to be treated and having an insulator layer and an energization layer; and a power source part applying voltage to a space between the electrode and the conductive layer, and the foil-shaped member is arranged in such a manner that the energization layer is contactable to a part of the conductor layer.SELECTED DRAWING: Figure 1A

Description

本発明は、被処理物の表面を処理する表面処理装置に関する。 The present invention relates to a surface treatment apparatus for treating the surface of an object to be treated.

絶縁体からなる基材の上に導電体からなる回路パターンを形成する場合、例えば、基材の表面に金属皮膜のシード層を形成した上でパターンを形成し、該回路パターンの表面にめっき処理を施すことが行われている。回路パターンの表面に成膜されるめっきは、スパッタリング等の物理蒸着(PVD)法や電解めっき等の方法により形成される他、固相電析(Solid Electrolyte Deposition:SED)法により形成されることが知られている。 When forming a circuit pattern made of a conductor on a base material made of an insulator, for example, a pattern is formed after forming a seed layer of a metal film on the surface of the base material, and the surface of the circuit pattern is plated. Is being done. The plating formed on the surface of the circuit pattern is formed by a physical vapor deposition (PVD) method such as sputtering, an electrolytic plating method, or a solid electrodeposition (SED) method. It has been known.

SED法によるめっきの形成は、例えば、陽極と、この陽極に対して陰極となる導体パターン層が表面に形成された樹脂部材との間に配置されるイオン伝導膜と、陽極と導体パターン層との間に電圧を印加する電源部と、を備えた成膜装置により行われることが知られている(例えば、特許文献1参照)。 The formation of plating by the SED method includes, for example, an ion conductive film arranged between an anode and a resin member having a conductor pattern layer serving as a cathode with respect to the anode formed on the surface, and an anode and a conductor pattern layer. It is known that this is performed by a film forming apparatus provided with a power supply unit for applying a voltage between the two (see, for example, Patent Document 1).

この成膜装置では、電源部の負極と導体パターン層とを導通するように、貫通孔が形成された導通部材を導体パターン層の一部に接触させながら、導体パターン層の表面に金属イオンが含有したイオン伝導膜を貫通孔を介して接触させる。そして、陽極と導体パターン層との間に電圧を印加することにより、金属イオンを導体パターン層の表面に析出させて、導体パターン層上にめっきを形成する。 In this film forming apparatus, metal ions are generated on the surface of the conductor pattern layer while the conductive member having through holes formed so as to conduct the negative electrode of the power supply unit and the conductor pattern layer in contact with a part of the conductor pattern layer. The contained ionic conductive membrane is brought into contact with the through hole. Then, by applying a voltage between the anode and the conductor pattern layer, metal ions are deposited on the surface of the conductor pattern layer to form plating on the conductor pattern layer.

特許第6176234号公報Japanese Patent No. 6176234

上記特許文献1に開示された従来技術の成膜装置では、導通部材上にめっきが成膜されないようにするために、不動態被膜を形成する金属材料で導通部材を形成する必要がある。しかしながら、例えばチタン、モリブデン、タングステン等の不動態被膜を形成する金属材料は、電気抵抗が高く、電気が流れにくくなるため、電流効率が低下し、金属イオンの析出が不均一になるおそれがあるという問題がある。また、不動態被膜を形成する金属材料としてアルミニウムを用いる場合には、耐薬品性に劣るおそれがあるという問題がある。 In the conventional film forming apparatus disclosed in Patent Document 1, it is necessary to form the conductive member with a metal material that forms a passivation film in order to prevent plating from being formed on the conductive member. However, metal materials that form a passivation film, such as titanium, molybdenum, and tungsten, have high electrical resistance and make it difficult for electricity to flow, which may reduce current efficiency and cause non-uniform precipitation of metal ions. There is a problem. Further, when aluminum is used as the metal material for forming the passivation film, there is a problem that the chemical resistance may be inferior.

また、上記特許文献1に開示された従来技術の成膜装置では、イオン伝導膜と接触する導通部材を、不動態被膜を形成する金属材料で形成する必要があるため、部材を構成する材料の選択肢を広げることが難しいという問題もある。 Further, in the conventional film forming apparatus disclosed in Patent Document 1, since it is necessary to form the conductive member in contact with the ion conductive film with a metal material for forming a passivation film, the material constituting the member is used. There is also the problem that it is difficult to expand the options.

本発明は、上記事情に鑑みてなされたもので、電源部と導体層とを導通する部材の制約を低減させることができる表面処理装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surface treatment apparatus capable of reducing restrictions on a member that conducts a power supply unit and a conductor layer.

上記目的を達成するため、本発明に係る表面処理装置は、導体層が表面に形成された被処理物を載置可能な載置基台と、前記載置基台に対して対向配置されて、内部に液室を形成可能なハウジングと、前記ハウジング内に配された電極と、電解液を前記液室内に供給可能な溶液供給部と、前記液室と前記載置基台との間に配置されたイオン伝導膜と、前記イオン伝導膜と前記被処理物との間に配置された絶縁層及び通電層を有する箔状部材と、前記電極と前記導体層との間に電圧を印加する電源部と、を備え、前記箔状部材は、前記通電層が、前記電源部と前記導体層とを導通するように、該導体層の一部に接触可能に配置されると共に、前記絶縁層が、前記通電層と前記イオン伝導膜との間に配置され、前記イオン伝導膜を前記導体層の表面に接触させて、前記電極と前記通電層に接続された前記導体層との間に電圧を印加し、前記イオン伝導膜を介した電気分解により前記導体層の表面を処理することを特徴とする。 In order to achieve the above object, the surface treatment apparatus according to the present invention is arranged so as to face the mounting base on which the object to be treated having the conductor layer formed on the surface can be mounted and the mounting base described above. , A housing capable of forming a liquid chamber inside, an electrode arranged in the housing, a solution supply unit capable of supplying an electrolytic solution into the liquid chamber, and between the liquid chamber and the above-mentioned pedestal. A voltage is applied between the arranged ionic conductive film, a foil-like member having an insulating layer and an energizing layer arranged between the ionic conductive film and the object to be processed, and the electrode and the conductor layer. The foil-like member includes a power supply unit, and the foil-like member is arranged so that the current-carrying layer can contact a part of the conductor layer so as to conduct the power supply unit and the conductor layer, and the insulating layer. Is arranged between the current-carrying layer and the ion-conducting film, the ion-conducting film is brought into contact with the surface of the conductor layer, and a voltage is applied between the electrode and the conductor layer connected to the current-carrying layer. Is applied, and the surface of the conductor layer is treated by electrolysis via the ion conductive film.

本発明に係る表面処理装置において、前記電極は、前記液室内の前記電解液に浸かる位置に配置されていることが好ましい。 In the surface treatment apparatus according to the present invention, it is preferable that the electrode is arranged at a position of being immersed in the electrolytic solution in the liquid chamber.

本発明に係る表面処理装置において、前記電極は、前記液室内に配置された金属製の籠状部材からなり、前記籠状部材の内部には、可溶性を有する金属が配置されていても良い。 In the surface treatment apparatus according to the present invention, the electrode is made of a metal cage-shaped member arranged in the liquid chamber, and a soluble metal may be arranged inside the cage-shaped member.

本発明に係る表面処理装置において、前記箔状部材は、前記絶縁層及び前記通電層を交互に複数積層してなることが好ましい。 In the surface treatment apparatus according to the present invention, it is preferable that the foil-like member is formed by alternately laminating a plurality of the insulating layer and the energizing layer.

本発明に係る表面処理装置において、前記箔状部材は、前記絶縁層及び前記通電層を有する可撓性プリント基板からなるものであっても良い。 In the surface treatment apparatus according to the present invention, the foil-like member may be made of a flexible printed circuit board having the insulating layer and the energizing layer.

本発明に係る表面処理装置において、前記イオン伝導膜と前記箔状部材との間に配置された離型フィルム材を更に備えることが好ましい。 In the surface treatment apparatus according to the present invention, it is preferable to further include a release film material arranged between the ion conductive film and the foil-like member.

本発明に係る表面処理装置において、前記箔状部材は、前記イオン伝導膜と接触する表面に離型処理が施されていることが好ましい。 In the surface treatment apparatus according to the present invention, it is preferable that the surface of the foil-like member in contact with the ion conductive film is subjected to a mold release treatment.

本発明に係る表面処理装置において、前記箔状部材の前記通電層は、複数の通電パターンを有し、前記電源部は、前記複数の通電パターン毎に印加電圧、印加電流及び印加時間の少なくとも一つを制御可能に構成されていることが好ましい。 In the surface treatment apparatus according to the present invention, the energizing layer of the foil-shaped member has a plurality of energizing patterns, and the power supply unit has at least one of an applied voltage, an applied current, and an applied time for each of the plurality of energizing patterns. It is preferable that one is configured to be controllable.

本発明に係る表面処理装置において、前記箔状部材の前記絶縁層は、前記導体層の表面の被処理領域の形状に応じた形状の貫通孔を有し、該貫通孔が前記被処理領域上に配置されると共に、該貫通孔を除く部分が、前記導体層の表面における非処理領域上を覆うように配置されていることが好ましい。 In the surface treatment apparatus according to the present invention, the insulating layer of the foil-like member has a through hole having a shape corresponding to the shape of the surface to be treated of the conductor layer, and the through hole is on the region to be treated. It is preferable that the portion other than the through hole is arranged so as to cover the non-treated region on the surface of the conductor layer.

本発明に係る表面処理装置において、前記箔状部材の前記絶縁層は、少なくとも前記通電層と前記被処理物の前記導体層との接触部において、該通電層と前記イオン伝導膜との間に配置されていることが好ましい。 In the surface treatment apparatus according to the present invention, the insulating layer of the foil-like member is formed between the current-carrying layer and the ion conductive film at least at a contact portion between the current-carrying layer and the conductor layer of the object to be treated. It is preferable that it is arranged.

本発明に係る表面処理装置において、前記載置基台及び前記ハウジングを所定角度に傾斜可能な傾斜機構を更に備えることが好ましい。 In the surface treatment apparatus according to the present invention, it is preferable to further include the above-mentioned pedestal and the tilting mechanism capable of tilting the housing at a predetermined angle.

本発明に係る他の表面処理装置は、導体層が表面に形成された被処理物を載置可能な載置基台と、前記載置基台に対して対向配置されて、内部に液室を形成可能なハウジングと、前記ハウジング内に配された電極と、電解液を前記液室内に供給可能な溶液供給部と、前記液室と前記被処理物との間に配置された箔状部材と、前記電極と前記導体層との間に電圧を印加する電源部と、を備え、前記箔状部材は、前記導体層の表面の被処理領域の形状に応じた形状の貫通孔を有し、該貫通孔が前記被処理領域上に配置されるように構成され、前記電解液を前記貫通孔を介して前記導体層の表面に接触させて、前記電極及び前記電源部と導通された前記導体層の間に電圧を印加し、電気分解により前記導体層の表面を処理することを特徴とする。 In the other surface treatment apparatus according to the present invention, a mounting base on which a material to be treated having a conductor layer formed on the surface can be placed and a mounting base on which the conductor layer is formed are arranged to face the above-mentioned mounting base, and a liquid chamber is provided inside. A housing capable of forming the above, an electrode arranged in the housing, a solution supply unit capable of supplying an electrolytic solution into the liquid chamber, and a foil-like member arranged between the liquid chamber and the object to be treated. And a power supply unit for applying a voltage between the electrode and the conductor layer, and the foil-shaped member has a through hole having a shape corresponding to the shape of the processed region on the surface of the conductor layer. The through hole is configured to be arranged on the area to be treated, and the electrolytic solution is brought into contact with the surface of the conductor layer through the through hole to be conducted with the electrode and the power supply unit. It is characterized in that a voltage is applied between the conductor layers and the surface of the conductor layer is treated by electrolysis.

本発明に係る他の表面処理装置において、前記ハウジングと前記載置基台との間であって前記箔状部材よりも前記液室側に配置されたイオン伝導膜を更に備え、前記イオン伝導膜を前記貫通孔を介して前記導体層の表面に接触させて、該イオン伝導膜を介した前記電気分解により前記導体層の表面を処理することが好ましい。 In another surface treatment apparatus according to the present invention, the ion conductive film further provided between the housing and the above-mentioned pedestal and arranged on the liquid chamber side of the foil-like member is further provided. Is preferably brought into contact with the surface of the conductor layer through the through hole, and the surface of the conductor layer is treated by the electrolysis via the ion conductive film.

本発明によれば、電源部と導体層とを導通する部材の制約を低減させることができる。 According to the present invention, it is possible to reduce the restriction of the member that conducts the power supply unit and the conductor layer.

本発明の一実施形態に係る表面処理装置の型開き状態における概略構成を示す図である。It is a figure which shows the schematic structure in the mold open state of the surface treatment apparatus which concerns on one Embodiment of this invention. 同表面処理装置の型閉じ状態における概略構成を示す図である。It is a figure which shows the schematic structure in the mold closed state of the surface treatment apparatus. 同表面処理装置の傾斜状態における概略構成を示す図である。It is a figure which shows the schematic structure in the inclined state of the surface treatment apparatus. 同表面処理装置における被処理物の導体層の近傍箇所を部分的に拡大して概略的に説明するための断面図である。It is sectional drawing for partially enlarging and roughly explaining the part near the conductor layer of the object to be processed in the surface treatment apparatus. 同表面処理装置の第一の箔状部材及び被処理物を概略的に示す図である。It is a figure which shows schematic the 1st foil-like member and the object to be treated of the surface treatment apparatus. 同表面処理装置の第一の箔状部材及び被処理物を概略的に示す図である。It is a figure which shows schematic the 1st foil-like member and the object to be treated of the surface treatment apparatus. 同表面処理装置の第二の箔状部材及び被処理物を概略的に示す図である。It is a figure which shows schematic the 2nd foil-like member and the object to be treated of the surface treatment apparatus. 同表面処理装置の第二の箔状部材及び被処理物を概略的に示す図である。It is a figure which shows schematic the 2nd foil-like member and the object to be treated of the surface treatment apparatus. 同表面処理装置の第三の箔状部材の通電層及び第三の箔状部材を被処理物に重ねた状態を概略的に示す図である。It is a figure which shows typically the state in which the energizing layer of the 3rd foil-like member of the surface treatment apparatus and the 3rd foil-like member are superposed on the object to be treated. 同表面処理装置の第四の箔状部材及び被処理物を概略的に示す図である。It is a figure which shows schematic the 4th foil-like member and the object to be treated of the surface treatment apparatus. 表面処理が施された被処理物を上面及び断面で概略的に示す図である。It is a figure which shows roughly the surface-treated object to be treated with the top surface and the cross section. 同表面処理装置の第五の箔状部材を概略的に示す上面図である。It is a top view which shows schematic the 5th foil-like member of the surface treatment apparatus. 同表面処理装置の第五の箔状部材及び被処理物を概略的に示す図である。It is a figure which shows schematic the 5th foil-like member and the object to be treated of the surface treatment apparatus.

以下、添付の図面を参照して、本発明の実施形態に係る表面処理装置を詳細に説明する。ただし、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、本実施形態においては、各構成要素の縮尺や寸法が誇張されて示されている場合や、一部の構成要素が省略されている場合がある。また、符号を付与していないが、図中に白抜きの丸で示した部分は、主要なOリング等のシール部材を表している。 Hereinafter, the surface treatment apparatus according to the embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments do not limit the invention according to each claim, and not all combinations of features described in the embodiments are essential for the means for solving the invention. .. In this embodiment, the scale and dimensions of each component may be exaggerated or some components may be omitted. Further, although not given a reference numeral, the portion indicated by a white circle in the figure represents a main sealing member such as an O-ring.

図1A~図1Cは、本発明の一実施形態に係る表面処理装置1の概略構成を示す図である。また、図2は、表面処理装置1における被処理物Cの導体層Dの近傍箇所を部分的に拡大して概略的に説明するための断面図である。 1A to 1C are diagrams showing a schematic configuration of a surface treatment apparatus 1 according to an embodiment of the present invention. Further, FIG. 2 is a cross-sectional view for schematically enlarging a portion of the surface treatment apparatus 1 in the vicinity of the conductor layer D of the object C to be treated.

図1A~図1Cに示すように、本実施形態に係る表面処理装置1は、例えば、金属イオンを還元することで金属を析出させて、金属からなる被膜を被処理物Cの導体層Dの表面Eに形成するめっき処理装置として用いられ得る。ただし、表面処理装置1は、これに限定されるものではなく、被処理物Cの導体層Dの表面Eを処理することができる装置であれば、種々のものに適用可能である。 As shown in FIGS. 1A to 1C, in the surface treatment apparatus 1 according to the present embodiment, for example, a metal is precipitated by reducing metal ions, and a film made of metal is formed on the conductor layer D of the object to be treated C. It can be used as a plating treatment device formed on the surface E. However, the surface treatment device 1 is not limited to this, and can be applied to various devices as long as it can treat the surface E of the conductor layer D of the object to be treated C.

表面処理装置1は、概略的には、被処理物Cを載置可能な載置基台2と、この載置基台2に対して対向配置され、内部に液室(閉鎖空間、密閉空間)3を形成するハウジング4と、を備えている。また、表面処理装置1は、載置基台2及びハウジング4の少なくとも一方を他方に対して相対移動させる移動機構5と、液室3内に電解液を供給又は排出する溶液供給部(図示省略)と、を備えている。なお、本実施形態において、電解液は、金属イオンを含有する金属溶液を用いることができる。 The surface treatment device 1 is roughly arranged so as to face the mounting base 2 on which the object to be processed C can be placed and the mounting base 2, and the liquid chamber (closed space, closed space) is inside. ) 3 is provided with a housing 4 and the like. Further, the surface treatment device 1 includes a moving mechanism 5 that moves at least one of the mounting base 2 and the housing 4 relative to the other, and a solution supply unit that supplies or discharges the electrolytic solution into the liquid chamber 3 (not shown). ) And. In this embodiment, a metal solution containing metal ions can be used as the electrolytic solution.

さらに、表面処理装置1は、被処理物Cを覆い、これと電解液とを分離するために、ハウジング4と載置基台2との間に配置されたイオン伝導膜6と、このイオン伝導膜6と被処理物Cとの間に配置された箔状部材10と、を備えている。また、表面処理装置1は、液室3内に配置された電極(本実施形態では陽極)となる金属製の籠状部材20と、この籠状部材20と陽極に対して陰極となる被処理物Cの導体層Dとの間に電圧を印加する電源部7と、を備えている。 Further, the surface treatment apparatus 1 covers the object C to be treated, and in order to separate the electrolytic solution from the ion conductive film 6, the ion conduction film 6 arranged between the housing 4 and the mounting base 2 and the ion conduction thereof. A foil-like member 10 arranged between the film 6 and the object C to be treated is provided. Further, the surface treatment apparatus 1 has a metal cage-shaped member 20 as an electrode (anode in this embodiment) arranged in the liquid chamber 3, and a object to be treated as a cathode with respect to the cage-shaped member 20 and the anode. A power supply unit 7 for applying a voltage between the object C and the conductor layer D is provided.

載置基台2は、支持基台8とハウジング4との間に配置されており、被処理物Cをその表面に載置可能に構成されている。本実施形態では、載置基台2は、被処理物Cを嵌め込むことが可能なトレイ9bを有すると共に、該トレイ9bを嵌め込むことが可能な凹部を有しているが、トレイ9bを介さずに被処理物Cを嵌め込む構成や、被処理物Cを単に載置させる構成であっても良い。ハウジング4は、上記のように載置基台2と対向配置されると共に、例えば、移動機構5によって載置基台2側へ移動された状態のときに、載置基台2との間に閉鎖空間となる液室3を形成可能に構成されている。 The mounting base 2 is arranged between the support base 8 and the housing 4, and is configured so that the object C to be processed can be mounted on the surface thereof. In the present embodiment, the mounting base 2 has a tray 9b into which the object to be processed C can be fitted, and has a recess in which the tray 9b can be fitted. It may be a configuration in which the object to be processed C is fitted without intervention, or a configuration in which the object to be processed C is simply placed. The housing 4 is arranged to face the mounting base 2 as described above, and is placed between the housing 4 and the mounting base 2 when, for example, the housing 4 is moved to the mounting base 2 side by the moving mechanism 5. The liquid chamber 3 which is a closed space can be formed.

載置基台2は、例えば、載置基台2の上面に開口し、載置基台2の内部を通って外部に連通する排気流路9及び排気ポート9aと、図示しない排気ポンプ(例えば、真空ポンプ)と、を有しており、イオン伝導膜6の離隔時に排気ポンプを動作させることにより、載置基台2(トレイ9bが設けられる場合にはトレイ9b)に被処理物Cを吸着保持させるよう構成されている。 The mounting base 2 is, for example, an exhaust flow path 9 and an exhaust port 9a that are opened on the upper surface of the mounting base 2 and communicate with the outside through the inside of the mounting base 2, and an exhaust pump (for example, not shown). , Vacuum pump), and by operating the exhaust pump when the ion conductive film 6 is separated, the object C to be processed is placed on the mounting base 2 (tray 9b when the tray 9b is provided). It is configured to be adsorbed and held.

ハウジング4には、液室3内の気体を排出可能な排出流路31と、液室3に対して電解液を供給可能な供給流路41と、が形成されている。また、ハウジング4には、例えば、排出流路31に接続されてこれを開閉する開閉弁として機能すると共に、載置基台2とハウジング4との間において開閉弁が閉じられたときに形成される液室3の閉鎖空間の容積を減少させて、閉鎖空間内を加圧する加圧機構としても機能する開閉弁付き加圧機構30が設けられている。 The housing 4 is formed with a discharge flow path 31 capable of discharging the gas in the liquid chamber 3 and a supply flow path 41 capable of supplying the electrolytic solution to the liquid chamber 3. Further, the housing 4 is formed, for example, as an on-off valve connected to the discharge flow path 31 to open and close the opening / closing valve, and when the on-off valve is closed between the mounting base 2 and the housing 4. A pressurizing mechanism 30 with an on-off valve is provided, which reduces the volume of the closed space of the liquid chamber 3 and also functions as a pressurizing mechanism for pressurizing the inside of the closed space.

さらに、ハウジング4には、供給流路41を開閉させる流路開閉弁40が設けられている。なお、排出流路31の液室3に臨む開口部は、例えば、供給流路41の液室3に臨む開口部よりも鉛直方向の上方側に形成されている。より具体的には、ハウジング4は、載置基台2の鉛直方向の上方に配置されており、内部上面と内部側面とを有する液室3を構成する有底筒状(有底円筒状、有底角筒状等)に形成され、排出流路31の液室3に臨む開口部は、ハウジング4の内部上面又は内部側面の上部に形成されている。 Further, the housing 4 is provided with a flow path on-off valve 40 for opening and closing the supply flow path 41. The opening of the discharge flow path 31 facing the liquid chamber 3 is formed, for example, above the opening of the supply flow path 41 facing the liquid chamber 3 in the vertical direction. More specifically, the housing 4 is arranged above the mounting base 2 in the vertical direction, and has a bottomed cylindrical shape (bottomed cylindrical shape, which constitutes a liquid chamber 3 having an inner upper surface and an inner side surface). The opening facing the liquid chamber 3 of the discharge flow path 31 is formed in a bottomed square cylinder or the like) on the inner upper surface or the upper part of the inner side surface of the housing 4.

また、供給流路41の液室3に臨む開口部は、ハウジング4の内部側面の下部等の任意の箇所に形成されている。さらに、ハウジング4の内部上面は、排出流路31の開口部が最上部となるように、鉛直方向に対して傾斜し、且つ、水平方向に沿って傾斜している。 Further, the opening of the supply flow path 41 facing the liquid chamber 3 is formed at an arbitrary position such as the lower part of the inner side surface of the housing 4. Further, the inner upper surface of the housing 4 is inclined with respect to the vertical direction and is inclined along the horizontal direction so that the opening of the discharge flow path 31 is at the uppermost portion.

開閉弁付き加圧機構30は、排出流路31を開閉可能に構成されると共に、液室3内に供給された電解液を加圧可能に構成されている。開閉弁付き加圧機構30は、ハウジング4の壁面を貫通して形成された排出流路31の外壁面に装着され、流路開閉弁40とはハウジング4の鉛直中心に対して対向した位置(対角の位置を含む)に、ハウジング4の側面から突出するように設けられている。開閉弁付き加圧機構30は、開閉弁を閉じてから液室3内の容積を減少させて液室3内の電解液を加圧する。 The pressurizing mechanism 30 with an on-off valve is configured to be able to open and close the discharge flow path 31 and to pressurize the electrolytic solution supplied into the liquid chamber 3. The pressurizing mechanism 30 with an on-off valve is mounted on the outer wall surface of the discharge flow path 31 formed through the wall surface of the housing 4, and faces the flow path on-off valve 40 at a position facing the vertical center of the housing 4. (Including diagonal positions), it is provided so as to project from the side surface of the housing 4. The pressurizing mechanism 30 with an on-off valve closes the on-off valve and then reduces the volume in the liquid chamber 3 to pressurize the electrolytic solution in the liquid chamber 3.

このように、ハウジング4の内部側面の最下部には、開口部を持つ供給流路41が形成され、供給流路41に流路開閉弁40が接続される。また、ハウジング4の内部側面(好ましくは、対向した内部側面)の最上部には、開口部を持つ排出流路31が形成され、排出流路31に開閉弁付き加圧機構30が接続される。 In this way, a supply flow path 41 having an opening is formed at the lowermost portion of the inner side surface of the housing 4, and the flow path on-off valve 40 is connected to the supply flow path 41. Further, a discharge flow path 31 having an opening is formed at the uppermost portion of the inner side surface (preferably facing inner side surface) of the housing 4, and the pressure mechanism 30 with an on-off valve is connected to the discharge flow path 31. ..

ここで、「対向した」とは、供給流路41が、排出流路31と、ハウジング4において、ハウジング4の中心軸に対して互いに対称となる位置に配置されていることを意味する。供給流路41が排出流路31と対向して位置する構成であると、ハウジング4の液室3内への電解液及び空気の注入や排出がスムーズになる。 Here, "opposing" means that the supply flow path 41 is arranged at a position symmetrical with respect to the central axis of the housing 4 in the discharge flow path 31 and the housing 4. When the supply flow path 41 is configured to face the discharge flow path 31, the electrolytic solution and air can be smoothly injected and discharged into the liquid chamber 3 of the housing 4.

本実施形態では、排出流路31の開口部と供給流路41の開口部とは、対向した、すなわち、中心軸に対して180°の位置関係であるが、これに限らない。ハウジング4の液室3の内部上面の最上部に排出流路31の開口部があることが好ましく、載置基台2の最下部に接する位置に供給流路41の開口部があることが好ましい。 In the present embodiment, the opening of the discharge flow path 31 and the opening of the supply flow path 41 face each other, that is, have a positional relationship of 180 ° with respect to the central axis, but the present invention is not limited to this. It is preferable that the opening of the discharge flow path 31 is located at the uppermost portion of the inner upper surface of the liquid chamber 3 of the housing 4, and it is preferable that the opening of the supply flow path 41 is located at a position in contact with the lowermost portion of the mounting base 2. ..

また、本実施形態では、開閉弁として、開閉弁付き加圧機構30と流路開閉弁40を有し、これらはハウジング4の流路それぞれに備えられている。本実施形態では、上記のように供給流路41がハウジング4内側の最下部に設けてあり、排出流路31がハウジング4内側の最上部に設けてあるので、電解液をハウジング4の液室3内で澱むことなく循環させることができ、供給流路41から電解液を容易に排除することができる。 Further, in the present embodiment, as the on-off valve, a pressurizing mechanism 30 with an on-off valve and a flow path on-off valve 40 are provided, and these are provided in each of the flow paths of the housing 4. In the present embodiment, as described above, the supply flow path 41 is provided at the lowermost part inside the housing 4, and the discharge flow path 31 is provided at the uppermost part inside the housing 4, so that the electrolytic solution is stored in the liquid chamber of the housing 4. It can be circulated in 3 without stagnation, and the electrolytic solution can be easily removed from the supply flow path 41.

本実施形態では、液室3の内部上面が傾斜したハウジング4において、供給流路41が、内部上面が最も低い箇所の近傍に設けてあり、排出流路31が、内部上面が最も高い箇所の近傍に設けてあるので、液室3内を電解液で満たす際に空気等の気泡を排出流路31の方向に集めて排気しやすく、液室3内から電解液を排出する際に排出流路31から空気を流入させることにより、電解液を供給流路41の方向に集めて排液しやすい構造となっている。 In the present embodiment, in the housing 4 in which the inner upper surface of the liquid chamber 3 is inclined, the supply flow path 41 is provided near the place where the inner upper surface is the lowest, and the discharge flow path 31 is the place where the inner upper surface is the highest. Since it is provided in the vicinity, bubbles such as air are easily collected and exhausted in the direction of the discharge flow path 31 when the inside of the liquid chamber 3 is filled with the electrolytic solution, and the discharge flow is discharged when the electrolytic solution is discharged from the inside of the liquid chamber 3. By allowing air to flow in from the path 31, the electrolytic solution is collected in the direction of the supply flow path 41 and is easily drained.

液室3内の電解液が供給流路41を通過して外部へ排出される際の入り口、すなわち、開口部の通路は、本実施形態では、水平で狭くなっている(例えば、供給流路41を中心としハウジング4中心に向かって広がる高さ2mm程度の扇形開口)。その後、通路は垂直に上がり、さらに流路開閉弁40内で再び水平となり、その後、通路は再び垂直に上がって給排ポート45から外部へ排出される。本実施形態によれば、供給流路41の開口部が載置基台2に面して設けられているので、電解液を排出する際に電解液が残留しにくい構造を有する。 In the present embodiment, the inlet, that is, the passage of the opening when the electrolytic solution in the liquid chamber 3 passes through the supply flow path 41 and is discharged to the outside is horizontal and narrow (for example, the supply flow path). A fan-shaped opening with a height of about 2 mm that extends toward the center of the housing 4 centered on 41). After that, the passage goes up vertically and becomes horizontal again in the flow path on-off valve 40, and then the passage goes up vertically again and is discharged to the outside from the supply / discharge port 45. According to the present embodiment, since the opening of the supply flow path 41 is provided facing the mounting base 2, it has a structure in which the electrolytic solution is unlikely to remain when the electrolytic solution is discharged.

開閉弁付き加圧機構30は、中空の開閉調整室兼加圧室で、内壁面に摺接し摺動可能な加圧兼用のスプール32を備え、例えば、外側から内側(液室3側)にかけて閉操作ポート33、開操作ポート34、及び給排ポート35が設けられている。各ポート33,34,35は、開閉弁付き加圧機構30の外側から内部の開閉調整室兼加圧室への貫通孔であり、給排ポート35はハウジング4の排出流路31と直結して接続されている。開閉弁付き加圧機構30は、給排ポート35の流路側先端を含む端部がハウジング4の壁面(外部側面)内に嵌合されることによりハウジング4に設けられている。 The pressurizing mechanism 30 with an on-off valve is a hollow opening / closing adjusting chamber and pressurizing chamber, and is provided with a spool 32 that is slidable and slidable on the inner wall surface. A closing operation port 33, an opening operation port 34, and a supply / discharge port 35 are provided. Each of the ports 33, 34, and 35 is a through hole from the outside of the pressurizing mechanism 30 with an on-off valve to the internal opening / closing adjusting chamber and pressurizing chamber, and the supply / discharge port 35 is directly connected to the discharge flow path 31 of the housing 4. Is connected. The pressurizing mechanism 30 with an on-off valve is provided in the housing 4 by fitting the end portion of the supply / discharge port 35 including the tip on the flow path side into the wall surface (outer side surface) of the housing 4.

流路開閉弁40は、供給流路41の外壁面に装着され、開閉弁付き加圧機構30とは上記のように対向する位置に、ハウジング4の側面から突出するように設けられている。流路開閉弁40は、内部に中空の開閉調整室で内壁面に摺接して摺動可能な中実構造のスプール42を備え、外側から内側(液室3側)にかけて閉操作ポート43、開操作ポート44、及び給排ポート45が設けられている。各ポート43,44,45は、流路開閉弁40の外側から内部の開閉調整室への貫通孔であり、給排ポート45はハウジング4の供給流路41と直結して接続されている。流路開閉弁40は、給排ポート45の流路側先端を含む端部がハウジング4の壁面(外部側面)内に嵌合されることによりハウジング4に設けられている。 The flow path on-off valve 40 is mounted on the outer wall surface of the supply flow path 41, and is provided at a position facing the pressurizing mechanism 30 with an on-off valve so as to project from the side surface of the housing 4. The flow path on-off valve 40 is provided with a spool 42 having a solid structure that is slidable in sliding contact with the inner wall surface in a hollow opening / closing adjustment chamber, and the closing operation port 43 is opened from the outside to the inside (liquid chamber 3 side). An operation port 44 and a supply / discharge port 45 are provided. Each of the ports 43, 44, 45 is a through hole from the outside of the flow path on-off valve 40 to the internal open / close adjustment chamber, and the supply / discharge port 45 is directly connected to the supply flow path 41 of the housing 4. The flow path on-off valve 40 is provided in the housing 4 by fitting the end portion of the supply / discharge port 45 including the tip on the flow path side into the wall surface (outer side surface) of the housing 4.

開閉弁付き加圧機構30及び流路開閉弁40において、各スプール32,42は、例えば、中実のピストン状部材からなる。閉操作ポート33,43の位置にスプール32,42の基端部が位置するときは、給排ポート35は排出流路31と繋がり、給排ポート45は供給流路41と繋がった状態となる。開操作ポート34,44の位置にスプール32,42の基端部が位置するときは、排出流路31及び供給流路41は塞がれた状態となる。開閉弁付き加圧機構30及び流路開閉弁40は、電解液の供給を行う溶液供給部を含む外部の液制御系とハウジング4との間に設置されている。 In the pressurizing mechanism 30 with an on-off valve and the flow path on-off valve 40, each of the spools 32 and 42 is made of, for example, a solid piston-shaped member. When the base ends of the spools 32 and 42 are located at the positions of the closing operation ports 33 and 43, the supply / discharge port 35 is connected to the discharge flow path 31 and the supply / discharge port 45 is connected to the supply flow path 41. .. When the base end portions of the spools 32 and 42 are located at the positions of the opening operation ports 34 and 44, the discharge flow path 31 and the supply flow path 41 are in a closed state. The pressurizing mechanism 30 with an on-off valve and the flow path on-off valve 40 are installed between the housing 4 and an external liquid control system including a solution supply unit that supplies an electrolytic solution.

なお、流路開閉弁40の開閉調整室よりも開閉弁付き加圧機構30の開閉調整室兼加圧室の方が大径に構成されている。したがって、スプール32は、スプール42よりも大径のピストン状部材からなる。開閉弁付き加圧機構30は、その動作圧を制御可能に構成されており、これにより、液室3内の圧力を容易且つ安定的に変化させることができる。すなわち、ハウジング4の内部には、液室3内の圧力をモニタリングすることが可能な図示しない圧力センサが設置されており、この圧力センサの計測値を基に、閉操作ポート33に供給される作動空気の圧力がフィードバック制御され得るように構成されている。この構成により、より正確に開閉弁付き加圧機構30の動作圧、延いては液室3内の圧力を制御可能となる。 The opening / closing adjustment chamber and pressurizing chamber of the pressurizing mechanism 30 with an on-off valve have a larger diameter than the opening / closing adjusting chamber of the flow path on-off valve 40. Therefore, the spool 32 is made of a piston-shaped member having a diameter larger than that of the spool 42. The pressurizing mechanism 30 with an on-off valve is configured so that its operating pressure can be controlled, whereby the pressure in the liquid chamber 3 can be easily and stably changed. That is, a pressure sensor (not shown) capable of monitoring the pressure in the liquid chamber 3 is installed inside the housing 4, and is supplied to the closing operation port 33 based on the measured value of the pressure sensor. It is configured so that the pressure of the working air can be feedback controlled. With this configuration, the operating pressure of the pressurizing mechanism 30 with an on-off valve and the pressure in the liquid chamber 3 can be controlled more accurately.

移動機構5は、図1Cに示すように、載置基台2及びハウジング4の少なくとも一方(本例ではハウジング4)を他方(本例では載置基台2)に対して接近又は離隔する方向に相対移動させる。これにより、載置基台2及びハウジング4間に形成される液室3を開閉可能に構成されている。 As shown in FIG. 1C, the moving mechanism 5 approaches or separates at least one of the mounting base 2 and the housing 4 (housing 4 in this example) from the other (mounting base 2 in this example). Move relative to. As a result, the liquid chamber 3 formed between the mounting base 2 and the housing 4 can be opened and closed.

本実施形態において、移動機構5は、直動ロッド51によってハウジング4を載置基台2に対して昇降させることにより離隔又は接近させるように構成されている。移動機構5は、載置基台2に対するハウジング4の位置制御及び圧力制御を実行可能に構成されている。具体的には、移動機構5は、ハウジング4が載置基台2に対して最も離隔された上昇端位置(原位置:図1A参照)と、ハウジング4及び載置基台2の間に液室3を形成すると共に、該液室3及びイオン伝導膜6の下部に載置基台2と下クランプ部39とが嵌合して形成される下方空間の減圧を実行する減圧位置と、該減圧位置よりも更にハウジング4を載置基台2に接近させて表面処理を実行する処理位置(図1B参照)との少なくとも3か所において、ハウジング4を停止させることが可能に構成されている。また、移動機構5は、処理位置において、液室3の内圧を相殺する以上の力でハウジング4を載置基台2に対して押圧するよう構成されている。ただし、移動機構5は、上述した直動ロッド51を備える構成に限定されず、ハウジング4を載置基台2に対して離隔又は接近させることが可能な構成であれば、任意の構成を採用することができる。 In the present embodiment, the moving mechanism 5 is configured to separate or approach the housing 4 by moving the housing 4 up and down with respect to the mounting base 2 by the linear motion rod 51. The moving mechanism 5 is configured to be able to execute position control and pressure control of the housing 4 with respect to the mounting base 2. Specifically, the moving mechanism 5 is a liquid between the rising end position where the housing 4 is most separated from the mounting base 2 (original position: see FIG. 1A) and the housing 4 and the mounting base 2. A decompression position for forming the chamber 3 and performing depressurization of the lower space formed by fitting the mounting base 2 and the lower clamp portion 39 under the liquid chamber 3 and the ion conductive film 6 and the decompression position. The housing 4 can be stopped at at least three positions (see FIG. 1B) where the surface treatment is performed by bringing the housing 4 closer to the mounting base 2 than the decompression position. .. Further, the moving mechanism 5 is configured to press the housing 4 against the mounting base 2 at the processing position with a force equal to or greater than canceling the internal pressure of the liquid chamber 3. However, the moving mechanism 5 is not limited to the configuration including the linear motion rod 51 described above, and any configuration can be adopted as long as the housing 4 can be separated or brought close to the mounting base 2. can do.

また、本実施形態に係る表面処理装置1は、図1Cに示すように、載置基台2及びハウジング4を所定の角度(例えば、2°)に傾斜させるための傾斜機構50が設けられている。本実施形態において、傾斜機構50は、直動ロッド50aによって支持基台8の側縁部の一部を昇降させることにより、載置基台2及びハウジング4を傾斜させるよう構成されている。この傾斜機構50により、ハウジング4の液室3を含む流路系全体を所定の角度で傾斜させることで、例えば、電解液を液室3内に注入する際の残留空気をより確実に排除したり、電解液を液室3内から排出する際の残留溶液をより確実に排水したりすることが可能である。 Further, as shown in FIG. 1C, the surface treatment device 1 according to the present embodiment is provided with an inclination mechanism 50 for inclining the mounting base 2 and the housing 4 at a predetermined angle (for example, 2 °). There is. In the present embodiment, the tilting mechanism 50 is configured to tilt the mounting base 2 and the housing 4 by raising and lowering a part of the side edge portion of the support base 8 by the linear motion rod 50a. By tilting the entire flow path system including the liquid chamber 3 of the housing 4 at a predetermined angle by the tilting mechanism 50, for example, residual air when the electrolytic solution is injected into the liquid chamber 3 is more reliably removed. Alternatively, it is possible to more reliably drain the residual solution when the electrolytic solution is discharged from the inside of the liquid chamber 3.

傾斜機構50により載置基台2及びハウジング4を傾斜させると、例えば、載置基台2の上面が、供給流路41の開口部近傍側を最下部として鉛直方向に対して傾斜している状態となる。載置基台2がハウジング4の下クランプ部39と嵌合したときに、供給流路41の開口部の真下になる部分が僅かに低くなる。したがって、液室3内の電解液が供給流路41の開口部付近に集まり、排液しやすくなる。このため、排液能力を高め、電解液の漏洩リスクを低減し、被処理物Cが電解液に曝露されるリスクが低減される。 When the mounting base 2 and the housing 4 are tilted by the tilting mechanism 50, for example, the upper surface of the mounting base 2 is tilted with respect to the vertical direction with the side near the opening of the supply flow path 41 as the lowermost portion. It becomes a state. When the mounting base 2 is fitted with the lower clamp portion 39 of the housing 4, the portion directly below the opening of the supply flow path 41 is slightly lowered. Therefore, the electrolytic solution in the liquid chamber 3 collects in the vicinity of the opening of the supply flow path 41, and it becomes easy to drain the liquid. Therefore, the drainage capacity is enhanced, the risk of leakage of the electrolytic solution is reduced, and the risk of the object C to be treated being exposed to the electrolytic solution is reduced.

具体的には、傾斜機構50によって、ハウジング4は全体が傾斜すると共に、載置基台2は、ハウジング4の傾斜方向と同じ方向に傾斜する。より詳細には、据付床面に対し、流路系全体、すなわち、支持基台8、載置基台2、ハウジング4、開閉弁付き加圧機構30、流路開閉弁40、移動機構5等が、所定の角度だけ同じ方向に傾斜する。被処理物Cは、載置基台2の凹部(又はトレイ9b)に嵌め込まれているため、傾斜機構50によって傾斜した場合であっても、位置がずれてしまう等の問題は生じない。このように、傾斜機構50の傾斜によって排液力を増すことができるので、排液能力をさらに向上させることができる。 Specifically, the tilting mechanism 50 tilts the entire housing 4 and the mounting base 2 tilts in the same direction as the tilting direction of the housing 4. More specifically, with respect to the installation floor surface, the entire flow path system, that is, the support base 8, the mounting base 2, the housing 4, the pressurizing mechanism 30 with an on-off valve, the flow-off valve 40, the moving mechanism 5, etc. However, it tilts in the same direction by a predetermined angle. Since the object C to be processed is fitted in the recess (or tray 9b) of the mounting base 2, there is no problem that the position is displaced even when the object C is tilted by the tilting mechanism 50. In this way, the drainage force can be increased by tilting the tilting mechanism 50, so that the drainage capacity can be further improved.

イオン伝導膜6は、内枠膜治具36及び外枠膜治具37の間に挟持された枚葉状の膜材である。これら内枠膜治具36及び外枠膜治具37は、ハウジング4の下部に固定されており、イオン伝導膜6は、液室3内に配置された籠状部材20の直下に配置されている。イオン伝導膜6は、液室3内に供給された電解液に接触させることで、金属イオンを含浸し、電源部7により電圧を印加したときに金属イオン由来の金属を被処理物Cの導体層Dの表面Eに析出可能なものであれば、特に限定されるものではない。 The ion conductive film 6 is a single-wafer-shaped film material sandwiched between the inner frame film jig 36 and the outer frame film jig 37. The inner frame membrane jig 36 and the outer frame membrane jig 37 are fixed to the lower part of the housing 4, and the ion conductive film 6 is arranged directly under the cage-shaped member 20 arranged in the liquid chamber 3. There is. The ion conductive film 6 is impregnated with metal ions by being brought into contact with the electrolytic solution supplied in the liquid chamber 3, and when a voltage is applied by the power supply unit 7, the metal derived from the metal ions is the conductor of the object C to be treated. It is not particularly limited as long as it can be deposited on the surface E of the layer D.

イオン伝導膜6としては、例えば、多孔質膜、固体電解質膜等が挙げられ、ポリエチレンや、ポリプロピレン、炭化水素系樹脂、フッ素系樹脂等の樹脂を用いることができる。そのため、イオン伝導膜6は、十分な柔軟性や撓み性を有するので、例えば、イオン伝導膜6で被処理物Cを覆った後に、被処理物Cの周辺を減圧状態にして真空度を高めた場合、被処理物Cの表面形状の微細な凹凸等に倣って追従し密着し得る。 Examples of the ion conductive film 6 include a porous film, a solid electrolyte film, and the like, and a resin such as polyethylene, polypropylene, a hydrocarbon resin, a fluororesin, or the like can be used. Therefore, since the ion conductive film 6 has sufficient flexibility and flexibility, for example, after covering the object C with the ion conductive film 6, the periphery of the object C is reduced in pressure to increase the degree of vacuum. In this case, the surface shape of the object to be treated C can be followed and adhered to each other in accordance with fine irregularities and the like.

なお、イオン伝導膜6は、数μm~数百μm(例えば、5~450μm)の膜厚で形成されている。また、イオン伝導膜6は、被処理物Cと接触する前に、図2に示すように、例えば、内枠膜治具36の膜接触側端面に設けられた吸着溝36aに、この吸着溝36aと連通する吸着通路36bを介して吸引されることにより、膜端部側が吸着される。これにより、イオン伝導膜6は、均一に張られた状態で内枠膜治具36に保持される。 The ion conductive film 6 is formed with a film thickness of several μm to several hundred μm (for example, 5 to 450 μm). Further, before the ion conductive film 6 comes into contact with the object C to be processed, as shown in FIG. 2, for example, the adsorption groove 36a is provided in the suction groove 36a provided on the membrane contact side end surface of the inner frame membrane jig 36. The film end side is adsorbed by being sucked through the suction passage 36b communicating with 36a. As a result, the ion conductive film 6 is held by the inner frame membrane jig 36 in a uniformly stretched state.

また、イオン伝導膜6は、上記供給流路41の開口部の下方に位置する部分が、例えば、その部分の下面側を覆って支持するように外枠膜治具37に取り付けられた保護板(図示せず)により補強されていると良い。このような保護板を取り付けることにより、供給流路41を介して電解液が注入・排出される際の流速増大に起因する局所的減圧効果による開口部下方に位置するイオン伝導膜6の浮き上がりを防止でき、イオン伝導膜6の破れ等の不具合を防止することができる。 Further, the ion conductive film 6 is a protective plate attached to the outer frame membrane jig 37 so that a portion located below the opening of the supply flow path 41 covers and supports, for example, the lower surface side of the portion. It should be reinforced by (not shown). By attaching such a protective plate, the ionic conduction film 6 located below the opening due to the local decompression effect caused by the increase in the flow velocity when the electrolytic solution is injected / discharged through the supply flow path 41 can be lifted. This can be prevented, and problems such as tearing of the ion conductive film 6 can be prevented.

箔状部材10は、外枠膜治具37の外側に設けられた上クランプ部38と、この上クランプ部38の下方に設けられた下クランプ部39との間で挟持され、イオン伝導膜6の直下に配置される。箔状部材10は、例えば、イオン伝導膜6側に配置された絶縁層11と、被処理物C側に配置された通電層12と、を有するように構成されている。すなわち、絶縁層11は、通電層12とイオン伝導膜6との間に配置されている。これら絶縁層11及び通電層12は、互いに接着されていても良いし、非接着状態で積層された構成であっても良い。なお、本明細書において、「箔状」とは、厚さが、平面視における幅及び長さよりも小さい形状(薄い形状)を指し、所謂シート状、フィルム状、平板状等の形態を含む概念であり、その材質が金属等に限定されることを意図するものではない。 The foil-like member 10 is sandwiched between the upper clamp portion 38 provided on the outside of the outer frame film jig 37 and the lower clamp portion 39 provided below the upper clamp portion 38, and the ion conductive film 6 is sandwiched between the upper clamp portion 38 and the lower clamp portion 39 provided below the upper clamp portion 38. It is placed directly under. The foil-like member 10 is configured to have, for example, an insulating layer 11 arranged on the ion conductive film 6 side and an energizing layer 12 arranged on the object C side to be processed. That is, the insulating layer 11 is arranged between the energizing layer 12 and the ion conductive film 6. The insulating layer 11 and the energizing layer 12 may be adhered to each other or may be laminated in a non-adhesive state. In the present specification, the "foil-like" refers to a shape (thin shape) whose thickness is smaller than the width and length in a plan view, and is a concept including so-called sheet-like, film-like, flat plate-like, and the like. However, it is not intended that the material is limited to metal or the like.

箔状部材10の絶縁層11は、例えば、ポリイミド(PI)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリオレフィン(PO)、ガラス織布入りエポキシ樹脂等の絶縁性及び耐薬品性を有する樹脂材料により構成されている。絶縁層11としては、例えば5~125μmの厚みを有する絶縁フィルム(例えば25μmのポリイミド製絶縁フィルム)を用いることが可能であるが、これに限定されるものではない。箔状部材10の通電層12は、銅、金、銀等の導電性を有する金属材料により構成されている。通電層12としては、例えば1.5~150μmの厚みを有する金属箔(例えば18μmの銅箔)を用いることが可能であるが、これに限定されるものではない。 The insulating layer 11 of the foil-like member 10 is a resin having insulating properties and chemical resistance such as polyimide (PI), polyamide (PA), polyethylene terephthalate (PET), polyolefin (PO), and epoxy resin containing glass woven cloth. It is composed of materials. As the insulating layer 11, for example, an insulating film having a thickness of 5 to 125 μm (for example, a 25 μm polyimide insulating film) can be used, but the insulating layer 11 is not limited thereto. The energizing layer 12 of the foil-shaped member 10 is made of a conductive metal material such as copper, gold, or silver. As the energizing layer 12, for example, a metal foil having a thickness of 1.5 to 150 μm (for example, a copper foil of 18 μm) can be used, but the method is not limited thereto.

ここで、電解液は、例えば、導体層Dの表面Eに析出される金属をイオンの状態で含有している液体であり、含有される金属は、例えば、銅、金、銀、ニッケル等が挙げられる。電解液は、これらの金属をイオン化したものであり、公知の各種の電解液を用いることができる。なお、電解液は、ここに例示したものに限定されるものではない。 Here, the electrolytic solution is, for example, a liquid containing a metal deposited on the surface E of the conductor layer D in an ionic state, and the contained metal is, for example, copper, gold, silver, nickel, or the like. Can be mentioned. The electrolytic solution is an ionized version of these metals, and various known electrolytic solutions can be used. The electrolytic solution is not limited to the one exemplified here.

本実施形態に係る表面処理装置1は、図1Cに示すように、イオン伝導膜6と箔状部材10とを接近又は剥離させるための剥離機構52を備えている。具体的には、剥離機構52は、例えば上クランプ部38に接続された直動ロッド52aを備えており、該直動ロッド52aを進退させることで、上クランプ部38を外枠膜治具37に対して摺動させ、外枠膜治具37に固定された内枠膜治具36を下クランプ部39に対して接近又は離隔する方向に相対移動させるよう構成されている。そして、内枠膜治具36と下クランプ部39との間でイオン伝導膜6と箔状部材10とがクランプされる。 As shown in FIG. 1C, the surface treatment apparatus 1 according to the present embodiment includes a peeling mechanism 52 for approaching or peeling the ion conductive film 6 and the foil-like member 10. Specifically, the peeling mechanism 52 includes, for example, a linear motion rod 52a connected to the upper clamp portion 38, and by advancing and retreating the linear motion rod 52a, the upper clamp portion 38 is moved to the outer frame membrane jig 37. The inner frame film jig 36 fixed to the outer frame film jig 37 is configured to move relative to the lower clamp portion 39 in the direction of approaching or separating from the lower clamp portion 39. Then, the ion conductive film 6 and the foil-like member 10 are clamped between the inner frame film jig 36 and the lower clamp portion 39.

また、上クランプ部38には、剥離機構52によるイオン伝導膜6及び箔状部材10の剥離に先立ち、イオン伝導膜6と箔状部材10との間にエアブローを行い、イオン伝導膜6と箔状部材10との密着状態を解除することができるように、空気導入流路38bが設けられている。 Further, in the upper clamp portion 38, air blow is performed between the ion conductive film 6 and the foil-shaped member 10 prior to the peeling of the ion conductive film 6 and the foil-shaped member 10 by the peeling mechanism 52, and the ion conductive film 6 and the foil are blown. An air introduction flow path 38b is provided so that the state of close contact with the shaped member 10 can be released.

さらに、イオン伝導膜6と箔状部材10との間には、図2に示すように、例えば、少なくともイオン伝導膜6側の表面に離型処理が施された離型フィルム材46が配置されていても良い。離型処理は、例えば、凹凸を付けるシボ加工やシリカ粒子を塗布する粗面化処理等が挙げられるが、これに限定されず、粗面化処理に代えて又はこれに加えて、フッ素系離型剤等の離型促進剤を塗布する処理を採用可能である。離型フィルム材46は、表面処理後のイオン伝導膜6と箔状部材10との密着状態をより簡単に解除するために用いられ得る。離型フィルム材46を用いない場合は、絶縁層11のイオン伝導膜6側の表面(イオン伝導膜6と接触する表面)に上記の離型処理が施されていても良い。 Further, as shown in FIG. 2, for example, a mold release film material 46 having a mold release treatment on at least the surface on the ion conductive film 6 side is arranged between the ion conductive film 6 and the foil-like member 10. You may have. Examples of the mold release treatment include, but are not limited to, a textured treatment for making unevenness and a roughening treatment for applying silica particles, and the mold release treatment is not limited to this, and the fluorine-based release treatment is performed in place of or in addition to the roughening treatment. It is possible to adopt a process of applying a mold release accelerator such as a mold. The release film material 46 can be used to more easily release the adhesion state between the ion conductive film 6 and the foil-like member 10 after the surface treatment. When the release film material 46 is not used, the above-mentioned release treatment may be applied to the surface of the insulating layer 11 on the ion conductive film 6 side (the surface in contact with the ion conductive film 6).

なお、下クランプ部39には、該下クランプ部39と載置基台2とが嵌合した状態において、載置基台2と箔状部材10及びイオン伝導膜6との間の下方空間の空気を排気(好適には真空排気)するための排気手段が設けられている。排気手段は、上記の下方空間を減圧するために開閉される開閉弁47を有しており、該開閉弁47は、上記の下方空間に開口すると共に下クランプ部39の下方に連通する減圧流路48の外側に配置されるように設けられている。 In the lower clamp portion 39, in a state where the lower clamp portion 39 and the mounting base 2 are fitted, the lower space between the mounting base 2 and the foil-like member 10 and the ion conductive film 6 is provided. Exhaust means for exhausting air (preferably vacuum exhaust) are provided. The exhaust means has an on-off valve 47 that is opened and closed to reduce the pressure in the lower space, and the on-off valve 47 opens in the lower space and communicates with the lower part of the lower clamp portion 39. It is provided so as to be arranged outside the road 48.

この減圧流路48は、液室3(イオン伝導膜6の上方空間)に連通する図示しない減圧流路と、流路開閉弁及びバイパス流路(いずれも図示せず)を介して接続されている。バイパス流路は、可能な限り流路長が短くなるように設定され、バイパス流路には、減圧用の真空ポンプ等を有する減圧ユニット(図示せず)が接続されている。このような減圧系の回路は、開閉弁付き加圧機構30や流路開閉弁40等の溶液供給系の回路とは別回路で設けられている。 The decompression flow path 48 is connected to a decompression flow path (not shown) communicating with the liquid chamber 3 (the space above the ion conductive membrane 6) via a flow path on-off valve and a bypass flow path (neither is shown). There is. The bypass flow path is set so that the flow path length is as short as possible, and a decompression unit (not shown) having a vacuum pump for decompression or the like is connected to the bypass flow path. Such a decompression system circuit is provided as a circuit separate from the solution supply system circuit such as the pressurizing mechanism 30 with an on-off valve and the flow path on-off valve 40.

開閉弁47は、内部に中空の開閉調整室で内壁面に摺接して摺動可能な中実構造のスプール49を備え、下クランプ部39の外側に設けられた閉操作ポート57と、この閉操作ポート57よりも内側で且つ下クランプ部39の下側に設けられた開操作ポート58と、を備えている。各ポート57,58は、開閉弁47の外側から内部の開閉調整室への貫通孔である。開閉弁47は、例えば、電解液等の液体が通過しやすいイオン伝導膜6を使用した際に、開閉弁付き加圧機構30による圧縮体積以上に液体が下方空間に流れ込むと加圧できなくなってしまうことを防止するために設けられている。 The on-off valve 47 includes a spool 49 having a solid structure that is slidable in sliding contact with the inner wall surface in a hollow opening / closing adjustment chamber, and has a closing operation port 57 provided on the outside of the lower clamp portion 39 and its closing. It is provided with an open operation port 58 provided inside the operation port 57 and below the lower clamp portion 39. Each of the ports 57 and 58 is a through hole from the outside of the on-off valve 47 to the inside on-off adjustment chamber. For example, when the on-off valve 47 uses an ion conductive film 6 through which a liquid such as an electrolytic solution easily passes, the on-off valve 47 cannot be pressurized if the liquid flows into the lower space more than the compressed volume by the pressurizing mechanism 30 with the on-off valve. It is provided to prevent it from being stored.

また、上述した箔状部材10は、絶縁層11及び通電層12を交互に複数積層(接着又は非接着のいずれでも良い)してなるものでも良く、より好適には、絶縁層11上に通電層12が形成された可撓性プリント基板(例えばフレキシブルプリント基板)、或いは多層構造の絶縁層11及び通電層12を有する多層可撓性プリント基板(例えば多層フレキシブルプリント基板)により構成されていても良い。箔状部材10が可撓性プリント基板により構成される場合は、絶縁層11は、例えば12~25μm程度の厚みで形成され、通電層12は、例えば6~18μm程度の厚みで形成されることが好適であるが、これに限定されるものではない。 Further, the foil-like member 10 described above may be formed by alternately laminating a plurality of insulating layers 11 and energizing layers 12 (either adhesive or non-adhesive), and more preferably, energizing the insulating layer 11. Even if it is composed of a flexible printed circuit board on which the layer 12 is formed (for example, a flexible printed circuit board), or a multilayer flexible printed circuit board having a multilayer structure insulating layer 11 and an energizing layer 12 (for example, a multilayer flexible printed circuit board). good. When the foil-like member 10 is made of a flexible printed circuit board, the insulating layer 11 is formed with a thickness of, for example, about 12 to 25 μm, and the energizing layer 12 is formed with a thickness of, for example, about 6 to 18 μm. Is preferable, but the present invention is not limited to this.

箔状部材10は、図1A及び図1Bに示すように、通電層12を電源部7の負極(-極)と電気的に接続させるためのコネクタ部13を備えており、図2(b)に示すように、通電層12が、コネクタ部13を介して電源部7の負極と導体層Dとを導通するように、導体層Dの一部に接触可能に配置される。これと共に、箔状部材10は、絶縁層11が、導体層Dの表面Eの被処理領域の形状に応じた形状の貫通孔11aを有し、この貫通孔11aが被処理領域上に配置されるように構成される。 As shown in FIGS. 1A and 1B, the foil-shaped member 10 includes a connector portion 13 for electrically connecting the current-carrying layer 12 to the negative electrode (-pole) of the power supply portion 7, and FIG. 2 (b). As shown in the above, the energizing layer 12 is arranged so as to be in contact with a part of the conductor layer D so as to conduct the negative electrode of the power supply unit 7 and the conductor layer D via the connector unit 13. At the same time, in the foil-like member 10, the insulating layer 11 has a through hole 11a having a shape corresponding to the shape of the surface E of the surface E of the conductor layer D, and the through hole 11a is arranged on the processed region. It is configured to be.

箔状部材10は、一例として、絶縁層11の貫通孔11aが上面視で見て矩形開口状(ロの字状)に形成されている場合、例えば、通電層12は貫通孔11aよりも僅かに大きな貫通孔12aを有するように形成される。これにより、箔状部材10は、図2(c)に示すように、表面処理時に、コネクタ部13を介して通電層12を導体層Dに接触させて陰極とすることができると共に、絶縁層11を、貫通孔11aを除く部分が導体層Dの表面Eにおける非処理領域上を覆って、被処理領域上にのみイオン伝導膜6を接触させるマスク材とすることができる。なお、絶縁層11の貫通孔11aと通電層12の貫通孔12aとを同じ大きさとし、離型フィルム材46の貫通孔をこれら貫通孔11a,12aよりも僅かに小さい大きさとすることで、離型フィルム材46をマスク材として機能させる構成であっても良い。また、通電層12の全体に一律に電圧を印加して良い場合(例えば通電層12の後述する通電パターン12b毎に選択的に電圧を印加する必要が無い場合等)には、電源部7の負極をコネクタ部13ではなく下クランプ部39に接続し、該下クランプ部39に通電層12を接触させることで通電層12に電圧を印加する構成としても良い。 In the foil-like member 10, for example, when the through hole 11a of the insulating layer 11 is formed in a rectangular opening shape (square shape) when viewed from above, for example, the energizing layer 12 is slightly smaller than the through hole 11a. Is formed to have a large through hole 12a. As a result, as shown in FIG. 2C, the foil-like member 10 can be made into a cathode by bringing the current-carrying layer 12 into contact with the conductor layer D via the connector portion 13 at the time of surface treatment, and also as an insulating layer. The 11 can be used as a mask material in which a portion other than the through hole 11a covers the non-treated region on the surface E of the conductor layer D, and the ion conductive film 6 is brought into contact with the treated region only. The through hole 11a of the insulating layer 11 and the through hole 12a of the current-carrying layer 12 have the same size, and the through hole of the release film material 46 has a size slightly smaller than these through holes 11a and 12a. The mold film material 46 may be configured to function as a mask material. Further, when the voltage may be uniformly applied to the entire energization layer 12 (for example, when it is not necessary to selectively apply the voltage for each energization pattern 12b described later in the energization layer 12), the power supply unit 7 The negative electrode may be connected to the lower clamp portion 39 instead of the connector portion 13, and the current-carrying layer 12 may be brought into contact with the lower clamp portion 39 to apply a voltage to the current-carrying layer 12.

イオン伝導膜6は、繰り返し使用されることを前提にしており、表面処理時の膜損傷等に対処するために、その変形量はできるだけ小さい方が好適である。ただし、被処理物Cの表面の凹凸形状や導体層Dのパターン形状が微細化或いは複雑化してくると、その形状に倣うためには、イオン伝導膜6の膜厚をできるだけ薄くした上で変形量を小さくする必要が生じる。 The ion conductive film 6 is premised on repeated use, and it is preferable that the amount of deformation thereof is as small as possible in order to deal with film damage during surface treatment. However, when the uneven shape of the surface of the object C to be treated and the pattern shape of the conductor layer D become finer or more complicated, in order to follow the shape, the film thickness of the ion conductive film 6 is made as thin as possible and then deformed. It will be necessary to reduce the amount.

この点、本実施形態の表面処理装置1は、非常に薄い通電層12(及び絶縁層11)を有する箔状部材10により、導体層Dを陰極とすることができると共に、貫通孔11aを介してイオン伝導膜6を導体層Dの表面Eの被処理領域に接触させることができる。このため、イオン伝導膜6の変形量を小さくしてイオン伝導膜6に掛かる負荷を減少させ、より微細化及び複雑化したパターン形状の導体層Dであっても、イオン伝導膜6とその表面Eとを適切に接触させて表面処理することが可能となる。 In this respect, in the surface treatment apparatus 1 of the present embodiment, the conductor layer D can be used as a cathode by the foil-like member 10 having a very thin current-carrying layer 12 (and the insulating layer 11), and the conductor layer D can be used as a cathode through the through hole 11a. The ion conductive film 6 can be brought into contact with the surface E of the conductor layer D to be treated. Therefore, the amount of deformation of the ion conductive film 6 is reduced to reduce the load applied to the ion conductive film 6, and even if the conductor layer D has a finer and more complicated pattern shape, the ion conductive film 6 and its surface thereof. The surface can be treated by appropriately contacting with E.

一方、籠状部材20は、例えば、ハウジング4に鉛直方向に貫通するように複数取り付けられた支持柱部21に、高さ調整スペーサ22を介して吊り下げられた状態で液室3内に配置されている。籠状部材20の底部23は、例えば、網目状に形成されており、その内部には、電解液に対して可溶性を有する球状、円柱状及び板状等の任意形状の金属(例えば、銅ボール等)が複数配置されている。 On the other hand, the cage-shaped member 20 is arranged in the liquid chamber 3 in a state of being suspended by, for example, a plurality of support pillar portions 21 attached to the housing 4 so as to penetrate vertically through the height adjusting spacer 22. Has been done. The bottom portion 23 of the cage-shaped member 20 is formed, for example, in a mesh shape, and inside the bottom portion 23, a metal having an arbitrary shape such as a spherical shape, a columnar shape, or a plate shape having solubility in an electrolytic solution (for example, a copper ball) is formed. Etc.) are arranged multiple times.

籠状部材20は、例えば、その底部23がイオン伝導膜6の直上に位置するように、高さ調整スペーサ22により液室3内の位置を調整された上で配置されている。高さ調整スペーサ22の形状や数を変更することで、籠状部材20の液室3内の位置は自在に変更し得る。籠状部材20は、支持柱部21及びハウジング4を介して、電源部7の正極(+極)に接続されている。 For example, the cage-shaped member 20 is arranged after the position in the liquid chamber 3 is adjusted by the height adjusting spacer 22 so that the bottom portion 23 thereof is located directly above the ion conductive film 6. By changing the shape and number of the height adjusting spacers 22, the position of the cage-shaped member 20 in the liquid chamber 3 can be freely changed. The cage-shaped member 20 is connected to the positive electrode (+ electrode) of the power supply unit 7 via the support pillar portion 21 and the housing 4.

これにより、籠状部材20は、表面処理装置1における陽極を構成する。なお、籠状部材20は、支持柱部21に吊り下げられる態様に限定されるものではなく、イオン伝導膜6の上方に配置可能であれば、種々の支持態様を採用し得る。また、陽極は、籠状部材20に限定されず、液室3内の電解液に浸かる位置に配置され得るものであれば、種々の形状(例えばプレート状等)、配置態様を採り得る。本実施形態では、籠状部材20は、その底部23がイオン伝導膜6と接しない状態で直上に配置されるのみならず、陰極となる被処理物Cの導体層Dとの間の鉛直方向の極間距離が一定となるように配置されている。 As a result, the cage-shaped member 20 constitutes the anode in the surface treatment device 1. The cage-shaped member 20 is not limited to the mode of being suspended from the support pillar portion 21, and various support modes may be adopted as long as it can be arranged above the ion conductive film 6. Further, the anode is not limited to the cage-shaped member 20, and can take various shapes (for example, a plate shape or the like) and an arrangement mode as long as it can be arranged at a position where the anode is immersed in the electrolytic solution in the liquid chamber 3. In the present embodiment, the cage-shaped member 20 is not only arranged directly above the cage-shaped member 20 in a state where the bottom portion 23 is not in contact with the ion conductive film 6, but also in the vertical direction between the conductor layer D of the object to be processed C serving as a cathode. It is arranged so that the distance between the poles is constant.

なお、本実施形態の表面処理装置1では、電解液が流れる流路は、供給流路41及び排出流路31の二つであるが、三つ以上であっても良い。また、本実施形態では、支持基台8、載置基台2及びハウジング4は、例えば、上面視で見て矩形状の外形を有し、液室3を構成する部分は角丸矩形状に形成されているが、これらはいずれも円形でも良く、矩形状や角丸矩形状には限定されない。また、載置基台2は支持基台8の上面中央に固定されているが、載置基台2が支持基台8と一体構成となったものでも良い。 In the surface treatment apparatus 1 of the present embodiment, the flow paths through which the electrolytic solution flows are two, the supply flow path 41 and the discharge flow path 31, but may be three or more. Further, in the present embodiment, the support base 8, the mounting base 2, and the housing 4 have, for example, a rectangular outer shape when viewed from above, and a portion constituting the liquid chamber 3 has a rounded rectangular shape. Although they are formed, they may all be circular and are not limited to a rectangular shape or a rounded rectangular shape. Further, although the mounting base 2 is fixed to the center of the upper surface of the support base 8, the mounting base 2 may be integrally configured with the support base 8.

ハウジング4は、上面視矩形状で、側面に開閉弁付き加圧機構30及び流路開閉弁40が互いに対向する位置に差し込まれて装着された状態で固定してあり、下部には矩形状のイオン伝導膜6等が固定してある。なお、本実施形態では、ハウジング4の上部の上面全体に上ヒータ55及び絶縁部材55aを設け、載置基台2の内部に下ヒータ56を設けてあるが、被処理物Cへの表面処理の種類によっては設けなくても良い。 The housing 4 has a rectangular shape when viewed from above, and is fixed in a state where the pressure mechanism 30 with an on-off valve and the flow path on-off valve 40 are inserted and mounted at positions facing each other on the side surface, and the housing 4 has a rectangular shape on the lower part. The ion conduction film 6 and the like are fixed. In the present embodiment, the upper heater 55 and the insulating member 55a are provided on the entire upper surface of the upper portion of the housing 4, and the lower heater 56 is provided inside the mounting base 2, but the surface treatment on the object C to be treated is provided. It may not be provided depending on the type of.

本実施形態では、流路開閉弁40と、電解液を増圧する開閉弁付き加圧機構30とがハウジング4に直接接続され一体化されているので、高い圧力が生じる外部配管を必要とせず、装置全体の小型化を実現すると共に、電解液の加圧時に高圧となる領域をハウジング4の液室3に限定することができる。これにより、表面処理における加圧圧力が増大しても配管が破裂する心配がなく、安全性が高い。また、加圧に必要な加圧機構を弁機構と兼用することで小型化でき、加圧すべき電解液の容積を最小化できるので、その結果、電解液の圧力による配管系の膨張の影響を受けない構造となり、全体がさらにコンパクト、かつシンプルな構成となり、製造コストやメンテナンスコストも削減することができる。 In the present embodiment, the flow path on-off valve 40 and the pressurizing mechanism 30 with an on-off valve for increasing the pressure of the electrolytic solution are directly connected to and integrated with the housing 4, so that an external pipe that generates high pressure is not required. The size of the entire device can be reduced, and the region where the pressure becomes high when the electrolytic solution is pressurized can be limited to the liquid chamber 3 of the housing 4. As a result, there is no concern that the pipe will explode even if the pressurizing pressure in the surface treatment increases, and the safety is high. In addition, by using the pressurizing mechanism required for pressurization in combination with the valve mechanism, it is possible to reduce the size and minimize the volume of the electrolytic solution to be pressurized. As a result, the influence of the expansion of the piping system due to the pressure of the electrolytic solution is affected. It has a structure that does not receive it, and the overall structure is more compact and simple, and manufacturing costs and maintenance costs can be reduced.

次に、図示は省略するが、本実施形態に係る表面処理装置1による表面処理プロセスの一例について説明する。なお、ここでは、離型フィルム材46については省略して説明する。
まず、表面処理の前段階として、ハウジング4が載置基台2と離隔した状態(原位置:図1A参照)において、載置基台2の上面に被処理物Cを載置する。次に、イオン伝導膜6を、内枠膜治具36の吸着溝36aにその縁部を吸着して膜張りを行う(ステップS1)。この状態において、イオン伝導膜6及び箔状部材10は、剥離機構52によって剥離されており、これらの間には隙間が形成されている。
Next, although not shown, an example of the surface treatment process by the surface treatment apparatus 1 according to the present embodiment will be described. Here, the release film material 46 will be omitted.
First, as a pre-stage of surface treatment, the object to be treated C is placed on the upper surface of the mounting base 2 in a state where the housing 4 is separated from the mounting base 2 (original position: see FIG. 1A). Next, the ionic conductive film 6 is adsorbed on the edge of the adsorption groove 36a of the inner frame film jig 36 to form a film (step S1). In this state, the ion conductive film 6 and the foil-like member 10 are peeled off by the peeling mechanism 52, and a gap is formed between them.

その後、剥離機構52によってイオン伝導膜6と箔状部材10とを密着させる(ステップS2)。このとき、ハウジング4とイオン伝導膜6との間には、開閉弁系以外の部分が閉鎖された常圧の液室3が形成される。 After that, the ion conductive film 6 and the foil-like member 10 are brought into close contact with each other by the peeling mechanism 52 (step S2). At this time, a normal pressure liquid chamber 3 is formed between the housing 4 and the ion conductive film 6 in which a portion other than the on-off valve system is closed.

その後、ハウジング4の下クランプ部39とこれの下方に配置された被処理物Cを載置した載置基台2とを嵌合する(ステップS3)。すなわち、ステップS2の状態から、移動機構5によって、ハウジング4を上述の減圧位置まで下降させると、下クランプ部39は載置基台2に嵌合する。 After that, the lower clamp portion 39 of the housing 4 and the mounting base 2 on which the object to be processed C arranged below the clamp portion 39 is placed are fitted (step S3). That is, when the housing 4 is lowered to the above-mentioned decompression position by the moving mechanism 5 from the state of step S2, the lower clamp portion 39 is fitted to the mounting base 2.

このとき、下クランプ部39と載置基台2との嵌合位置は、イオン伝導膜6(及び箔状部材10)が被処理物Cの導体層Dの表面Eと可能な限り近づいた状態となる位置に設定される。被処理物Cは、液室3内ではなく、載置基台2とイオン伝導膜6との間に形成される下方空間内に密閉され、液室3とは隔てられる。 At this time, the fitting position between the lower clamp portion 39 and the mounting base 2 is such that the ion conductive film 6 (and the foil-like member 10) is as close as possible to the surface E of the conductor layer D of the object C to be processed. It is set to the position where. The object C to be treated is sealed not in the liquid chamber 3 but in the lower space formed between the mounting base 2 and the ion conductive film 6, and is separated from the liquid chamber 3.

したがって、このステップS3では、被処理物Cは、開口部が内壁最下部に設けてある供給流路41と開口部が内壁最上部に設けてある排出流路31とを備え内部上面が傾斜したハウジング4と、イオン伝導膜6(及び箔状部材10)を隔てて載置基台2に載置される。 Therefore, in this step S3, the object C to be processed has a supply flow path 41 having an opening provided at the lowermost part of the inner wall and a discharge flow path 31 having an opening provided at the uppermost part of the inner wall, and the inner upper surface is inclined. The housing 4 and the ion conductive film 6 (and the foil-like member 10) are separated from each other and mounted on the mounting base 2.

次に、ステップS3の状態から、下クランプ部39に設けられた開閉弁47を開状態にすると共に、上述した減圧系の流路開閉弁を開状態にして、減圧流路48と図示しない減圧流路をバイパス流路を介して連通させ、液室3と下方空間を同時に減圧する(ステップS4)。すなわち、このステップS4では、液室3と下方空間をイオン伝導膜6を介して等圧にする。 Next, from the state of step S3, the on-off valve 47 provided in the lower clamp portion 39 is opened, and the flow path on-off valve of the decompression system described above is opened, so that the decompression flow path 48 and the depressurization not shown are shown. The flow path is communicated through the bypass flow path, and the liquid chamber 3 and the lower space are simultaneously depressurized (step S4). That is, in this step S4, the liquid chamber 3 and the lower space are made equal pressure via the ion conductive film 6.

このように液室3と下方空間を同時に減圧することで、液室3と下方空間との差圧の発生を低減することができ、後述するステップS7において、イオン伝導膜6(及び箔状部材10)を被処理物Cの全体的な表面形状に沿って精度良く密着させることができる。 By simultaneously depressurizing the liquid chamber 3 and the lower space in this way, the generation of the differential pressure between the liquid chamber 3 and the lower space can be reduced, and in step S7 described later, the ion conductive film 6 (and the foil-like member) can be reduced. 10) can be accurately adhered along the overall surface shape of the object to be treated C.

そして、例えば、減圧状態を継続したまま、載置基台2を下クランプ部39に完全嵌合させるべく相対移動(本実施形態では、移動機構5によってハウジング4を上述の減圧位置まで下降)させて(ステップS5:図1B参照)、イオン伝導膜6を導体層Dの表面Eに接近させ、上述した減圧系の流路開閉弁を閉状態にして、液室3の減圧系の回路(バイパス流路)を遮断して(ステップS6)、液室3を大気開放させる(ステップS7)。 Then, for example, the mounting base 2 is relatively moved so as to be completely fitted to the lower clamp portion 39 while the depressurized state is maintained (in the present embodiment, the housing 4 is lowered to the above-mentioned depressurized position by the moving mechanism 5). (Step S5: see FIG. 1B), the ion conductive film 6 is brought close to the surface E of the conductor layer D, the flow path on-off valve of the pressure reducing system described above is closed, and the circuit of the pressure reducing system (bypass) of the liquid chamber 3 is closed. The flow path) is blocked (step S6) to open the liquid chamber 3 to the atmosphere (step S7).

なお、液室3の減圧系の回路遮断の際には、流路開閉弁のスプールの先端部(図示せず)は、液室3の内部側面と面一若しくは内部側面から突出するように移動して、回路を遮断する。スプールの先端部が内部側面よりも引っ込んだ位置にあると、その部分に電解液が残留したり空気が残留する不具合が起こりやすくなるからである。ステップS7の大気開放が行われた場合、イオン伝導膜6は大気圧によって下方空間側に押された状態となる。 When the circuit of the decompression system of the liquid chamber 3 is cut off, the tip of the spool of the flow path on-off valve (not shown) moves so as to be flush with the internal side surface of the liquid chamber 3 or to protrude from the internal side surface. Then, the circuit is cut off. This is because if the tip of the spool is recessed from the inner side surface, problems such as residual electrolytic solution and residual air are likely to occur in that portion. When the air is opened to the atmosphere in step S7, the ion conductive film 6 is pushed toward the lower space side by the atmospheric pressure.

このステップS7と同時に、載置基台2とハウジング4を相対移動させて該載置基台2と下クランプ部39とを完全嵌合(処理位置(図1B参照)まで下降)することで、イオン伝導膜6は、被処理物Cの中心部から最初に密着する状態となる。この際、イオン伝導膜6と載置基台2との間に残留する空気を減圧流路48から吸引することで、被処理物Cの周囲を減圧状態とし、空気の残留を抑制することができる。そして、このようにして載置基台2と下クランプ部39を完全嵌合させた後(すなわち、載置基台2とハウジング4とを最接近させた後)に、開閉弁47を閉状態にして、下方空間の減圧系の回路を遮断する。 At the same time as this step S7, the mounting base 2 and the housing 4 are relatively moved so that the mounting base 2 and the lower clamp portion 39 are completely fitted (descended to the processing position (see FIG. 1B)). The ion conductive film 6 is in a state of being in close contact first from the central portion of the object to be treated C. At this time, by sucking the air remaining between the ion conductive film 6 and the mounting base 2 from the decompression flow path 48, the circumference of the object to be treated C can be depressurized and the residual air can be suppressed. can. Then, after the mounting base 2 and the lower clamp portion 39 are completely fitted in this way (that is, after the mounting base 2 and the housing 4 are brought closest to each other), the on-off valve 47 is closed. Then, the circuit of the decompression system in the lower space is cut off.

これにより、イオン伝導膜6(及び箔状部材10)が被処理物Cの全体的な表面形状に沿って密着し、箔状部材10の通電層12を導体層Dの一部に接触させた状態(図2(c)参照)となる。このような各ステップを経てイオン伝導膜6及び箔状部材10を被処理物Cに接触させることで、例えば、表面処理面(すなわち、被処理物Cの導体層Dの表面E)に残留する微細な気泡を確実に排除してこれらを密着させることができる。 As a result, the ion conductive film 6 (and the foil-shaped member 10) adheres to each other along the overall surface shape of the object C, and the current-carrying layer 12 of the foil-shaped member 10 is brought into contact with a part of the conductor layer D. It becomes a state (see FIG. 2C). By bringing the ion conductive film 6 and the foil-like member 10 into contact with the object to be treated C through each of these steps, for example, the ion conductive film 6 and the foil-like member 10 remain on the surface-treated surface (that is, the surface E of the conductor layer D of the object to be treated C). Fine bubbles can be reliably eliminated and these can be brought into close contact with each other.

次に、傾斜機構50によって、図1Cに示すように、載置基台2及びハウジング4を、例えば、排出流路31側が傾斜上方となるように所定の角度で傾斜させ(ステップS8)、液室3内に、電解液を注入する(ステップS9)。すなわち、ステップS8に続くステップS9では、被処理物Cをイオン伝導膜6で覆った状態で、ハウジング4の液室3の内部側面の最下部に開口部を有する供給流路41から電解液を液室3内に注入する。 Next, as shown in FIG. 1C, the tilting mechanism 50 tilts the mounting base 2 and the housing 4 at a predetermined angle so that the discharge flow path 31 side is tilted upward (step S8), and the liquid is liquid. The electrolytic solution is injected into the chamber 3 (step S9). That is, in step S9 following step S8, the electrolytic solution is supplied from the supply flow path 41 having an opening at the lowermost portion of the inner side surface of the liquid chamber 3 of the housing 4 in a state where the object to be treated C is covered with the ion conductive film 6. Inject into the liquid chamber 3.

具体的には、流路開閉弁40の給排ポート45から、液室3の内部に向かって電解液が注入される。電解液は、ハウジング4の壁面流路である供給流路41を通り、イオン伝導膜6の近傍の供給流路41の開口部から、液室3の内部を満たしていく。電解液がハウジング4の壁面上面に達すると、液室3の内部に残留している空気は、内部上壁面の傾斜に沿って移動し、開閉弁付き加圧機構30の接続流路である排出流路31から、給排ポート35に接続された外部の溶液供給部(図示省略)に排気される。電解液の注入をさらに続けると、液室3の内部は常圧の電解液で完全に満たされる。 Specifically, the electrolytic solution is injected from the supply / discharge port 45 of the flow path on-off valve 40 toward the inside of the liquid chamber 3. The electrolytic solution passes through the supply flow path 41, which is the wall surface flow path of the housing 4, and fills the inside of the liquid chamber 3 from the opening of the supply flow path 41 in the vicinity of the ion conductive film 6. When the electrolytic solution reaches the upper surface of the wall surface of the housing 4, the air remaining inside the liquid chamber 3 moves along the inclination of the inner upper wall surface and is discharged as a connection flow path of the pressurizing mechanism 30 with an on-off valve. The air is exhausted from the flow path 31 to an external solution supply unit (not shown) connected to the supply / discharge port 35. When the injection of the electrolytic solution is continued, the inside of the liquid chamber 3 is completely filled with the electrolytic solution at normal pressure.

そして、ハウジング4の内部側面の最上部に開口部を有する排出流路31から液室3内の残留空気を排出する(ステップS10)。ステップS10では、ステップS9で残留空気が排除され給排ポート45からの電解液の注入を継続した状態で、開閉弁付き加圧機構30の給排ポート35から、液室3内の残留空気と余剰の電解液が排出される。 Then, the residual air in the liquid chamber 3 is discharged from the discharge flow path 31 having an opening at the uppermost portion of the inner side surface of the housing 4 (step S10). In step S10, in a state where the residual air is removed in step S9 and the injection of the electrolytic solution from the supply / discharge port 45 is continued, the residual air in the liquid chamber 3 is separated from the supply / discharge port 35 of the pressurizing mechanism 30 with an on-off valve. Excess electrolyte is discharged.

残留空気を排出したら、ハウジング4の外部側面に装着された流路開閉弁40と開閉弁付き加圧機構30を閉じて、液室3内を密閉する(ステップS11)。ステップS11では、流路開閉弁40の閉操作ポート43に作動空気が送気され、スプール42が液室3側に移動することにより、電解液の供給流路41と給排ポート45との間が遮断され、流路開閉弁40が閉状態となる。 After the residual air is discharged, the flow path on-off valve 40 and the pressurizing mechanism 30 with the on-off valve mounted on the outer side surface of the housing 4 are closed to seal the inside of the liquid chamber 3 (step S11). In step S11, working air is sent to the closing operation port 43 of the flow path on-off valve 40, and the spool 42 moves to the liquid chamber 3 side, thereby between the electrolytic solution supply flow path 41 and the supply / discharge port 45. Is shut off, and the flow path on-off valve 40 is closed.

また、開閉弁付き加圧機構30の閉操作ポート33に作動空気が送気され、スプール32が液室3側に移動し、開閉弁付き加圧機構30の給排ポート35が閉じられる。 Further, working air is sent to the closing operation port 33 of the pressurizing mechanism 30 with an on-off valve, the spool 32 moves to the liquid chamber 3, and the supply / discharge port 35 of the pressurizing mechanism 30 with an on-off valve is closed.

次に、ハウジング4の外部側面に設けられた加圧機構兼開閉弁である開閉弁付き加圧機構30によって、液室3内の電解液を加圧すると共に、電源部7により籠状部材20と箔状部材10の通電層12との間に電圧を印加する。これにより、イオン伝導膜6で覆われた被処理物Cの導体層Dの表面Eの被処理領域上に、金属イオンを析出させて金属の被膜を形成する表面処理を実行する(ステップS12)。 Next, the electrolytic solution in the liquid chamber 3 is pressurized by the pressurizing mechanism 30 with an on-off valve, which is a pressurizing mechanism and an on-off valve provided on the outer side surface of the housing 4, and the cage-shaped member 20 is formed by the power supply unit 7. A voltage is applied between the foil-shaped member 10 and the current-carrying layer 12. As a result, surface treatment is performed to form a metal film by precipitating metal ions on the surface E of the conductor layer D of the object C to be treated covered with the ion conductive film 6 (step S12). ..

電解液の加圧に際しては、閉状態となった開閉弁付き加圧機構30の閉操作ポート33にさらに作動空気を送気し、スプール32をさらに液室3側に移動させて液室3内の電解液を圧縮して加圧する。作動空気の圧力を高めると、スプール32の基端部に圧力が掛かり、液室3側にスプール32が移動する。このスプール32が移動した体積分だけ液室3内が加圧され、内部を満たす電解液に掛かる圧力がその分増加する。 When pressurizing the electrolytic solution, working air is further sent to the closing operation port 33 of the closed operation port 33 of the pressurizing mechanism 30 with an on-off valve, and the spool 32 is further moved to the liquid chamber 3 side to enter the liquid chamber 3. Compress and pressurize the electrolyte. When the pressure of the working air is increased, pressure is applied to the base end portion of the spool 32, and the spool 32 moves to the liquid chamber 3 side. The inside of the liquid chamber 3 is pressurized by the volume of the movement of the spool 32, and the pressure applied to the electrolytic solution filling the inside is increased by that amount.

なお、ハウジング4に液室3の内部の圧力を計測可能な圧力センサを設置し、この計測値を基に、閉操作ポート33に供給する作動空気圧力を制御すれば、電解液を所望の圧力に加圧制御することが可能である。この状態を所定の時間保持し、所定の電圧印加時間が経過すれば、表面処理が完了する。 If a pressure sensor capable of measuring the pressure inside the liquid chamber 3 is installed in the housing 4 and the operating air pressure supplied to the closing operation port 33 is controlled based on the measured value, the electrolytic solution can be subjected to a desired pressure. It is possible to control the pressure. When this state is maintained for a predetermined time and a predetermined voltage application time elapses, the surface treatment is completed.

被処理物Cは、表面処理中、電解液が含まれる液室3とはイオン伝導膜6によって隔てられているが、電解液が加圧されることで、被処理物Cには均一な加圧力が付与される。したがって、特許文献1に開示された従来技術の成膜装置のように、多孔質体の陽極で電解質膜ごと陰極を押圧する従来の構成と比較して、イオン伝導膜6と導体層Dの表面Eとの密着性が向上し、表面処理の品質が向上する。 During the surface treatment, the object C to be treated is separated from the liquid chamber 3 containing the electrolytic solution by the ion conductive film 6, but when the electrolytic solution is pressurized, the object C is uniformly applied. Pressure is applied. Therefore, the surfaces of the ion conductive film 6 and the conductor layer D are compared with the conventional configuration in which the cathode is pressed together with the electrolyte film by the anode of the porous body as in the conventional film forming apparatus disclosed in Patent Document 1. Adhesion with E is improved, and the quality of surface treatment is improved.

表面処理を完了したら、ハウジング4の内部側面の最下部に開口部を有する供給流路41から電解液を排出する(ステップS13)。ステップS13では、流路開閉弁40と開閉弁付き加圧機構30とを開状態にし、開閉弁付き加圧機構30の給排ポート35から低圧の空気を送気して、流路開閉弁40の給排ポート45から電解液を排液する。 When the surface treatment is completed, the electrolytic solution is discharged from the supply flow path 41 having an opening at the lowermost portion of the inner side surface of the housing 4 (step S13). In step S13, the flow path on-off valve 40 and the pressurizing mechanism 30 with an on-off valve are opened, and low-pressure air is sent from the supply / discharge port 35 of the pressurizing mechanism 30 with an on-off valve to supply low-pressure air to the flow path on-off valve 40. The electrolytic solution is drained from the supply / discharge port 45 of the above.

流路開閉弁40に接続されているハウジング4の供給流路41は、イオン伝導膜6に接した最下部に開口部を設けているため、電解液を十分に排除することが可能である。最後に、傾斜機構50による傾斜状態を解除して、ハウジング4を載置基台2から離隔するように上昇させ、被処理物Cを取り出す(ステップS14)。 Since the supply flow path 41 of the housing 4 connected to the flow path on-off valve 40 is provided with an opening at the lowermost portion in contact with the ion conductive film 6, it is possible to sufficiently eliminate the electrolytic solution. Finally, the tilted state by the tilting mechanism 50 is released, the housing 4 is raised so as to be separated from the mounting base 2, and the object to be processed C is taken out (step S14).

本実施形態の表面処理装置1によれば、被処理物Cの導体層Dの表面Eをイオン伝導膜6で均一に加圧しながら、箔状部材10の通電層12を導体層Dに接触させて表面Eに金属の被膜を形成することができるので、イオン伝導膜6に掛かる各種の負荷を低減することができる。 According to the surface treatment apparatus 1 of the present embodiment, the surface E of the conductor layer D of the object to be treated C is uniformly pressed by the ion conductive film 6 while the current-carrying layer 12 of the foil-like member 10 is brought into contact with the conductor layer D. Since a metal film can be formed on the surface E, various loads applied to the ion conductive film 6 can be reduced.

また、被処理物Cを効率よく表面処理できるのみならず、例えば、被処理物Cを取り出す際の電解液の漏洩リスクを低減できると共に、被処理物Cの周囲に電解液が残留することを抑制して被処理物Cが電解液に曝露されるリスクも低減できる。そして、傾斜機構50による傾斜も含めてイオン伝導膜6の上に電解液が残留しにくい構造のため、例えば、被処理物Cを取り出す際に万が一イオン伝導膜6が破損したとしても、電解液が漏洩するリスクと、被処理物Cが電解液に曝露されるリスクが極力低減される。 In addition to being able to efficiently surface-treat the object C to be treated, for example, the risk of leakage of the electrolytic solution when taking out the object C to be processed can be reduced, and the electrolytic solution remains around the object C to be processed. It is also possible to suppress and reduce the risk that the object C to be treated is exposed to the electrolytic solution. Since the structure is such that the electrolytic solution does not easily remain on the ion conductive film 6 including the inclination due to the inclination mechanism 50, for example, even if the ion conductive film 6 is damaged when the object C to be treated is taken out, the electrolytic solution The risk of leakage and the risk of the object C being exposed to the electrolytic solution are reduced as much as possible.

また、非常に薄いイオン伝導膜6と箔状部材10を備えるため、微細化及び複雑化したパターン形状の導体層Dを有する被処理物Cにおいても、イオン伝導膜6を導体層Dの表面Eに適切に接触させて表面処理することができ、イオン伝導膜6の変形量を小さくして掛かる負荷を減少させることができる。 Further, since the very thin ion conductive film 6 and the foil-like member 10 are provided, even in the object C having the conductor layer D having a finely divided and complicated pattern shape, the ion conductive film 6 is formed on the surface E of the conductor layer D. Can be appropriately contacted with the surface for surface treatment, and the amount of deformation of the ion conductive film 6 can be reduced to reduce the load applied.

なお、上記の説明では、開閉弁付き加圧機構30の作動に空気圧を使用した例を示したが、液圧或いは電動の方式を採用することもできる。また、流路開閉弁40及び開閉弁付き加圧機構30を含む各種開閉弁は、空気圧駆動を想定した弁構造について説明を行ったが、液圧での駆動や、一般の電磁弁、ボールねじ機構、ラックアンドピニオン機構等の種々の手段を用いることも可能である。さらに、これらの作動機構を弁構造から独立させ、各種の汎用作動機構部品を用いることも可能である。 In the above description, an example in which pneumatic pressure is used to operate the pressurizing mechanism 30 with an on-off valve is shown, but a hydraulic pressure or an electric method can also be adopted. Further, although the valve structure of various on-off valves including the flow path on-off valve 40 and the pressurizing mechanism with on-off valve 30 is assumed to be pneumatically driven, it is driven by hydraulic pressure, a general solenoid valve, and a ball screw. It is also possible to use various means such as a mechanism and a rack and pinion mechanism. Furthermore, it is also possible to make these actuating mechanisms independent of the valve structure and use various general-purpose actuating mechanism parts.

また、ハウジング4を上下動させる移動機構5は、空気圧シリンダ機構や電動のリニア駆動機構等の種々の構成を任意に用いることが可能である。これらの直動機構には、位置検出センサ及び圧力検出センサが設けられることが好ましい。なお、作動空気の制御系、電解液の制御系については、一般の流体制御系の回路が使用できるため、詳細の説明は省略する。 Further, the moving mechanism 5 for moving the housing 4 up and down can arbitrarily use various configurations such as a pneumatic cylinder mechanism and an electric linear drive mechanism. It is preferable that these linear motion mechanisms are provided with a position detection sensor and a pressure detection sensor. As for the working air control system and the electrolytic solution control system, since a general fluid control system circuit can be used, detailed description thereof will be omitted.

上述した作用効果と共に、表面処理装置1によれば、ハウジング4の内部に被処理物Cを表面処理する液室3を形成し、その液室3に臨む加圧機構を直接取り付けてあるので、不要な配管や圧力ポンプ等を排除して小型化することができる。また、載置基台2とハウジング4を離隔させることにより、被処理物Cを容易に取り出すことができる。 In addition to the above-mentioned effects, according to the surface treatment device 1, a liquid chamber 3 for surface-treating the object to be treated C is formed inside the housing 4, and a pressurizing mechanism facing the liquid chamber 3 is directly attached. It is possible to reduce the size by eliminating unnecessary piping and pressure pumps. Further, by separating the mounting base 2 and the housing 4, the object C to be processed can be easily taken out.

また、表面処理の後、液室3の内部を排液させた上で載置基台2とハウジング4を離隔させるので、電解液の漏洩を防ぐことができる。さらに、供給流路41を液室3の最下部に、また、排出流路31を液室3の最上部にそれぞれ設けてあるので、液室3内に満たされた電解液は給気排気口から空気を入れることにより、空気圧と重力を利用して給液排液口から効率よく排出され得る。このように、液室3内に電解液が残留していなければその漏洩のリスクは著しく低くなる。 Further, after the surface treatment, the inside of the liquid chamber 3 is drained and the mounting base 2 and the housing 4 are separated from each other, so that leakage of the electrolytic solution can be prevented. Further, since the supply flow path 41 is provided at the lowermost part of the liquid chamber 3 and the discharge flow path 31 is provided at the uppermost part of the liquid chamber 3, the electrolytic solution filled in the liquid chamber 3 is an air supply / exhaust port. By injecting air from the air pressure and gravity, the air can be efficiently discharged from the liquid supply / drainage port. As described above, if the electrolytic solution does not remain in the liquid chamber 3, the risk of leakage thereof is remarkably low.

また、加圧機構(開閉弁付き加圧機構30)を小型化するためには、電解液を注入する際、液室3内の残留空気の排除が重要となる。表面処理装置1は、液室3の上面を最上部にある給気排気口(排出流路31)に向けた傾斜構造とすることにより、液室3内の空気を容易に排除することができる。 Further, in order to reduce the size of the pressurizing mechanism (pressurizing mechanism 30 with on-off valve), it is important to eliminate residual air in the liquid chamber 3 when injecting the electrolytic solution. The surface treatment device 1 has an inclined structure in which the upper surface of the liquid chamber 3 is directed toward the air supply / exhaust port (discharge flow path 31) at the uppermost portion, so that the air in the liquid chamber 3 can be easily removed. ..

また、液室3内の空気を排除した状態で、加圧機構により加圧を行うことにより、効率よく加圧することができるようになるだけでなく、効率が良くなったことによる加圧機構の小型化を図ることができる。なお、上述した表面処理装置1は、イオン伝導膜6を有するものであるが、電解液を直接被処理物Cに接触させて表面処理を行うような場合には、イオン伝導膜6は必ずしも具備されていなくても良い。 Further, by performing pressurization by the pressurizing mechanism with the air in the liquid chamber 3 removed, not only the pressurization can be performed efficiently, but also the pressurization mechanism due to the improved efficiency. It is possible to reduce the size. Although the above-mentioned surface treatment apparatus 1 has an ion conductive film 6, the ion conductive film 6 is not always provided when the surface treatment is performed by directly contacting the electrolytic solution with the object C to be treated. It does not have to be.

次に、表面処理装置1における被処理物Cに対応する箔状部材10の様々な構成及び表面処理例について説明する。なお、ここでは、被処理物Cは、特に明記しない限り、樹脂基材Bの上に導体層Dが形成されたものとし、表面処理は、イオン伝導膜6を介して導体層Dの表面Eに金属を析出させ被膜を形成するめっき処理とするが、表面処理装置1により行われる表面処理は、これに限定されるものではない。 Next, various configurations and surface treatment examples of the foil-like member 10 corresponding to the object C to be treated in the surface treatment apparatus 1 will be described. Here, unless otherwise specified, the object C to be treated is assumed to have the conductor layer D formed on the resin base material B, and the surface treatment is performed on the surface E of the conductor layer D via the ion conductive film 6. The plating treatment is performed by depositing a metal on the surface to form a film, but the surface treatment performed by the surface treatment apparatus 1 is not limited to this.

図3及び図4は、第一の箔状部材10及び被処理物Cを概略的に示す図であり、図3(a)は第一の箔状部材10の通電層12の上面を、図3(b)は第一の箔状部材10の絶縁層11の上面を、図3(c)は被処理物Cの導体層Dの表面Eを、それぞれ示しており、図3(d)は被処理物Cの断面を示している。また、図4(a)は、第一の箔状部材10の通電層12及び絶縁層11を積層して被処理物Cに重ねた状態の上面を、図4(b)は表面処理が施された被処理物Cの上面を、図4(c)はその断面を、それぞれ示している。 3 and 4 are views schematically showing the first foil-shaped member 10 and the object to be processed C, and FIG. 3A is a view showing the upper surface of the current-carrying layer 12 of the first foil-shaped member 10. 3 (b) shows the upper surface of the insulating layer 11 of the first foil-shaped member 10, FIG. 3 (c) shows the surface E of the conductor layer D of the object to be treated C, and FIG. 3 (d) shows the surface E. The cross section of the object C to be processed is shown. Further, FIG. 4 (a) shows the upper surface of the first foil-shaped member 10 in a state where the energizing layer 12 and the insulating layer 11 are laminated and stacked on the object to be treated C, and FIG. 4 (b) shows the surface treatment. The upper surface of the object to be treated C is shown in FIG. 4 (c), and the cross section thereof is shown in FIG.

上述したように、被処理物Cが樹脂基材B上に導体層Dが形成された構造であると、例えば、イオン伝導膜6を用いためっき処理では、載置基台2を電源部7の負極に接続したとしても、導体層Dを陰極とすることができなくなる。このため、導体層Dの表面Eに金属を析出させてめっき処理を行うには、導体層Dを電源部7の負極と接続して陰極とすることが必要となる。 As described above, when the object C to be treated has a structure in which the conductor layer D is formed on the resin base material B, for example, in the plating process using the ion conductive film 6, the mounting base 2 is used as the power supply unit 7. Even if it is connected to the negative electrode of, the conductor layer D cannot be used as a cathode. Therefore, in order to deposit metal on the surface E of the conductor layer D and perform the plating treatment, it is necessary to connect the conductor layer D to the negative electrode of the power supply unit 7 to serve as a cathode.

本実施形態の表面処理装置1の第一の箔状部材10は、通電層12を導体層Dの表面Eに直接接触させることで電源部7の負極と導通させて陰極とすることができるので、載置基台2側に樹脂基材B等の絶縁体が配置された被処理物Cであっても、良好且つ確実に導体層Dにめっき処理を行うことができるようになる。 Since the first foil-like member 10 of the surface treatment apparatus 1 of the present embodiment can be made conductive with the negative electrode of the power supply unit 7 by directly contacting the current-carrying layer 12 with the surface E of the conductor layer D, it can be used as a cathode. Even in the object C to be treated, in which an insulator such as a resin base material B is arranged on the mounting base 2, the conductor layer D can be plated with good quality and reliability.

第一例の被処理物Cは、図3(c)に示すように、例えば、上面視矩形状に形成されている。この被処理物Cは、図3(d)に示すように、樹脂基材Bの上面に全面的に導体層Dが形成されたベタパターンの導体層Dを有する。そして、この導体層Dの表面Eの周縁部から僅かに内側の矩形状の領域を被処理領域としてその全面にめっき処理を施す場合、第一の箔状部材10の通電層12には、図3(a)に示すように、導体層Dの外径よりも僅かに小さな開口径を有する貫通孔12aが形成される。 As shown in FIG. 3C, the object to be treated C of the first example is formed, for example, in a rectangular shape in a top view. As shown in FIG. 3D, the object C to be treated has a solid pattern conductor layer D in which the conductor layer D is formed on the entire upper surface of the resin base material B. Then, when the entire surface of the conductor layer D is plated with a rectangular region slightly inside from the peripheral edge of the surface E as the region to be treated, the current-carrying layer 12 of the first foil-shaped member 10 is shown in the figure. As shown in 3 (a), a through hole 12a having an opening diameter slightly smaller than the outer diameter of the conductor layer D is formed.

また、第一の箔状部材10の絶縁層11には、図3(b)に示すように、被処理領域に対応する開口径であって、貫通孔12aよりも僅かに小さな開口径を有する貫通孔11aが形成される。この第一の箔状部材10の通電層12及び絶縁層11は、貫通孔12a,11aを除く部分がベタパターンに形成されている。 Further, as shown in FIG. 3B, the insulating layer 11 of the first foil-shaped member 10 has an opening diameter corresponding to the area to be treated, which is slightly smaller than the through hole 12a. A through hole 11a is formed. The current-carrying layer 12 and the insulating layer 11 of the first foil-like member 10 are formed in a solid pattern except for the through holes 12a and 11a.

このように構成された第一の箔状部材10を、被処理物Cの上に通電層12及び絶縁層11の順で重ね合わせると、図4(a)に示すように、絶縁層11の貫通孔11aから導体層Dの表面Eの被処理領域Epが露出すると共に、通電層12の一部が貫通孔12aの周縁部近傍下面で導体層Dの表面Eと接触した状態とすることができる。この状態で、第一の箔状部材10とイオン伝導膜6とを重ね合わせ、イオン伝導膜6を貫通孔11aを介して被処理物Cの導体層Dの表面Eと密着させて、めっき処理を施す。 When the first foil-like member 10 configured in this way is superposed on the object C in the order of the conductive layer 12 and the insulating layer 11, the insulating layer 11 is as shown in FIG. 4A. The processed region Ep of the surface E of the conductor layer D may be exposed from the through hole 11a, and a part of the energizing layer 12 may be in contact with the surface E of the conductor layer D on the lower surface near the peripheral edge of the through hole 12a. can. In this state, the first foil-like member 10 and the ionic conductive film 6 are superposed, and the ionic conductive film 6 is brought into close contact with the surface E of the conductor layer D of the object to be treated C through the through hole 11a to perform a plating process. To apply.

めっき処理後の被処理物Cは、図4(b)及び図4(c)に示すように、導体層Dの表面Eにおいて、被処理領域Ep上にめっきによる被膜Fが形成され、通電層12が接触していた部分を含む非処理領域En上には被膜Fが形成されていない状態となる。すなわち、第一の箔状部材10の絶縁層11は、貫通孔11aを除く部分が、導体層Dの表面Eの非処理領域En上をイオン伝導膜6と接触しないように覆うマスク材の役割も担っている。貫通孔11aの形状や数、種類を、被処理領域Epや非処理領域Enのデザインに合わせて適宜設定するようにして絶縁層11を構成すれば、マスク材としての機能をより向上させることが可能となる。 In the object C to be plated after the plating treatment, as shown in FIGS. 4 (b) and 4 (c), a coating film F formed by plating is formed on the surface E of the conductor layer D on the surface E of the conductor layer D, and the current-carrying layer is formed. The coating film F is not formed on the non-treated region En including the portion where the 12 is in contact. That is, the insulating layer 11 of the first foil-like member 10 serves as a mask material that covers the portion other than the through hole 11a on the non-treated region En of the surface E of the conductor layer D so as not to come into contact with the ion conductive film 6. Also responsible. If the insulating layer 11 is configured by appropriately setting the shape, number, and type of the through holes 11a according to the design of the processed region Ep and the non-processed region En, the function as a mask material can be further improved. It will be possible.

図5及び図6は、第二の箔状部材10及び被処理物Cを概略的に示す図であり、図5(a)は第二の箔状部材10の通電層12の上面を、図5(b)は第二の箔状部材10の絶縁層11の上面を、図5(c)は被処理物Cの上面を、図5(d)は被処理物Cの断面を、それぞれ示している。また、図6(a)は、第二の箔状部材10の通電層12及び絶縁層11を積層して被処理物Cに重ねた状態の上面を、図6(b)は表面処理が施された被処理物Cの上面を、図6(c)はその断面を、それぞれ示している。なお、以降においては、既に説明した内容と重複する説明については省略し、導体層Dの表面Eにおける被処理領域Ep及び非処理領域Enの図示を省略する。 5 and 6 are views schematically showing the second foil-shaped member 10 and the object to be processed C, and FIG. 5A is a view showing the upper surface of the current-carrying layer 12 of the second foil-shaped member 10. 5 (b) shows the upper surface of the insulating layer 11 of the second foil-shaped member 10, FIG. 5 (c) shows the upper surface of the object to be treated C, and FIG. 5 (d) shows the cross section of the object to be treated C. ing. Further, FIG. 6A shows the upper surface of the second foil-like member 10 in a state where the energizing layer 12 and the insulating layer 11 are laminated and stacked on the object to be treated C, and FIG. 6B shows the surface treatment. FIG. 6 (c) shows the upper surface of the processed object C and the cross section thereof. In the following, explanations that overlap with the contents already described will be omitted, and the illustration of the processed region Ep and the non-processed region En on the surface E of the conductor layer D will be omitted.

上述した第一例の被処理物Cは、ベタパターンの導体層Dを有するものであったが、第二例の被処理物Cは、図5(c)及び図5(d)に示すように、例えば、樹脂基材Bが上面視矩形状に形成されると共に、導体層Dが複数の上面視矩形状の独立パターン(ここでは、九つのパターン)で形成されている。 The object C of the first example described above had the conductor layer D of the solid pattern, but the object C of the second example is as shown in FIGS. 5 (c) and 5 (d). In addition, for example, the resin base material B is formed in a rectangular shape in a top view, and the conductor layer D is formed in a plurality of independent patterns (here, nine patterns) in a rectangular shape in a top view.

そして、各独立パターンの導体層Dの表面Eにめっき処理を施す場合、第二の箔状部材10の通電層12には、図5(a)に示すように、独立パターンの導体層Dの外径よりも僅かに小さな開口径を有する貫通孔12aが、各独立パターンの導体層Dに対応して複数形成される。 Then, when the surface E of the conductor layer D of each independent pattern is plated, the current-carrying layer 12 of the second foil-like member 10 is covered with the conductor layer D of the independent pattern as shown in FIG. 5 (a). A plurality of through holes 12a having an opening diameter slightly smaller than the outer diameter are formed corresponding to the conductor layer D of each independent pattern.

また、第二の箔状部材10の絶縁層11には、図5(b)に示すように、独立パターンの導体層Dの表面Eの被処理領域に対応する開口径であって、貫通孔12aよりも僅かに小さな開口径を有する貫通孔11aが、貫通孔12aと同様に各独立パターンの導体層Dに対応して複数形成される。この第二の箔状部材10の通電層12及び絶縁層11は、各貫通孔12a,11aを除く部分がベタパターンに形成されている。 Further, as shown in FIG. 5B, the insulating layer 11 of the second foil-shaped member 10 has an opening diameter corresponding to the area to be treated of the surface E of the conductor layer D having an independent pattern, and has a through hole. A plurality of through holes 11a having an opening diameter slightly smaller than 12a are formed corresponding to the conductor layer D of each independent pattern, similarly to the through holes 12a. The current-carrying layer 12 and the insulating layer 11 of the second foil-like member 10 are formed in a solid pattern except for the through holes 12a and 11a.

このように構成された第二の箔状部材10を、被処理物Cの上に通電層12及び絶縁層11の順で重ね合わせると、図6(a)に示すように、絶縁層11の各貫通孔11aから各独立パターンの導体層Dの表面Eの被処理領域が露出すると共に、通電層12の一部が各貫通孔12aの周縁部近傍下面において導体層Dの表面Eと接触した状態とすることができる。この状態で、第二の箔状部材10とイオン伝導膜6とを重ね合わせ、イオン伝導膜6を各貫通孔11aを介して被処理物Cの各独立パターンの導体層Dの表面Eと密着させた上で、めっき処理を施す。 When the second foil-like member 10 configured in this way is superposed on the object C in the order of the conductive layer 12 and the insulating layer 11, as shown in FIG. 6A, the insulating layer 11 The area to be treated of the surface E of the conductor layer D of each independent pattern is exposed from each through hole 11a, and a part of the energizing layer 12 comes into contact with the surface E of the conductor layer D on the lower surface near the peripheral edge of each through hole 12a. Can be in a state. In this state, the second foil-like member 10 and the ion conductive film 6 are superposed, and the ion conductive film 6 is brought into close contact with the surface E of the conductor layer D of each independent pattern of the object C to be processed through the through holes 11a. After that, the plating process is performed.

めっき処理後の被処理物Cは、図6(b)及び図6(c)に示すように、各独立パターンの導体層Dの表面Eにおいて貫通孔11aで画定される被処理領域上にめっきによる被膜Fが形成された状態となる。このように、第二の箔状部材10の絶縁層11及び通電層12の貫通孔11a,12aの形状や数、種類等を導体層Dに合わせて工夫すれば、独立パターンの導体層Dを有する被処理物Cに対しても、表面Eの非処理領域をマスクして良好にめっき処理を行うことが可能となる。 As shown in FIGS. 6 (b) and 6 (c), the object to be plated C is plated on the area to be treated defined by the through hole 11a on the surface E of the conductor layer D of each independent pattern. The film F is formed by the above. In this way, if the shape, number, type, etc. of the through holes 11a, 12a of the insulating layer 11 of the second foil-shaped member 10 and the energizing layer 12 are devised according to the conductor layer D, the conductor layer D having an independent pattern can be obtained. It is possible to mask the non-treated region of the surface E and perform a satisfactorily plating treatment on the object C to be treated.

なお、第二例の被処理物Cは、複数の独立パターンの導体層Dを有し、各独立パターンの導体層Dの表面Eに一律にめっき処理がなされるものであったが、第二の箔状部材10の通電層12の構成を工夫すれば、例えば、各独立パターンの導体層Dの表面Eに選択的にめっき処理を行うことも可能となる。 The object C to be treated in the second example has a plurality of independent patterns of conductor layers D, and the surface E of the conductor layers D of each independent pattern is uniformly plated. By devising the configuration of the current-carrying layer 12 of the foil-shaped member 10, for example, it is possible to selectively plate the surface E of the conductor layer D of each independent pattern.

図7は、第三の箔状部材10の通電層12及び第三の箔状部材10を被処理物Cに重ねた状態を概略的に示す図であり、図7(a)は通電層12の上面を、図7(b)は被処理物Cに第三の箔状部材10を重ねた状態の上面を、それぞれ示している。上記図5(c)及び(d)に示した第二例の被処理物Cにおける各独立パターンの導体層Dの表面Eに、選択的にめっき処理を施す場合、第三の箔状部材10の絶縁層11は、図5(b)に示したものと同じパターンのものを用いることができるが、第三の箔状部材10の通電層12は、図7(a)に示すように、各貫通孔12aを有する複数の通電パターン12b(ここでは、三つの貫通孔12a毎に三つの通電パターン12b)により構成される。 FIG. 7 is a diagram schematically showing a state in which the energizing layer 12 of the third foil-shaped member 10 and the third foil-shaped member 10 are superposed on the object C to be processed, and FIG. 7A is a diagram schematically showing the energizing layer 12. 7 (b) shows the upper surface in a state where the third foil-like member 10 is superposed on the object C to be processed. When the surface E of the conductor layer D of each independent pattern in the object C of the second example shown in FIGS. 5 (c) and 5 (d) is selectively plated, the third foil-like member 10 As the insulating layer 11 of the above, the same pattern as that shown in FIG. 5 (b) can be used, but the conductive layer 12 of the third foil-like member 10 is as shown in FIG. 7 (a). It is composed of a plurality of energization patterns 12b having each through hole 12a (here, three energization patterns 12b for each of the three through holes 12a).

なお、各通電パターン12bの回路間の絶縁性を確保するため、通電層12の下面側(すなわち、被処理物C側)には、図3(b)に示したような貫通孔11aを有する絶縁層(図示せず)が配置される。なお、該絶縁層には、各通電パターン12bに各々独立して電源部7の負極を電気的に接続させるための貫通孔(図示せず)が更に形成されることが好ましい。このように通電層12の下方に別途絶縁層を配置することによって、電源部7による各通電パターン12bへの電圧印加等を選択的に行うことができる回路系を実現し、選択的に電源部7の負極を導体層Dに導通させて陰極としめっき処理することが可能となる。このような通電層12及び図示しない絶縁層は、層数が増えれば交互に配置され得る。 In order to ensure the insulation between the circuits of each energization pattern 12b, the lower surface side of the energization layer 12 (that is, the object C side to be processed) has a through hole 11a as shown in FIG. 3B. An insulating layer (not shown) is arranged. It is preferable that the insulating layer is further formed with through holes (not shown) for electrically connecting the negative electrode of the power supply unit 7 independently to each energization pattern 12b. By separately arranging the insulating layer below the energization layer 12 in this way, a circuit system capable of selectively applying a voltage to each energization pattern 12b by the power supply unit 7 is realized, and the power supply unit can be selectively applied. It is possible to conduct the negative electrode of No. 7 through the conductor layer D to form a cathode and perform plating treatment. Such an energizing layer 12 and an insulating layer (not shown) may be arranged alternately as the number of layers increases.

また、この通電層12の下方に配置された絶縁層の貫通孔11aの形状や数、種類等を適宜変更して配置することで、通電層12の上方に配置された絶縁層11の貫通孔11aの形状等によるバリエーションに加えて、選択的に通電等する回路パターンのバリエーションをさらに広げることが可能となる。 Further, by appropriately changing the shape, number, type, etc. of the through holes 11a of the insulating layer arranged below the energizing layer 12, the through holes of the insulating layer 11 arranged above the energizing layer 12 are arranged. In addition to the variation due to the shape of 11a and the like, it is possible to further expand the variation of the circuit pattern for selectively energizing and the like.

なお、第三の箔状部材10においても、各貫通孔11a,12aの開口径の関係については上述した通りである。また、通電層12がこのような複数の通電パターン12bにより構成され、選択的にめっき処理を行う場合、電源部7は、各通電パターン12b毎に印加電圧、印加電流及び印加時間の少なくとも一つを制御可能に構成され得る。 Also in the third foil-shaped member 10, the relationship between the opening diameters of the through holes 11a and 12a is as described above. Further, when the energization layer 12 is composed of such a plurality of energization patterns 12b and the plating process is selectively performed, the power supply unit 7 has at least one of the applied voltage, the applied current, and the applied time for each energizing pattern 12b. Can be configured to be controllable.

すなわち、各通電パターン12bにより構成された通電層12を被処理物Cに重ねると共に絶縁層11を重ねて被処理物C上に第三の箔状部材10を配置すると、図7(b)に示すようになり、この状態の第三の箔状部材10にイオン伝導膜6を重ね合わせて導体層Dの表面Eと密着させた上で、電源部7は、三つの各通電パターン12b毎に選択的に電流を流したり電圧を印加したり、或いはこれらの値を変更したりその時間を変化させたりして、独立パターンの三つずつの導体層Dの表面Eに選択的に異なるめっき処理を行うことができる。このように選択的にめっき処理を行うことで、各通電パターン12b毎に被膜Fの厚さを変えたり金属の析出速度や析出時間等を変更したりしてめっき処理を行うことができるので、被膜Fを所望の厚さや形状に自在に形成することが可能となる。 That is, when the current-carrying layer 12 composed of each current-carrying pattern 12b is superposed on the object to be treated C and the insulating layer 11 is superposed on the object to be treated C to arrange the third foil-like member 10 on the object to be treated C, FIG. 7B shows. As shown in the above, the ion conductive film 6 is superposed on the third foil-like member 10 in this state and brought into close contact with the surface E of the conductor layer D, and then the power supply unit 7 is used for each of the three energization patterns 12b. Selectively different plating treatments are applied to the surface E of each of the three conductor layers D in an independent pattern by selectively passing a current or applying a voltage, or changing these values or changing the time. It can be performed. By selectively performing the plating treatment in this way, it is possible to perform the plating treatment by changing the thickness of the coating film F for each energization pattern 12b and changing the precipitation rate, precipitation time, etc. of the metal. The coating film F can be freely formed to a desired thickness and shape.

なお、例えば、第二例の被処理物C(図5(c)等参照)は、上面視矩形状の独立パターンの導体層Dが九つ設けられた構造を備えているが、この被処理物Cの各々の導体層Dが密集したレイアウトで形成され、それぞれに対して独立して対応する貫通孔12a及び通電パターン12bを設けて、箔状部材10の通電層12を形成しようとすると、例えば、図8(a)に示すようになる。 For example, the object to be treated C (see FIG. 5 (c) and the like) of the second example has a structure in which nine conductor layers D having an independent pattern having a rectangular shape in a top view are provided. When each conductor layer D of the object C is formed in a dense layout, and the corresponding through holes 12a and the current-carrying pattern 12b are independently provided for each, the current-carrying layer 12 of the foil-like member 10 is formed. For example, as shown in FIG. 8 (a).

すなわち、貫通孔12a及び通電パターン12bを上記のような密集したレイアウトの導体層Dに対応させようとすると、例えば、被処理物Cの真ん中に配置された導体層Dに対しては、密集度合いによって貫通孔12aも通電パターン12bも形成できないような事態が生じることも想定される。 That is, when the through holes 12a and the energization pattern 12b are made to correspond to the conductor layer D having a dense layout as described above, for example, the degree of density is relative to the conductor layer D arranged in the center of the object C to be processed. It is also assumed that a situation may occur in which neither the through hole 12a nor the energization pattern 12b can be formed.

このような場合、すなわち、めっき処理すべき被処理物Cの導体層Dのパターンや密集度如何によっては、貫通孔11a,12aや通電パターン12b等の絶縁層11及び通電層12のレイアウトが異なる複数の箔状部材10を交換しながら複数回のめっき処理を行ったり、異なるレイアウトの貫通孔11a,12aや通電パターン12bを有する絶縁層11及び通電層12を導体層Dのパターン等に対応するように複数積層させて構成された箔状部材10を用いてめっき処理をしたり、両者の箔状部材10を併用してめっき処理すること等が好ましい。 In such a case, that is, the layout of the insulating layer 11 and the current-carrying layer 12 such as the through holes 11a and 12a and the current-carrying pattern 12b differs depending on the pattern and the density of the conductor layer D of the object to be plated C to be plated. The plating process is performed a plurality of times while exchanging the plurality of foil-like members 10, and the insulating layer 11 and the current-carrying layer 12 having through holes 11a and 12a and the current-carrying pattern 12b having different layouts correspond to the pattern of the conductor layer D and the like. It is preferable to perform a plating treatment using the foil-like members 10 configured by laminating a plurality of the foil-like members 10 as described above, or to perform a plating treatment using both foil-like members 10 in combination.

図8は、第四の箔状部材10A及び被処理物Cを概略的に示す図であり、図8(a)は第四の箔状部材10Aの通電層12の上面を、図8(b)は第四の箔状部材10Aの絶縁層11の上面を、図8(c)は第四の箔状部材10Aの通電層12及び絶縁層11を積層して被処理物Cに重ねた状態の上面を、それぞれ示している。また、図9は、表面処理が施された被処理物を上面及び断面で概略的に示す図であり、図9(a)は、表面処理が施された被処理物Cの上面を、図9(b)は図9(a)のM-M線断面図を、それぞれ示している。 FIG. 8 is a diagram schematically showing the fourth foil-shaped member 10A and the object to be processed C, and FIG. 8 (a) shows the upper surface of the current-carrying layer 12 of the fourth foil-shaped member 10A in FIG. 8 (b). ) Is a state in which the upper surface of the insulating layer 11 of the fourth foil-shaped member 10A is laminated, and FIG. The upper surface of each is shown. Further, FIG. 9 is a diagram schematically showing a surface-treated object to be treated with an upper surface and a cross section, and FIG. 9A is a view showing the upper surface of the surface-treated object C to be treated. 9 (b) shows the cross-sectional view taken along the line MM of FIG. 9 (a), respectively.

まず、上記のような九つの導体層Dが設けられた被処理物Cの真ん中に配置された導体層Dを除く各導体層Dに対して、それぞれ独立して対応する貫通孔12a及び通電パターン12bを設けて各導体層Dの表面Eにめっき処理を施す場合、第四の箔状部材10Aの通電層12は、図8(a)に示すように、導体層Dの外径よりも僅かに小さな開口径の貫通孔12aを有する独立した複数の通電パターン12b(ここでは、一つの貫通孔12aにつき一つの通電パターン12b)により構成される。 First, the through holes 12a and the energization pattern corresponding independently to each conductor layer D excluding the conductor layer D arranged in the center of the object C provided with the nine conductor layers D as described above. When 12b is provided and the surface E of each conductor layer D is plated, the current-carrying layer 12 of the fourth foil-shaped member 10A is slightly smaller than the outer diameter of the conductor layer D, as shown in FIG. 8A. It is composed of a plurality of independent energization patterns 12b (here, one energization pattern 12b for each through hole 12a) having a through hole 12a having a small opening diameter.

また、第四の箔状部材10Aの絶縁層11には、図8(b)に示すように、導体層Dの表面Eの被処理領域に対応する開口径であって、貫通孔12aよりも僅かに小さな開口径を有する貫通孔11aが、貫通孔12aのレイアウトと同様に真ん中に配置された導体層Dを除く各導体層Dに対応して複数形成される。 Further, as shown in FIG. 8B, the insulating layer 11 of the fourth foil-shaped member 10A has an opening diameter corresponding to the area to be treated of the surface E of the conductor layer D, which is larger than the through hole 12a. A plurality of through holes 11a having a slightly smaller opening diameter are formed corresponding to each conductor layer D except for the conductor layer D arranged in the center as in the layout of the through holes 12a.

このように構成された第四の箔状部材10Aを、被処理物Cの上に重ね合わせると、図8(c)に示すように、絶縁層11の各貫通孔11aから各導体層Dの表面Eの被処理領域が露出すると共に、通電層12の一部が上記真ん中を除く各貫通孔12aの周縁部近傍下面において各導体層Dの表面Eとそれぞれ独立して接触した状態とすることができる。 When the fourth foil-shaped member 10A configured in this way is superposed on the object C to be processed, as shown in FIG. 8C, the conductor layer D is formed from the through holes 11a of the insulating layer 11. The area to be treated on the surface E is exposed, and a part of the current-carrying layer 12 is in contact with the surface E of each conductor layer D independently on the lower surface near the peripheral edge of each through hole 12a except the center. Can be done.

なお、通電層12の下面側には各通電パターン12bの回路間の絶縁性を確保するための上述したような絶縁層(図示せず)が配置される。この状態で、第四の箔状部材10Aとイオン伝導膜6とを重ね合わせ、イオン伝導膜6を各貫通孔11aを介して被処理物Cの各導体層Dの表面Eと密着させた上で、めっき処理を行う。 An insulating layer (not shown) as described above for ensuring the insulating property between the circuits of each energizing pattern 12b is arranged on the lower surface side of the energizing layer 12. In this state, the fourth foil-like member 10A and the ionic conductive film 6 are superposed, and the ionic conductive film 6 is brought into close contact with the surface E of each conductor layer D of the object to be treated C via the through holes 11a. Then, the plating process is performed.

めっき処理後の被処理物Cは、図9(a)及び図9(b)に示すように、真ん中を除いた各導体層Dの表面Eにめっきによる被膜Fが形成された状態となる。第四の箔状部材10Aを利用しためっき処理では、めっき処理を一律に或いは各通電パターン12b毎に異ならせて施すことはできるが、上記の真ん中に配置された導体層Dのように、導体層Dのパターンや密集度如何によっては一回でのめっき処理を行うことができない場合が生じ得る。このような場合は、例えば、第五の箔状部材10B(図11(a)参照)のような構成のものを、一回或いは複数回のめっき処理で利用したり、第四の箔状部材10Aと組み合わせて利用したりするようにしても良い。 As shown in FIGS. 9A and 9B, the object C to be plated is in a state in which a coating film F formed by plating is formed on the surface E of each conductor layer D excluding the center. In the plating process using the fourth foil-shaped member 10A, the plating process can be performed uniformly or differently for each energization pattern 12b, but like the conductor layer D arranged in the center above, the conductor Depending on the pattern of the layer D and the degree of density, it may not be possible to perform the plating treatment at one time. In such a case, for example, the fifth foil-shaped member 10B (see FIG. 11A) may be used in one or more plating treatments, or the fourth foil-shaped member may be used. It may be used in combination with 10A.

図10は、第五の箔状部材10Bを概略的に示す上面図であり、図10(a)は第一層の通電層12Aを、図10(b)は第二層の絶縁層11Aを、図10(c)は第三層の通電層12Bを、図10(d)は第四層の絶縁層11Bを、それぞれ示している。また、図11は、第五の箔状部材10B及び被処理物Cを概略的に示す図であり、図11(a)は第五の箔状部材10Bを被処理物Cに重ねた状態の上面を、図11(b)は表面処理が施された被処理物Cの上面を、図11(c)は図11(b)のN-N線断面図を、それぞれ示している。 10B is a top view schematically showing the fifth foil-like member 10B, FIG. 10A shows the current-carrying layer 12A of the first layer, and FIG. 10B shows the insulating layer 11A of the second layer. 10 (c) shows the current-carrying layer 12B of the third layer, and FIG. 10 (d) shows the insulating layer 11B of the fourth layer. Further, FIG. 11 is a diagram schematically showing the fifth foil-shaped member 10B and the object to be treated C, and FIG. 11A shows a state in which the fifth foil-like member 10B is superposed on the object to be treated C. 11 (b) shows the upper surface, FIG. 11 (b) shows the upper surface of the object to be treated C, and FIG. 11 (c) shows the cross-sectional view taken along the line NN of FIG. 11 (b).

まず、上記のような九つの導体層Dが設けられた被処理物Cの真ん中に配置された第一導体層D及びその隣の第二導体層Dに対して、それぞれ独立して対応する貫通孔12a1,12a2及び通電パターン12b1,12b2を設けて表面Eにめっき処理を施す場合、第五の箔状部材10Bは、少なくとも四層構造を有するように構成される。 First, the first conductor layer D arranged in the center of the object C provided with the nine conductor layers D as described above and the second conductor layer D adjacent to the first conductor layer D are independently corresponding to each other. When the surface E is plated with the holes 12a1, 12a2 and the energization patterns 12b1, 12b2, the fifth foil-like member 10B is configured to have at least a four-layer structure.

まず、例えば、被処理物Cに最も近い第一層の通電層12Aは、図10(a)に示すように、例えば、第二導体層Dの外径よりも僅かに小さな開口径の貫通孔12a1を有する独立した通電パターン12b1により構成される。次に、第一層の通電層12Aの上に配置される第二層の絶縁層11Aには、図10(b)に示すように、例えば、第二導体層Dの表面Eの被処理領域に対応する開口径であって、貫通孔12a1よりも僅かに小さな開口径を有する貫通孔11a1、及び後述する第四層の絶縁層11Bの貫通孔11a2よりも大きな開口径を有する貫通孔11b1が、それぞれ第一及び第二導体層Dに対応して形成される。 First, for example, as shown in FIG. 10A, the current-carrying layer 12A of the first layer closest to the object C is a through hole having an opening diameter slightly smaller than the outer diameter of the second conductor layer D, for example. It is composed of an independent energization pattern 12b1 having 12a1. Next, as shown in FIG. 10B, the insulating layer 11A of the second layer arranged on the current-carrying layer 12A of the first layer has, for example, a treated region of the surface E of the second conductor layer D. The through hole 11a1 having an opening diameter slightly smaller than that of the through hole 12a1 and the through hole 11b1 having an opening diameter larger than that of the through hole 11a2 of the insulating layer 11B of the fourth layer, which will be described later, have an opening diameter corresponding to the above. , Corresponding to the first and second conductor layers D, respectively.

次に、第二層の絶縁層11Aの上に配置される第三層の通電層12Bは、図10(c)に示すように、例えば、第一導体層Dの外径よりも僅かに小さな開口径の貫通孔12a2を有し、第二層の通電パターン12b1とは位相(位置)をずらした独立した通電パターン12b2により構成される。 Next, the energizing layer 12B of the third layer arranged on the insulating layer 11A of the second layer is slightly smaller than the outer diameter of the first conductor layer D, for example, as shown in FIG. 10 (c). It has a through hole 12a2 with an opening diameter, and is composed of an independent energization pattern 12b2 that is out of phase (position) with the energization pattern 12b1 of the second layer.

そして、第三層の通電層12Bの上に配置される第四層の絶縁層11Bには、図10(d)に示すように、例えば、第一導体層Dの表面Eの被処理領域に対応する開口径であって、貫通孔12a2よりも僅かに小さな開口径を有する貫通孔11a2、及び第二層の絶縁層11Aの貫通孔11a1よりも大きな開口径を有する貫通孔11b2が、それぞれ第一及び第二導体層Dに対応して形成される。 Then, as shown in FIG. 10D, the insulating layer 11B of the fourth layer arranged on the current-carrying layer 12B of the third layer is, for example, in the area to be treated of the surface E of the first conductor layer D. A through hole 11a2 having a corresponding opening diameter slightly smaller than that of the through hole 12a2 and a through hole 11b2 having an opening diameter larger than that of the through hole 11a1 of the insulating layer 11A of the second layer are the first through holes, respectively. It is formed corresponding to the first and second conductor layers D.

このように構成された第五の箔状部材10Bを、被処理物Cの上に重ね合わせると、図11(a)に示すように、絶縁層11A,11Bの各貫通孔11a1,11a2から第二及び第一導体層Dの表面Eの被処理領域が露出する。これと共に、通電層12A,12Bの一部が各貫通孔12a1,12a2の周縁部近傍下面において第二及び第一導体層Dの表面Eとそれぞれ独立して接触した状態とすることができる。 When the fifth foil-shaped member 10B configured in this way is superposed on the object to be treated C, as shown in FIG. 11A, the fifth through holes 11a1, 11a2 of the insulating layers 11A and 11B are formed. The area to be treated on the surface E of the second and first conductor layers D is exposed. At the same time, a part of the energizing layers 12A and 12B can be brought into contact with the surface E of the second and first conductor layers D independently on the lower surface near the peripheral edge of the through holes 12a1 and 12a2, respectively.

なお、第一層の通電層12Aの下面側には、上述したような絶縁層(図示せず)が配置される。この状態で、第五の箔状部材10Bとイオン伝導膜6とを重ね合わせ、イオン伝導膜6を各貫通孔11b2,11a1及び貫通孔11a2,11b1を介して被処理物Cの第二及び第一導体層Dの表面Eと密着させる。そして、上述したような一律或いは各通電パターン12b1,12b2毎に異なるめっき処理を行う。 An insulating layer (not shown) as described above is arranged on the lower surface side of the current-carrying layer 12A of the first layer. In this state, the fifth foil-like member 10B and the ionic conductive film 6 are superposed, and the ionic conductive film 6 is passed through the through holes 11b2, 11a1 and the through holes 11a2, 11b1 to the second and second and second processed objects C. It is brought into close contact with the surface E of the one conductor layer D. Then, a uniform plating process as described above or a different plating process is performed for each of the energization patterns 12b1 and 12b2.

めっき処理後の被処理物Cは、図11(b)及び図11(c)に示すように、真ん中及びその隣のうちの一つの各第一及び第二導体層Dの表面Eにのみ、選択的にめっきによる被膜Fが形成された状態となる。第五の箔状部材10Bを利用しためっき処理では、めっき処理を一律に或いは各通電パターン12b毎に異ならせて施すことができるのみならず、各通電層12や絶縁層11の積層数や積層パターンを変更することで、上記第四の箔状部材10Aで例示したような真ん中に配置された第一導体層Dを含めて、任意の箇所に選択的にめっき処理することができるようになるので、種々の導体層Dのパターンや密集度合いにも適宜対応させためっき処理を行うことが可能となる。 As shown in FIGS. 11 (b) and 11 (c), the object C after the plating treatment is applied only to the surface E of each of the first and second conductor layers D in the middle and adjacent to the center. The film F is selectively formed by plating. In the plating process using the fifth foil-shaped member 10B, not only the plating process can be performed uniformly or differently for each energization pattern 12b, but also the number of laminated layers and the laminated layers of each energized layer 12 and the insulating layer 11 can be applied. By changing the pattern, it becomes possible to selectively plate any part including the first conductor layer D arranged in the center as illustrated in the fourth foil-like member 10A. Therefore, it is possible to perform a plating process that appropriately corresponds to various patterns of the conductor layer D and the degree of density.

本実施形態に係る表面処理装置1においては、上記のように各箔状部材10を様々な構成(例えば、第四の箔状部材10Aや第五の箔状部材10B等)とした上で表面処理を行うことで、上述したように微細で複雑なパターンの導体層Dが形成された被処理物Cについても、導体層Dの表面Eを適切且つ選択的にめっき処理することができる。 In the surface treatment apparatus 1 according to the present embodiment, each of the foil-shaped members 10 has various configurations (for example, a fourth foil-shaped member 10A, a fifth foil-shaped member 10B, etc.) as described above, and then the surface thereof is formed. By performing the treatment, the surface E of the conductor layer D can be appropriately and selectively plated even on the object C to which the conductor layer D having a fine and complicated pattern is formed as described above.

なお、イオン伝導膜6は、上述したように非常に薄く形成され、柔軟性や撓み性に優れたものであるため、微細で複雑なパターンの導体層Dの表面Eに合わせて形成された貫通孔11a,12a等を介して、十分且つ確実に表面Eに密着することができる。したがって、被処理物Cにおけるより微細なパターンや複雑なパターンの導体層Dの表面Eをも適切に処理することが可能である。 Since the ion conductive film 6 is formed very thin as described above and has excellent flexibility and flexibility, it penetrates the surface E of the conductor layer D having a fine and complicated pattern. It can be sufficiently and surely adhered to the surface E through the holes 11a, 12a and the like. Therefore, it is possible to appropriately process the surface E of the conductor layer D having a finer pattern or a complicated pattern in the object C to be processed.

また、被処理物Cの樹脂基材B上の導体層Dを陰極とするために、電源部7の負極と導通させる通電層12を有する箔状部材10は、非常に薄く且つ安価に構成することができるので、イオン伝導膜6が導体層Dの表面Eと密着する際の厚さ方向の変形量を小さくすることができ、イオン伝導膜6に掛かる負荷を低減することができる。 Further, in order to use the conductor layer D on the resin base material B of the object C as a cathode, the foil-like member 10 having the energizing layer 12 conducting conduction with the negative electrode of the power supply unit 7 is very thin and inexpensively configured. Therefore, the amount of deformation in the thickness direction when the ion conductive film 6 comes into close contact with the surface E of the conductor layer D can be reduced, and the load applied to the ion conductive film 6 can be reduced.

さらに、特許文献1に開示された従来技術の成膜装置では、導通部材の材料が不動態被膜ができやすい金属材料に限定されるが、本実施形態に係る箔状部材10は、様々な材料の組み合わせにより絶縁層11と通電層12を構成することができるので、導体層Dを陰極とするために電源部7の負極と導通させる部材の制約を低減させ、該部材の材料の選択肢を大きく広げることが可能となると共に、例えば電流効率を改善し、より微細な処理や複雑な処理を均一且つ適切に行うことが可能となる。 Further, in the conventional film forming apparatus disclosed in Patent Document 1, the material of the conductive member is limited to a metal material in which a passive film is likely to be formed, but the foil-like member 10 according to the present embodiment is made of various materials. Since the insulating layer 11 and the current-carrying layer 12 can be formed by the combination of the above, the restriction of the member conducting with the negative electrode of the power supply unit 7 is reduced in order to use the conductor layer D as the cathode, and the material choice of the member is greatly increased. In addition to being able to expand, for example, it is possible to improve current efficiency and perform finer processing and complicated processing uniformly and appropriately.

また、本実施形態に係る箔状部材10によれば、絶縁層11によりイオン伝導膜6と通電層12とを電気的に分離させることが可能となるため、通電層12において電気分解(本実施形態では金属の析出)が起こることを防止することができる。さらに、本実施形態に係る箔状部材10では、絶縁層11が、少なくとも通電層12と被処理物Cの導体層Dとの接触部において、該通電層12とイオン伝導膜6との間に配置されているため、該接触部においても、絶縁層11によってイオン伝導膜6と電気的に分離させることが可能となり、めっき被膜等によって通電層12と導体層Dとが接合される等の不具合を回避することが可能となる。 Further, according to the foil-shaped member 10 according to the present embodiment, the insulating layer 11 can electrically separate the ion conductive film 6 and the current-carrying layer 12, so that the current-carrying layer 12 is electrolyzed (this embodiment). In the form, it is possible to prevent metal precipitation) from occurring. Further, in the foil-like member 10 according to the present embodiment, the insulating layer 11 is placed between the current-carrying layer 12 and the ion conductive film 6 at least at the contact portion between the current-carrying layer 12 and the conductor layer D of the object C to be processed. Since they are arranged, the insulating layer 11 can be electrically separated from the ion conductive film 6 even in the contact portion, and the current-carrying layer 12 and the conductor layer D are joined by a plating film or the like. Can be avoided.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This novel embodiment can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

例えば、上記の実施形態では、液室3内の籠状部材20を陽極とすると共に、箔状部材10の通電層12が表面Eに接触した被処理物Cの導体層Dを陰極として、イオン伝導膜6を導体層Dの表面Eに密着させて電圧を印加し、金属を析出させるめっき処理を例に挙げて説明したが、表面処理としては、このようなめっき処理に限定されるものではない。 For example, in the above embodiment, the cage-shaped member 20 in the liquid chamber 3 is used as an anode, and the conductor layer D of the object C in which the current-carrying layer 12 of the foil-shaped member 10 is in contact with the surface E is used as a cathode as an ion. A plating process in which the conductive film 6 is brought into close contact with the surface E of the conductor layer D and a voltage is applied to precipitate a metal has been described as an example, but the surface treatment is not limited to such a plating process. do not have.

すなわち、表面処理装置1は、例えば、イオン伝導膜6を用いずに、液室3内にめっき液を導入して被処理物Cを浸漬させてからめっきを行うタイプの浸漬めっき処理等に利用することも可能である。 That is, the surface treatment apparatus 1 is used, for example, for a type of dip plating treatment in which a plating solution is introduced into a liquid chamber 3 to immerse the object to be treated C and then plating is performed without using the ion conductive film 6. It is also possible to do.

また、表面処理装置1は、電源部7の正極及び負極の極性を入れ替え、被処理物Cの導体層Dを陽極、ハウジング4内に配された電極(上記の実施形態では籠状部材20)を陰極とすることにより、被処理物Cの導体層Dのエッチング処理や洗浄処理等に利用することも可能である。この場合において、イオン伝導膜6及び箔状部材10の双方を用いても良いし、箔状部材10のみを用いても良い。 Further, in the surface treatment device 1, the polarities of the positive electrode and the negative electrode of the power supply unit 7 are exchanged, the conductor layer D of the object to be treated C is an anode, and the electrodes are arranged in the housing 4 (the cage-shaped member 20 in the above embodiment). Can be used for etching treatment, cleaning treatment, and the like of the conductor layer D of the object to be treated C by using the cathode as a cathode. In this case, both the ion conductive film 6 and the foil-shaped member 10 may be used, or only the foil-shaped member 10 may be used.

箔状部材10は、上述したように通電層12が導体層Dの一部に接するものであれば、種々の形状を採り得る。すなわち、箔状部材10は、絶縁層11及び通電層12を、被処理物Cの導体層Dの表面Eにおける被処理領域を塞がないように配置し、通電層12を、導体層Dの一部に接触させるように配置すれば良いので、上記例示した形状や配置態様に限定されるものではない。例えば、被処理物Cの導体層D以外の部分が絶縁性であり、絶縁層11及び/又は離型フィルム材46でマスクをする必要が無い場合には、絶縁層11の貫通孔11a及び離型フィルム材46の貫通孔を被処理物Cの導体層Dの表面Eにおける被処理領域よりも大きく形成し、絶縁層11及び/又は離型フィルム材46をマスク材として機能させない構成としても良い。 As described above, the foil-shaped member 10 can take various shapes as long as the current-carrying layer 12 is in contact with a part of the conductor layer D. That is, in the foil-like member 10, the insulating layer 11 and the energizing layer 12 are arranged so as not to block the area to be treated on the surface E of the conductor layer D of the object C, and the energizing layer 12 is placed on the conductor layer D. Since it may be arranged so as to be in contact with a part thereof, it is not limited to the above-exemplified shape and arrangement mode. For example, when the portion of the object to be treated C other than the conductor layer D is insulating and it is not necessary to mask with the insulating layer 11 and / or the release film material 46, the through hole 11a and the separation of the insulating layer 11 The through hole of the mold film material 46 may be formed larger than the area to be treated on the surface E of the conductor layer D of the object C, and the insulating layer 11 and / or the release film material 46 may not function as a mask material. ..

また、上記の実施形態では、絶縁層11及び/又は離型フィルム材46が、図示したような矩形の閉じた外縁を持つ形状(ロの字状)の貫通孔を有するものとして説明したが、これに限定されず、絶縁層11によって通電層12とイオン伝導膜6とを電気的に分離することができると共に、絶縁層11を被処理物Cの非処理領域に対して所望の位置に配置することが可能な構成であれば、貫通孔の形状は任意に変更可能であり、また、貫通孔を有さない構成としても良い。なお、本明細書において、「貫通孔」とは、一方の面から他方の面に亘って貫通する開口を意味し、外縁全域が閉じた開口に限定されず、外縁の一部が開放された形状(例えばコの字状の切り欠き等)も含まれるものとする。 Further, in the above embodiment, the insulating layer 11 and / or the release film material 46 has been described as having a through hole having a rectangular closed outer edge as shown in the figure (square shape). The insulating layer 11 is not limited to this, and the current-carrying layer 12 and the ion conductive film 6 can be electrically separated by the insulating layer 11, and the insulating layer 11 is arranged at a desired position with respect to the untreated region of the object to be treated C. The shape of the through hole can be arbitrarily changed as long as it can be configured, and the configuration may have no through hole. In addition, in this specification, a "through hole" means an opening penetrating from one surface to the other surface, and is not limited to an opening in which the entire outer edge is closed, and a part of the outer edge is opened. Shapes (eg, U-shaped notches, etc.) shall also be included.

なお、被処理物Cが、例えば、樹脂基材Bの表面上に導体層Dが形成されると共に樹脂基材Bの裏面側の導体層と表面側の導体層Dとが樹脂基材Bへの側面めっき(樹脂基材側面を含む全周に施された無電解めっき)や、樹脂基材Bの表面から裏面に亘って形成されたスルーホール(TH)等の手段により接続されているものである場合は、表面処理装置1の箔状部材10は絶縁層11のみを備えて構成されていれば良く、箔状部材10をマスク材として用いた表面処理を行うことも可能である。この場合、電源部7の負極は載置基台2に接続されていれば良い。 In the object C to be treated, for example, the conductor layer D is formed on the surface of the resin base material B, and the conductor layer on the back surface side and the conductor layer D on the front surface side of the resin base material B are transferred to the resin base material B. Side plating (electroless plating applied to the entire circumference including the side surface of the resin base material) or through holes (TH) formed from the front surface to the back surface of the resin base material B are connected by means. In this case, the foil-shaped member 10 of the surface treatment device 1 may be configured to include only the insulating layer 11, and the foil-shaped member 10 can be used as a mask material for surface treatment. In this case, the negative electrode of the power supply unit 7 may be connected to the mounting base 2.

また、例えば、上述した実施形態に係る表面処理プロセスでは、電解液を増圧して通電により金属を析出させる表面処理プロセスについて説明したが、被処理物Cを加熱する必要がある場合は、図1に示したハウジング4の上面と、載置基台2の下面側とに、上ヒータ55及び下ヒータ56を配置し、被処理物Cを所望の温度に設定することが可能である。また、溶液供給部に、電解液の加熱ユニット及び冷却ユニットを設ければ、被処理物Cの温度をさらに急速に変化させることも可能である。 Further, for example, in the surface treatment process according to the above-described embodiment, the surface treatment process of increasing the pressure of the electrolytic solution and precipitating the metal by energization has been described. However, when it is necessary to heat the object to be treated C, FIG. The upper heater 55 and the lower heater 56 can be arranged on the upper surface of the housing 4 and the lower surface side of the mounting base 2 shown in the above, and the object C to be treated can be set to a desired temperature. Further, if the solution supply unit is provided with a heating unit and a cooling unit for the electrolytic solution, the temperature of the object to be treated C can be changed more rapidly.

また、表面処理装置1としては、載置基台2の上方にハウジング4が設けられた、いわゆる縦型の表面処理装置を例に挙げて説明したが、これに限定されるものではない。また、排出流路31の液室3に臨む開口部が、ハウジング4の内部側面の最上部に設けられるものとして説明したが、これに限定されず、液室3内の気体を排出させるという機能を阻害しない範囲において、排出流路31の開口部の位置は任意に変更可能である。そのため、例えば、ハウジング4の内部上面に開口部が形成される構成としても良い。 Further, the surface treatment device 1 has been described by taking as an example a so-called vertical surface treatment device in which the housing 4 is provided above the mounting base 2, but the surface treatment device 1 is not limited thereto. Further, although the opening of the discharge flow path 31 facing the liquid chamber 3 has been described as being provided at the uppermost portion of the inner side surface of the housing 4, the function of discharging the gas in the liquid chamber 3 is not limited to this. The position of the opening of the discharge flow path 31 can be arbitrarily changed as long as it does not hinder. Therefore, for example, an opening may be formed on the inner upper surface of the housing 4.

また、供給流路41の液室3に臨む開口部が、ハウジング4の内部側面の最下部に設けられるものとして説明したが、これに限定されず、液室3に対して電解液を供給・排出するという機能を阻害しない範囲において、供給流路41の開口部の位置は任意に変更可能である。そのため、例えば、載置基台2に開口部が形成される構成としても良い。 Further, although the opening of the supply flow path 41 facing the liquid chamber 3 has been described as being provided at the lowermost portion of the inner side surface of the housing 4, the present invention is not limited to this, and the electrolytic solution is supplied to the liquid chamber 3. The position of the opening of the supply flow path 41 can be arbitrarily changed as long as the function of discharging is not impaired. Therefore, for example, an opening may be formed in the mounting base 2.

また、ハウジング4の(液室3の)内部上面が排出流路31の開口部側を最上部として鉛直方向に対して傾斜するものとして説明したが、これに限定されず、ハウジング4の(液室3の)内部上面の一部のみが鉛直方向に対して傾斜する構成や、ハウジング4の(液室3の)内部上面が鉛直方向に対して傾斜せずに平坦な構成など、種々の構成を採用することができる。 Further, it has been described that the inner upper surface of the housing 4 (of the liquid chamber 3) is inclined with respect to the vertical direction with the opening side of the discharge flow path 31 as the uppermost portion, but the present invention is not limited to this, and the (liquid) of the housing 4 is not limited to this. Various configurations such as a configuration in which only a part of the inner upper surface of the chamber 3 is inclined with respect to the vertical direction, and a configuration in which the inner upper surface of the housing 4 (of the liquid chamber 3) is flat without being inclined with respect to the vertical direction. Can be adopted.

さらに、上述した実施形態では、開閉弁付き加圧機構30及び流路開閉弁40がハウジング4の外部側面に装着されるものとして説明したが、これに限定されず、例えば、ハウジング4の側壁内に埋め込まれるように、表面処理装置1に一体的に設けられる構成、或いは流路系の配管等を介して完全に外部に別体として設けられる構成等、これらの設置位置は任意に変更可能である。 Further, in the above-described embodiment, the pressurizing mechanism 30 with an on-off valve and the flow path on-off valve 40 have been described as being mounted on the outer side surface of the housing 4, but the present invention is not limited to this, and for example, the inside of the side wall of the housing 4. These installation positions can be arbitrarily changed, such as a configuration that is integrally provided in the surface treatment device 1 so as to be embedded in the surface treatment device 1, or a configuration that is completely externally provided as a separate body via a flow path system pipe or the like. be.

その他、ハウジング4に開閉弁付き加圧機構30が設けられるものとして説明したが、これに限定されず、表面処理装置1が液室3内に充填された電解液を加圧可能な構成であれば良く、例えば、液室3の形成後にさらにハウジング4を載置基台2に対して接近させる(又は載置基台2をハウジング4に対して接近させる)ことで、液室3内の電解液を加圧する構成等であっても良い。また、開閉弁付き加圧機構30の設置位置は、液室3内の電解液を加圧するという機能を阻害しない範囲において、任意に変更可能である。 In addition, the description has been made assuming that the housing 4 is provided with a pressurizing mechanism 30 with an on-off valve, but the present invention is not limited to this, and the surface treatment device 1 may be configured to pressurize the electrolytic solution filled in the liquid chamber 3. For example, after the liquid chamber 3 is formed, the housing 4 is further brought closer to the mounting base 2 (or the mounting base 2 is brought closer to the housing 4) to electrolyze the liquid chamber 3. It may be configured to pressurize the liquid. Further, the installation position of the pressurizing mechanism 30 with an on-off valve can be arbitrarily changed as long as the function of pressurizing the electrolytic solution in the liquid chamber 3 is not impaired.

また、移動機構5が、直動ロッド51を備えるものとして説明したが、これに限定されず、載置基台2及びハウジング4の少なくとも一方を他方に対して接近又は離隔する方向に相対移動させることが可能な構成であれば、例えば空圧式又は油圧式のシリンダ機構、ボールねじ機構、ラックアンドピニオン機構及びトグル機構等の種々の機構を採用することが可能である。 Further, although the moving mechanism 5 has been described as including the linear motion rod 51, the present invention is not limited to this, and at least one of the mounting base 2 and the housing 4 is relatively moved in a direction of approaching or separating from the other. As long as it is possible, various mechanisms such as a pneumatic or hydraulic cylinder mechanism, a ball screw mechanism, a rack and pinion mechanism, and a toggle mechanism can be adopted.

なお、移動機構5は、載置基台2及びハウジング4が相対移動不能となるよう位置保持(ロック)可能な構成、例えば、液室3内の圧力(内圧)以上の圧力で載置基台2及びハウジング4の少なくとも一方を押さえ込むことで載置基台2及びハウジング4の相対移動を規制する構成や、物理的なロック機構等の構成をさらに備えることが挙げられる。 The moving mechanism 5 has a configuration in which the mounting base 2 and the housing 4 can be held (locked) in a position so as to be relatively immovable, for example, the mounting base 5 has a pressure equal to or higher than the pressure (internal pressure) in the liquid chamber 3. It is possible to further include a configuration for restricting the relative movement of the mounting base 2 and the housing 4 by pressing at least one of the mounting base 2 and the housing 4, and a configuration such as a physical locking mechanism.

表面処理は、電子部品等の被処理物Cを含めて多くの分野で用いられており、本発明の適用先や応用先は広い。また、電解液を直接被処理物Cに接触させることができる表面処理の場合は、上述したイオン伝導膜6を排除して表面処理装置1を構成することができるので、より簡易な装置構成で各種の表面処理を行うことが可能である。 Surface treatment is used in many fields including an object C such as an electronic component, and the present invention has a wide range of applications and applications. Further, in the case of surface treatment in which the electrolytic solution can be brought into direct contact with the object to be treated C, the above-mentioned ion conductive film 6 can be eliminated to form the surface treatment device 1, so that the device configuration is simpler. It is possible to perform various surface treatments.

1 表面処理装置
2 載置基台
3 液室
4 ハウジング
5 移動機構
6 イオン伝導膜
7 電源部
8 支持基台
9 排気流路
9a 排気ポート
9b トレイ
10 箔状部材
11 絶縁層
12 通電層
13 コネクタ部
20 籠状部材
21 支持柱部
22 高さ調整スペーサ
23 底部
30 開閉弁付き加圧機構
31 排出流路
32,42,49 スプール
33,43,57 閉操作ポート
34,44,58 開操作ポート
35,45 給排ポート
36 内枠膜治具
37 外枠膜治具
38 上クランプ部
39 下クランプ部
40 流路開閉弁
41 供給流路
46 離型フィルム材
47 開閉弁
48 減圧流路
50 傾斜機構
50a 直動ロッド
51 直動ロッド
52 剥離機構
52a 直動ロッド
55 上ヒータ
55a 絶縁部材
56 下ヒータ
B 樹脂基材
C 被処理物
D 導体層
E 表面
F 被膜
1 Surface treatment device 2 Mounting base 3 Liquid chamber 4 Housing 5 Moving mechanism 6 Ion conduction film 7 Power supply part 8 Support base 9 Exhaust flow path 9a Exhaust port 9b Tray 10 Foil-like member 11 Insulation layer 12 Energizing layer 13 Connector part 20 Cage-shaped member 21 Support pillar 22 Height adjustment spacer 23 Bottom 30 Pressurizing mechanism with on-off valve 31 Discharge flow path 32,42,49 Spool 33,43,57 Closing operation port 34,44,58 Opening operation port 35, 45 Supply / discharge port 36 Inner frame membrane jig 37 Outer frame membrane jig 38 Upper clamp part 39 Lower clamp part 40 Flow path on-off valve 41 Supply flow path 46 Release film material 47 On-off valve 48 Decompression flow path 50 Tilt mechanism 50a Straight Dynamic rod 51 Linear rod 52 Peeling mechanism 52a Linear rod 55 Upper heater 55a Insulation member 56 Lower heater B Resin base material C Material to be treated D Conductor layer E Surface F coating

Claims (13)

導体層が表面に形成された被処理物を載置可能な載置基台と、
前記載置基台に対して対向配置されて、内部に液室を形成可能なハウジングと、
前記ハウジング内に配された電極と、
電解液を前記液室内に供給可能な溶液供給部と、
前記液室と前記載置基台との間に配置されたイオン伝導膜と、
前記イオン伝導膜と前記被処理物との間に配置された絶縁層及び通電層を有する箔状部材と、
前記電極と前記導体層との間に電圧を印加する電源部と、を備え、
前記箔状部材は、
前記通電層が、前記電源部と前記導体層とを導通するように、該導体層の一部に接触可能に配置されると共に、前記絶縁層が、前記通電層と前記イオン伝導膜との間に配置され、
前記イオン伝導膜を前記導体層の表面に接触させて、前記電極と前記通電層に接続された前記導体層との間に電圧を印加し、前記イオン伝導膜を介した電気分解により前記導体層の表面を処理する
ことを特徴とする表面処理装置。
A mounting base on which a material to be processed with a conductor layer formed on the surface can be placed,
A housing that is placed opposite to the above-mentioned pedestal and can form a liquid chamber inside,
The electrodes arranged in the housing and
A solution supply unit capable of supplying the electrolytic solution into the liquid chamber,
An ionic conductive membrane arranged between the liquid chamber and the above-mentioned pedestal,
A foil-like member having an insulating layer and an energizing layer arranged between the ion conductive film and the object to be treated,
A power supply unit for applying a voltage between the electrode and the conductor layer is provided.
The foil-like member is
The energizing layer is arranged so as to be in contact with a part of the conductor layer so as to conduct the power supply unit and the conductor layer, and the insulating layer is placed between the energizing layer and the ion conductive film. Placed in
The ionic conductive film is brought into contact with the surface of the conductor layer, a voltage is applied between the electrode and the conductor layer connected to the current-carrying layer, and the conductor layer is electrolyzed via the ionic conductive film. A surface treatment device characterized by treating the surface of a material.
前記電極は、前記液室内の前記電解液に浸かる位置に配置されている
ことを特徴とする請求項1記載の表面処理装置。
The surface treatment apparatus according to claim 1, wherein the electrode is arranged at a position of being immersed in the electrolytic solution in the liquid chamber.
前記電極は、前記液室内に配置された金属製の籠状部材からなり、
前記籠状部材の内部には、可溶性を有する金属が配置されている
ことを特徴とする請求項1又は2記載の表面処理装置。
The electrode is composed of a metal cage-shaped member arranged in the liquid chamber.
The surface treatment apparatus according to claim 1 or 2, wherein a soluble metal is arranged inside the cage-shaped member.
前記箔状部材は、前記絶縁層及び前記通電層を交互に複数積層してなる
ことを特徴とする請求項1~3のいずれか1項記載の表面処理装置。
The surface treatment apparatus according to any one of claims 1 to 3, wherein the foil-like member is formed by alternately laminating a plurality of the insulating layer and the energizing layer.
前記箔状部材は、前記絶縁層及び前記通電層を有する可撓性プリント基板からなる
ことを特徴とする請求項1~4のいずれか1項記載の表面処理装置。
The surface treatment apparatus according to any one of claims 1 to 4, wherein the foil-like member is composed of a flexible printed circuit board having the insulating layer and the energizing layer.
前記イオン伝導膜と前記箔状部材との間に配置された離型フィルム材を更に備える
ことを特徴とする請求項1~5のいずれか1項記載の表面処理装置。
The surface treatment apparatus according to any one of claims 1 to 5, further comprising a release film material arranged between the ion conductive film and the foil-like member.
前記箔状部材は、前記イオン伝導膜と接触する表面に離型処理が施されている
ことを特徴とする請求項1~5のいずれか1記載の表面処理装置。
The surface treatment apparatus according to any one of claims 1 to 5, wherein the foil-like member is subjected to a mold release treatment on a surface in contact with the ion conductive film.
前記箔状部材の前記通電層は、複数の通電パターンを有し、
前記電源部は、前記複数の通電パターン毎に印加電圧、印加電流及び印加時間の少なくとも一つを制御可能に構成されている
ことを特徴とする請求項1~7のいずれか1項記載の表面処理装置。
The energizing layer of the foil-like member has a plurality of energizing patterns.
The surface according to any one of claims 1 to 7, wherein the power supply unit is configured to be able to control at least one of an applied voltage, an applied current, and an applied time for each of the plurality of energization patterns. Processing equipment.
前記箔状部材の前記絶縁層は、前記導体層の表面の被処理領域の形状に応じた形状の貫通孔を有し、該貫通孔が前記被処理領域上に配置されると共に、該貫通孔を除く部分が、前記導体層の表面における非処理領域上を覆うように配置されている
ことを特徴とする請求項1~8のいずれか1項記載の表面処理装置。
The insulating layer of the foil-like member has a through hole having a shape corresponding to the shape of the surface of the conductor layer to be treated, and the through hole is arranged on the processed region and the through hole is arranged. The surface treatment apparatus according to any one of claims 1 to 8, wherein a portion other than the above is arranged so as to cover the non-treated region on the surface of the conductor layer.
前記箔状部材の前記絶縁層は、少なくとも前記通電層と前記被処理物の前記導体層との接触部において、該通電層と前記イオン伝導膜との間に配置されている
ことを特徴とする請求項1~9のいずれか1項記載の表面処理装置。
The insulating layer of the foil-like member is characterized in that it is arranged between the current-carrying layer and the ion conductive film at least at a contact portion between the current-carrying layer and the conductor layer of the object to be treated. The surface treatment apparatus according to any one of claims 1 to 9.
前記載置基台及び前記ハウジングを所定角度に傾斜可能な傾斜機構を更に備える
ことを特徴とする請求項1~10のいずれか1項記載の表面処理装置。
The surface treatment apparatus according to any one of claims 1 to 10, further comprising a tilting mechanism capable of tilting the base and the housing at a predetermined angle.
導体層が表面に形成された被処理物を載置可能な載置基台と、
前記載置基台に対して対向配置されて、内部に液室を形成可能なハウジングと、
前記ハウジング内に配された電極と、
電解液を前記液室内に供給可能な溶液供給部と、
前記液室と前記被処理物との間に配置された箔状部材と、
前記電極と前記導体層との間に電圧を印加する電源部と、を備え、
前記箔状部材は、
前記導体層の表面の被処理領域の形状に応じた形状の貫通孔を有し、該貫通孔が前記被処理領域上に配置されるように構成され、
前記電解液を前記貫通孔を介して前記導体層の表面に接触させて、前記電極及び前記電源部と導通された前記導体層の間に電圧を印加し、電気分解により前記導体層の表面を処理する
ことを特徴とする表面処理装置。
A mounting base on which a material to be processed with a conductor layer formed on the surface can be placed,
A housing that is placed opposite to the above-mentioned pedestal and can form a liquid chamber inside,
The electrodes arranged in the housing and
A solution supply unit capable of supplying the electrolytic solution into the liquid chamber,
A foil-like member arranged between the liquid chamber and the object to be treated,
A power supply unit for applying a voltage between the electrode and the conductor layer is provided.
The foil-like member is
It has a through hole having a shape corresponding to the shape of the area to be processed on the surface of the conductor layer, and the through hole is configured to be arranged on the area to be processed.
The electrolytic solution is brought into contact with the surface of the conductor layer through the through hole, a voltage is applied between the electrode and the conductor layer conducted with the power supply unit, and the surface of the conductor layer is electrolyzed. A surface treatment device characterized by processing.
前記液室と前記載置基台との間であって前記箔状部材よりも前記液室側に配置されたイオン伝導膜を更に備え、
前記イオン伝導膜を前記貫通孔を介して前記導体層の表面に接触させて、該イオン伝導膜を介した前記電気分解により前記導体層の表面を処理する
ことを特徴とする請求項12記載の表面処理装置。
Further, an ion conductive film arranged between the liquid chamber and the above-mentioned pedestal on the liquid chamber side of the foil-like member is further provided.
The twelfth aspect of claim 12, wherein the ion conductive film is brought into contact with the surface of the conductor layer through the through hole, and the surface of the conductor layer is treated by the electrolysis through the ion conductive film. Surface treatment equipment.
JP2020152104A 2020-09-10 2020-09-10 Surface treatment device Pending JP2022046180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020152104A JP2022046180A (en) 2020-09-10 2020-09-10 Surface treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020152104A JP2022046180A (en) 2020-09-10 2020-09-10 Surface treatment device

Publications (2)

Publication Number Publication Date
JP2022046180A true JP2022046180A (en) 2022-03-23
JP2022046180A5 JP2022046180A5 (en) 2022-09-14

Family

ID=80779734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020152104A Pending JP2022046180A (en) 2020-09-10 2020-09-10 Surface treatment device

Country Status (1)

Country Link
JP (1) JP2022046180A (en)

Similar Documents

Publication Publication Date Title
US9677185B2 (en) Film formation apparatus and film formation method for forming metal film
US10760172B2 (en) Film forming method for metal film and film forming apparatus therefor
KR101735254B1 (en) Film formation system and film formation method for forming metal film
JP2004524436A (en) Flow diffuser used in electrochemical plating system
WO2010054677A1 (en) A system for plating a conductive substrate, and a substrate holder for holding a conductive substrate during plating thereof
US9752246B2 (en) Film formation apparatus and film formation method forming metal film
CN112533392A (en) Method for manufacturing wiring substrate and wiring substrate
JP2020132948A (en) Film forming apparatus for metal film
JP2022046180A (en) Surface treatment device
JP2016169399A (en) Apparatus and method for film deposition of metal coating
JP2022091406A (en) Pressure device
CN111511105A (en) Component carrier with through-holes filled with additional plating structures and bridge structures
US7112268B2 (en) Plating device and plating method
US20070131563A1 (en) Means to improve center to edge uniformity of electrochemical mechanical processing of workpiece surface
US9840786B2 (en) Film deposition device of metal film and film deposition method
US20040266193A1 (en) Means to improve center-to edge uniformity of electrochemical mechanical processing of workpiece surface
JP2021066921A (en) Production method of circuit board
JP2024013565A (en) Surface treatment apparatus, surface treatment method, and drain flow path forming member
JP2023148994A (en) Mounting stand, and surface treatment device
US5100524A (en) Apparatus for selectively coating part of a member
JP2024067506A (en) Film forming equipment
ES2590130T3 (en) Method for washing and / or drying an electrochemical replication chamber of models (ECPR), and corresponding mandrels and mandrel assemblies
CN115976610A (en) Apparatus and method for forming metal coating
JP2023125866A (en) Electronic substrate processing method, and electronic substrate processing device
US20240133069A1 (en) Film forming apparatus for forming metal film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240422