JP2022044935A - エネルギープラント実績試算装置 - Google Patents

エネルギープラント実績試算装置 Download PDF

Info

Publication number
JP2022044935A
JP2022044935A JP2020150333A JP2020150333A JP2022044935A JP 2022044935 A JP2022044935 A JP 2022044935A JP 2020150333 A JP2020150333 A JP 2020150333A JP 2020150333 A JP2020150333 A JP 2020150333A JP 2022044935 A JP2022044935 A JP 2022044935A
Authority
JP
Japan
Prior art keywords
refrigerator
power consumption
actual
energy plant
heat output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020150333A
Other languages
English (en)
Inventor
拓也 渡辺
Takuya Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2020150333A priority Critical patent/JP2022044935A/ja
Publication of JP2022044935A publication Critical patent/JP2022044935A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

【課題】エネルギープラントの最適な運用状態を求めるために、冷凍設備側に温度計や流量計などの熱出力計測のためのセンサを追加設置しなくても冷凍設備側の熱出力を求めることができるエネルギープラント実績試算装置を提供すること。【解決手段】ターボ冷凍機R1~R4の実績消費電力量D1を取得する電力計SP1~SP4と、冷水需要設備2の実績熱量D2を取得する熱量計SQと、ターボ冷凍機R1~R4の冷凍機性能特性D3を入力する入力部11と、実績消費電力量D1と実績熱量D2と冷凍機性能特性D3とを用い、実績消費電力量D1と冷凍機性能特性D3とから算出されるターボ冷凍機R1~R4の熱出力と実績熱量D2との誤差を最小とする最適化問題を解いてターボ冷凍機R1~R4の熱出力を推定する推定演算部15と、推定されたターボ冷凍機R1~R4の熱出力を出力する出力部12と、を備える。【選択図】図1

Description

本発明は、エネルギープラントの最適な運用状態を求めるために、冷凍設備側に温度計や流量計などの熱出力計測のためのセンサを追加設置しなくても冷凍設備側の熱出力を求めることができるエネルギープラント実績試算装置に関する。
セントラル空調などのエネルギープラントでは、冷水需要に対し、ターボ冷凍機や吸収式冷凍機などの冷凍設備を用いて冷水を生成してエネルギーを供給している。これら冷凍設備を効率よく運転するため、各種センサを用いて、熱出力、消費電力を求め、これらを用いて成績係数COP(Coefficient Of Performance)を求めて管理する方法が取られている(特許文献1参照)。
特許5538917号公報
ところで、冷凍設備の運用を管理するためには、冷凍機の入口温度、出口温度、流量及び消費電力を各種センサで計測する必要がある。この中で、消費電力は電力管理の必要性から計測されていることが良くある。ここで、消費電力が計測されていない場合でも、電力計の構造上、電力計を追加設置して消費電力を計測することは比較的容易である。
一方、冷水を使用する冷水需要設備側における最も重要な管理項目は熱出力であり、冷水需要設備側には熱量計が設けられて熱出力を計測している。しかし、冷凍設備側には熱出力が計測されていない、もしくは、合計流量のように一括計測をしている、というように熱出力の情報が不足していることが多い。
一般に、温度計や流量計を追加設置する場合、エネルギープラントを止めて設置工事を行う必要があるため、電力計のように簡単に追加設置を行うことはできない。
したがって、エネルギープラントの最適な運用状態を求める場合、冷凍設備側にも熱出力を計測する必要があり、冷凍設備側にこの熱出力計測のためのセンサが設置されていない場合、エネルギープラントを止めて温度計や流量計の追加設置を行う必要があり、このための時間と労力とがかかるという課題があった。
本発明は、上記に鑑みてなされたものであって、エネルギープラントの最適な運用状態を求めるために、冷凍設備側に温度計や流量計などの熱出力計測のためのセンサを追加設置しなくても冷凍設備側の熱出力を求めることができるエネルギープラント実績試算装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、エネルギーを消費して冷水を生成する1つ以上の冷凍機と、冷水を消費する冷水需要設備とを有するエネルギープラントの実績をもとに該エネルギープラントの状態を試算するエネルギープラント実績試算装置であって、前記冷凍機の入力エネルギーの情報である実績消費電力量を取得する電力計と、前記冷水需要設備の冷水需要情報である実績熱量を取得する熱量計と、前記冷凍機の冷凍機性能特性を入力する入力部と、前記実績消費電力量と前記実績熱量と前記冷凍機の冷凍機性能特性とを用い、前記実績消費電力量と前記冷凍機性能特性とから算出される前記冷凍機の熱出力と前記実績熱量との誤差を最小とする最適化問題を解いて前記冷凍機の熱出力を推定する推定演算部と、推定された前記冷凍機の熱出力を出力する出力部と、
を備えたことを特徴とする。
また、本発明は、上記の発明において、前記推定演算部は、前記冷凍機性能特性における冷却水温度を状態変数として前記最適化問題を解いて前記冷却水温度を求め、求めた冷却水温度と前記実績消費電力量とから前記冷凍機の熱出力を推定することを特徴とする。
また、本発明は、上記の発明において、前記推定演算部は、求めた冷却水温度を固定変数とし、前記冷凍機性能特性の負荷率を状態変数として前記冷凍機の消費電力が最小となる最適化問題を解いて、最も効率の良い前記冷凍機の熱出力を求めることを特徴とする。
本発明によれば、エネルギープラントの最適な運用状態を求めるために、冷凍設備側に温度計や流量計などの熱出力計測のためのセンサを追加設置しなくても冷凍設備側の熱出力を求めることができる。
図1は、本発明の実施の形態であるエネルギープラント実績試算装置を含むエネルギープラントの構成を示すブロック図である。 図2は、冷凍機性能特性の一例を示す図である。 図3は、推定演算部による推定演算処理手順の概要を示すフローチャートである。 図4は、定格運転時のCOPを用いて、実績消費電力量から逆算した熱出力と、実績熱量との関係を示す図である。 図5は、各ターボ冷凍機に対して共通の冷却塔群を備えたエネルギープラントの一例を示す図である。
以下、添付図面を参照してこの発明を実施するための形態について説明する。
<エネルギープラントの構成>
図1は、本発明の実施の形態であるエネルギープラント実績試算装置10を含むエネルギープラント100の構成を示すブロック図である。図1に示すように、エネルギープラント100は、エネルギーを消費して冷水W1を生成する冷凍設備1と、生成された冷水を消費する冷水需要設備2とを有する。冷凍設備1は、1つ以上の冷凍機であるターボ冷凍機R1~R4(R)を有する。ターボ冷凍機R1~R4は、被冷却流体である冷水から熱を奪って冷媒が蒸発する蒸発器と、蒸発器で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスを生成する圧縮機と、高圧の冷媒ガスをそれぞれ冷却塔C1~C4から供給される冷却水で冷却して凝縮させる凝縮器と、凝縮した冷媒を減圧して膨張させる膨張機構とを有した冷凍サイクルを有する。
ターボ冷凍機R1~R4は、電力源3から供給される電力を用いて各圧縮機のモータを回転駆動する。また、冷凍設備1には、各ターボ冷凍機R1~R4の凝縮器に送られる冷却水を生成する冷却塔C1~C4(C)が設けられる。各冷却塔C1~C4は、各ターボ冷凍機R1~R4に対応して設けられる。
各ターボ冷凍機R1~R4の各蒸発器によって生成された冷水W1は、往配管LFを介して冷水需要設備2に送られる。そして、冷水需要設備2によって温まった冷水W2は、還配管LBを介してターボ冷凍機R1~R4の各蒸発器に戻され、再び冷却された冷水W1となる。冷水需要設備2は、ファンコイルなどの近傍に冷水W1を送り、被冷却空間と熱交換を行う。
ここで、各ターボ冷凍機R1~R4には、入力エネルギーの情報である実績消費電力量を取得する電力計SP1~SP4が設けられる。一方、冷水需要設備2には、冷水需要情報である実績熱量を取得する熱量計SQが設けられている。
エネルギープラント実績試算装置10には、各電力計SP1~SP4及び熱量計SQが接続される。エネルギープラント実績試算装置10は、入力部11、出力部12、記憶部13及び制御部14を有する。
入力部11は、キーボードやマウスなどの入力デバイスであり、ターボ冷凍機R1~R4の冷凍機性能特性D3を入力する。冷凍機性能特性D3は、COP特性である。図2は、冷凍機性能特性D3の一例を示す図であり、このCOP特性は、冷却水温度をパラメータとし、負荷率に対するCOPの変化を示したものである。図2では、COPの部分負荷特性を示している。部分負荷特性とは、定格負荷時のCOP変化ではなく、冷却水温度ごとに、冷凍機負荷率とCOPとの関係を表したものであり、冷凍機の性能試験等によって得られるものである。
出力部12は、液晶パネルなどの出力デバイスであり、エネルギープラント実績試算装置10が推定したターボ冷凍機R1~R4の熱出力を出力する。
記憶部13は、ハードディスク装置又はフラッシュメモリ等の記憶デバイスであり、実績消費電力量D1、実績熱量D2、冷凍機性能特性D3及び熱出力D4などを記憶する。実績消費電力量D1は、各電力計SP1~SP4が所定サンプリング間隔でサンプリングした実績の消費電力である。実績熱量D2は、熱量計SQが所定サンプリング間隔でサンプリングした実績の熱量である。
制御部14は、エネルギープラント実績試算装置10を全体制御する制御部であり、推定演算部15を有する。実際には、推定演算部15に対応するプログラムを図示しないROMや不揮発性メモリに記憶しておき、これらのプログラムをCPUにロードして実行することにより、推定演算部15に対応するプロセスを実行させることになる。
推定演算部15は、実績消費電力量D1と実績熱量D2とターボ冷凍機の冷凍機性能特性D3とを用い、実績消費電力量D1と冷凍機性能特性D3とから算出されるターボ冷凍機の熱出力と実績熱量D2との誤差を最小とする最適化問題を解いてターボ冷凍機の熱出力D4を推定する。
推定演算部15は、冷凍機性能特性D3における冷却水温度を状態変数として最適化問題を解いて冷却水温度を求め、求めた冷却水温度と実績消費電力量D1とからターボ冷凍機の熱出力を推定する。
<推定演算処理>
ここで、図3に示すフローチャートを用いて推定演算部15による推定演算処理の概要について説明する。図3に示すように、まず、電力計SP1~SP4からそれぞれ実績消費電力量D1を取得しておくとともに、熱量計SQから実績熱量D2得しておく(ステップS110)。その後、予め入力された各ターボ冷凍機R1~R4の冷凍機性能特性D3を取得する(ステップS120)。
その後、推定演算部15は、冷却水温度を状態変数としたターボ冷凍機R1~R4の熱出力と、実績熱量D2との誤差を最小とする最適化問題を計算する(ステップS130)。その後、最適化問題の計算によって求められた冷却水温度を用いて算出されたCOPと実績消費電力量D1といから、ターボ冷凍機R1~R4の熱出力D4を推定する(ステップS140)。そして、推定した熱出力D4を出力部12から出力する(ステップS150)。
<熱出力の推定演算>
まず、ターボ冷凍機R1~R4の熱出力と消費電力との関係は、COPを介して式(1)で表される。
Figure 2022044935000002
ここで、冷凍機性能特性D3、すなわちCOP特性のCOPは図2に示したように、冷却水温度によって大きく変化するため、消費電力(実績消費電力量D1)を取得できても熱出力を求めることができない。このため、実績消費電力量D1と冷水需要熱量である実績熱量D2とを用いて冷却塔C1~C4から供給される冷却水温度を推定することになる。
図4は、定格運転時のCOPを用いて、消費電力(実績消費電力量D1)から式(1)を用いた逆算した熱出力と、冷却需要(実績熱量D2)との関係を示す図である。図4に示すように、実績熱量D2と、各ターボ冷凍機R1~R4の合計した実績消費電力量D1とには誤差が生じる。これは、各ターボ冷凍機R1~R4の定格運転時の条件が決まっており、たとえは、冷却水温度を32度としているためであり、実際の冷却水温度を用いたCOP特性を用いなければ、精度の高い熱出力を求めることはできない。
そこで、本実施の形態では、実績熱量D2と、合計した実績消費電力量D1との誤差を減らすため、冷却水温度を状態変数として最適化問題として定式化を行い、誤差を最小化するようにしている。
なお、図1に示したエネルギープラント100では、各ターボ冷凍機R1~R4に対してそれぞれ個別に冷却塔C1~C4を設けているため、各冷却塔C1~C4の冷却水温度は、各ターボ冷凍機R1~R4に対して個別の状態変数となる。ただし、図5に示すように、各ターボ冷凍機R1~R4に対して共通の冷却塔群CGからの共通の冷却水を用いる場合、各ターボ冷凍機R1~R4に対する冷却水温度は1つの状態変数となる。図5では、共通の冷却塔群CGから送り配管LC1を介して共通の冷却水が各ターボ冷凍機R1~R4の凝縮器に流入し、戻り配管LC2を介して各ターボ冷凍機R1~R4の凝縮器から熱を奪った冷却水が流出して冷却塔群CGに戻っている。
冷却水温度を状態変数とする最適化問題の制約条件として、冷却水温度の上限値及び下限値を設定する。例えば、図3に示した冷凍機性能特性D3の範囲内であれば、冷却水温度の制約条件の範囲は、13℃~32℃となる。なお、この冷却水温度の範囲は、実運用上の所見、例えば制限がある場合には、その制限内の範囲に設定する。
ここで、冷却水温度は、外気温湿度に影響される。各冷却塔C1~C4が各ターボ冷凍機R1~R4に近接配置される場合であっても冷却水温度に差が生じる場合がある。したがって、各ターボ冷凍機R1~R4の冷却水毎の温度差も制約条件として追加するようにしてもよい。
COP特性の負荷率は、消費電力(実績消費電力量D1)をもとに設定する。負荷率は、定格冷凍能力に対する冷凍負荷の比率で表されるものであり、定格消費電力に対する消費電力の比率(電力比)ではない。したがって、負荷率は、消費電力を用いて調整される。例えば、第1の調整方法では、電力比を負荷率とみなし、負荷率を固定変数とする。また、第2の調整方法では、電力比を負荷率の初期条件とし、負荷率を状態変数とする。この場合、負荷率は、電力比の±n%(nは、任意の正数)とする範囲とする制約条件を設ける。
上記の冷却水温度を状態変数とする数式モデルを生成し、COPを算出する。例えば、まず、図2に示すCOP特性から、冷却水温度T(状態変数)を挟む冷却水温度T1(下限値)及び冷却水温度T2(上限値)を取得する(T1<T<T2)。
つぎに、負荷率に対する冷却水温度T1のときのCOP値「COP1」、及び、冷却水温度T2のときのCOP値「COP2」をそれぞれ取得する。
これらの値を用いて、COPは、次式(2)で表すことができる。
Figure 2022044935000003
その後、式(2)で表される、状態変数を持つCOPと消費電力(実績消費電力量D1)とから式(1)を用いてターボ冷凍機の熱出力を算出し、この算出した熱出力(各ターボ冷凍機R1~R4の熱出力の合計値)と、実績熱量D2との誤差を最小とする最適化問題を解くことによって冷却水温度Tを算出する。結果的に算出された冷却水温度Tを式(2)に代入してCOPが求められるため、このCOPと実績消費電力量D1とを乗算することによってターボ冷凍機R1~R4の熱出力が推定されることになる。
この冷却水温度Tの算出に用いる最適化問題の目的関数としては、例えば、次式(3)に示す二乗誤差最小化の関数を用いることができる。
Figure 2022044935000004
ここで、式(3)のQprefiは、冷水需要の実績値(実績熱量D2)であり、Qcalciは、ターボ冷凍機R1~R4の各熱出力の合計値である。iは、サンプリング点であり、nは、サンプリングのデータ数である(n>0)。
本実施の形態では、エネルギープラント100を停止せずに追加設置が可能な電力計SP1~SP4を設置し、あるいは既設の電力計SP1~SP4を用いてターボ冷凍機R1~R4の熱出力を求めることができるため、温度計や流量計などの熱出力計測のためのセンサの追加設置に伴うエネルギープラント100の停止を行わなくて済む。
<応用例>
本応用例では、推定演算部15が、上記の実施の形態で求めた冷却水温度Tを固定変数とし、冷凍機性能特性D3の負荷率を状態変数としてターボ冷凍機の消費電力が最小となる最適化問題を解いて、最も効率の良いターボ冷凍機の熱出力D4を求めるようにしている。
最適な冷凍機運用の効果を検証する場合、実績との差を比較することになるが、各ターボ冷凍機R1~R4への冷却水温度Tが不明の場合、COP特性が大きく異なることが考えられる。例えば、冷却水温度Tが20度の場合、定格冷却水温度が32℃のときと比較してCOPが2倍程度にまで広がるため、比較する意味がなくなってしまう。
そこで、上記の実施の形態で求めた冷却水温度Tを用いて冷凍機運用の最適化を行う。すなわち、冷却水温度Tを固定変数とし、ターボ冷凍機R1~R4の負荷率を状態変数とする最適化問題を解く。ターボ冷凍機の場合、コスト関数は電力コストになるので、目的関数は、次式(4)に示す、ターボ冷凍機の消費電力の最小化関数となる。
Figure 2022044935000005
ここで、Epowerijは、各ターボ冷凍機R1~R4の消費電力であり、この消費電力は、負荷率の変化に伴う計算値である。iは、サンプリング点である。また、nは、サンプリング点のデータ数である(n>0)。また、jは、ターボ冷凍機R1~R4の冷凍機番号である。Mは、ターボ冷凍機R1~R4の冷凍機台数である(m>0)。
上記応用例の最適化問題を解くことにより、各ターボ冷凍機R1~R4の熱出力配分の最適化を行うことができる。
なお、上記の実施の形態及び応用例では、冷凍機の一例としてターボ冷凍機を例にあげて説明したが、圧縮機が電力駆動するものであればよく、例えば、スクリュー冷凍機などの冷凍機にも適用できる。
また、上記の実施の形態及び応用例で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置及び構成要素の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
1 冷凍設備
2 冷水需要設備
3 電力源
10 エネルギープラント実績試算装置
11 入力部
12 出力部
13 記憶部
14 制御部
15 推定演算部
100 エネルギープラント
C1~C4 冷却塔
CG 冷却塔群
D1 実績消費電力量
D2 実績熱量
D3 冷凍機性能特性
D4 熱出力
LB 還配管
LC1 送り配管
LC2 戻り配管
LF 往配管
R1~R4 ターボ冷凍機
SP1~SP4 電力計
SQ 熱量計
T,T1,T2 冷却水温度
W1,W2 冷水

Claims (3)

  1. エネルギーを消費して冷水を生成する1つ以上の冷凍機と、冷水を消費する冷水需要設備とを有するエネルギープラントの実績をもとに該エネルギープラントの状態を試算するエネルギープラント実績試算装置であって、
    前記冷凍機の入力エネルギーの情報である実績消費電力量を取得する電力計と、
    前記冷水需要設備の冷水需要情報である実績熱量を取得する熱量計と、
    前記冷凍機の冷凍機性能特性を入力する入力部と、
    前記実績消費電力量と前記実績熱量と前記冷凍機の冷凍機性能特性とを用い、前記実績消費電力量と前記冷凍機性能特性とから算出される前記冷凍機の熱出力と前記実績熱量との誤差を最小とする最適化問題を解いて前記冷凍機の熱出力を推定する推定演算部と、
    推定された前記冷凍機の熱出力を出力する出力部と、
    を備えたことを特徴とするエネルギープラント実績試算装置。
  2. 前記推定演算部は、前記冷凍機性能特性における冷却水温度を状態変数として前記最適化問題を解いて前記冷却水温度を求め、求めた冷却水温度と前記実績消費電力量とから前記冷凍機の熱出力を推定することを特徴とする請求項1に記載のエネルギープラント実績試算装置。
  3. 前記推定演算部は、求めた冷却水温度を固定変数とし、前記冷凍機性能特性の負荷率を状態変数として前記冷凍機の消費電力が最小となる最適化問題を解いて、最も効率の良い前記冷凍機の熱出力を求めることを特徴とする請求項2に記載のエネルギープラント実績試算装置。
JP2020150333A 2020-09-08 2020-09-08 エネルギープラント実績試算装置 Pending JP2022044935A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020150333A JP2022044935A (ja) 2020-09-08 2020-09-08 エネルギープラント実績試算装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020150333A JP2022044935A (ja) 2020-09-08 2020-09-08 エネルギープラント実績試算装置

Publications (1)

Publication Number Publication Date
JP2022044935A true JP2022044935A (ja) 2022-03-18

Family

ID=80681932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020150333A Pending JP2022044935A (ja) 2020-09-08 2020-09-08 エネルギープラント実績試算装置

Country Status (1)

Country Link
JP (1) JP2022044935A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437831B1 (ja) 2023-07-04 2024-02-26 ティーケイケイホールディングス株式会社 空調設備の成績係数の測定方法、測定装置、及び測定プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437831B1 (ja) 2023-07-04 2024-02-26 ティーケイケイホールディングス株式会社 空調設備の成績係数の測定方法、測定装置、及び測定プログラム

Similar Documents

Publication Publication Date Title
US9612601B2 (en) Systems and methods for adaptive capacity constraint management
US11680724B2 (en) Central plant control system with computation reduction based on sensitivity analysis
JP6334230B2 (ja) 冷凍機システム
JP5427563B2 (ja) インバータターボ冷凍機の性能評価装置
JP5394047B2 (ja) パッケージ型空調機による空調システムの冷房能力測定方法及びその装置
JP2017101862A (ja) 熱源制御システムおよび制御方法
EP0895038A1 (en) A digital controller for a cooling and heating plant having near-optimal global set point control strategy
US10161834B1 (en) Method to determine performance of a chiller and chiller plant
Corberán et al. Partialization losses of ON/OFF operation of water-to-water refrigeration/heat-pump units
US20140214365A1 (en) Method for the diagnostic analysis of a heating, ventilation and air-conditioning system (hvac)
JP2013170753A (ja) 冷凍機システム
Franco et al. Thermal analysis and development of PID control for electronic expansion device of vapor compression refrigeration systems
JP6972468B2 (ja) 空調装置の評価装置および評価方法
Cecchinato et al. A simplified method to evaluate the seasonal energy performance of water chillers
Tran et al. Refrigerant-based measurement method of heat pump seasonal performances
Naik et al. Empirical correlation based models for estimation of air cooled and water cooled condenser's performance
Rodríguez et al. Parameter identification of a multi-stage, multi-load-demand experimental refrigeration plant
JP2022044935A (ja) エネルギープラント実績試算装置
Zhang et al. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units
TWI704319B (zh) 冷凍空調主機效率的智能量測驗證方法及其系統
Liu et al. A hierarchical gray-box dynamic modeling methodology for direct-expansion cooling systems to support control stability analysis
Lee Thermodynamic Modeling and Experimental Validation of Screw Liquid Chillers.
JP2020183816A (ja) 熱源システム、目標運転容量推定方法、目標運転容量推定プログラム
Cha et al. An experimental study on semiconductor process chiller using the digital scroll compressor
Jin et al. A hybrid water-cooled centrifugal chiller model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423