JP2022045233A - Wheel load fluctuation detection device and wheel load fluctuation detection method - Google Patents

Wheel load fluctuation detection device and wheel load fluctuation detection method Download PDF

Info

Publication number
JP2022045233A
JP2022045233A JP2020150812A JP2020150812A JP2022045233A JP 2022045233 A JP2022045233 A JP 2022045233A JP 2020150812 A JP2020150812 A JP 2020150812A JP 2020150812 A JP2020150812 A JP 2020150812A JP 2022045233 A JP2022045233 A JP 2022045233A
Authority
JP
Japan
Prior art keywords
wheel
wheel load
value
load
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020150812A
Other languages
Japanese (ja)
Inventor
信一 嵯峨
Shinichi Saga
祥吾 間々田
Shogo Mamada
達哉 太田
Tatsuya Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2020150812A priority Critical patent/JP2022045233A/en
Publication of JP2022045233A publication Critical patent/JP2022045233A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a wheel load fluctuation detection device and a wheel load fluctuation detection method capable of accurately detecting fluctuation of a wheel load.SOLUTION: A wheel load fluctuation detection device 17A detects wheel load fluctuation. A wheel load fluctuation amount calculation unit 23A calculates a fluctuation amount of a wheel load, based on output signals of a first-place acceleration detection unit GS1 to a fourth-place acceleration detection unit GS4 that detect the vertical acceleration of a wheel shaft and an axle box body, and output signals of a first-place piezoelectric unit ES1 to a fourth-place piezoelectric unit ES4 that detect a load acting between the axle box body and a truck frame. A wheel load conversion unit 20A converts the output signals of the first-place piezoelectric unit ES1 to fourth-place piezoelectric unit ES4 into a wheel load value. An acceleration conversion unit 21A converts the output signals of the first-place acceleration detection unit GS1 to fourth-place acceleration detection unit GS4 into a vertical acceleration value. The wheel load fluctuation amount calculation unit 23A calculates an evaluation wheel load value for evaluating the wheel load fluctuation amount, based on the vertical acceleration value, the wheel load value, and a stationary wheel load value.SELECTED DRAWING: Figure 7

Description

この発明は、輪重の変動を検出する輪重変動検出装置及び輪重変動検出方法に関する。 The present invention relates to a wheel load fluctuation detecting device for detecting wheel load fluctuations and a wheel load fluctuation detecting method.

圧電ゴムや圧電素子を防振ゴムに内蔵して、荷重の検出や荷重変動に伴う振動による発電を利用した周波数解析によって、軸受損傷などを検知する車両状態判定装置が提案されている(例えば、特許文献1参照)。従来の車両状態判定装置は、車両の軸箱の振動を抑える防振ゴムに内蔵された圧電ゴム部に作用する荷重に応じて出力する電気信号に基づいて、車両の状態を判定する車両状態判定部を備えている。 A vehicle condition determination device has been proposed in which a piezoelectric rubber or a piezoelectric element is built in a vibration-proof rubber to detect bearing damage by frequency analysis using load detection and power generation due to vibration caused by load fluctuation (for example). See Patent Document 1). The conventional vehicle condition determination device determines the vehicle condition based on an electric signal output according to the load acting on the piezoelectric rubber portion built in the vibration-proof rubber that suppresses the vibration of the axle box of the vehicle. It has a part.

また、軸箱支持装置に内蔵されたロードセル等で輪重を検出する重量センサを備えるBC圧調整装置が提案されている(例えば、特許文献2参照)。従来のBC圧調整装置は、空気ばね圧を検出して車両重量を検出するセンサの出力と、輪軸の軸箱支持装置に内蔵された輪重を検出するロードセルの出力とに基づいて重量指標値を演算し、ブレーキ指令に対応するBC圧をこの重量指標値に基づいて補正している。 Further, a BC pressure adjusting device including a weight sensor for detecting the wheel load by a load cell or the like built in the axle box support device has been proposed (see, for example, Patent Document 2). In the conventional BC pressure adjusting device, the weight index value is based on the output of the sensor that detects the air spring pressure and detects the vehicle weight and the output of the load cell that detects the wheel weight built in the axle box support device of the wheel set. Is calculated, and the BC pressure corresponding to the brake command is corrected based on this weight index value.

特許第6179952号公報Japanese Patent No. 6179952

特許第6250423号公報Japanese Patent No. 6250423

従来の車両状態判定装置では、常に荷重が変動した状態で発電する特性を圧電ゴムや圧電素子が持つため、荷重が整定した状態においては、発電することができず、検知が困難となる。特に、鉄道車両の走行安全性評価で用いられる PQ軸(輪重横圧)で得られる輪重値との比較においては、輪重値よりも小さい値として得られる場合が多く、評価できる条件(常に振動している環境)に制限があった。ここで、PQ軸とは、車輪とレールとの接触点に働く垂直方向の力(輪重P)及び水平方向の力(横圧Q)を測定するために使用される輪軸である。従来のBC圧調整装置では、軸箱支持装置に内蔵されたロードセル等の重量センサによって輪重を検出しているが、重量センサについて具体的な構造が示されておらず、重量指標値についても具体的に示されていない。 In the conventional vehicle condition determination device, since the piezoelectric rubber and the piezoelectric element have the characteristic of generating electricity in a state where the load is constantly fluctuating, the piezoelectric rubber and the piezoelectric element cannot generate electricity in a state where the load is settled, which makes detection difficult. In particular, in comparison with the wheel load value obtained on the PQ axis (wheel load lateral pressure) used in the running safety evaluation of railway vehicles, it is often obtained as a value smaller than the wheel load value, and the conditions that can be evaluated ( There was a limit to the environment that is constantly vibrating). Here, the PQ axis is a wheel set used to measure a vertical force (wheel weight P) and a horizontal force (lateral pressure Q) acting on a contact point between a wheel and a rail. In the conventional BC pressure adjusting device, the wheel load is detected by a weight sensor such as a load cell built in the axle box support device, but the specific structure of the weight sensor is not shown, and the weight index value is also Not specifically shown.

この発明の課題は、輪重の変動を正確に検出することができる輪重変動検出装置及び輪重変動検出方法を提供することである。 An object of the present invention is to provide a wheel load fluctuation detecting device and a wheel load fluctuation detecting method capable of accurately detecting a wheel load fluctuation.

この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、図1~図3、図7及び図8に示すように、輪重(P)の変動を検出する輪重変動検出装置であって、輪軸(W1~W4)及び軸箱体(6)の上下加速度(G)を検出する加速度検出部(GS1~GS8)の出力信号と、前記軸箱体と台車枠(7)との間に作用する荷重を検出する圧電部(ES1~ES8)の出力信号とに基づいて、前記輪重の変動量(ΔP)を演算する輪重変動量演算部(21A,21B)を備えることを特徴とする輪重変動検出装置(17A,17B)である。
The present invention solves the above-mentioned problems by means of solutions as described below.
Although the description will be given with reference numerals corresponding to the embodiments of the present invention, the present invention is not limited to this embodiment.
The invention of claim 1 is a wheel load fluctuation detecting device for detecting a fluctuation of the wheel load (P) as shown in FIGS. 1 to 3, 7 and 8, and is a wheel set (W 1 to W 4 ). And the output signal of the acceleration detection unit (GS 1 to GS 8 ) that detects the vertical acceleration (G) of the axle box body (6), and the load acting between the axle box body and the carriage frame (7) are detected. A wheel set is provided with a wheel set fluctuation amount calculation unit (21A, 21B) for calculating the wheel weight fluctuation amount (ΔP) based on the output signals of the piezoelectric units (ES 1 to ES 8 ). It is a fluctuation detection device (17A, 17B).

請求項2の発明は、請求項1に記載の輪重変動検出装置において、図7及び図8に示すように、前記加速度検出部の出力信号を上下加速度値に変換する加速度変換部(19A,19B)と、前記圧電部の出力信号を輪重値(PE)に変換する輪重変換部(18A,18B)と、車両(2)が走行を開始してから所定速度(V0)に到達したときの静止輪重値(P0)を演算する静止輪重値演算部(22A,22B)とを備え、前記輪重変動量演算部は、前記上下加速度値、前記輪重値及び前記静止輪重値に基づいて、前記輪重の変動量を演算することを特徴とする輪重変動検出装置である。 According to the second aspect of the present invention, in the wheel load fluctuation detection device according to the first aspect, as shown in FIGS. 7 and 8, an acceleration conversion unit (19A, 19A, which converts an output signal of the acceleration detection unit into a vertical acceleration value. 19B), the wheel load conversion unit (18A, 18B ) that converts the output signal of the piezoelectric unit into a wheel load value (PE), and the predetermined speed (V 0 ) after the vehicle (2) starts traveling. The stationary wheel load value calculation unit (22A, 22B) for calculating the stationary wheel load value (P 0 ) at the time of arrival is provided, and the wheel load fluctuation amount calculation unit includes the vertical acceleration value, the wheel load value, and the said. It is a wheel load fluctuation detecting device characterized in that the fluctuation amount of the wheel load is calculated based on the stationary wheel load value.

請求項3の発明は、請求項2に記載の輪重変動検出装置において、前記輪重変動量演算部は、前記上下加速度値G、前記輪重値PE及び前記静止輪重値P0であるときに、前記輪重の変動量を評価するための評価輪重値PEVを以下の評価式によって演算すること

Figure 2022045233000002
を特徴とする輪重変動検出装置である。 The invention of claim 3 is the wheel load fluctuation detection device according to claim 2, wherein the wheel load fluctuation amount calculation unit has the vertical acceleration value G , the wheel load value PE, and the stationary wheel load value P 0 . At a certain time, the evaluation wheel load value PEV for evaluating the fluctuation amount of the wheel load is calculated by the following evaluation formula.
Figure 2022045233000002
It is a wheel load fluctuation detection device characterized by.

請求項4の発明は、図1~図3、図7及び図12に示すように、輪重(P)の変動を検出する輪重変動検出方法であって、輪軸(W1~W4)及び軸箱体(6)の上下加速度を検出する加速度検出部(GS1~GS8)の出力信号と、前記軸箱体と台車枠との間に作用する荷重を検出する圧電部(ES1~ES8)の出力信号とに基づいて、前記輪重の変動量(ΔP)を演算する輪重変動量演算工程(S140)を含むことを特徴とする輪重変動検出方法である。 The invention of claim 4 is a wheel load fluctuation detecting method for detecting a fluctuation of the wheel load (P) as shown in FIGS. 1 to 3, 7 and 12, and is a wheel set (W 1 to W 4 ). And the output signal of the acceleration detection unit (GS 1 to GS 8 ) that detects the vertical acceleration of the axle box body (6), and the piezoelectric unit (ES 1 ) that detects the load acting between the axle box body and the carriage frame. The wheel set variation detection method includes a wheel set variation amount calculation step (S140) for calculating the wheel set variation amount (ΔP) based on the output signal of ES 8 ).

この発明によると、輪重の変動を正確に検出することができる。 According to the present invention, fluctuations in wheel load can be accurately detected.

この発明の実施形態に係る輪重変動検出装置を備える車両を模式的に示す平面図である。It is a top view which shows typically the vehicle which includes the wheel load fluctuation detection apparatus which concerns on embodiment of this invention. この発明の実施形態に係る輪重変動検出装置を備える車両を模式的に示す側面図であり、(A)は右側面図であり、(B)は左側面図である。It is a side view which shows typically the vehicle which includes the wheel load fluctuation detection apparatus which concerns on embodiment of this invention, (A) is a right side view, (B) is a left side view. この発明の実施形態に係る輪重変動検出装置を備える車両の第1台車の4位の部分を拡大して示す側面図である。It is a side view which shows the 4th place part of the 1st bogie of the vehicle provided with the wheel load fluctuation detection device which concerns on embodiment of this invention in an enlarged manner. この発明の実施形態に係る輪重変動検出装置を備える車両の加速度検出部を取り付ける軸ばねライナの外観図であり、(A)は平面図であり、(B)は左側面図である。It is an external view of the shaft spring liner which attaches the acceleration detection part of the vehicle which comprises the wheel load fluctuation detection apparatus which concerns on embodiment of this invention, (A) is a plan view, (B) is a left side view. この発明の実施形態に係る輪重変動検出装置を備える車両の圧電部を備える防振ゴムの外観図であり、(A)は一部を破断して示す平面図であり、(B)は(A)のV-VB線で切断した状態を示す断面図であり、(C)は(B)のVC部分を拡大して示す断面図である。FIG. 3 is an external view of a vibration-proof rubber provided with a piezoelectric portion of a vehicle provided with a wheel load fluctuation detection device according to an embodiment of the present invention, FIG. It is a cross-sectional view which shows the state cut by the V-VB line of A), and (C) is the sectional view which shows the VC part of (B) enlarged. この発明の実施形態に係る輪重変動検出装置を備える車両の加速度検出部を取り付ける取付板の平面図である。It is a top view of the mounting plate which attaches the acceleration detection part of the vehicle which comprises the wheel load fluctuation detection apparatus which concerns on embodiment of this invention. この発明の実施形態に係る輪重変動検出装置の第1台車側の構成図である。It is a block diagram of the 1st bogie side of the wheel load fluctuation detection apparatus which concerns on embodiment of this invention. この発明の実施形態に係る輪重変動検出装置の第2台車側の構成図である。It is a block diagram of the 2nd bogie side of the wheel load fluctuation detection apparatus which concerns on embodiment of this invention. この発明の実施形態に係る輪重変動検出装置の輪重変動量演算部による定速走行時における測定波形を一例として示すグラフであり、(A)は力行ノッチの時間変化を示すグラフであり、(B)は車両速度の時間変化を示すグラフであり、(C)は1位の輪重の時間変化を示すグラフであり、(D)は2位の輪重の時間変化を示すグラフであり、(E)は1位側輪重と2位側輪重とを加算した第1輪軸の軸重の時間変化を示すグラフである。It is a graph which shows the measurement waveform at the time of a constant speed running by the wheel set fluctuation amount calculation unit of the wheel set fluctuation detection apparatus which concerns on embodiment of this invention, and (A) is a graph which shows the time change of a power running notch. (B) is a graph showing the time change of the vehicle speed, (C) is a graph showing the time change of the first wheel weight, and (D) is a graph showing the time change of the second wheel weight. , (E) is a graph showing the time change of the axial weight of the first wheel axle, which is the sum of the 1st-position side wheel weight and the 2-position side wheel weight. この発明の実施形態に係る輪重変動検出装置の輪重変動量演算部によるブレーキ時における測定波形を一例として示すグラフであり、(A)はブレーキノッチの時間変化を示すグラフであり、(B)は車両速度の時間変化を示すグラフであり、(C)は1位の輪重の時間変化を示すグラフであり、(D)は2位の輪重の時間変化を示すグラフであり、(E)は1位側輪重と2位側輪重とを加算した第1輪軸の軸重の時間変化を示すグラフである。It is a graph which shows the measurement waveform at the time of braking by the wheel set variation amount calculation unit of the wheel set fluctuation detection apparatus which concerns on embodiment of this invention as an example, (A) is a graph which shows the time change of a brake notch, (B). ) Is a graph showing the time change of the vehicle speed, (C) is a graph showing the time change of the first wheel weight, and (D) is a graph showing the time change of the second wheel weight. E) is a graph showing the time change of the axial weight of the first wheel axle, which is the sum of the 1st-position side wheel weight and the 2-position side wheel weight. この発明の実施形態に係る輪重変動検出装置の輪重変動量演算部によるブレーキ時における輪重波形の周波数解析の結果を一例として示すグラフであり、(A)はPQ軸による輪重PEの周波数解析の結果のグラフであり、(B)は圧電センサによる輪重PEVの周波数解析の結果のグラフであり、(C)は本発明による輪重Pの周波数解析の結果のグラフである。It is a graph which shows the result of the frequency analysis of the wheel load waveform at the time of braking by the wheel load fluctuation amount calculation unit of the wheel load fluctuation detection device which concerns on embodiment of this invention as an example, (A) is a wheel load PE by a PQ axis. It is a graph of the result of the frequency analysis of, (B) is the graph of the result of the frequency analysis of the wheel load P EV by the piezoelectric sensor, and (C) is the graph of the result of the frequency analysis of the wheel load P by the present invention. .. この発明の実施形態に係る輪重変動検出方法を説明するためのフローチャートである。It is a flowchart for demonstrating the wheel load variation detection method which concerns on embodiment of this invention.

以下、図面を参照して、この発明の実施形態について詳しく説明する。
図2及び図3に示す線路1は、車両2が走行する通路(軌道)である。線路1は、車両2の車輪4を支持し案内して車両2を走行させる左右のレール1aを備えており、レール1aは車輪4の踏面4aと接触して車輪4を直接支持する頭頂面(頭部上面)1bを備えている。図2及び図3に示す輪重Pは、レール1aと車輪4との接触点に働く垂直方向の力である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The track 1 shown in FIGS. 2 and 3 is a passage (track) on which the vehicle 2 travels. The track 1 includes left and right rails 1a that support and guide the wheels 4 of the vehicle 2 to run the vehicle 2, and the rails 1a are in contact with the treads 4a of the wheels 4 to directly support the wheels 4 (top surface). The upper surface of the head) 1b is provided. The wheel load P shown in FIGS. 2 and 3 is a vertical force acting on the contact point between the rail 1a and the wheel 4.

図1及び図2に示す車両2は、線路1に沿って走行する鉄道車両である。車両2は、例えば、電車、気動車、機関車、客車又は貨車などである。図1及び図2は、例えば、主たる区間を200km/h以上の高速で走行する新幹線車両である。車両2は、図1及び図2に示す車体3と、第1台車T1及び第2台車T2と、図1、図2及び図7に示す輪重変動検出装置17A,17Bなどを備えている。車両2は、図1及び図2に示すように、この車両2の前位(前側)から後位(後側)に向かって、この車両2の左右の各部分の位置が1位~8位で規定されている。車両2は、図1及び図2に示すように、後位から前位に向かって右側(右側面(非公式側))が1位、3位、5位及び7位で規定されており、後位から前位に向かって左側(左側面(公式側))が2位、4位、6位及び8位で規定されている。車体3は、旅客又は貨物などの積載物を輸送する部分である。 The vehicle 2 shown in FIGS. 1 and 2 is a railroad vehicle traveling along the track 1. The vehicle 2 is, for example, a train, a diesel railcar, a locomotive, a passenger car, a freight car, or the like. 1 and 2 are, for example, Shinkansen trains traveling at a high speed of 200 km / h or more in a main section. The vehicle 2 includes a vehicle body 3 shown in FIGS. 1 and 2, a first bogie T 1 and a second bogie T 2 , and wheel load fluctuation detection devices 17A and 17B shown in FIGS. 1, 2 and 7. There is. As shown in FIGS. 1 and 2, the vehicle 2 has the positions of the left and right parts of the vehicle 2 in the 1st to 8th positions from the front position (front side) to the rear position (rear side) of the vehicle 2. It is stipulated in. As shown in FIGS. 1 and 2, the vehicle 2 is defined on the right side (right side (unofficial side)) from the rear position to the front position in the 1st, 3rd, 5th and 7th positions. The left side (left side (official side)) from the rear to the front is defined as 2nd, 4th, 6th and 8th. The vehicle body 3 is a part that transports a load such as a passenger or cargo.

第1台車T1及び第2台車T2は、車体3を支持して走行する装置である。第1台車T1は、車両2の前位側の台車であり、第2台車T2は車両2の後位側の台車である。第1台車T1及び第2台車T2は、図1及び図2に示す第1輪軸W1~第4輪軸W4と、図3に示す軸箱体6と、図1~図3に示す台車枠7と、図3に示す軸ばね8と、図3及び図4に示す軸ばねライナ9と、図3に示す軸ばね支持板10と、図1及び図2に示す第1空気ばねS1~第4空気ばねS4と、図1、図2、図7及び図8に示す第1圧力検出部PS1~第4圧力検出部PS4と、図3及び図5に示す防振ゴム11と、図2、図3、図5及び図7に示す1位圧電部ES1~8位圧電部ES8と、図2~図4、図6及び図7に示す1位加速度検出部GS1~8位加速度検出部GS8などを備えている。以下では、図3に示す第1台車T1の4位の部分を中心に説明し、図1及び図2に示す第1台車T1の1位~3位及び第2台車T2の5位~8位については第1台車T1の4位と同一の部分に同一の符号を付して詳細な説明を省略する。 The first bogie T 1 and the second bogie T 2 are devices that support and travel the vehicle body 3. The first bogie T 1 is a bogie on the front side of the vehicle 2, and the second bogie T 2 is a bogie on the rear side of the vehicle 2. The first trolley T 1 and the second trolley T 2 are shown in FIGS. 1 and 2, the first wheel shaft W 1 to the fourth wheel shaft W 4 , the axle box body 6 shown in FIG. 3, and FIGS. 1 to 3. The carriage frame 7, the shaft spring 8 shown in FIG. 3, the shaft spring liner 9 shown in FIGS. 3 and 4, the shaft spring support plate 10 shown in FIG. 3, and the first air spring S shown in FIGS. 1 and 2. The 1st to 4th air springs S 4 , the 1st pressure detection unit PS 1 to the 4th pressure detection unit PS 4 shown in FIGS. 1, 2, 7 and 8, and the anti-vibration rubber shown in FIGS. 3 and 5. 11, the 1-position piezoelectric section ES 1 to 8-position piezoelectric section ES 8 shown in FIGS. 2, 3, 5, and 7, and the 1-position acceleration detection section GS shown in FIGS. 2 to 4, FIG. 6 and FIG. It is equipped with a 1st to 8th position acceleration detection unit GS 8 and the like. In the following, the fourth position of the first bogie T 1 shown in FIG. 3 will be mainly described, and the first to third positions of the first bogie T 1 and the fifth position of the second bogie T 2 shown in FIGS. 1 and 2. Regarding the 8th place, the same parts as the 4th place of the 1st bogie T1 are designated by the same reference numerals, and detailed description thereof will be omitted.

図1及び図2に示す第1輪軸W1~第4輪軸W4は、車輪4と車軸5とを組み立てた部材である。第1輪軸W1は、第1台車T1の前位側の輪軸であり、第2輪軸W2は第1台車T1の後位側の輪軸である。第3輪軸W3は、第2台車T2の前位側の輪軸であり、第4輪軸W4は第2台車T2の後位側の輪軸である。第1輪軸W1~第4輪軸W4は、いずれも同一構造であり、図1~図3に示す車輪4と図1に示す車軸5などを備えている。図1~図3に示す車輪4は、レール1aと転がり接触する部材である。車輪4は、図2及び図3に示すように、レール1aの頭頂面1bと接触して摩擦抵抗を受ける踏面4aと、脱輪を防止するために車輪4の外周部に連続して形成されたフランジ面4bなどを備えている。図1に示す車軸5は、車輪4と一体となって回転する部材である。車軸5は、両端部に左右一対の車輪4が圧入され取り付けられている。 The first wheel axle W 1 to the fourth wheel axle W 4 shown in FIGS. 1 and 2 are members in which the wheel 4 and the axle 5 are assembled. The first wheelset W 1 is a wheelset on the front side of the first bogie T 1 , and the second wheelset W 2 is a wheelset on the rear side of the first bogie T 1 . The third wheel set W 3 is a wheel set on the front side of the second bogie T 2 , and the fourth wheel set W 4 is a wheel set on the rear side of the second bogie T 2 . The first wheel axle W 1 to the fourth wheel axle W 4 all have the same structure, and include the wheels 4 shown in FIGS. 1 to 3 and the axle 5 shown in FIG. 1. The wheels 4 shown in FIGS. 1 to 3 are members that are in rolling contact with the rail 1a. As shown in FIGS. 2 and 3, the wheel 4 is continuously formed on the tread surface 4a that comes into contact with the crown surface 1b of the rail 1a and receives frictional resistance, and the outer peripheral portion of the wheel 4 in order to prevent derailment. It also has a flange surface 4b and the like. The axle 5 shown in FIG. 1 is a member that rotates integrally with the wheel 4. A pair of left and right wheels 4 are press-fitted and attached to both ends of the axle 5.

図3に示す軸箱体6は、車軸5を回転自在に支持する軸受を介して車軸5の両端部が嵌合する部分である。軸箱体6は、車軸5を回転自在に保持するとともに、台車枠7を支持する部材である。軸箱体6は、上面6aと心棒6bなどを備えている。上面6aは、防振ゴム11を支持する部分である。上面6aは、軸箱体6の上部に形成された平坦面である。心棒6bは、軸箱体6上の所定の位置に防振ゴム11を位置決めする部材である。心棒6bは、図3及び図4に示す軸ばねライナ9、図3に示す軸ばね支持板10及び図5に示す防振ゴム11を貫通する円柱状の突起部である。心棒6bは、図3に示すように、軸箱体6の上面6aから突出しており、軸ばね8の内周部に挿入されている。 The axle box body 6 shown in FIG. 3 is a portion where both ends of the axle 5 are fitted via bearings that rotatably support the axle 5. The axle box body 6 is a member that rotatably holds the axle 5 and supports the bogie frame 7. The axle box body 6 includes an upper surface 6a, a mandrel 6b, and the like. The upper surface 6a is a portion that supports the anti-vibration rubber 11. The upper surface 6a is a flat surface formed on the upper portion of the axle box body 6. The mandrel 6b is a member that positions the anti-vibration rubber 11 at a predetermined position on the axle box body 6. The mandrel 6b is a columnar protrusion penetrating the shaft spring liner 9 shown in FIGS. 3 and 4, the shaft spring support plate 10 shown in FIG. 3, and the anti-vibration rubber 11 shown in FIG. As shown in FIG. 3, the mandrel 6b protrudes from the upper surface 6a of the axle box body 6 and is inserted into the inner peripheral portion of the axle spring 8.

図1~図3に示す台車枠7は、第1台車T1及び第2台車T2の主要構成部である。台車枠7は、図示しないけん引装置によって車体3に連結されており、車体3との間で前後方向の力が伝達される。台車枠7は、図1に示すこの台車枠7の左右を構成する側梁7aと、左右の側梁7aをつなぐ横梁7bと、図3に示す軸ばね8の上端部を側梁7aの端部で保持するばね帽7cなどを備えている。 The bogie frame 7 shown in FIGS. 1 to 3 is a main component of the first bogie T 1 and the second bogie T 2 . The bogie frame 7 is connected to the vehicle body 3 by a towing device (not shown), and a force in the front-rear direction is transmitted to and from the vehicle body 3. The bogie frame 7 has a side beam 7a constituting the left and right sides of the bogie frame 7 shown in FIG. 1, a cross beam 7b connecting the left and right side beams 7a, and an upper end portion of the shaft spring 8 shown in FIG. 3 at the end of the side beam 7a. It is equipped with a spring cap 7c and the like that are held by the part.

図3に示す軸ばね8は、軸箱体6と台車枠7との間の衝撃を緩和する部材である。軸ばね8は、軸箱体6と台車枠7との間で垂直方向の荷重を弾性的に支持する。図3及び図4に示す軸ばねライナ9は、軸箱体6と台車枠7との間の間隔を調整するために部材である。軸ばねライナ9は、図3に示す軸箱体6と防振ゴム11との間に単数又は複数枚挿入される平面形状が円形の金属製の板状部材である。軸ばねライナ9は、図4に示すように、この軸ばねライナ9の外周部から突出する取付部9aと、軸箱体6の心棒6bが貫通するように、心棒6bに横方向からこの軸ばねライナ9を挿入するための切欠部9bなどを備えている。図3に示す軸ばね支持板10は、軸ばね8を支持する部材である。軸ばね支持板10は、平面形状が円形の金属製の板状部材である。軸ばね支持板10は、この軸ばね支持板10の中心部に軸箱体6の心棒6bが貫通する貫通孔を備えており、軸ばね8の下端部を保持する。 The shaft spring 8 shown in FIG. 3 is a member that cushions the impact between the shaft box body 6 and the bogie frame 7. The axle spring 8 elastically supports a vertical load between the axle box body 6 and the bogie frame 7. The axle spring liner 9 shown in FIGS. 3 and 4 is a member for adjusting the distance between the axle box body 6 and the bogie frame 7. The shaft spring liner 9 is a metal plate-shaped member having a circular planar shape, in which a single or a plurality of pieces are inserted between the shaft box body 6 and the anti-vibration rubber 11 shown in FIG. As shown in FIG. 4, the shaft spring liner 9 has this shaft laterally through the mandrel 6b so that the mounting portion 9a protruding from the outer peripheral portion of the shaft spring liner 9 and the mandrel 6b of the axle box body 6 penetrate. It is provided with a notch 9b or the like for inserting the spring liner 9. The shaft spring support plate 10 shown in FIG. 3 is a member that supports the shaft spring 8. The shaft spring support plate 10 is a metal plate-shaped member having a circular planar shape. The shaft spring support plate 10 is provided with a through hole through which the mandrel 6b of the shaft box body 6 penetrates in the central portion of the shaft spring support plate 10, and holds the lower end portion of the shaft spring 8.

図1及び図2に示す第1空気ばねS1~第4空気ばねS4は、車体3と台車枠7との間を結合し、主として車体3の垂直方向の荷重を支持しつつ台車枠7から車体3に伝わる振動を低減する装置(まくらばね)である。第1空気ばねS1~第4空気ばねS4は、いずれも同一構造であり、図1及び図2に示すように、第1空気ばねS1は第1台車T1の右側に配置されており、第2空気ばねS2は第1台車T1の左側に配置されており、第3空気ばねS3は第2台車T2の右側に配置されており、第4空気ばねS4は第2台車T2の左側に配置されている。 The first air springs S1 to the fourth air springs S4 shown in FIGS. 1 and 2 are coupled between the vehicle body 3 and the bogie frame 7, and mainly support the vertical load of the vehicle body 3 while supporting the bogie frame 7. It is a device (pillar spring) that reduces the vibration transmitted from the vehicle body 3. The first air spring S 1 to the fourth air spring S 4 all have the same structure, and as shown in FIGS. 1 and 2, the first air spring S 1 is arranged on the right side of the first carriage T 1 . The second air spring S 2 is arranged on the left side of the first trolley T 1 , the third air spring S 3 is arranged on the right side of the second trolley T 2 , and the fourth air spring S 4 is the second. It is located on the left side of the two-wheeled vehicle T 2 .

図1、図2、図7及び図8に示す第1圧力検出部PS1~第4圧力検出部PS4は、第1空気ばねS1~第4空気ばねS4の空気圧を検出する手段である。第1圧力検出部PS1~第4圧力検出部PS4は、いずれも同一構造であり、図1に示すように、第1圧力検出部PS1は第1空気ばねS1の空気圧を検出し、第1圧力検出部PS1は第1空気ばねS1の空気圧を検出し、第2圧力検出部PS2は第2空気ばねS2の空気圧を検出し、第3圧力検出部PS3は第3空気ばねS3の空気圧を検出し、第4圧力検出部PS4は第4空気ばねS4の空気圧を検出する。第1圧力検出部PS1~第4圧力検出部PS4は、第1空気ばねS1~第4空気ばねS4の内部の空気圧(空気ばね圧(AS圧))を検出する圧力センサである。第1圧力検出部PS1~第4圧力検出部PS4は、第1空気ばねS1~第4空気ばねS4の内部の空気圧を空気圧信号として輪重変動検出装置17A,17Bの空電変換部18A,18Bに出力する。 The first pressure detection unit PS 1 to the fourth pressure detection unit PS 4 shown in FIGS. 1, 2, 7, and 8 are means for detecting the air pressure of the first air spring S 1 to the fourth air spring S 4 . be. The first pressure detection unit PS 1 to the fourth pressure detection unit PS 4 all have the same structure, and as shown in FIG. 1, the first pressure detection unit PS 1 detects the air pressure of the first air spring S 1 . , The first pressure detection unit PS 1 detects the air pressure of the first air spring S 1 , the second pressure detection unit PS 2 detects the air pressure of the second air spring S 2 , and the third pressure detection unit PS 3 is the third. 3 The air pressure of the air spring S 3 is detected, and the fourth pressure detection unit PS 4 detects the air pressure of the fourth air spring S 4 . The first pressure detection unit PS 1 to the fourth pressure detection unit PS 4 are pressure sensors that detect the internal air pressure (air spring pressure (AS pressure)) of the first air spring S 1 to the fourth air spring S 4 . .. The first pressure detection unit PS 1 to the fourth pressure detection unit PS 4 use the air pressure inside the first air spring S 1 to the fourth air spring S 4 as an air pressure signal to convert the wheel load fluctuation detection devices 17A and 17B into static electricity. Output to units 18A and 18B.

図3及び図5に示す防振ゴム11は、車両2の軸箱体6から台車枠7に伝わる振動を抑える部材である。防振ゴム11は、図3に示すように、軸箱体6と軸ばね8との間に挟み込まれた状態でこれらの間に装着されている。防振ゴム11は、軸箱体6の振動を抑え振動の伝達を防止するとともに、これらの間に発生する衝撃を緩和して騒音の発生を防止する。防振ゴム11は、図5(A)に示すように、平面形状が円形の板状部材である。防振ゴム11は、図5に示すように、ゴム部12と、取付板13A,13Bと、4位圧電部ES4などを備えている。図5に示す防振ゴム11は、圧電ゴム部14を内蔵する圧電ゴム内蔵型の軸ばね防振ゴムである。防振ゴム11は、ゴム部12、取付板13A,13B及び4位圧電部ES4などが一体となってゴム成形されている。 The anti-vibration rubber 11 shown in FIGS. 3 and 5 is a member that suppresses vibration transmitted from the axle box body 6 of the vehicle 2 to the bogie frame 7. As shown in FIG. 3, the anti-vibration rubber 11 is mounted between the axle box body 6 and the axle spring 8 in a state of being sandwiched between them. The anti-vibration rubber 11 suppresses the vibration of the axle box body 6 to prevent the transmission of the vibration, and also alleviates the impact generated between them to prevent the generation of noise. As shown in FIG. 5A, the anti-vibration rubber 11 is a plate-shaped member having a circular planar shape. As shown in FIG. 5, the anti-vibration rubber 11 includes a rubber portion 12, mounting plates 13A and 13B, a 4-position piezoelectric portion ES 4 , and the like. The anti-vibration rubber 11 shown in FIG. 5 is a shaft spring anti-vibration rubber having a built-in piezoelectric rubber portion 14. The anti-vibration rubber 11 is rubber-molded by integrating the rubber portion 12, the mounting plates 13A and 13B, the 4-position piezoelectric portion ES 4 , and the like.

図5(A)(B)に示すゴム部12は、防振ゴム11の本体を構成する部分である。ゴム部12は、例えば、天然ゴム、スチレンゴムなどの一般加硫ゴム、ニトリルゴムなどの耐油性を有する加硫ゴム、クロロプレンゴムなどの耐候性及び耐有性を有する加硫ゴム、ブチルゴムなどの振動緩衝性能を有する加硫ゴム又は合成高分子から製造される合成ゴムなどの弾性材である。ゴム部12は、図5(B)に示すように、貫通孔12aを備えている。貫通孔12aは、軸箱体6の心棒6bが貫通する部分であり、ゴム部12の中心に形成されている。 The rubber portion 12 shown in FIGS. 5A and 5B is a portion constituting the main body of the anti-vibration rubber 11. The rubber portion 12 includes, for example, general vulcanized rubber such as natural rubber and styrene rubber, oil-resistant vulcanized rubber such as nitrile rubber, weather-resistant and durable vulcanized rubber such as chloroprene rubber, and butyl rubber. It is an elastic material such as vulcanized rubber having vibration buffering performance or synthetic rubber manufactured from synthetic polymer. As shown in FIG. 5B, the rubber portion 12 is provided with a through hole 12a. The through hole 12a is a portion through which the mandrel 6b of the axle box body 6 penetrates, and is formed in the center of the rubber portion 12.

取付板13A,13Bは、防振ゴム11の上面及び下面を構成する部分である。取付板13A,13Bは、ゴム部12を挟み込むようにゴム部12の上面及び下面に積層されており、ゴム部12の両面全域を被覆するようにゴム部12に接合されている。取付板13A,13Bは、例えば、一般構造用圧延鋼材(SS400)などの金具であり、互いに平行になるようにゴム部12の両面に加硫接着されている。取付板13Aは、防振ゴム11の上面プレート部を構成しており、軸ばね支持板10の下面と接合している。取付板13Bは、防振ゴム11の下面プレート部を構成しており、軸ばねライナ9の上面と接合している。取付板13A,13Bは、図5(B)に示すように、この取付板13A,13Bの中心に、軸箱体6の心棒6bが貫通する貫通孔13a,13bを備えている。取付板13Bは、図6に示すように、この取付板13Bに4位圧電部ES4を取り付ける場合には、この取付板13Bの外周部から突出する取付部13cを備えている。 The mounting plates 13A and 13B are portions constituting the upper surface and the lower surface of the anti-vibration rubber 11. The mounting plates 13A and 13B are laminated on the upper surface and the lower surface of the rubber portion 12 so as to sandwich the rubber portion 12, and are joined to the rubber portion 12 so as to cover the entire surfaces of both sides of the rubber portion 12. The mounting plates 13A and 13B are, for example, metal fittings such as rolled steel for general structure (SS400), and are vulcanized and bonded to both surfaces of the rubber portion 12 so as to be parallel to each other. The mounting plate 13A constitutes the upper surface plate portion of the anti-vibration rubber 11 and is joined to the lower surface of the shaft spring support plate 10. The mounting plate 13B constitutes the lower surface plate portion of the anti-vibration rubber 11 and is joined to the upper surface of the shaft spring liner 9. As shown in FIG. 5B, the mounting plates 13A and 13B are provided with through holes 13a and 13b through which the mandrel 6b of the axle box body 6 penetrates at the center of the mounting plates 13A and 13B. As shown in FIG. 6, the mounting plate 13B includes a mounting portion 13c protruding from the outer peripheral portion of the mounting plate 13B when the 4-position piezoelectric portion ES 4 is mounted on the mounting plate 13B.

図1、図2、図7及び図8に示す1位圧電部ES1~8位圧電部ES8は、軸箱体6と台車枠7との間に作用する荷重を検出する手段である。1位圧電部ES1~8位圧電部ES8は、線路1上を車両2が走行するときに発生する機械的な振動を電気信号に変換する機械電気変換部として機能する。1位圧電部ES1~8位圧電部ES8は、図3に示す軸箱体6と台車枠7との間の変位を検出することによって、これらの間に作用する荷重を検出する。1位圧電部ES1~8位圧電部ES8は、例えば、電荷信号を出力する電荷出力型又は電圧信号を出力する電圧出力型の圧電センサである。1位圧電部ES1~8位圧電部ES8は、軸箱体6と台車枠7の間に作用する荷重に応じて発生する電荷又は電圧を電気信号として出力する。1位圧電部ES1~8位圧電部ES8は、図5(A)に示すように、防振ゴム11の円周上に等間隔に2つずつ配置されており、防振ゴム11に作用する荷重を検出する。1位圧電部ES1~8位圧電部ES8は、いずれも同一構造であり、以下では図3及び図5に示す4位圧電部ES4を例に挙げて説明する。4位圧電部ES4は、図5(C)に示す圧電ゴム部14と、電極部15A,15Bと、図5に示す導電部16A,16Bなどを備えている。 The 1st-position piezoelectric portions ES 1 to 8th-position piezoelectric portions ES 8 shown in FIGS. 1, 2, 7 and 8 are means for detecting the load acting between the axle box body 6 and the bogie frame 7. The 1st-position piezoelectric section ES 1 to the 8-position piezoelectric section ES 8 functions as a mechanical electrical conversion section that converts mechanical vibration generated when the vehicle 2 travels on the track 1 into an electric signal. The 1-position piezoelectric portion ES 1 to the 8-position piezoelectric portion ES 8 detects the displacement between the axle box body 6 and the bogie frame 7 shown in FIG. 3, and thereby detects the load acting between them. The 1st-position piezoelectric section ES 1 to 8-position piezoelectric section ES 8 are, for example, a charge output type piezoelectric sensor that outputs a charge signal or a voltage output type piezoelectric sensor that outputs a voltage signal. The 1st-position piezoelectric section ES 1 to the 8-position piezoelectric section ES 8 outputs an electric charge or voltage generated according to the load acting between the axle box body 6 and the bogie frame 7 as an electric signal. As shown in FIG. 5A, two 1-position piezoelectric portions ES 1 to 8-position piezoelectric portions ES 8 are arranged on the circumference of the anti-vibration rubber 11 at equal intervals, and are arranged on the anti-vibration rubber 11 at equal intervals. Detect the acting load. The 1-position piezoelectric portion ES 1 to the 8-position piezoelectric portion ES 8 have the same structure, and the 4-position piezoelectric portion ES 4 shown in FIGS. 3 and 5 will be described below as an example. The 4-position piezoelectric portion ES 4 includes a piezoelectric rubber portion 14 shown in FIG. 5C, electrode portions 15A and 15B, and conductive portions 16A and 16B shown in FIG.

図5(C)に示す圧電ゴム部14は、防振ゴム11に内蔵された状態でこの防振ゴム11に作用する荷重に応じて電気信号を出力する部分である。圧電ゴム部14は、線路1上を車両2が走行するときに発生する振動を圧電効果によって電気信号に変換する圧電体である。圧電ゴム部14は、防振ゴム11と同様に軸箱体6の振動を抑えて振動の伝達を防止するとともに、これらの間に発生する衝撃を緩和して騒音の発生を防止する。圧電ゴム部14は、ゴム中に圧電材料を分散させた部材であり、振動の大きさ(荷重の大きさ)に応じた電力を発生する弾性を有する圧電素子である。圧電ゴム部14は、例えば、ニトリルゴムなどのゴム材とチタン酸ジルコン酸鉛(商品名PZT)などの圧電セラミック粉末とを混合する混合工程と、この混合工程後の混合物を加硫する加硫工程と、この加硫工程後の混合物の両端部に電圧を印加してこの混合物を分極させる分極工程とによって製造される。圧電ゴム部14は、防振ゴム11に作用する荷重に応じた出力信号(荷重検出信号)を輪重変動検出装置17A,17Bの輪重変換部20A,20Bに出力する。 The piezoelectric rubber portion 14 shown in FIG. 5C is a portion that outputs an electric signal according to a load acting on the vibration-proof rubber 11 in a state of being built in the vibration-proof rubber 11. The piezoelectric rubber portion 14 is a piezoelectric body that converts vibration generated when the vehicle 2 travels on the track 1 into an electric signal by the piezoelectric effect. Like the anti-vibration rubber 11, the piezoelectric rubber portion 14 suppresses the vibration of the axle box body 6 to prevent the transmission of the vibration, and also alleviates the impact generated between them to prevent the generation of noise. The piezoelectric rubber portion 14 is a member in which a piezoelectric material is dispersed in rubber, and is an elastic piezoelectric element that generates electric power according to the magnitude of vibration (magnitude of load). The piezoelectric rubber portion 14 includes, for example, a mixing step of mixing a rubber material such as nitrile rubber and a piezoelectric ceramic powder such as lead zirconate titanate (trade name PZT), and vulcanization for vulcanizing the mixture after the mixing step. It is manufactured by a step and a polarization step of applying a voltage to both ends of the mixture after the vulcanization step to polarize the mixture. The piezoelectric rubber unit 14 outputs an output signal (load detection signal) corresponding to the load acting on the anti-vibration rubber 11 to the wheel load conversion units 20A and 20B of the wheel load fluctuation detection devices 17A and 17B.

図5(C)に示す電極部15A,15Bは、圧電ゴム部14に電気的に接続された接点部分である。電極部15A,15Bは、圧電ゴム部14の両面にそれぞれ積層されており、圧電ゴム部14の両面全域を被覆するように接合されている。電極部15A,15Bは、例えば、互いに平行になるように圧電ゴム部14の両面に加硫接着して形成されたり、金属、金属酸化物又はカーボンなどの導電性材料を蒸着、シルクスクリーン印刷又はイオンスパッタリングなどの方法によって圧電ゴム部14の両面に形成されたり、導電性材料を含有する樹脂又は導電性高分子などの導電性樹脂を圧電ゴム部14の両面に多層化して形成されたりする。 The electrode portions 15A and 15B shown in FIG. 5C are contact portions electrically connected to the piezoelectric rubber portion 14. The electrode portions 15A and 15B are laminated on both sides of the piezoelectric rubber portion 14, respectively, and are joined so as to cover the entire surface of both sides of the piezoelectric rubber portion 14. The electrode portions 15A and 15B are formed by vulcanizing and adhering to both sides of the piezoelectric rubber portion 14 so as to be parallel to each other, or a conductive material such as metal, metal oxide or carbon is vapor-deposited, silk screen printed or performed. It is formed on both sides of the piezoelectric rubber portion 14 by a method such as ion sputtering, or is formed by multilayering a resin containing a conductive material or a conductive resin such as a conductive polymer on both surfaces of the piezoelectric rubber portion 14.

図5に示す導電部16A,16Bは、圧電ゴム部14が発生する電流が流れる部分である。導電部16A,16Bは、導電材の表面が絶縁材によって被覆された電線であり、圧電ゴム部14の出力信号を取り出すための端子に接続されている。導電部16A,16Bは、一方の端部が電極部15A,15Bにそれぞれ接続されており、他方の端部が輪重変動検出装置17A,17Bの輪重変換部20A,20Bに接続されている。 The conductive portions 16A and 16B shown in FIG. 5 are portions through which the current generated by the piezoelectric rubber portion 14 flows. The conductive portions 16A and 16B are electric wires whose surfaces of the conductive material are covered with an insulating material, and are connected to terminals for taking out an output signal of the piezoelectric rubber portion 14. One end of the conductive portions 16A and 16B is connected to the electrode portions 15A and 15B, respectively, and the other end is connected to the wheel load conversion portions 20A and 20B of the wheel load fluctuation detection devices 17A and 17B. ..

図1及び図2に示す1位加速度検出部GS1~8位加速度検出部GS8は、第1輪軸W1~第4輪軸W4及び軸箱体6の上下加速度を検出する手段である。1位加速度検出部GS1~8位加速度検出部GS8は、線路1上を車両2が走行するときに発生する第1輪軸W1~第4輪軸W4及び軸箱体6の振動による上下加速度を電気信号に変換する機械電気変換部である。1位加速度検出部GS1~8位加速度検出部GS8は、例えば、電荷信号を出力する電荷出力型又は電圧信号を出力する電圧出力型の加速度センサである。1位加速度検出部GS1~8位加速度検出部GS8は、第1輪軸W1~第4輪軸W4及び軸箱体6の上下加速度に応じて電荷又は電圧を電気信号として出力する。1位加速度検出部GS1~8位加速度検出部GS8は、図3に示すように、軸箱体6の上面6aに取り付けられたり、図4に示すように軸ばねライナ9の取付部9aの上面又は下面に取り付けられたり、図6に示すように防振ゴム11の取付板13Bの取付部13cに取り付けられたりする。1位加速度検出部GS1~8位加速度検出部GS8は、いずれも同一構造であり、第1輪軸W1~第4輪軸W4及び軸箱体6に発生する上下加速度に応じた出力信号(加速度検出信号)を輪重変動検出装置17A,17Bの加速度変換部21A,21Bに出力する。 The 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 shown in FIGS. 1 and 2 are means for detecting the vertical acceleration of the first wheel axle W 1 to the fourth wheel axle W 4 and the axle box body 6. The 1st-position acceleration detection unit GS 1 to the 8th-position acceleration detection unit GS 8 moves up and down due to vibrations of the first wheel axle W 1 to the fourth wheel axle W 4 and the axle box 6 generated when the vehicle 2 travels on the track 1. It is a mechanical electric conversion unit that converts acceleration into an electric signal. The 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 are, for example, a charge output type acceleration sensor that outputs a charge signal or a voltage output type acceleration sensor that outputs a voltage signal. The 1st-position acceleration detection unit GS 1 to the 8th-position acceleration detection unit GS 8 outputs an electric charge or voltage as an electric signal according to the vertical acceleration of the first wheel axle W 1 to the fourth wheel axle W 4 and the axle box body 6. The 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 are attached to the upper surface 6a of the axle box body 6 as shown in FIG. 3, or are attached to the attachment portion 9a of the shaft spring liner 9 as shown in FIG. It is attached to the upper surface or the lower surface of the vibration isolator, or is attached to the attachment portion 13c of the attachment plate 13B of the anti-vibration rubber 11 as shown in FIG. The 1st-position acceleration detection unit GS 1 to the 8th-position acceleration detection unit GS 8 all have the same structure, and output signals corresponding to the vertical acceleration generated in the first wheel axle W 1 to the fourth wheel axle W 4 and the axle box body 6. (Acceleration detection signal) is output to the acceleration conversion units 21A and 21B of the wheel set fluctuation detection devices 17A and 17B.

図1、図2、図7及び図8に示す輪重変動検出装置17A,17Bは、輪重Pの変動を検出する装置である。図2に示すように、輪重変動検出装置17Aは第1輪軸W1及び第2輪軸W2の輪重Pの変動を検出し、輪重変動検出装置17Bは第3輪軸W3及び第4輪軸W4の輪重Pの変動を検出する。輪重変動検出装置17A,17Bは、1位圧電部ES1~8位圧電部ES8の出力信号及び1位加速度検出部GS1~8位加速度検出部GS8の出力信号に基づいて、数1に示す評価式によって評価輪重値PEVを演算することによって、鉄道車両の走行安全性の評価で用いられるPQ軸で測定される輪重値と同等の輪重値を得る。輪重変動検出装置17A,17Bは、図7及び図8に示すように、空電変換部18A,18Bと、軸重演算部19A,19Bと、輪重変換部20A,20Bと、加速度変換部21A,21Bと、静止輪重値演算部22A,22Bと、輪重変動量演算部23A,23Bと、輪重変動量記憶部24A,24Bなどを備えている。輪重変動検出装置17A,17Bは、この輪重変動検出装置17A,17Bの種々の動作を制御する制御部(中央処理部(CPU))を備えており、輪重Pの変動を検出するための輪重変動検出プログラムに従って所定の輪重変動検出処理を実行する。輪重変動検出装置17A,17Bは、空電変換部18A,18B、軸重演算部19A,19B、輪重変換部20A,20B、加速度変換部21A,21B、静止輪重値演算部22A,22B、輪重変動量演算部23A,23B及び輪重変動量記憶部24A,24Bが相互に通信可能に制御部に接続されている。輪重変動検出装置17A,17Bは、いずれも同一構造であり、以下では図7に示す輪重変動検出装置17Aを中心に説明し、図8に示す輪重変動検出装置17Bについては輪重変動検出装置17Aと対応する部分に対応する符号を付して、詳細な説明を省略する。 The wheel load fluctuation detection devices 17A and 17B shown in FIGS. 1, 2, 7 and 8 are devices for detecting fluctuations in the wheel load P. As shown in FIG. 2, the wheel set fluctuation detecting device 17A detects the fluctuation of the wheel set P of the first wheel set W 1 and the second wheel set W 2 , and the wheel set variation detecting device 17B detects the fluctuation of the wheel set W 3 and the third wheel set W 3 and the fourth wheel set. The fluctuation of the wheel weight P of the wheel set W 4 is detected. The wheel load fluctuation detection devices 17A and 17B are numbers based on the output signals of the 1st-position piezoelectric section ES 1 to 8th-position piezoelectric section ES 8 and the output signals of the 1st-position acceleration detection section GS 1 to 8th-position acceleration detection section GS 8 . By calculating the evaluation wheel load value PEV by the evaluation formula shown in 1, a wheel load value equivalent to the wheel load value measured on the PQ axis used in the evaluation of the running safety of the railroad vehicle is obtained. As shown in FIGS. 7 and 8, the wheel load fluctuation detection devices 17A and 17B include the static static conversion units 18A and 18B, the axle load calculation units 19A and 19B, the wheel load conversion units 20A and 20B, and the acceleration conversion unit. 21A, 21B, stationary wheel load value calculation units 22A, 22B, wheel load fluctuation amount calculation units 23A, 23B, wheel load fluctuation amount storage units 24A, 24B, and the like are provided. The wheel load fluctuation detection devices 17A and 17B include a control unit (central processing unit (CPU)) that controls various operations of the wheel load fluctuation detection devices 17A and 17B, and for detecting fluctuations in the wheel load P. A predetermined wheel load fluctuation detection process is executed according to the wheel load fluctuation detection program of. The wheel load fluctuation detection devices 17A and 17B include static wheel load conversion units 18A and 18B, axle load calculation units 19A and 19B, wheel load conversion units 20A and 20B, acceleration conversion units 21A and 21B, and stationary wheel load value calculation units 22A and 22B. , The wheel load fluctuation amount calculation units 23A and 23B and the wheel load fluctuation amount storage units 24A and 24B are connected to the control unit so as to be able to communicate with each other. The wheel load fluctuation detection devices 17A and 17B have the same structure. Hereinafter, the wheel load fluctuation detection device 17A shown in FIG. 7 will be mainly described, and the wheel load fluctuation detection device 17B shown in FIG. 8 will be described with respect to the wheel load fluctuation detection device 17B. Reference numerals are given to the portions corresponding to the detection device 17A, and detailed description thereof will be omitted.

図7に示す空電変換部18Aは、第1圧力検出部PS1及び第2圧力検出部PS2が出力する空気圧信号を電気信号に変換する手段である。図8に示す空電変換部18Bは、第3圧力検出部PS1及び第4圧力検出部PS2が出力する空気圧信号を電気信号に変換する手段である。空電変換部18A,18Bは、例えば、空気圧信号を電気信号に変換する空電変換器(圧力変換器)である。空電変換部18A,18Bは、第1空気ばねS1~第4空気ばねS4の内部の空気圧に応じた出力信号を軸重演算部19A,19Bに出力する。 The pneumatic conversion unit 18A shown in FIG. 7 is a means for converting an pneumatic signal output by the first pressure detection unit PS 1 and the second pressure detection unit PS 2 into an electric signal. The pneumatic conversion unit 18B shown in FIG. 8 is a means for converting an pneumatic signal output by the third pressure detection unit PS 1 and the fourth pressure detection unit PS 2 into an electric signal. The pneumatic converters 18A and 18B are, for example, static transducers (pressure converters) that convert pneumatic signals into electrical signals. The pneumatic conversion units 18A and 18B output output signals corresponding to the internal air pressures of the first air springs S1 to the fourth air springs S4 to the axle load calculation units 19A and 19B.

図7及び図8に示す軸重演算部19A,19Bは、軸重Lを演算する手段である。図7に示す軸重演算部19Aは、空電変換部18Aの出力信号に基づいて第1輪軸W1及び第2輪軸W2の軸重Lを演算し、図8に示す軸重演算部19Bは空電変換部18Bの出力信号に基づいて第3輪軸W3及び第4輪軸W4の軸重Lを演算する。ここで、軸重Lとは、図2に示す車両2の各第1輪軸W1~第4輪軸W4の左右の車輪4にかかる輪重Pの和である。軸重演算部19A,19Bは、ブレーキ装置が動作する前に車両重量を推定するために、車両2が走行を開始してから所定速度V0に到達したときの車両重量に基づいて軸重Lを演算し、この軸重Lを設定値(固定値)として設定する。ここで、所定速度V0とは、車両2が走行を開始した直後の車両2の速度である。所定速度V0は、例えば、第1空気ばねS1~第4空気ばねS4の空気圧が安定し、車両2に動揺がない5km/hである。軸重演算部19A,19Bは、車両2の荷重を検出するための荷重検出装置として第1空気ばねS1~第4空気ばねS4を利用し、第1空気ばねS1~第4空気ばねS4の内部の空気圧に基づいて、車体3とこの車体3内の乗客及び積載物の重さを演算する。軸重演算部19A,19Bは、変動する乗客及び積載物を含む車体3などの重さと、既知である第1空気ばねS1~第4空気ばねS4及び第1台車T1~第4台車T4の重さなどを加算することによって、車両重量(応荷重)を演算し、この車両重量に基づいて軸重Lを演算する。軸重演算部19Aは、第1空気ばねS1及び第2空気ばねS2の空気圧に基づいて演算した車両重量を、第1輪軸W1及び第2輪軸W2の総軸数2によって除算して、第1輪軸W1及び第2輪軸W2の軸重Lを演算する。軸重演算部19Bは、第3空気ばねS3及び第4空気ばねS4の空気圧に基づいて演算した車両重量を、第3輪軸W3及び第4輪軸W4の総軸数2によって除算して、第3輪軸W3及び第4輪軸W4の軸重Lを演算する。軸重演算部19A,19Bは、演算後の第1輪軸W1~第4輪軸W4の軸重Lを静止輪重値演算部22A,22Bに出力する。 The axle load calculation units 19A and 19B shown in FIGS. 7 and 8 are means for calculating the axle load L. The axle load calculation unit 19A shown in FIG. 7 calculates the axle load L of the first wheel axle W 1 and the second wheel axle W 2 based on the output signal of the static electricity conversion unit 18A, and the axle load calculation unit 19B shown in FIG. Calculates the axle load L of the third wheel axle W 3 and the fourth wheel axle W 4 based on the output signal of the static electricity conversion unit 18B. Here, the axle load L is the sum of the wheel weights P applied to the left and right wheels 4 of the first wheel axle W 1 to the fourth wheel axle W 4 of the vehicle 2 shown in FIG. The axle load calculation units 19A and 19B estimate the axle load L based on the vehicle weight when the predetermined speed V 0 is reached after the vehicle 2 starts traveling in order to estimate the vehicle weight before the brake device operates. Is calculated, and this axle load L is set as a set value (fixed value). Here, the predetermined speed V 0 is the speed of the vehicle 2 immediately after the vehicle 2 starts traveling. The predetermined speed V 0 is, for example, 5 km / h in which the air pressures of the first air springs S1 to the fourth air springs S4 are stable and the vehicle 2 is not shaken. The axial weight calculation units 19A and 19B use the first air springs S1 to the fourth air springs S4 as the load detection device for detecting the load of the vehicle 2, and the first air springs S1 to the fourth air springs S4. Based on the air pressure inside S 4 , the weights of the vehicle body 3 and the passengers and loads in the vehicle body 3 are calculated. The axle load calculation units 19A and 19B include the weight of the vehicle body 3 including fluctuating passengers and loads, and known first air springs S1 to fourth air springs S4 and first trolleys T1 to fourth trolleys. The vehicle weight (load capacity) is calculated by adding the weight of T 4 and the like, and the axle load L is calculated based on the vehicle weight. The axle weight calculation unit 19A divides the vehicle weight calculated based on the air pressures of the first air spring S 1 and the second air spring S 2 by the total number of axes 2 of the first wheel axle W 1 and the second wheel axle W 2 . Then, the axle weight L of the first wheel axle W 1 and the second wheel axle W 2 is calculated. The axle weight calculation unit 19B divides the vehicle weight calculated based on the air pressures of the third air spring S 3 and the fourth air spring S 4 by the total number of axes 2 of the third wheel axle W 3 and the fourth wheel axle W 4 . Then, the axle weight L of the third wheel axle W 3 and the fourth wheel axle W 4 is calculated. The axle load calculation units 19A and 19B output the axle load L of the first wheel axle W1 to the fourth wheel axle W4 after the calculation to the stationary wheel weight value calculation units 22A and 22B.

図7に示す輪重変換部20Aは、1位圧電部ES1~4位圧電部ES4の出力信号を輪重値PEに変換する手段である。図8に示す輪重変換部20Bは、5位圧電部ES5~8位圧電部ES8の出力信号を輪重値PEに変換する手段である。輪重変換部20A,20Bは、1位圧電部ES1~8位圧電部ES8が出力する荷重検出信号を信号処理して、輪重値PEに関する輪重値信号(輪重値データ)に変換して出力する。輪重変換部20A,20Bは、事前に静荷重試験を行って荷重と輪重値(圧電輪重値)PEとの関係を予め把握しておくことによって、1位圧電部ES1~8位圧電部ES8の出力信号を輪重値PEに変換する。輪重変換部20A,20Bは、1位圧電部ES1~8位圧電部ES8が出力する電荷又は電圧を、軸箱体6と台車枠7との間に作用する荷重の荷重値に変換し、この荷重値を輪重値PEとして輪重変動量演算部23A,23Bに出力する。 The wheel load conversion unit 20A shown in FIG . 7 is a means for converting the output signal of the 1-position piezoelectric unit ES 1 to the 4-position piezoelectric unit ES 4 into a wheel load value PE. The wheel load conversion unit 20B shown in FIG . 8 is a means for converting the output signal of the 5-position piezoelectric unit ES 5 to the 8-position piezoelectric unit ES 8 into a wheel load value PE. The wheel load conversion units 20A and 20B process the load detection signal output by the 1st-position piezoelectric section ES 1 to 8th-position piezoelectric section ES 8 to signal a wheel load value signal (wheel load value data) relating to the wheel load value PE . Convert to and output. The wheel load conversion units 20A and 20B perform static load tests in advance to grasp the relationship between the load and the wheel load value (piezoelectric wheel load value) PE in advance, so that the first-position piezoelectric units ES 1 to 8 are obtained. The output signal of the position piezoelectric section ES 8 is converted into the wheel load value PE . The wheel load conversion units 20A and 20B convert the electric charge or voltage output by the 1st-position piezoelectric unit ES 1 to 8th-position piezoelectric unit ES 8 into the load value of the load acting between the axle box body 6 and the bogie frame 7. Then, this load value is output to the wheel load fluctuation amount calculation units 23A and 23B as the wheel load value PE.

図7に示す加速度変換部21Aは、1位加速度検出部GS1~4位加速度検出部GS4の出力信号を上下加速度値Gに変換する手段である。図8に示す加速度変換部21Bは、5位加速度検出部GS5~8位加速度検出部GS8の出力信号を上下加速度値Gに変換する手段である。加速度変換部21A,21Bは、1位加速度検出部GS1~8位加速度検出部GS8が出力する加速度検出信号を信号処理して、上下加速度値Gに関する上下加速度信号(上下加速度値データ)に変換して出力する。加速度変換部21A,21Bは、1位加速度検出部GS1~8位加速度検出部GS8が出力する電荷又は電圧を上下加速度値Gに変換し、この上下加速度値Gの半値G/2を輪重変動量演算部23A,23Bに出力する。 The acceleration conversion unit 21A shown in FIG. 7 is a means for converting the output signal of the 1st-position acceleration detection unit GS 1 to the 4-position acceleration detection unit GS 4 into a vertical acceleration value G. The acceleration conversion unit 21B shown in FIG. 8 is a means for converting the output signals of the 5th position acceleration detection unit GS 5 to the 8th position acceleration detection unit GS 8 into the vertical acceleration value G. The acceleration conversion units 21A and 21B process the acceleration detection signal output by the 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 into a vertical acceleration signal (vertical acceleration value data) related to the vertical acceleration value G. Convert and output. The acceleration conversion units 21A and 21B convert the electric charge or voltage output by the 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 into a vertical acceleration value G, and use the half value G / 2 of the vertical acceleration value G as a ring. It is output to the multiple fluctuation amount calculation units 23A and 23B.

図7及び図8に示す静止輪重値演算部22A,22Bは、車両2が走行を開始してから所定速度V0に到達したときの静止輪重値P0を演算する手段である。図7に示す静止輪重値演算部22Aは、第1輪軸W1及び第2輪軸W2の静止輪重値P0を演算し、図8に示す静止輪重値演算部22Bは第3輪軸W3及び第4輪軸W4の静止輪重値P0を演算する手段である。ここで、静止輪重値P0とは、車両2が走行を開始してから所定速度V0に到達したときに設定される第1輪軸W1~第4輪軸W4の各車輪4の輪重値(設定輪重値)である。静止輪重値演算部22Aは、軸重演算部19Aが演算する第1輪軸W1及び第2輪軸W2の軸重Lの半値L/2を、第1輪軸W1及び第2輪軸W2の各車輪4の静止輪重値P0として演算する。静止輪重値演算部22Bは、軸重演算部19Bが演算する第3輪軸W3及び第4輪軸W4の軸重Lの半値L/2を、第3輪軸W3及び第4輪軸W4の各車輪4の静止輪重値P0として演算する。静止輪重値演算部22A,22Bは、演算後の静止輪重値P0を輪重変動量演算部23A,23Bに出力する。 The stationary wheel weight value calculation units 22A and 22B shown in FIGS. 7 and 8 are means for calculating the stationary wheel weight value P 0 when the vehicle 2 reaches a predetermined speed V 0 after starting traveling. The stationary wheel weight value calculation unit 22A shown in FIG. 7 calculates the stationary wheel weight value P 0 of the first wheel axle W 1 and the second wheel axle W 2 , and the stationary wheel weight value calculation unit 22B shown in FIG. 8 calculates the third wheel axle. It is a means for calculating the stationary wheel weight value P 0 of W 3 and the fourth wheel axle W 4 . Here, the stationary wheel weight value P 0 is the wheel of each wheel 4 of the first wheel axis W 1 to the fourth wheel axis W 4 that is set when the vehicle 2 starts traveling and then reaches a predetermined speed V 0 . It is a heavy value (set wheel weight value). The stationary wheel weight value calculation unit 22A sets the half value L / 2 of the axle load L of the first wheel axle W 1 and the second wheel axle W 2 calculated by the axle load calculation unit 19A to the first wheel axle W 1 and the second wheel axle W 2 . It is calculated as the stationary wheel weight value P 0 of each wheel 4 of. The stationary wheel weight value calculation unit 22B sets the half value L / 2 of the axle load L of the third wheel axle W 3 and the fourth wheel axle W 4 calculated by the axle load calculation unit 19B to the third wheel axle W 3 and the fourth wheel axle W 4 It is calculated as the stationary wheel weight value P 0 of each wheel 4 of. The stationary wheel weight value calculation units 22A and 22B output the static wheel weight value P 0 after the calculation to the wheel load fluctuation amount calculation units 23A and 23B.

図7に示す輪重変動量演算部23Aは、1位圧電部ES1~4位圧電部ES4の出力信号と1位加速度検出部GS1~4位加速度検出部GS4の出力信号とに基づいて、輪重Pの変動量ΔPを演算する手段である。図8に示す輪重変動量演算部23Bは、5位圧電部ES5~8位圧電部ES8の出力信号と5位加速度検出部GS5~8位加速度検出部GS8の出力信号とに基づいて、輪重Pの変動量ΔPを演算する手段である。図7に示す輪重変動量演算部23Aは、図2に示す1位~4位の車輪4とレール1aとの接触点における輪重Pの変動量ΔPを演算し、図8に示す輪重変動量演算部23Bは図2に示す5位~8位の車輪4とレール1aとの接触点における輪重Pの変動量ΔPを演算する。輪重変動量演算部23A,23Bは、輪重変換部20A,20Bが出力する輪重値PEと、加速度変換部21A,21Bが出力する上下加速度値Gと、静止輪重値演算部22A,22Bが出力する静止輪重値P0とに基づいて、輪重Pの変動量ΔPを演算する。輪重変動量演算部23A,23Bは、上下加速度値G、輪重値PE及び静止輪重値P0であるときに、以下の数1に示す評価式によって輪重Pの変動量ΔPを評価するための評価輪重値PEVを演算する。 The wheel load fluctuation amount calculation unit 23A shown in FIG. 7 is divided into an output signal of the 1st-position piezoelectric unit ES 1 to 4th-position piezoelectric unit ES 4 and an output signal of the 1st-position acceleration detection unit GS 1 to 4th-position acceleration detection unit GS 4 . Based on this, it is a means for calculating the fluctuation amount ΔP of the wheel load P. The wheel load fluctuation amount calculation unit 23B shown in FIG. 8 is divided into an output signal of the 5-position piezoelectric unit ES 5 to the 8-position piezoelectric unit ES 8 and an output signal of the 5-position acceleration detection unit GS 5 to the 8-position acceleration detection unit GS 8 . Based on this, it is a means for calculating the fluctuation amount ΔP of the wheel load P. The wheel load fluctuation amount calculation unit 23A shown in FIG. 7 calculates the variation amount ΔP of the wheel load P at the contact point between the wheel 4 in the 1st to 4th positions shown in FIG. 2 and the rail 1a, and calculates the wheel load variation amount ΔP shown in FIG. The fluctuation amount calculation unit 23B calculates the fluctuation amount ΔP of the wheel load P at the contact point between the 5th to 8th wheel 4 and the rail 1a shown in FIG. The wheel load fluctuation amount calculation units 23A and 23B include the wheel load value PE output by the wheel load conversion units 20A and 20B, the vertical acceleration value G output by the acceleration conversion units 21A and 21B, and the stationary wheel load value calculation unit 22A. , The fluctuation amount ΔP of the wheel load P is calculated based on the stationary wheel load value P 0 output by 22B. When the vertical acceleration value G , the wheel load value PE, and the stationary wheel weight value P 0 , the wheel load fluctuation amount calculation units 23A and 23B calculate the wheel load fluctuation amount ΔP by the evaluation formula shown in Equation 1 below. Calculate the evaluation wheel weight value PEV for evaluation.

Figure 2022045233000003
Figure 2022045233000003

輪重変動量演算部23A,23Bは、評価輪重値PEVの時間変化を輪重Pの変動量ΔPとして演算し、演算後の輪重Pの変動量ΔPを輪重変動量記憶部24A,24Bに出力する。 The wheel load fluctuation amount calculation units 23A and 23B calculate the time change of the evaluation wheel load value P EV as the variation amount ΔP of the wheel load P, and the variation amount ΔP of the wheel load P after the calculation is the wheel load fluctuation amount storage unit 24A. , 24B is output.

図7に示す輪重変動量記憶部24Aは、輪重変動量演算部23Aの演算結果を記憶する手段である。図8に示す輪重変動量記憶部24Bは、輪重変動量演算部23Bの演算結果を記憶する手段である。輪重変動量記憶部24A,24Bは、輪重変動量演算部23A,23Bが出力する輪重Pの変動量ΔPを記憶するメモリなどの記憶装置である。輪重変動量記憶部24A,24Bは、例えば、1位~8位の車輪4とレール1aとの接触点における評価輪重値PEVの時間変化を記憶する。 The wheel load fluctuation amount storage unit 24A shown in FIG. 7 is a means for storing the calculation result of the wheel load fluctuation amount calculation unit 23A. The wheel load fluctuation amount storage unit 24B shown in FIG. 8 is a means for storing the calculation result of the wheel load fluctuation amount calculation unit 23B. The wheel load fluctuation amount storage units 24A and 24B are storage devices such as a memory for storing the variation amount ΔP of the wheel load P output by the wheel load fluctuation amount calculation units 23A and 23B. The wheel load fluctuation amount storage units 24A and 24B store, for example, the time change of the evaluation wheel load value PEV at the contact point between the 1st to 8th wheel 4 and the rail 1a.

次に、この発明の実施形態に係る輪重変動検出装置の作用について説明する。
図9は、定速走行時における本発明による輪重の測定結果、PQ軸による輪重の測定結果及び従来の圧電センサによる輪重の測定結果を比較して示すグラフである。図9(A)に示す縦軸は力行ノッチであり、図9(B)に示す縦軸は速度[km/h]であり、図9(C)(D)に示す縦軸は輪重[kN]であり、図9(E)に示す縦軸は図9(C)に示す1位側輪重と図9(D)に示す2位側輪重とを加算した軸重[kN]である。図9に示す横軸は、時間[s]である。ここで、図9(A)に示す力行ノッチとは、車両2の運転台の主幹制御器(マスター・コントローラ(マスコン))のマスコンハンドルによって、車両2の引張力を選択する複数の段(ノッチ)を任意の定速運転に選択した状態である。
Next, the operation of the wheel load fluctuation detecting device according to the embodiment of the present invention will be described.
FIG. 9 is a graph showing a comparison of the wheel load measurement result according to the present invention, the wheel load measurement result by the PQ axis, and the wheel load measurement result by the conventional piezoelectric sensor during constant speed traveling. The vertical axis shown in FIG. 9 (A) is a power running notch, the vertical axis shown in FIG. 9 (B) is a velocity [km / h], and the vertical axis shown in FIGS. 9 (C) and 9 (D) is a wheel load [ kN], and the vertical axis shown in FIG. 9 (E) is the axle load [kN] obtained by adding the 1st-position side wheel weight shown in FIG. 9 (C) and the 2-position side wheel weight shown in FIG. 9 (D). be. The horizontal axis shown in FIG. 9 is time [s]. Here, the power running notch shown in FIG. 9A is a plurality of stages (notches) for selecting the tensile force of the vehicle 2 by the mass control handle of the master controller (master controller (mascon)) of the cab of the vehicle 2. ) Is selected for any constant speed operation.

図9(C)~(E)に示すように、従来の圧電センサによる輪重の測定波形はレベルが極端に小さいが、本発明による輪重の測定波形はピークトゥーピーク値が明瞭であり、PQ軸による輪重の測定波形とよく一致している。その結果、1位圧電部ES1~8位圧電部ES8及び1位加速度検出部GS1~8位加速度検出部GS8を組合せた評価式を用いた本発明の評価輪重値PEVがPQ軸による輪重の測定結果と同等であることが確認された。 As shown in FIGS. 9 (C) to 9 (E), the level of the wheel load measurement waveform measured by the conventional piezoelectric sensor is extremely small, but the peak-to-peak value of the wheel load measurement waveform according to the present invention is clear. It is in good agreement with the measured waveform of the wheel load by the PQ axis. As a result, the evaluation wheel load value PEV of the present invention using the evaluation formula combining the 1-position piezoelectric unit ES 1 to 8-position piezoelectric unit ES 8 and the 1-position acceleration detection unit GS 1 to 8-position acceleration detection unit GS 8 is obtained. It was confirmed that it was equivalent to the measurement result of the wheel load by the PQ axis.

図10は、ブレーキ時における本発明による輪重の測定結果及びPQ軸による輪重の測定結果を比較して示すグラフである。図10(A)に示す縦軸はブレーキノッチであり、図10(B)に示す縦軸は速度[km/h]であり、図10(C)(D)に示す縦軸は輪重[kN]であり、図10(E)は図10(C)に示す1位側輪重と図10(D)に示す2位側輪重とを加算した軸重[kN]である。図10に示す横軸は、時間[s]である。ここで、図10(A)に示すブレーキノッチとは、発生させるブレーキ力に応じて設定された複数の段(ノッチ)であり、車両2の運転台の主幹制御器(マスター・コントローラ(マスコン))のブレーキレバーを乗務員が操作することによって任意の段が選択される。ブレーキノッチは、例えば、7~8段階に刻まれて設定されており、段に応じてブレーキ力の大きさが異なり車両2の減速度が異なる。 FIG. 10 is a graph showing a comparison between the measurement result of the wheel load according to the present invention and the measurement result of the wheel load by the PQ axis at the time of braking. The vertical axis shown in FIG. 10 (A) is the brake notch, the vertical axis shown in FIG. 10 (B) is the speed [km / h], and the vertical axis shown in FIGS. 10 (C) and 10 (D) is the wheel load [ kN], and FIG. 10 (E) is an axle load [kN] obtained by adding the 1st-position side wheel load shown in FIG. 10 (C) and the 2-position side wheel load shown in FIG. 10 (D). The horizontal axis shown in FIG. 10 is time [s]. Here, the brake notch shown in FIG. 10A is a plurality of stages (notches) set according to the braking force to be generated, and is the main controller (master controller (mascon)) of the cab of the vehicle 2. ) Brake lever is operated by the crew to select any stage. The brake notch is set, for example, in 7 to 8 steps, and the magnitude of the braking force differs depending on the step, and the deceleration of the vehicle 2 differs.

図10(C)~(E)に示すように、本発明による輪重の測定波形はブレーキONと同時に輪重が増加しており、ピークトゥーピーク値が明瞭であり、PQ軸による輪重の測定波形とよく一致している。その結果、1位圧電部ES1~8位圧電部ES8及び1位加速度検出部GS1~8位加速度検出部GS8を組合せた評価式を用いた本発明の評価輪重値PEVが、PQ軸による輪重の測定結果と同等であることが確認された。 As shown in FIGS. 10 (C) to 10 (E), in the measurement waveform of the wheel load according to the present invention, the wheel load increases at the same time as the brake is turned on, the peak-to-peak value is clear, and the wheel load by the PQ axis is measured. It is in good agreement with the measured waveform. As a result, the evaluation wheel load value PEV of the present invention using the evaluation formula combining the 1-position piezoelectric unit ES 1 to 8-position piezoelectric unit ES 8 and the 1-position acceleration detection unit GS 1 to 8-position acceleration detection unit GS 8 is obtained. , It was confirmed that it was equivalent to the measurement result of the wheel load by the PQ axis.

図11は、ブレーキ時におけるPQ軸による輪重の測定結果、圧電センサによる輪重の測定結果、及び本発明による輪重の測定結果の周波数解析(FFT解析)の結果を比較して示すグラフである。図11に示す縦軸は周波数[Hz]であり、横軸は時間[s]である。ただし、図11に示す周波数解析の結果は、0dB=0.01kNを基準とした。図11に示すように、本発明による周波数解析の結果の周波数成分は、PQ軸による輪重の周波数解析結果の周波数成分とよく一致している。その結果、本発明による周波数解析の結果は、PQ軸による輪重の周波数解析の結果と周波数情報が同等レベルであり、周波数成分の再現性も良好であることが確認された。 FIG. 11 is a graph showing the results of frequency analysis (FFT analysis) of the wheel load measurement results by the PQ axis during braking, the wheel load measurement results by the piezoelectric sensor, and the wheel load measurement results according to the present invention. be. The vertical axis shown in FIG. 11 is frequency [Hz], and the horizontal axis is time [s]. However, the result of the frequency analysis shown in FIG. 11 was based on 0 dB = 0.01 kN. As shown in FIG. 11, the frequency component of the result of the frequency analysis according to the present invention is in good agreement with the frequency component of the frequency analysis result of the wheel load by the PQ axis. As a result, it was confirmed that the result of the frequency analysis according to the present invention has the same level of frequency information as the result of the frequency analysis of the wheel load by the PQ axis, and the reproducibility of the frequency component is also good.

次に、この発明の実施形態に係る輪重変動検出方法について説明する。
以下では、輪重変動検出装置17A,17Bの動作を中心として説明する。
図12に示すステップ(以下、Sという)100において、輪重変動検出装置17A,17Bが車両速度Vの演算を開始する。図1及び図2に示す第1輪軸W1~第4輪軸W4の回転速度を輪重変動検出装置17A,17Bが検出して、第1輪軸W1~第4輪軸W4の回転速度に基づいて輪重変動検出装置17A,17Bが車両速度Vの演算を開始する。
Next, the wheel load fluctuation detection method according to the embodiment of the present invention will be described.
Hereinafter, the operation of the wheel load fluctuation detecting devices 17A and 17B will be mainly described.
In step 100 (hereinafter referred to as S) shown in FIG. 12, the wheel load fluctuation detecting devices 17A and 17B start the calculation of the vehicle speed V. The wheel set fluctuation detection devices 17A and 17B detect the rotation speeds of the first wheel axles W1 to the fourth wheelset W4 shown in FIGS. Based on this, the wheel set fluctuation detection devices 17A and 17B start the calculation of the vehicle speed V.

S110において、輪重変動検出装置17A,17Bが軸重Lの演算を開始する。図1及び図2に示す第1空気ばねS1~第4空気ばねS4の空気圧を第1圧力検出部PS1~第4圧力検出部PS4が検出すると、図7及び図8に示す空電変換部18A,18Bがこの空気圧に応じた出力信号を軸重演算部19A,19Bに出力する。その結果、第1空気ばねS1~第4空気ばねS4の空気圧に基づいて、各第1輪軸W1~第4輪軸W4の軸重Lを軸重演算部19A,19Bが演算する。 In S110, the wheel load fluctuation detection devices 17A and 17B start the calculation of the axle load L. When the first pressure detection unit PS 1 to the fourth pressure detection unit PS 4 detect the air pressure of the first air spring S 1 to the fourth air spring S 4 shown in FIGS. 1 and 2, the sky shown in FIGS. 7 and 8 The electric conversion units 18A and 18B output output signals corresponding to the air pressure to the axle load calculation units 19A and 19B. As a result, the axle load calculation units 19A and 19B calculate the axle load L of each of the first wheel axles W1 to the fourth wheel axle W4 based on the air pressures of the first air springs S1 to the fourth air springs S4.

S120において、車両速度Vが所定速度V0に到達したか否かを輪重変動検出装置17A,17Bが判断する。輪重変動検出装置17A,17Bが演算する車両速度Vに基づいて、車両2が走行を開始して車両速度Vが所定速度V0に到達したか否かを輪重変動検出装置17A,17Bが判断する。例えば、車両2が駅から出発して車両速度Vが所定速度V0に到達したか否かを輪重変動検出装置17A,17Bが判断する。車両速度Vが所定速度V0に到達したと輪重変動検出装置17A,17Bが判断したときにはS130に進む。一方、車両速度Vが所定速度V0に到達していないと輪重変動検出装置17A,17Bが判断したときには、車両速度Vが所定速度V0に到達するまで輪重変動検出装置17A,17BがS120の判断を繰り返す。 In S120, the wheel load fluctuation detecting devices 17A and 17B determine whether or not the vehicle speed V has reached a predetermined speed V 0 . Based on the vehicle speed V calculated by the wheel load fluctuation detection devices 17A and 17B, the wheel load fluctuation detection devices 17A and 17B determine whether or not the vehicle 2 starts traveling and the vehicle speed V reaches a predetermined speed V 0 . to decide. For example, the wheel load fluctuation detecting devices 17A and 17B determine whether or not the vehicle 2 departs from the station and the vehicle speed V reaches a predetermined speed V 0 . When the wheel load fluctuation detecting devices 17A and 17B determine that the vehicle speed V has reached the predetermined speed V 0 , the process proceeds to S130. On the other hand, when the wheel load fluctuation detecting devices 17A and 17B determine that the vehicle speed V has not reached the predetermined speed V 0 , the wheel load fluctuation detecting devices 17A and 17B continue until the vehicle speed V reaches the predetermined speed V 0 . The determination of S120 is repeated.

S130において、輪重変動検出装置17A,17Bが静止輪重値P0を設定する。車両速度Vが所定速度V0に到達したときに、軸重演算部19A,19Bが演算した軸重Lを、軸重演算部19A,19Bが静止輪重値演算部22A,22Bに出力する。その結果、軸重演算部19A,19Bが演算した軸重Lの半値L/2を静止輪重値演算部22A,22Bが演算し、各第1輪軸W1~第4輪軸W4の輪重P=L/2を静止輪重値演算部22A,22Bが演算する。各第1輪軸W1~第4輪軸W4の輪重Pを輪重変動検出装置17A,17Bが静止輪重値P0として設定(セット)し、走行している車両2が停止してから再度走行を開始して所定速度V0に達するまでこの静止輪重値P0が固定される。 In S130, the wheel load fluctuation detecting devices 17A and 17B set the stationary wheel load value P 0 . When the vehicle speed V reaches a predetermined speed V 0 , the shaft weight calculation units 19A and 19B output the shaft weight L calculated by the shaft weight calculation units 19A and 19B to the stationary wheel weight value calculation units 22A and 22B. As a result, the stationary wheel weight value calculation units 22A and 22B calculate the half value L / 2 of the axle load L calculated by the axle load calculation units 19A and 19B, and the wheel weights of the first wheel axles W 1 to the fourth wheel axles W 4 are calculated. P = L / 2 is calculated by the stationary wheel weight value calculation units 22A and 22B. After the wheel weight fluctuation detection devices 17A and 17B set (set) the wheel weight P of each of the first wheel axle W 1 to the fourth wheel axle W 4 as the stationary wheel weight value P 0 , and the traveling vehicle 2 stops. This stationary wheel weight value P 0 is fixed until the predetermined speed V 0 is reached after starting the traveling again.

S140において、輪重変動検出装置17A,17Bが輪重Pの変動量ΔPを演算する。1位圧電部ES1~8位圧電部ES8が出力する電荷又は電圧を輪重変換部20A,20Bが荷重値に変換し、この荷重値を輪重値PEとして輪重変換部20A,20Bが輪重変動量演算部23A,23Bに出力する。1位加速度検出部GS1~8位加速度検出部GS8が出力する電荷又は電圧を上下加速度値Gに加速度変換部21A,21Bが変換し、この上下加速度値Gの半値G/2を加速度変換部21A,21Bが輪重変動量演算部23A,23Bに出力する。静止輪重値演算部22A,22Bが輪重変動量演算部23A,23Bに静止輪重値P0を出力する。その結果、数1に示す評価式によって輪重変動量演算部23A,23Bが評価輪重値PEVの時間変化を輪重Pの変動量ΔPとして演算する。演算後の輪重Pの変動量ΔPを輪重変動量演算部23A,23Bが輪重変動量記憶部24A,24Bに出力する。 In S140, the wheel load fluctuation detecting devices 17A and 17B calculate the fluctuation amount ΔP of the wheel load P. The electric charge or voltage output by the 1st-position piezoelectric unit ES 1 to 8th-position piezoelectric unit ES 8 is converted into a load value by the wheel load conversion units 20A and 20B, and this load value is used as the wheel load value PE and the wheel load conversion unit 20A, 20B outputs to the wheel load fluctuation amount calculation units 23A and 23B. The charge or voltage output by the 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 is converted into the vertical acceleration value G by the acceleration conversion units 21A and 21B, and the half value G / 2 of the vertical acceleration value G is converted into acceleration. Units 21A and 21B output to the wheel load fluctuation amount calculation units 23A and 23B. The stationary wheel load value calculation units 22A and 22B output the stationary wheel load value P 0 to the wheel load fluctuation amount calculation units 23A and 23B. As a result, the wheel load fluctuation amount calculation units 23A and 23B calculate the time change of the evaluation wheel load value P EV as the variation amount ΔP of the wheel load P by the evaluation formula shown in Equation 1. The wheel load fluctuation amount calculation units 23A and 23B output the fluctuation amount ΔP of the wheel load P after the calculation to the wheel load fluctuation amount storage units 24A and 24B.

S150において、輪重変動検出装置17A,17Bが静止輪重値P0を記憶する。輪重変動量演算部23A,23Bが輪重変動量記憶部24A,24Bに輪重Pの変動量ΔPを出力すると、輪重変動量記憶部24A,24Bが輪重Pの変動量ΔPを記憶する。 In S150, the wheel load fluctuation detection devices 17A and 17B store the stationary wheel load value P 0 . When the wheel load fluctuation amount calculation units 23A and 23B output the variation amount ΔP of the wheel load P to the wheel load fluctuation amount storage units 24A and 24B, the wheel load fluctuation amount storage units 24A and 24B store the fluctuation amount ΔP of the wheel load P. do.

この発明の実施形態に係る輪重変動検出装置及び輪重変動検出方法には、以下に記載するような効果がある。
(1) この実施形態では、第1輪軸W1~第4輪軸W4及び軸箱体6の上下加速度値Gを検出する1位加速度検出部GS1~8位加速度検出部GS8の出力信号と、軸箱体6と台車枠7との間に作用する荷重を検出する1位圧電部ES1~8位圧電部ES8の出力信号とに基づいて、輪重Pの変動量ΔPを輪重変動量演算部23A,23Bが演算する。このため、PQ軸によって得られる輪重値と同等の輪重値を得られることができ、安価かつ簡便に輪重Pの変動を正確に検出することができる。その結果、輪重Pを評価することができるとともに、周波数成分を解析することによって第1輪軸W1~第4輪軸W4の異常、軸箱体6内の軸受の損傷、車輪4の踏面4aの局部的な形状不整である車輪フラットなどの車輪4の異常を検知することができる。一般的に、軸箱体6と台車枠7との間の変位量や軸ばね12の歪み量をレーザ変位計によって測定したり、軸ばね12と台車枠7との間に挿入したロードセルによって荷重を測定したりする場合には、いずれも測定結果が非線形な特性を示し、ブレーキ制御に用いることが困難である。また、軸箱体6と台車枠7との間の変位量を圧電素子のみで測定する場合には、輪重Pの変動量ΔPを正確に測定することが困難である。この実施形態では、1位圧電部ES1~8位圧電部ES8と1位加速度検出部GS1~8位加速度検出部GS8とを組み合わせて輪重Pの変動量ΔPに基づいて軸重Lの変動量ΔLを演算し、この軸重Lの変動量ΔLに応じて必要ブレーキ力を修正することができる。このため、高速で走行したときに動的に変動する軸重Lを再現できるため、第1輪軸W1~第4輪軸W4毎の軸重Lが変化する軸重移動を考慮して、第1輪軸W1~第4輪軸W4毎にブレーキ力を制御することができる。
The wheel load fluctuation detection device and the wheel load fluctuation detection method according to the embodiment of the present invention have the effects as described below.
(1) In this embodiment, the output signals of the 1st-position acceleration detection unit GS 1 to the 8th-position acceleration detection unit GS 8 for detecting the vertical acceleration value G of the first wheel axle W 1 to the fourth wheel axle W 4 and the axle box body 6. And the output signal of the 1st-position piezoelectric section ES 1 to 8th-position piezoelectric section ES 8 that detects the load acting between the axle box body 6 and the carriage frame 7, the variation amount ΔP of the wheel weight P is set to the wheel. The multiple fluctuation amount calculation units 23A and 23B calculate. Therefore, it is possible to obtain a wheel load value equivalent to the wheel load value obtained by the PQ axis, and it is possible to accurately detect the fluctuation of the wheel load P inexpensively and easily. As a result, the wheel weight P can be evaluated, and by analyzing the frequency component, the first wheel axle W 1 to the fourth wheel axle W 4 are abnormal, the bearing in the axle box 6 is damaged, and the tread surface 4a of the wheel 4 is used. It is possible to detect an abnormality of the wheel 4 such as a wheel flat which is a local irregular shape of the wheel 4. Generally, the displacement amount between the axle box body 6 and the carriage frame 7 and the strain amount of the axle spring 12 are measured by a laser displacement meter, or a load is loaded by a load cell inserted between the axle spring 12 and the carriage frame 7. In any case, the measurement results show non-linear characteristics, and it is difficult to use them for brake control. Further, when the displacement amount between the axle box body 6 and the bogie frame 7 is measured only by the piezoelectric element, it is difficult to accurately measure the fluctuation amount ΔP of the wheel load P. In this embodiment, the 1-position piezoelectric unit ES 1 to 8-position piezoelectric unit ES 8 and the 1-position acceleration detection unit GS 1 to 8-position acceleration detection unit GS 8 are combined, and the axle load is based on the fluctuation amount ΔP of the wheel load P. The fluctuation amount ΔL of L can be calculated, and the required braking force can be corrected according to the fluctuation amount ΔL of the axle load L. Therefore, since the axle load L that dynamically changes when traveling at high speed can be reproduced, the axle load movement in which the axle load L changes for each of the first wheel axle W 1 to the fourth wheel axle W 4 is taken into consideration. The braking force can be controlled for each of the 1st wheel axle W 1 to the 4th wheel axle W 4 .

(2) この実施形態では、1位加速度検出部GS1~8位加速度検出部GS8の出力信号を上下加速度値Gに加速度変換部21A,21Bが変換し、1位圧電部ES1~8位圧電部ES8の出力信号を輪重値PEに輪重変換部20A,20Bが変換し、車両2が走行を開始してから所定速度V0に到達したときの静止輪重値P0を静止輪重値演算部22A,22Bが演算する。また、この実施形態では、上下加速度値G、輪重値PE及び静止輪重値P0に基づいて、輪重変動量演算部23A,23Bが輪重Pの変動量ΔPを演算する。このため、1位加速度検出部GS1~8位加速度検出部GS8及び1位圧電部ES1~8位圧電部ES8を組み合わせることによって、輪重Pの変動を正確に検出することができる。 (2) In this embodiment, the acceleration conversion units 21A and 21B convert the output signals of the 1st-position acceleration detection units GS 1 to 8th-position acceleration detection units GS 8 into the vertical acceleration value G, and the 1st-position piezoelectric units ES 1 to 8 The stationary wheel load value P 0 when the wheel load conversion units 20A and 20B convert the output signal of the position piezoelectric unit ES 8 into the wheel load value PE and the vehicle 2 starts traveling and then reaches a predetermined speed V 0 . Is calculated by the stationary wheel weight value calculation units 22A and 22B. Further, in this embodiment, the wheel load fluctuation amount calculation units 23A and 23B calculate the variation amount ΔP of the wheel load P based on the vertical acceleration value G , the wheel load value PE, and the stationary wheel load value P 0 . Therefore, by combining the 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 and the 1st-position piezoelectric unit ES 1 to 8th-position piezoelectric unit ES 8 , fluctuations in the wheel load P can be accurately detected. ..

(3) この実施形態では、上下加速度値G、輪重値PE及び静止輪重値P0であるときに、輪重Pの変動量ΔPを評価するための評価輪重値PEVを数1に示す評価式によって輪重変動量演算部23A,23Bが演算する。このため、簡単な評価式によって輪重Pの変動を正確に検出することができる。 (3) In this embodiment, when the vertical acceleration value G , the wheel load value PE, and the stationary wheel load value P 0 , the number of evaluation wheel load values P EV for evaluating the fluctuation amount ΔP of the wheel load P is. The wheel load fluctuation amount calculation unit 23A and 23B calculate by the evaluation formula shown in 1. Therefore, the fluctuation of the wheel load P can be accurately detected by a simple evaluation formula.

この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、輪重変動検出装置17A,17Bによって鉄道車両の輪重Pの変動を検出する場合を例に挙げて説明したが、自動車の輪荷重を検出する場合についても、この発明を適用することができる。また、この実施形態では、1位圧電部ES1~8位圧電部ES8が圧電ゴム部14を備える場合を例に挙げて説明したが、1位圧電部ES1~8位圧電部ES8が圧電ゴム部14以外の圧電体を備える場合についても、この発明を適用することができる。さらに、この実施形態では、防振ゴム11が2枚の取付板13A,13Bを備える場合を例に挙げて説明したが、取付板13A,13Bのいずれか一方が省略されている防振ゴムについても、この発明を適用することができる。
The present invention is not limited to the embodiments described above, and various modifications or modifications can be made as described below, and these are also within the scope of the present invention.
(1) In this embodiment, the case where the fluctuation of the wheel load P of the railway vehicle is detected by the wheel load fluctuation detection devices 17A and 17B has been described as an example, but the case of detecting the wheel load of the automobile is also described. The invention can be applied. Further, in this embodiment, the case where the 1-position piezoelectric portion ES 1 to the 8-position piezoelectric portion ES 8 includes the piezoelectric rubber portion 14 has been described as an example, but the 1-position piezoelectric portion ES 1 to the 8-position piezoelectric portion ES 8 has been described. The present invention can also be applied to the case where the piezoelectric rubber portion 14 is provided with a piezoelectric material other than the piezoelectric rubber portion 14. Further, in this embodiment, the case where the anti-vibration rubber 11 includes two mounting plates 13A and 13B has been described as an example, but the anti-vibration rubber in which any one of the mounting plates 13A and 13B is omitted is used. Also, the present invention can be applied.

(2) この実施形態では、防振ゴム11内に圧電ゴム部14を2つ配置する構造を例に挙げて説明したが、防振ゴム11内に圧電ゴム部14を1つ又は3つ以上配置する場合についても、この発明を適用することができる。また、この実施形態では、軸箱体6の上面6a、軸ばねライナ9の取付部9a又は取付板13Bの取付部13cに1位加速度検出部GS1~8位加速度検出部GS8を取り付ける場合を例に挙げて説明したが、1位加速度検出部GS1~8位加速度検出部GS8をこれらの部材以外に取り付ける場合についても、この発明を適用することができる。同様に、この実施形態では、取付板13Bの取付部13cに1位加速度検出部GS1~8位加速度検出部GS8を取り付ける場合を例に挙げて説明したが、取付板13Aの取付部に1位加速度検出部GS1~8位加速度検出部GS8を取り付ける場合についても、この発明を適用することができる。さらに、この実施形態では、第1輪軸W1及び第2輪軸W2の車輪4とレール1aとの接触点における評価輪重値PEVを輪重変動量演算部23Aが演算し、第3輪軸W3及び第4輪軸W4の車輪4とレール1aとの接触点における評価輪重値PEVを輪重変動量演算部23Bが演算する場合を例に挙げて説明したが、このような演算方法にこの発明を限定するものではない。例えば、第1輪軸W1~第4輪軸W4の車輪4とレール1aとの接触点における評価輪重値PEVを一つの輪重変動量演算部によって演算する場合や、第1輪軸W1~第4輪軸W4毎の車輪4とレール1aとの接触点における評価輪重値PEVを輪重変動量演算部によって演算する場合についても、この発明を適用することができる。 (2) In this embodiment, a structure in which two piezoelectric rubber portions 14 are arranged in the vibration-proof rubber 11 has been described as an example, but one or three or more piezoelectric rubber portions 14 are provided in the vibration-proof rubber 11. The present invention can also be applied to the case of arranging. Further, in this embodiment, when the 1st-position acceleration detection unit GS 1 to the 8th-position acceleration detection unit GS 8 are attached to the upper surface 6a of the axle box body 6, the mounting portion 9a of the shaft spring liner 9, or the mounting portion 13c of the mounting plate 13B. However, the present invention can also be applied to the case where the 1st-position acceleration detection unit GS 1 to 8th-position acceleration detection unit GS 8 is attached to other than these members. Similarly, in this embodiment, the case where the 1st-position acceleration detection unit GS 1 to the 8th-position acceleration detection unit GS 8 is attached to the attachment portion 13c of the attachment plate 13B has been described as an example, but the attachment portion of the mounting plate 13A has been described. The present invention can also be applied to the case where the 1st-position acceleration detection unit GS 1 to the 8th-position acceleration detection unit GS 8 are attached. Further, in this embodiment, the wheel set variation amount calculation unit 23A calculates the evaluation wheel set value PEV at the contact point between the wheel 4 of the first wheel set W 1 and the second wheel set W 2 and the rail 1a, and the third wheel set. The case where the wheel weight fluctuation amount calculation unit 23B calculates the evaluation wheel weight value PEV at the contact point between the wheel 4 of the W 3 and the fourth wheel axle W 4 and the rail 1a has been described as an example. The method is not limited to this invention. For example, when the evaluation wheel set value PEV at the contact point between the wheels 4 of the first wheel set W 1 to the fourth wheel set W 4 and the rail 1a is calculated by one wheel set fluctuation amount calculation unit, or when the first wheel set W 1 The present invention can also be applied to the case where the evaluation wheel weight value PEV at the contact point between the wheel 4 and the rail 1a for each of the fourth wheel sets W 4 is calculated by the wheel weight fluctuation amount calculation unit.

(3) この実施形態では、第1空気ばねS1及び第2空気ばねS2の空気圧に基づいて、第1輪軸W1及び第2輪軸W2の軸重Lを軸重演算部19Aによって演算し、第3空気ばねS3及び第4空気ばねS4の空気圧に基づいて、第3輪軸W3及び第4輪軸W4の軸重Lを軸重演算部19Bによって演算する場合を例に挙げて説明したが、このような演算方法にこの発明を限定するものではない。例えば、第1空気ばねS1~第4空気ばねS4の空気圧に基づいて、第1輪軸W1~第4輪軸W2の軸重Lを一つの軸重演算部によって演算する場合についても、この発明を適用することができる。この場合には、第1空気ばねS1~第4空気ばねS4の空気圧に基づいて演算した車体重量を、第1輪軸W1~第4輪軸W4の総軸数4によって除算(平均化)して、第1輪軸W1~第4輪軸W4の軸重Lを一つの軸重演算部によって演算することができる。 (3) In this embodiment, the axle load L of the first wheel shaft W 1 and the second wheel shaft W 2 is calculated by the axle load calculation unit 19A based on the air pressures of the first air spring S 1 and the second air spring S 2 . Then, an example is given in which the axle load L of the third wheel shaft W 3 and the fourth wheel shaft W 4 is calculated by the axle load calculation unit 19B based on the air pressures of the third air spring S 3 and the fourth air spring S 4 . However, the present invention is not limited to such a calculation method. For example, even in the case where the axle load L of the first wheel axle W 1 to the fourth wheel axle W 2 is calculated by one axle load calculation unit based on the air pressure of the first air spring S 1 to the fourth air spring S 4 . The present invention can be applied. In this case, the vehicle body weight calculated based on the air pressure of the first air spring S1 to the fourth air spring S4 is divided (averaged) by the total number of axles 4 of the first wheel axle W 1 to the fourth wheel axle W 4 . ), And the axle load L of the first wheel axle W 1 to the fourth wheel axle W 4 can be calculated by one axle load calculation unit.

1 線路
1a レール
2 車両
3 車体
4 車輪
5 車軸
6 軸箱体
7 台車枠
8 軸ばね
9 軸ばねライナ
10 軸ばね支持板
11 防振ゴム
12 ゴム部
13A,13B 取付板
14 圧電ゴム部
15A,15B 電極部
16A,16B 導電部
17A,17B 輪重変動検出装置
20A,20B 輪重変換部
21A,21B 加速度変換部
22A,22B 静止輪重値演算部
1 第1台車
2 第2台車
1~W4 第1輪軸~第4輪軸(輪軸)
1~S4 第1空気ばね~第4空気ばね
PS1~PS4 第1圧力検出部~第4圧力検出部
ES1~ES8 1位圧電部~8位圧電部(圧電部)
GS1~GS8 1位加速度検出部~8位加速度検出部(加速度検出部)
P 輪重
ΔP 変動量
G 上下加速度値
E 輪重値
0 静止輪重値
EV 評価輪重値
1 Line 1a Rail 2 Vehicle 3 Body 4 Wheels 5 Axle 6 Axle box 7 Bogie frame 8 Axle spring 9 Axle spring liner 10 Axle spring support plate 11 Anti-vibration rubber 12 Rubber part 13A, 13B Mounting plate 14 Piezoelectric rubber part 15A, 15B Electrodes 16A, 16B Conductive part 17A, 17B Wheel set fluctuation detection device 20A, 20B Wheel set conversion part 21A, 21B Acceleration conversion part 22A, 22B Stationary wheel weight value calculation unit T 1 1st bogie T 2 2nd bogie W 1 ~ W 4 1st wheel axle to 4th wheel axle (wheel set)
S 1 to S 4 1st air spring to 4th air spring PS 1 to PS 4 1st pressure detection part to 4th pressure detection part ES 1 to ES 8 1st place piezoelectric part to 8th place piezoelectric part (piezoelectric part)
GS 1 to GS 8 1st place acceleration detection unit to 8th place acceleration detection unit (acceleration detection unit)
P Wheel load ΔP Fluctuation amount G Vertical acceleration value P E Wheel weight value P 0 Stationary wheel weight value P EV evaluation Wheel weight value

Claims (4)

輪重の変動を検出する輪重変動検出装置であって、
輪軸及び軸箱体の上下加速度を検出する加速度検出部の出力信号と、前記軸箱体と台車枠との間に作用する荷重を検出する圧電部の出力信号とに基づいて、前記輪重の変動量を演算する輪重変動量演算部を備えること、
を特徴とする輪重変動検出装置。
It is a wheel load fluctuation detection device that detects wheel load fluctuations.
Based on the output signal of the acceleration detection unit that detects the vertical acceleration of the wheel set and the axle box body, and the output signal of the piezoelectric unit that detects the load acting between the axle box body and the carriage frame, the wheel weight To have a wheel set fluctuation amount calculation unit that calculates the fluctuation amount,
A wheel load fluctuation detection device characterized by.
請求項1に記載の輪重変動検出装置において、
前記加速度検出部の出力信号を上下加速度値に変換する加速度変換部と、
前記圧電部の出力信号を輪重値に変換する輪重変換部と、
車両が走行を開始してから所定速度に到達したときの静止輪重値を演算する静止輪重値演算部とを備え、
前記輪重変動量演算部は、前記上下加速度値、前記輪重値及び前記静止輪重値に基づいて、前記輪重の変動量を演算すること、
を特徴とする輪重変動検出装置。
In the wheel load fluctuation detecting device according to claim 1,
An acceleration conversion unit that converts the output signal of the acceleration detection unit into a vertical acceleration value, and
A wheel load converter that converts the output signal of the piezoelectric section into a wheel load value,
It is equipped with a stationary wheel weight value calculation unit that calculates the stationary wheel weight value when the vehicle reaches a predetermined speed after starting running.
The wheel load fluctuation amount calculation unit calculates the wheel load fluctuation amount based on the vertical acceleration value, the wheel load value, and the stationary wheel load value.
A wheel load fluctuation detection device characterized by.
請求項2に記載の輪重変動検出装置において、
前記輪重変動量演算部は、前記上下加速度値G、前記輪重値PE及び前記静止輪重値P0であるときに、前記輪重の変動量を評価するための評価輪重値PEVを以下の評価式によって演算すること、
Figure 2022045233000004
を特徴とする輪重変動検出装置。
In the wheel load fluctuation detecting device according to claim 2,
The wheel load fluctuation amount calculation unit is an evaluation wheel load value P for evaluating the wheel load fluctuation amount when the vertical acceleration value G , the wheel load value PE, and the stationary wheel weight value P 0 . Calculate EV by the following evaluation formula,
Figure 2022045233000004
A wheel load fluctuation detection device characterized by.
輪重の変動を検出する輪重変動検出方法であって、
輪軸及び軸箱体の上下加速度を検出する加速度検出部の出力信号と、前記軸箱体と台車枠との間に作用する荷重を検出する圧電部の出力信号とに基づいて、前記輪重の変動量を演算する輪重変動量演算工程を含むこと、
を特徴とする輪重変動検出方法。
It is a wheel load fluctuation detection method that detects wheel load fluctuations.
Based on the output signal of the acceleration detection unit that detects the vertical acceleration of the wheel set and the axle box body, and the output signal of the piezoelectric unit that detects the load acting between the axle box body and the carriage frame, the wheel weight Including a wheel set fluctuation amount calculation process for calculating the fluctuation amount,
A method for detecting wheel load fluctuations.
JP2020150812A 2020-09-08 2020-09-08 Wheel load fluctuation detection device and wheel load fluctuation detection method Pending JP2022045233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020150812A JP2022045233A (en) 2020-09-08 2020-09-08 Wheel load fluctuation detection device and wheel load fluctuation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020150812A JP2022045233A (en) 2020-09-08 2020-09-08 Wheel load fluctuation detection device and wheel load fluctuation detection method

Publications (1)

Publication Number Publication Date
JP2022045233A true JP2022045233A (en) 2022-03-18

Family

ID=80682189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020150812A Pending JP2022045233A (en) 2020-09-08 2020-09-08 Wheel load fluctuation detection device and wheel load fluctuation detection method

Country Status (1)

Country Link
JP (1) JP2022045233A (en)

Similar Documents

Publication Publication Date Title
JP5525404B2 (en) Railway vehicle state monitoring device, state monitoring method, and rail vehicle
EP3720742B1 (en) System for determining a wheel-rail adhesion value for a railway vehicle and the corresponding method thereof
Iwnicki et al. Validation of a MATLAB railway vehicle simulation using a scale roller rig
WO2020054579A1 (en) Load estimation apparatus, load estimation method, and program
Zeng et al. Safety evaluation for railway vehicles using an improved indirect measurement method of wheel–rail forces
JP2002079941A (en) Rolling stock
JP6179952B2 (en) Vehicle state determination device, vehicle state determination program, and load detection device
JP2022045233A (en) Wheel load fluctuation detection device and wheel load fluctuation detection method
US20210269071A1 (en) Wheel force measurement systems and methods
Guo et al. Field measurements of vibration on the car body-suspended equipment for high-speed rail vehicles
Kumbhalkar et al. Investigation for failure response of suspension spring of railway vehicle: a categorical literature review
JPH05184002A (en) Diagnostic method for body vibration control system in rolling stock
KR100651188B1 (en) A test-apparatus of dynamic stress in Bogie Frame for Urban Transit Vehicles and the method therefore
Lee et al. Roller rig tests of a semi-active suspension system for a railway vehicle
JP2022045234A (en) Brake control device and brake control method
Steišūnas et al. Estimation of ambient temperature impact on vertical dynamic behaviour of passenger rail vehicle with damaged wheels
CN203681576U (en) Dynamics detection system for high-capacity rail commodity car
Karassayeva et al. Analysis of dynamic properties and movement safety of bogies with diagonal links and rubber-metal vibration absorbers between the rubbing elements of freight cars
Hu et al. Structural safety evaluation of a subway bolster based on numerical simulation and experimental test
Dos Santos et al. Characterization and modelling of a new heavy axle load freight wagon for wheel rail wear prediction
Saba et al. Model based indirect conicity estimation technique for solid axle railway wheelset
Guo et al. Effect of lateral stiffness of secondary suspensions on heavy-haul locomotives stability during braking based on simulation and experiment
KR100651187B1 (en) Vibration testing system and the method of urban transit vehicles running
WO2023199369A1 (en) Life evaluation device and method
KR102082078B1 (en) A System for Investigating a Train Bearing with a Structure of Processing a Detected Information by a Collector