JP2022044562A - Sandbag and sandbag manufacturing method - Google Patents

Sandbag and sandbag manufacturing method Download PDF

Info

Publication number
JP2022044562A
JP2022044562A JP2021138145A JP2021138145A JP2022044562A JP 2022044562 A JP2022044562 A JP 2022044562A JP 2021138145 A JP2021138145 A JP 2021138145A JP 2021138145 A JP2021138145 A JP 2021138145A JP 2022044562 A JP2022044562 A JP 2022044562A
Authority
JP
Japan
Prior art keywords
less
mass
particle size
sandbag
debris
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021138145A
Other languages
Japanese (ja)
Inventor
晃宏 奥谷
Akihiro Okutani
剛志 大田
Tsuyoshi Ota
考志 米田
Takashi Yoneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Matere Co Ltd
Original Assignee
Komatsu Matere Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Matere Co Ltd filed Critical Komatsu Matere Co Ltd
Publication of JP2022044562A publication Critical patent/JP2022044562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

To provide a sandbag which is lightweight, is easily transported, is excellent in shape followability, is simply disposed, and prevents degeneration even when stored over a long period of time.SOLUTION: A sandbag is obtained by filling the inside of a bag having water permeability with a filler composed of (A) 30 mass% or more and 80 mass% or less of porous ceramic having a grain size by sieve classification of 75 μm or less, and (B) a clastic material having a grain size by sieve classification of more than 75 μm. (B) The clastic material contains (B') a clastic material having a grain size by sieve classification of more than 75 μm and 1,000 μm or less, 20 mass% or more of (B') the clastic material is preferably contained in the total filler, and (B) the clastic material preferably contains a porous ceramic. In (A) the porous ceramic having the grain size by sieve classification of 75 μm or less, a pore of a micrometer order having a pore diameter of more than 10 nm and 1,000 nm or less and a pore of a micrometer order having a pore diameter of more than 1 μm and 70 μm or less preferably exist.SELECTED DRAWING: None

Description

特許法第30条第2項適用申請有り 日刊工業新聞 令和2年9月2日付 発行者名:株式会社日刊工業新聞社 発行日:令和2年9月2日 [刊行物等] ウェブサイトのアドレス:別紙に記載 掲載日:別紙に記載 [刊行物等] 北國新聞 令和2年9月8日付朝刊 発行者名:株式会社北國新聞社 発行日:令和2年9月8日 [刊行物等] 建設通信新聞 令和2年9月9日付 発行者名:株式会社日刊建設通信新聞社 発行日:令和2年9月9日 [刊行物等] ウェブサイトのアドレス: https://www.nikkei.com/article/DGXMZO63633230Z00C20A9LB0000/ 掲載日:令和2年9月9日 [刊行物等] 化学工業日報 令和2年9月10日付 発行者名:株式会社化学工業日報社 発行日:令和2年9月10日 [刊行物等] 繊維ニュース 令和2年9月11日付 発行者名:ダイセン株式会社 発行日:令和2年9月11日 [刊行物等] 北陸中日新聞 令和2年9月12日付朝刊 発行者名:株式会社中日新聞社 発行日:令和2年9月12日 [刊行物等] 繊研新聞 令和2年9月24日付 発行者名:株式会社繊研新聞社 発行日:令和2年9月24日 [刊行物等] 日経産業新聞 令和2年10月6日付 発行者名:株式会社日本経済新聞社 発行日:令和2年10月6日 [刊行物等] 不織布情報 第541号 発行者名:株式会社不織布情報 発行日:令和2年11月10日 [刊行物等] 北國新聞 令和2年12月9日付朝刊 発行者名:株式会社北國新聞社 発行日:令和2年12月9日 [刊行物等] 北陸中日新聞 令和2年12月9日付朝刊 発行者名:株式会社中日新聞社 発行日:令和2年12月9日 [刊行物等] 北國新聞 令和2年12月17日付朝刊 発行者名:株式会社北國新聞社 発行日:令和2年12月17日 [刊行物等] 建設通信新聞 令和2年12月17日付 発行者名:株式会社日刊建設通信新聞社 発行日:令和2年12月17日 [刊行物等] 販売した場所:別紙に記載 販売日:別紙に記載Application for application of Article 30, Paragraph 2 of the Patent Act Nikkan Kogyo Shimbun Dated September 2, 2nd Issuer name: Nikkan Kogyo Shimbun Co., Ltd. Date of issue: September 2, 2nd Reiwa [Publications, etc.] Website Address: Described in the attached sheet Publication date: Described in the attached sheet [Publications, etc.] Hokugoku Shimbun Morning edition dated September 8, 2nd issue: Hokugoku Shimbun Co., Ltd. Publication date: September 8th, 2nd year [Published] [Publications, etc.] Construction Newspaper, September 9, 2nd year Issuer name: Nikkan Construction Newspaper Co., Ltd. Publication date: September 9, 2nd year, Reiwa [Publications, etc.] Website address: https: // www. nikkei. com / article / DGXMZO63633230Z00C20A9LB0000 / Publication date: September 9, 2nd year of Reiwa [Publications, etc.] Daily report of Chemical Industry, dated September 10, 2nd year of Reiwa Issuer name: Nikkei Co., Ltd. Publication date: 2nd year of Reiwa September 10 [Publications, etc.] Textile News Reiwa 2nd September 11th Publisher name: Daisen Co., Ltd. Publication date: Reiwa 2nd September 11th [Publications, etc.] Hokuriku Chunichi Shimbun Reiwa 2nd year Morning edition dated September 12, Publisher name: Chunichi Shimbun Co., Ltd. Publication date: September 12, 2nd year of Reiwa [Publications, etc.] Publication date: September 24, 2nd year of Reiwa [Publications, etc.] Nikkei Sangyo Shimbun, dated October 6, 2nd year of Reiwa Issuer name: Nihon Keizai Shimbun Co., Ltd. Publication date: October 6, 2nd year of Reiwa [Published] Materials, etc.] Non-woven fabric information No. 541 Publisher name: Non-woven fabric information Co., Ltd. Publication date: November 10, 2nd year of Reiwa [Publications, etc.] Hokkoku Shimbun Morning edition dated December 9, 2nd year of Reiwa Publisher: Hokkoku Co., Ltd. Newspaper company Publication date: December 9, 2nd year of Reiwa [Publications, etc.] Hokuriku Chunichi Shimbun Morning edition dated December 9, 2nd year of Reiwa Publisher name: Chunichi Shimbun Co., Ltd. Publication date: December 2nd year of Reiwa 9th [Publications, etc.] Hokkoku Shimbun, morning edition dated December 17, 2nd issue: Hokkoku Shimbun Co., Ltd. Publication date: December 17, 2nd year [Publications, etc.] Construction Newspaper, Reiwa 2nd year Date of December 17 Publisher: Nikkan Kensetsu Tsushin Shimbun Co., Ltd. Date of issue: December 17, 2nd year of Reiwa [Publications, etc.] Place of sale: Described in the attached sheet Sales date: Described in the attached sheet

本発明は、土嚢及び土嚢の製造方法に関するものである。 The present invention relates to sandbags and a method for producing sandbags.

河川の氾濫、地震などによる水道管の破裂、貯水タンクからの水の漏えいなど大量の水が流出した際、流れ出る水をせき止めるために、ポリエチレン製の袋などに、土、砂利、山砂などを充填した土嚢が従来用いられてきた。 When a large amount of water flows out, such as flooding of a river, rupture of a water pipe due to an earthquake, or leakage of water from a water storage tank, put soil, gravel, mountain sand, etc. in a polyethylene bag to stop the flowing water. Filled sandbags have traditionally been used.

しかし袋中の土は重く運搬が困難であり、かつ水を吸うと固まってしまう性質から袋の外形に沿って随意に変形しにくく、並べたり積み上げたりした土嚢同士の隙間から水の侵入を許してしまう課題がある。 However, the soil in the bag is heavy and difficult to transport, and because it hardens when it absorbs water, it does not easily deform along the outer shape of the bag, allowing water to enter through the gaps between the sandbags that are lined up or stacked. There is a problem that will end up.

そこで、特許文献1では、吸水性が高い変性高分子化合物を、可撓性のある支持体で支持して水透過性袋状体内に含有させ、運搬時の重量が軽減され、かつ形状追随性を有する土嚢が提案されている。 Therefore, in Patent Document 1, a modified polymer compound having high water absorption is supported in a water-permeable bag-like body by being supported by a flexible support, the weight during transportation is reduced, and the shape followability is achieved. Sandbags with are proposed.

特開2002-275852号JP-A-2002-275852

しかしながら、土、砂利、山砂などを充填した従来の土嚢では袋から中の土等を出してしまえば処分可能であるが、特許文献1で提案されている土嚢では、吸水性高分子を使用しているため、使用済みの土嚢の処分には内容物の分離や焼却などの処理が必要になるという課題がある。また、有機分を含む土や吸水性高分子では、長期間の貯蔵中に腐敗したり、藻やカビが発生したりしてしまうという課題もある。 However, conventional sandbags filled with soil, gravel, mountain sand, etc. can be disposed of if the soil inside is taken out of the bag, but the sandbags proposed in Patent Document 1 use a water-absorbent polymer. Therefore, there is a problem that disposal of used sandbags requires treatment such as separation and incineration of the contents. In addition, soil containing organic matter and water-absorbing polymers have a problem that they rot and algae and mold grow during long-term storage.

そこで、本発明では、軽量で運搬し易く、形状追随性に優れ、廃棄処分が簡単で、かつ長期保存しても変質しにくい土嚢を提供することを課題とする。 Therefore, it is an object of the present invention to provide a sandbag that is lightweight, easy to carry, has excellent shape followability, is easy to dispose of, and is not easily deteriorated even after long-term storage.

上記課題を解決するために、本発明の実施態様に係る土嚢及び土嚢の製造方法は以下の構成を有する。
(1)(A)篩分級による粒度が75μm以下の多孔質セラミックス30質量%以上80質量%以下と、(B)篩分級による粒度が75μmを超える砕屑物と、からなる充填物が、透水性を有する袋中に充填されてなる、土嚢。
(2)前記(B)砕屑物が、(B’)篩分級による粒度が75μm超1000μm以下の破屑物を含み、前記(B’)砕屑物が充填物の全体に対して20質量%以上含まれることを特徴とする、前記(1)に記載の土嚢。
(3)前記(B)砕屑物が、多孔質セラミックスを含むことを特徴とする、前記(1)又は(2)に記載の土嚢。
(4)前記(A)篩分級による粒度が75μm以下の多孔質セラミックスには、孔径が10nm超1000nm以下のナノメートルオーダーの気孔および孔径が1μm超70μm以下のマイクロメートルオーダーの気孔が存在することを特徴とする、前記(1)~(3)のいずれか1項に記載の土嚢。
(5)前記充填物の、JIS A1218:2009に記載の変水位透水試験に準じて測定した透水係数が、1.0×10-5cm/s以下であることを特徴とする、前記(1)~(4)のいずれか1項に記載の土嚢。
(6)前記袋が、天然繊維、または生分解性を有する繊維の織物であることを特徴とする、前記(1)~(5)のいずれか1項に記載の土嚢。
(7)粘土と有機汚泥とを含む混合物を焼成して、(A)篩分級による粒度が75μm以下の多孔質セラミックスを得ること、
前記(A)篩分級による粒度が75μm以下の多孔質セラミックス30質量%以上80質量%以下と、(B)篩分級による粒度が75μmを超える砕屑物と、からなる充填物を得ること、および
透水性を有する袋中に前記充填物を充填すること、
を含む、土嚢の製造方法。
In order to solve the above problems, the sandbag and the method for manufacturing sandbags according to the embodiment of the present invention have the following configurations.
The filler composed of (1) 30% by mass or more and 80% by mass or less of porous ceramics having a particle size of 75 μm or less by sieving classification and (B) debris having a particle size of more than 75 μm by sieving classification is water permeable. A sandbag that is filled in a bag with.
(2) The (B) debris contains debris having a particle size of more than 75 μm and 1000 μm or less due to (B') sieving, and the (B') debris is 20% by mass or more with respect to the entire filling. The sandbag according to (1) above, which is characterized by being contained.
(3) The sandbag according to (1) or (2) above, wherein the (B) debris contains porous ceramics.
(4) The porous ceramics having a particle size of 75 μm or less by the sieve classification (A) have nanometer-order pores having a pore diameter of more than 10 nm and 1000 nm or less and micrometer-order pores having a pore diameter of more than 1 μm and 70 μm or less. The earthen sac according to any one of (1) to (3) above, which is characterized by the above-mentioned.
(5) The permeability coefficient of the filling material measured according to the change water level permeability test described in JIS A1218: 2009 is 1.0 × 10-5 cm / s or less, as described in (1). )-(4). The sandbag according to any one of the items.
(6) The sandbag according to any one of (1) to (5) above, wherein the bag is a woven fabric of natural fiber or biodegradable fiber.
(7) Firing a mixture containing clay and organic sludge to obtain (A) porous ceramics having a particle size of 75 μm or less by sieving.
Obtaining a filling consisting of (A) 30% by mass or more and 80% by mass or less of porous ceramics having a particle size of 75 μm or less by sieving classification and (B) debris having a particle size of more than 75 μm by sieving classification, and water permeability. Filling a bag with the property with the filling,
How to make sandbags, including.

本発明の一実施形態の土嚢は、粒度が小さい多孔質セラミックスを含み、かつ、その含有量が所定範囲内であるため、軽量で、形状追随性に優れ、かつ吸湿しても塊になりにくいため土嚢を隙間なく並べたり積み上げたりすることが容易となる。また、充填物を地表に散布するだけで処分することが可能で、長期保存しても変質しにくい効果を有する。 Since the sandbag of one embodiment of the present invention contains porous ceramics having a small particle size and the content thereof is within a predetermined range, it is lightweight, has excellent shape followability, and does not easily form a lump even when it absorbs moisture. Therefore, it becomes easy to arrange and stack sandbags without gaps. In addition, the filling can be disposed of by simply spraying it on the surface of the earth, and has the effect of being resistant to deterioration even when stored for a long period of time.

以下、本発明の例示の実施形態にかかる土嚢について説明をおこなうが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, sandbags according to an exemplary embodiment of the present invention will be described, but the present invention is not limited to these embodiments.

本実施形態にかかる土嚢は、(A)篩分級による粒度が75μm以下の多孔質セラミックス30質量%以上と、(B)篩分級による粒度が75μmを超える砕屑物と、からなる充填物が、透水性を有する袋中に充填されてなる土嚢である。 The sandbag according to the present embodiment is filled with (A) 30% by mass or more of porous ceramics having a particle size of 75 μm or less by sieving, and (B) debris having a particle size of more than 75 μm by sieving. It is a sandbag filled in a bag having sex.

(篩分級による粒度が75μm以下の多孔質セラミックス)
本実施形態の(A)篩分級による粒度が75μm以下の多孔質セラミックスは、その粒子中に多数の気孔を有し、かつ目開き75μmの篩を通過する粒子からなるセラミックスである。
(Porous ceramics with a particle size of 75 μm or less by sieving classification)
The porous ceramics having a particle size of 75 μm or less according to (A) sieve classification of the present embodiment are ceramics composed of particles having a large number of pores in the particles and passing through a sieve having an opening of 75 μm.

セラミックスの原料としては、粘土と、有機汚泥、珪藻土、発泡剤からなる群から選択される少なくとも1種とを混合したものが用いられる。粘土に有機汚泥、珪藻土、発泡剤からなる群から選択される1種を配合して焼成することにより、セラミックスを多孔質にすることができる。特に、得られるセラミックスに孔径が10nm超1000nm以下のナノメートルオーダーの気孔および孔径が1μm超70μm以下のマイクロメートルオーダーの気孔を容易に形成できるとの観点から、粘土と有機汚泥とを少なくとも含む混合物を焼成するとよい。 As a raw material for ceramics, a mixture of clay and at least one selected from the group consisting of organic sludge, diatomaceous earth, and a foaming agent is used. Ceramics can be made porous by blending clay with one selected from the group consisting of organic sludge, diatomaceous earth, and a foaming agent and firing. In particular, a mixture containing at least clay and organic sludge from the viewpoint that nanometer-order pores having a pore diameter of more than 10 nm and 1000 nm or less and micrometer-order pores having a pore diameter of more than 1 μm and 70 μm or less can be easily formed in the obtained ceramics. It is good to bake.

粘土は、一般的に窯業原料として用いられる粘土状の性状を示す鉱物材料であり、珪藻土以外のものである。粘土は、従来よりセラミックスに用いられる公知のものを用いることができ、石英、長石、又はその他の粘土系素材等の鉱物組成で構成され、構成鉱物はカオリナイトを主とし、ハロイサイト、モンモリロナイト、イライト、ベントナイト又はパイロフィライトを含むものが好ましい。中でも、蛙目粘土等が好ましいものとして挙げられる。粘土は、1種単独で又は2種以上を適宜組み合わせて配合できる。 Clay is a mineral material having clay-like properties that is generally used as a raw material for ceramics, and is other than diatomaceous earth. As the clay, known ones conventionally used for ceramics can be used, and the clay is composed of mineral compositions such as quartz, feldspar, or other clay-based materials. The constituent minerals are mainly kaolinite, halloysite, montmorillonite, and illite. , Bentonite or pyrophyllite is preferred. Among them, frog-eye clay and the like are preferable. The clay can be blended alone or in combination of two or more.

有機汚泥は、主成分として有機物を含有する汚泥である。有機汚泥は、任意のものを用いることができ、下水や工場等の排水処理に由来する活性汚泥が好ましい。活性汚泥は、活性汚泥法を用いた排水処理設備から、凝集および脱水工程を経て排出される。有機汚泥を用いることで、焼成工程にて有機汚泥の有機物が焼失し、焼成体から気化していく際の経路により、ナノメートルオーダーの気孔およびマイクロメートルオーダーの気孔を効率的に形成できる。さらに、廃棄物の位置付けであった排水処理由来の活性汚泥を原料として再度利用することができる。有機汚泥の含水率は、例えば、有機汚泥の全体質量に対して水が5~90質量%であることが好ましく、60~90質量%であることがより好ましく、65~85質量%であることがさらに好ましい。上記範囲内であれば、混合物中への混合が容易である。 Organic sludge is sludge containing an organic substance as a main component. Any organic sludge can be used, and activated sludge derived from wastewater treatment of sewage or factories is preferable. Activated sludge is discharged from a wastewater treatment facility using the activated sludge method through agglomeration and dehydration steps. By using the organic sludge, nanometer-order pores and micrometer-order pores can be efficiently formed by the path when the organic matter of the organic sludge is burnt down in the firing step and vaporized from the fired body. Furthermore, activated sludge derived from wastewater treatment, which was positioned as waste, can be reused as a raw material. The water content of the organic sludge is, for example, preferably 5 to 90% by mass, more preferably 60 to 90% by mass, and 65 to 85% by mass with respect to the total mass of the organic sludge. Is even more preferable. Within the above range, mixing into the mixture is easy.

有機汚泥を用いる場合の前記混合物中の有機汚泥の含有量は、混合物の成形性等を勘案して決定することができ、例えば、前記混合物の全体質量に対して0.1~30質量%が好ましく、5~20質量%がより好ましく、5~15質量%がさらに好ましい。前記混合物中の有機汚泥の含有量が前記範囲内であれば混合物は適度な流動性と可塑性とを備え、成形装置を閉塞することなく円滑に成形できる。 When organic sludge is used, the content of organic sludge in the mixture can be determined in consideration of the moldability of the mixture and the like, and is, for example, 0.1 to 30% by mass with respect to the total mass of the mixture. It is preferable, 5 to 20% by mass is more preferable, and 5 to 15% by mass is further preferable. When the content of the organic sludge in the mixture is within the above range, the mixture has appropriate fluidity and plasticity, and can be smoothly molded without clogging the molding apparatus.

前記混合物の混合工程に用いられる混合装置は特に限定されず、公知の混合装置を用いることができる。混合装置としては、例えば、ミックスマラー(新東工業株式会社製)等の混練機、ニーダー(株式会社モリヤマ製)および混合機(日陶科学株式会社製)等が挙げられる。 The mixing device used in the mixing step of the mixture is not particularly limited, and a known mixing device can be used. Examples of the mixing device include a kneader such as a mix maller (manufactured by Shinto Kogyo Co., Ltd.), a kneader (manufactured by Moriyama Co., Ltd.), a mixer (manufactured by Nikko Kagaku Co., Ltd.), and the like.

前記混合物は、真空土練成形機、平板プレス成形機および平板押出し成形機などの公知の成形装置を用い、柱状、板状、粒状、ペレット状など適宜の形状にととのえて成形体としてもよい。このような成形体を焼成することで多孔質セラミックスの塊状物が得られる。 The mixture may be formed into an appropriate shape such as a columnar shape, a plate shape, a granular shape, or a pellet shape by using a known molding apparatus such as a vacuum clay kneading machine, a flat plate press molding machine, and a flat plate extrusion molding machine. By firing such a molded product, a lump of porous ceramics can be obtained.

焼成前に必要に応じ成形体を乾燥させてもよい。公知の方法を用いて乾燥操作を行うことができる。例えば、成形体を常温(例えば、目安として20~30℃前後)で自然乾燥させてもよいし、50~220℃の熱風乾燥炉で任意の時間処理して乾燥させてもよい。 If necessary, the molded product may be dried before firing. The drying operation can be performed using a known method. For example, the molded product may be naturally dried at room temperature (for example, around 20 to 30 ° C. as a guide), or may be treated and dried in a hot air drying oven at 50 to 220 ° C. for an arbitrary time.

焼成工程は特に限定されず、公知の方法を用いることができる。例えば、ローラーハースキルン等の連続式焼結炉、又はシャトルキルン等の回分式焼結炉を用い、任意の温度で焼成する方法が挙げられる。中でも、焼成操作には、生産性の観点から連続式焼結炉を用いることが好ましい。焼成温度(最高到達温度)は、混合物の性状等に応じて決定でき、例えば、850℃~1200℃とされる。焼成温度が上記下限値以上であれば、焼成する混合物に有機汚泥を用いた場合、有機汚泥由来の臭気成分が熱分解され解消されると共に、有機汚泥中の有機物の大部分が揮発して減量する。上記上限値超であると、セラミックスの組織全体のガラス化が進み、気孔が閉塞するおそれがある。 The firing step is not particularly limited, and a known method can be used. For example, there is a method of firing at an arbitrary temperature using a continuous sintering furnace such as a roller harskirun or a batch type sintering furnace such as a shuttle kiln. Above all, it is preferable to use a continuous sintering furnace for the firing operation from the viewpoint of productivity. The firing temperature (maximum temperature reached) can be determined according to the properties of the mixture and the like, and is, for example, 850 ° C to 1200 ° C. When the firing temperature is equal to or higher than the above lower limit, when organic sludge is used as the mixture to be fired, the odorous components derived from the organic sludge are thermally decomposed and eliminated, and most of the organic matter in the organic sludge is volatilized to reduce the weight. do. If it exceeds the above upper limit value, the entire structure of the ceramics may be vitrified and the pores may be blocked.

前記工程により得られたセラミックスは、多数の気孔を有する多孔質セラミックスとなる。多孔質となることで見かけの密度が減って軽量となり運搬性等が向上する一方、セラミックス中に多量の水分を含むことができるため、実使用時の重量が増し、水圧に耐える土嚢とすることができる。また一般に、微細粒子が吸湿した際、一定のせん断力(降伏応力)を掛けるまで流動しないビンガム流体となるが、多数の気孔中に水を取り込んだ微細粒子は、気孔を有しない微細粒子の場合と比較して水の体積分率が高く、降伏応力を低減させる作用を発揮する。このため、水に濡れた後であっても形状追随性が高い土嚢が得られる。前記工程により得られた多孔質セラミックスの見かけ密度(かさ密度)は、例えば、0.75g/cm以上1.0g/cm以下であってもよい。また、前記工程により得られた多孔質セラミックスのBET比表面積は、例えば、0.4m/g以上2.0m/g以下であってもよい。 The ceramic obtained by the above step is a porous ceramic having a large number of pores. By becoming porous, the apparent density is reduced, the weight is reduced, and the transportability is improved. On the other hand, since a large amount of water can be contained in the ceramics, the weight during actual use increases and the sandbag should be able to withstand water pressure. Can be done. In general, when fine particles absorb moisture, they become a Bingham fluid that does not flow until a certain shear force (yield stress) is applied, but the fine particles that have taken in water into a large number of pores are fine particles that do not have pores. Compared with, the volume fraction of water is high, and it exerts the effect of reducing the yield stress. Therefore, a sandbag having high shape-following property can be obtained even after getting wet with water. The apparent density (bulk density) of the porous ceramics obtained by the above step may be, for example, 0.75 g / cm 3 or more and 1.0 g / cm 3 or less. Further, the BET specific surface area of the porous ceramics obtained by the above step may be, for example, 0.4 m 2 / g or more and 2.0 m 2 / g or less.

多孔質セラミックスには、孔径が10nm超1000nm以下のナノメートルオーダーの気孔および孔径が1μm超70μm以下のマイクロメートルオーダーの気孔が存在するとよい。マイクロメートルオーダーの気孔により見かけ密度を減らすと同時に、ナノメートルオーダーの気孔により毛細管現象にて保水率が著しく向上し、吸水した際の重量が大きく増加し、より高い水圧に耐えられる土嚢とすることができる。 It is preferable that the porous ceramics have nanometer-order pores having a pore diameter of more than 10 nm and 1000 nm or less and micrometer-order pores having a pore diameter of more than 1 μm and 70 μm or less. Micrometer-order pores reduce the apparent density, while nanometer-order pores significantly improve the water retention rate due to capillarity, greatly increase the weight when absorbing water, and make sandbags that can withstand higher water pressure. Can be done.

なお、気孔の孔径は、走査型電子顕微鏡観察を行った画像データから縮尺に従って画像処理を行うことで測定することができる。具体的には、粒状物の気孔の孔径は、粒状物の表面に存在する気孔の円相当直径を電子顕微鏡を用いて測定した値である。 The pore diameter can be measured by performing image processing according to the scale from the image data observed by the scanning electron microscope. Specifically, the pore diameter of the pores of the granular material is a value obtained by measuring the equivalent circle diameter of the pores existing on the surface of the granular material using an electron microscope.

多孔質セラミックスに形成されている気孔は、それぞれ独立したものであってもよいし、相互に連通した連通孔であってもよい。 The pores formed in the porous ceramics may be independent or may be communication holes that communicate with each other.

前記の通り得られた多孔質セラミックスは、塊状物であってよい。本実施形態においては、例えば、当該塊状物を破砕した後に分級することで、(A)篩分級による粒度が75μm以下の多孔質セラミックスが得られる。より具体的には、焼成により得られた塊状の多孔質セラミックスを、ハンマーミル、二軸回転式破砕、ジェットミル、ボールミル、又はエッジランナーミル等で破砕および粉砕し、75μm以下の粒子径のものに篩分けするとよい。また、篩分けし、粒子径が75μm超の大きな粒状物を再度粉砕し、75μm以下の粒子径のものに篩分けしてもよい。このようにして篩分級による粒度が75μm以下である多孔質セラミックスを製造することができる。(A)篩分級による粒度が75μm以下の多孔質セラミックスについて、その粒度の下限は、多孔質を維持できる限り特に限定されないが、多孔質の維持しやすさ、袋の織目からの漏れ出しにくさの観点から、篩分級による粒度が5μm以上のものを用いることが好ましい。 The porous ceramics obtained as described above may be in the form of a lump. In the present embodiment, for example, by crushing the lump and then classifying it, (A) porous ceramics having a particle size of 75 μm or less can be obtained by sieving classification. More specifically, the massive porous ceramics obtained by firing are crushed and crushed by a hammer mill, biaxial rotary crushing, jet mill, ball mill, edge runner mill, etc., and have a particle size of 75 μm or less. It is good to sift through. Further, it may be sieved, and large particles having a particle size of more than 75 μm may be pulverized again and sieved into particles having a particle size of 75 μm or less. In this way, it is possible to produce porous ceramics having a particle size of 75 μm or less by sieving classification. (A) For porous ceramics having a particle size of 75 μm or less by sieving classification, the lower limit of the particle size is not particularly limited as long as the porosity can be maintained, but it is easy to maintain the porosity and leaks from the texture of the bag. From the viewpoint of shaving, it is preferable to use one having a particle size of 5 μm or more by sieving.

(砕屑物)
本実施形態の(B)砕屑物としては、特に限定されず、砂や礫やセラミックスなど、篩分級による粒度が75μmを超える種々の砕屑物が用いられる。特に、前記方法で製造した多孔質セラミックスの粉砕物を用いることもでき、(A)篩分級による粒度が75μm以下の多孔質セラミックスの篩分けの結果発生した、篩分級による粒度が75μmを超える余剰物を用いることもできる。(B)砕屑物が多孔質セラミックスを含むことで、見かけの密度が一層減り、軽量となって運搬性が向上する一方で、セラミックス中に多量の水分を含むことができるため、実使用時の重量が増し、水圧に耐える土嚢とすることができる。(B)砕屑物のうち、一部が多孔質セラミックスであってもよいが、全てを多孔質セラミックスとすることにより、前記効果をさらに強く発現させることができる。
(Grus)
The (B) debris of the present embodiment is not particularly limited, and various debris having a particle size of more than 75 μm by sieving, such as sand, gravel, and ceramics, is used. In particular, a pulverized product of the porous ceramics produced by the above method can also be used. You can also use things. (B) Since the debris contains porous ceramics, the apparent density is further reduced, the weight is reduced, and the transportability is improved. On the other hand, the ceramics can contain a large amount of water, so that they can be used in actual use. It can be made into a sandbag that is heavier and can withstand water pressure. (B) A part of the debris may be porous ceramics, but by using all of them as porous ceramics, the above effect can be further exerted.

さらに(B)砕屑物は、(B’)篩分級による粒度が75μm超1000μm以下の砕屑物を含むことが好ましい。例えば、(B)砕屑物は、篩分級により粒度が75μm超1000μm以下に篩分けされた砂礫であってもよいし、(A)篩分級による粒度が75μm以下の多孔質セラミックスの篩分けの結果発生した余剰物を、さらに目開き1000μm以下の篩を用いて篩分けされたものであってもよい。(B)砕屑物中に、(B’)破屑物が含まれていることにより、形状追随性に一層優れる土嚢とすることができる。 Further, the (B) debris preferably contains debris having a particle size of more than 75 μm and 1000 μm or less by (B') sieving classification. For example, (B) debris may be gravel sieved to a particle size of more than 75 μm and 1000 μm or less by sieving, or (A) the result of sieving of porous ceramics having a particle size of 75 μm or less by sieving. The surplus generated may be further sieved using a sieve having an opening of 1000 μm or less. Since the (B) debris contains the (B') debris, the sandbag can be made to have even better shape followability.

(充填物)
本実施形態の充填物は、(A)篩分級による粒度が75μm以下の多孔質セラミックス30質量%以上80質量%以下と、(B)篩分級による粒度が75μmを超える砕屑物と、からなる充填物である。(A)篩分級による粒度が75μm以下の微細粒子を30質量%以上含むことにより、高い止水性を有する土嚢とすることができる。また、当該微細粒子の含有量が80質量%以下であり、かつ、当該微細粒子が多孔質セラミックスであることにより、砕屑物同士が吸湿して塊になるのを防ぎ、濡れた土嚢でも隙間なく並べたり積み上げたりすることが容易となる。充填物における(A)篩分級による粒度が75μm以下の多孔質セラミックスの量は、35質量%以上又は40質量%以上であってもよく、75質量%以下又は70質量%以下であってもよい。
(Filling)
The filler of the present embodiment is filled with (A) 30% by mass or more and 80% by mass or less of porous ceramics having a particle size of 75 μm or less by sieving, and (B) debris having a particle size of more than 75 μm by sieving. It is a thing. (A) By containing 30% by mass or more of fine particles having a particle size of 75 μm or less by sieving classification, a sandbag having high water stopping property can be obtained. Further, since the content of the fine particles is 80% by mass or less and the fine particles are porous ceramics, it is possible to prevent the debris from absorbing moisture and forming a lump, and there is no gap even in a wet sandbag. It becomes easy to arrange and stack. The amount of the porous ceramics having a particle size of 75 μm or less by (A) sieving classification in the packing may be 35% by mass or more or 40% by mass or more, and may be 75% by mass or less or 70% by mass or less. ..

本実施形態の充填物における(B)砕屑物の含有量は特に限定されない。上述したように、(B)砕屑物には、(B’)篩分級による粒度が75μm超1000μm以下の砕屑物が含まれているとよく、この場合、当該(B’)砕屑物は、充填物の全体に対して20質量%以上、25質量%以上又は30質量%以上含まれていてもよい。当該(B’)砕屑物が充填物の全体に対し20質量%以上含まれていることにより、形状追随性に一層優れる土嚢とすることができる。 The content of (B) debris in the packing of the present embodiment is not particularly limited. As described above, the (B) debris may contain debris having a particle size of more than 75 μm and 1000 μm or less by (B') sieving, and in this case, the (B') debris is filled. It may be contained in an amount of 20% by mass or more, 25% by mass or more, or 30% by mass or more with respect to the whole of the substance. Since the (B') debris is contained in an amount of 20% by mass or more based on the total amount of the filling, the sandbag can be made to have more excellent shape followability.

また、充填物は、(A)を除く残部が(B)砕屑物からなるものであってもよいし、或いは、本実施形態に係る土嚢による効果を阻害しない範囲で、(A)及び(B)以外のその他の成分を含んでいてもよい。具体的には、充填物は、熱処理した綿やおがくずなどの(A)及び(B)以外のその他の成分を1質量%以下含むものであってもよい。 Further, the filling may be composed of (B) debris as the balance except (A), or (A) and (B) as long as the effect of the sandbag according to the present embodiment is not impaired. ) May be included. Specifically, the filling material may contain 1% by mass or less of other components other than (A) and (B) such as heat-treated cotton and sawdust.

また、本実施形態においては、充填物の、JIS A1218:2009に記載の変水位透水試験に準じて測定した透水係数が、例えば、1.0×10-4cm/s以下、1.0×10-5cm/s以下又は1.0×10-6cm/s以下となり得る。透水係数が1.0×10-4cm/s以下、特に1.0×10-5cm/s以下であることにより、高い止水性を有する土嚢とすることができる。上述の通り、本実施形態の充填物は、(A)篩分級による粒度が75μm以下の微細粒子を所定量以上含むことによって、優れた止水性が確保されやすい。 Further, in the present embodiment, the hydraulic conductivity of the packing material measured according to the variable hydraulic conductivity test described in JIS A1218: 2009 is, for example, 1.0 × 10 -4 cm / s or less, 1.0 ×. It can be 10-5 cm / s or less or 1.0 × 10-6 cm / s or less. When the water permeability coefficient is 1.0 × 10 -4 cm / s or less, particularly 1.0 × 10 -5 cm / s or less, the sandbag can be made to have high water stopping property. As described above, the packing of the present embodiment (A) contains fine particles having a particle size of 75 μm or less by sieving classification in a predetermined amount or more, so that excellent water stopping property can be easily ensured.

(袋)
本実施形態の袋は、透水性を有する袋であれば特に限定されず、麻や綿などの天然繊維、ポリエチレン繊維などの合成繊維を素材とする、織物、編物、不織布を袋状としたものなどが挙げられる。特に、天然繊維や、ポリ乳酸、ポリヒドロキシ酪酸、ポリ(ブチレンアジペート-co-ブチレンテレフタレート)などの生分解性を有する繊維の織物であれば、使用済みの土嚢を袋のまま地表に放置、または土中に埋めることで処分が可能となり、袋中の充填物を取り出して散布する処理を省くことが可能となる。また、袋を織物で作製することにより、土嚢用の袋として十分な強度と、細粒の袋外への流出を抑えられるため、好ましい。なお、袋の素材を耐久性の高い合成繊維を用い、繰り返し使用できる土嚢としてもよい。
(bag)
The bag of the present embodiment is not particularly limited as long as it is a bag having water permeability, and is made of a woven fabric, a knitted fabric, or a non-woven fabric made of natural fibers such as hemp and cotton and synthetic fibers such as polyethylene fibers. And so on. In particular, if it is a woven fabric of natural fibers or biodegradable fibers such as polylactic acid, polyhydroxybutyric acid, and poly (butylene adipate-co-butylene terephthalate), the used sandbags may be left on the ground surface as bags. By burying it in the soil, it can be disposed of, and it is possible to omit the process of taking out the filling in the bag and spraying it. Further, it is preferable to make the bag out of woven fabric because it has sufficient strength as a bag for sandbags and the outflow of fine particles to the outside of the bag can be suppressed. The material of the bag may be a sandbag that can be used repeatedly by using a highly durable synthetic fiber.

(土嚢の製造方法)
本開示の技術は、土嚢の製造方法としての側面も有する。すなわち、本実施形態に係る土嚢の製造方法は、
粘土と有機汚泥とを含む混合物を焼成して、(A)篩分級による粒度が75μm以下の多孔質セラミックスを得ること、
前記(A)篩分級による粒度が75μm以下の多孔質セラミックス30質量%以上80質量%以下と、(B)篩分級による粒度が75μmを超える砕屑物と、からなる充填物を得ること、および
透水性を有する袋中に前記充填物を充填すること、
を含むものであってもよい。焼成前の原料混合物において有機汚泥を利用することによる効果については上述した通りである。
(Manufacturing method of sandbags)
The technique of the present disclosure also has an aspect as a method for manufacturing sandbags. That is, the method for manufacturing sandbags according to this embodiment is
A mixture containing clay and organic sludge is calcined to obtain (A) porous ceramics having a particle size of 75 μm or less by sieving.
Obtaining a filling consisting of (A) 30% by mass or more and 80% by mass or less of porous ceramics having a particle size of 75 μm or less by sieving classification and (B) debris having a particle size of more than 75 μm by sieving classification, and water permeability. Filling a bag with the property with the filling,
May be included. The effects of using organic sludge in the raw material mixture before calcination are as described above.

また、本実施形態に係る土嚢の製造方法は、
粘土と有機汚泥とを含む混合物を焼成して多孔質セラミックスの塊状物を得ること、および、
前記塊状物を破砕して、前記(A)篩分級による粒度が75μm以下の多孔質セラミックスを得ること、
を含むものであってもよい。一度、塊状の多孔質セラミックスを得た後、これを砕くことで、(A)篩分級による粒度が75μm以下の多孔質セラミックスとして均質性に優れたものが得られ易い。
In addition, the method for manufacturing sandbags according to this embodiment is
A mixture containing clay and organic sludge is calcined to obtain a mass of porous ceramics, and
Crushing the lump to obtain porous ceramics having a particle size of 75 μm or less by (A) sieving classification.
May be included. By once obtaining a massive porous ceramic and then crushing it, it is easy to obtain a porous ceramic having a particle size of 75 μm or less by (A) sieving classification and having excellent homogeneity.

また、本実施形態に係る土嚢の製造方法は、
前記塊状物を破砕して、前記(A)篩分級による粒度が75μm以下の多孔質セラミックスと、余剰物とに分けること、および
前記余剰物の少なくとも一部を前記(B)篩分級による粒度が75μmを超える砕屑物として用いること、
を含むものであってもよい。特に、前記(B)砕屑物として用いられる前記余剰物が、目開き1000μm以下の篩を用いて篩分けされたものであるとよい。このように、本実施形態に係る製造方法においては、前記(A)篩分級による粒度が75μm以下の多孔質セラミックスと(B)篩分級による粒度が75μmを超える砕屑物とで、同様の材質からなるものを用いて、工程を簡略化することもできる。
In addition, the method for manufacturing sandbags according to this embodiment is
The lump is crushed and separated into porous ceramics having a particle size of 75 μm or less by the sieve classification (A) and a surplus, and at least a part of the surplus has a particle size by the sieve classification (B). Use as debris larger than 75 μm,
May be included. In particular, it is preferable that the surplus used as the (B) debris is sieved using a sieve having an opening of 1000 μm or less. As described above, in the production method according to the present embodiment, the porous ceramics having a particle size of 75 μm or less by (A) sieving classification and (B) debris having a particle size of more than 75 μm by sieving classification are made of the same material. It is also possible to simplify the process by using the above.

以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following description.

<粘土>
粘土としては、蛙目粘土(岐阜県産)を用いた。
<Clay>
As the clay, frog-eye clay (produced in Gifu prefecture) was used.

<有機汚泥>
有機汚泥としては、染色工場(小松マテーレ株式会社)の活性汚泥法による排水処理設備から凝集および脱水工程を経て排出された活性汚泥を用いた。この活性汚泥の有機物含有量(対固形分)は83質量%、含水率は85質量%、平均粒子径は2.6μmであった。
<Organic sludge>
As the organic sludge, activated sludge discharged through a coagulation and dehydration steps from a wastewater treatment facility by the activated sludge method of a dyeing factory (Komatsu Matere Co., Ltd.) was used. The organic matter content (relative to solid content) of this activated sludge was 83% by mass, the water content was 85% by mass, and the average particle size was 2.6 μm.

<発泡剤>
発泡剤として、鋳鉄スラグを用いた。この鋳鉄スラグは、SiO、Al、CaO、Fe、FeO、MgO、MnO、KOおよびNaOを主成分とする粒子状(篩い分けし、直径10mm以下)のダクタイル鋳鉄スラグである。
<Effervescent agent>
Cast iron slag was used as the foaming agent. This cast iron slag is in the form of particles (sieving, diameter 10 mm or less) containing SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , FeO, MgO, MnO, K 2 O and Na 2 O as main components. Ductile cast iron slag.

<珪藻土>
珪藻土として、住宅用の瓦として使用された後、廃棄されたものを粉砕したもの(粒子径0.1mm~1.2mm)を用いた。
<Diatomaceous earth>
As the diatomaceous earth, a diatomaceous earth that was used as a roof tile for a house and then discarded was crushed (particle diameter 0.1 mm to 1.2 mm) was used.

<砂利>
石川県小松市のホームセンター(DCMカーマ21小松店)で販売されている粒径40mm以下の砂利を用いた。
<Gravel>
Gravel with a particle size of 40 mm or less sold at a home center in Komatsu City, Ishikawa Prefecture (DCM Kahma 21 Komatsu store) was used.

<山砂>
石川県小松市のホームセンター(DCMカーマ21小松店)で販売されている山砂を用いた。
<Mountain sand>
We used mountain sand sold at a home center (DCM Kahma 21 Komatsu store) in Komatsu City, Ishikawa Prefecture.

物性値は以下の方法により測定した。 The physical property values were measured by the following methods.

<篩分級による粒度>
充填物の粒子径は、試料を篩分けし、目開きが75μmの篩を通過したものを75μm以下(小)、目開きが75μmの篩を通過せずに目開きが1000μmの篩を通過したものを75μm超~1000μm以下(中)、目開きが1000μmの篩を通過しなかったものを1000μm超(大)とした。
<Particle size by sieving classification>
The particle size of the packing was 75 μm or less (small) after the sample was sieved and passed through a sieve with an opening of 75 μm, and passed through a sieve with an opening of 1000 μm without passing through a sieve with an opening of 75 μm. Those that did not pass through a sieve having an opening of 1000 μm were defined as those having a mesh size of more than 75 μm to 1000 μm or less (medium), and those having an opening of more than 1000 μm (large).

<透水係数(変水位法)>
JIS A1218:2009 土の透水試験方法 変水位透水試験に準拠して測定した値を水温15℃における数値に補正した値を透水係数として決定した。なお、供試体として、JIS A1210:2009 突固めによる土の締固め試験方法に準拠して試料の最大乾燥密度を求め、求められた最大乾燥密度の90%に締め固めたものを用いた。
<Permeability coefficient (variable water level method)>
JIS A1218: 2009 Soil permeability test method The value measured according to the variable water permeability test was corrected to the value at a water temperature of 15 ° C, and the value was determined as the permeability coefficient. As the specimen, the maximum dry density of the sample was determined according to the soil compaction test method by JIS A1210: 2009 compaction, and the sample was compacted to 90% of the obtained maximum dry density.

<見かけ密度>
ステンレス鋼製の100cc容器に擦切り一杯の充填物を入れて質量を測定することにより、見かけ密度を算出した。
<Apparent density>
The apparent density was calculated by putting a full filling in a 100 cc container made of stainless steel and measuring the mass.

<孔径の確認>
多孔質セラミックスのナノメートルオーダーの気孔およびマイクロメートルオーダーの気孔の確認は、電子顕微鏡(SEMEDX Type H形、株式会社日立ハイテク製)を用い、100倍~10000倍で観察して行った。
<Confirmation of hole diameter>
The nanometer-order pores and the micrometer-order pores of the porous ceramics were confirmed by observing with an electron microscope (SEMEDX Type H type, manufactured by Hitachi High-Tech Co., Ltd.) at 100 to 10000 times.

<止水性試験>
長辺60cm×短辺30cmの水槽の側壁の一面を切除し、切り取った部分から水が流出する装置を作製した。続いて切り取った側壁部分に試験用の土嚢を載置し、水槽中に15Lの水を注ぎ入れ、水槽から漏れ出した水の量が1Lとなるまでの時間を測定し、止水性を評価した。
<Water stop test>
One side of the side wall of the aquarium having a long side of 60 cm and a short side of 30 cm was excised, and a device was produced in which water flowed out from the cut portion. Subsequently, a test sandbag was placed on the cut side wall, 15 L of water was poured into the water tank, and the time until the amount of water leaked from the water tank reached 1 L was measured to evaluate the water stoppage. ..

<形状追随性>
土嚢を6つ水に完全に浸漬して5分後に水から引き揚げ、3個×2段に隙間なく設置する際の形状追随性を以下の指標に従って評価した。
◎:問題なく設置できる
○:手や足で力をかけて変形させれば設置できる
×:充填物が固まってしまい、隙間なく設置することが困難
<Shape followability>
Six sandbags were completely immersed in water, and after 5 minutes, they were withdrawn from the water, and the shape followability when they were installed in 3 × 2 stages without gaps was evaluated according to the following indexes.
◎: Can be installed without problems ○: Can be installed by deforming with force with hands or feet ×: Filling hardens, making it difficult to install without gaps

(実施例1)
発泡剤 45.0質量%と、粘土 22.5質量%と、有機汚泥 10.0質量%と、珪藻土 22.5質量%とを混合し、可塑状態の混合物を得た。次いで、得られた混合物を真空土練成形機で直径1.5cmの円柱状に押し出したものを長さ3cmに切断し、円柱状の成形体を得た。
(Example 1)
A foaming agent (45.0% by mass), clay (22.5% by mass), organic sludge (10.0% by mass) and diatomaceous earth (22.5% by mass) were mixed to obtain a plastic mixture. Then, the obtained mixture was extruded into a cylinder having a diameter of 1.5 cm with a vacuum clay kneading machine and cut into a cylinder having a length of 3 cm to obtain a cylindrical molded body.

得られた成形体を、連続式焼結炉を用いて、焼成温度990℃、焼成温度での滞留時間10分間の焼成条件にて焼成した。焼成後、得られた多孔質セラミックスの塊状物をハンマーミルで最大粒子径が10mm以下となるまで破砕した。次に篩を用い、75μm以下(小)、75μm超1000μm以下(中)、1000μm超(大)に篩分けし、粒度ごとに分級されたセラミックスの粒状物を得た。 The obtained molded body was fired in a continuous sintering furnace under firing conditions of a firing temperature of 990 ° C. and a residence time of 10 minutes at the firing temperature. After firing, the obtained mass of porous ceramics was crushed with a hammer mill until the maximum particle size became 10 mm or less. Next, using a sieve, the particles were sieved to 75 μm or less (small), more than 75 μm to 1000 μm or less (medium), and more than 1000 μm (large) to obtain ceramic granules classified according to particle size.

得られたセラミックスの粒状物のうち、粒度が75μm以下(小)のものを43質量%と、粒度が75μm超1000μm以下(中)のものを57質量%と、を混合して充填物とした。得られた充填物の透水係数は3.2×10-7cm/s、見かけ密度は0.89g/cmであり、電子顕微鏡を用い75μm以下(小)の多孔質セラミックスを観察したところ、多孔質セラミックスは孔径が10nm超1000nm以下のナノメートルオーダーの気孔および孔径が1μm超70μm以下のマイクロメートルオーダーの気孔を有していることが確認された。 Among the obtained ceramic granules, 43% by mass of those having a particle size of 75 μm or less (small) and 57% by mass of those having a particle size of more than 75 μm and 1000 μm or less (medium) were mixed to obtain a filler. .. The permeability coefficient of the obtained filler was 3.2 × 10 -7 cm / s, the apparent density was 0.89 g / cm 3 , and the porous ceramics of 75 μm or less (small) were observed using an electron microscope. It was confirmed that the porous ceramics have nanometer-order pores having a pore diameter of more than 10 nm and 1000 nm or less and micrometer-order pores having a pore diameter of more than 1 μm and 70 μm or less.

得られた充填物を、綿織物を寸法が約10cm×20cm×90cmの袋状に縫った袋の中に、約11L(約10kg)充填して土嚢を得た。 About 11 L (about 10 kg) of the obtained filler was filled in a bag in which cotton fabric was sewn into a bag having dimensions of about 10 cm × 20 cm × 90 cm to obtain a sandbag.

得られた土嚢は軽量で形状追随性に優れていた。また、止水性試験の結果は、1149秒であった。さらに、止水試験後の土嚢の質量は15.4kgであり、水圧に耐える十分な重量となっており、かつ袋の中で塊が発生しておらず、形状追随性を損なわずに有していた。 The obtained sandbag was lightweight and had excellent shape followability. The result of the water stoppage test was 1149 seconds. Furthermore, the mass of the sandbag after the water stoppage test is 15.4 kg, which is a sufficient weight to withstand the water pressure, and no lumps are generated in the bag, so that the shape followability is not impaired. Was there.

(比較例1)
一般的に土嚢に用いられる充填物として、砂利と山砂を同一質量で混合した充填物を得た。充填物の篩分級による粒度は、75μm以下(小)のものが45質量%、75μm超1000μm以下(中)のものが34質量%、1000μm超(大)のものが21質量%であった。また、透水係数は1.1×10-4cm/sであり、見かけ密度は1.71g/cmであった。
(Comparative Example 1)
As a filling generally used for sandbags, a filling in which gravel and mountain sand were mixed at the same mass was obtained. The particle size of the packing by sieving was 45% by mass for those having a size of 75 μm or less (small), 34% by mass for those having a size of more than 75 μm and 1000 μm or less (medium), and 21% by mass for those having a size of more than 1000 μm (large). The hydraulic conductivity was 1.1 × 10 -4 cm / s, and the apparent density was 1.71 g / cm 3 .

得られた充填物を、綿織物を寸法が約10cm×20cm×90cmの袋状に縫った袋の中に、約11L(約19kg)充填して土嚢を得た。 About 11 L (about 19 kg) of the obtained filler was filled in a bag in which cotton fabric was sewn into a bag having dimensions of about 10 cm × 20 cm × 90 cm to obtain a sandbag.

得られた土嚢は重く、かつ形状追随性に劣っていたため、試験用の水槽に水が漏れる隙間なく設置する作業に手間がかかった。また、止水性試験の結果は、180秒であり、実施例の土嚢と比較して止水性に劣っていた。さらに、濡れた袋の中で充填物が固まってしまい、濡れることにより形状追随性は一層損なわれてしまっていた。 Since the sandbags obtained were heavy and inferior in shape followability, it took time and effort to install them in the test water tank without any gaps for water to leak. The result of the water stopping test was 180 seconds, which was inferior to the sandbag of the example. Further, the filling material is solidified in the wet bag, and the shape followability is further impaired by getting wet.

(実施例2~実施例6、比較例2~比較例5)
実施例1および比較例1で使用した多孔質セラミックスおよび砂利と山砂の混合物から篩分級した充填物を、同じく実施例1および比較例1で使用した袋に充填して土嚢を得た。配合比、および評価結果を表1に示す。
(Example 2 to Example 6, Comparative Example 2 to Comparative Example 5)
The porous ceramics used in Example 1 and Comparative Example 1 and the packing obtained by sieving from the mixture of gravel and mountain sand were filled in the bags also used in Example 1 and Comparative Example 1 to obtain sandbags. The compounding ratio and the evaluation results are shown in Table 1.

Figure 2022044562000001
Figure 2022044562000001

表1に示される結果から、実施例1~6に係る土嚢は、透水係数が小さく止水性に優れ、見かけ密度が小さく軽量であり、形状追随性にも優れるものであった。一方、比較例1~5に係る土嚢は、透水係数、見かけ密度、止水性及び形状追随性の少なくとも1つについて十分な性能が得られなかった。実施例1~6及び比較例1~5に係る結果をさらに詳細に考察すると以下の通りである。 From the results shown in Table 1, the sandbags according to Examples 1 to 6 had a small water permeability coefficient, excellent water stopping property, low apparent density, light weight, and excellent shape followability. On the other hand, the sandbags according to Comparative Examples 1 to 5 did not have sufficient performance in terms of at least one of permeability coefficient, apparent density, water stopping property and shape followability. The results of Examples 1 to 6 and Comparative Examples 1 to 5 are as follows in more detail.

(止水試験結果について)
実施例2と比較例2との比較から、土嚢として水を止められる能力(止水試験結果)を確保するためには、粒度75μm以下の多孔質セラミックス(小)の割合が30質量%以上必要である。
(About water stop test results)
From the comparison between Example 2 and Comparative Example 2, in order to secure the ability to stop water as sandbags (water stoppage test result), the proportion of porous ceramics (small) with a particle size of 75 μm or less is required to be 30% by mass or more. Is.

(形状追随性について)
実施例1と比較例4との比較から、多孔質セラミックス(小)に替えて多孔質ではない砕屑物(小)を用いた場合、形状追随性が悪くなる。また、実施例3~6と比較例3との比較から、優れた形状追随性を確保するためには、多孔質セラミックス(小)の割合を80質量%以下とする必要がある。さらに、実施例3~6の比較から、多孔質セラミックス(小)の割合を20質量%以上80質量%以下としつつ、粒度75~1000μmの砕屑物(中)、特に多孔質セラミックス(中)の割合を20%以上とすることで、形状追随性が一層高まる。
(About shape followability)
From the comparison between Example 1 and Comparative Example 4, when a non-porous debris (small) is used instead of the porous ceramics (small), the shape followability is deteriorated. Further, from the comparison between Examples 3 to 6 and Comparative Example 3, it is necessary to set the ratio of the porous ceramics (small) to 80% by mass or less in order to secure excellent shape followability. Further, from the comparison of Examples 3 to 6, the proportion of the porous ceramics (small) was set to 20% by mass or more and 80% by mass or less, and the debris having a particle size of 75 to 1000 μm (medium), particularly the porous ceramics (medium). By setting the ratio to 20% or more, the shape followability is further enhanced.

(見かけ密度について)
実施例1~6と比較例1との比較から、砕屑物として多孔質セラミックスを用いることで、密度が小さくなり、軽い土嚢にできる。特に、実施例3~6の比較から、粒度75~1000μmの砕屑物(中)として多孔質セラミックス(中)を用いることで、密度が一層小さくなり、一層軽い土嚢にできる。また、砕屑物(中)として多孔質セラミックス(中)を用いたとしても、止水性にはそれほど影響しない。
(About apparent density)
From the comparison between Examples 1 to 6 and Comparative Example 1, by using porous ceramics as the debris, the density is reduced and a light sandbag can be formed. In particular, from the comparison of Examples 3 to 6, by using porous ceramics (middle) as the debris (middle) having a particle size of 75 to 1000 μm, the density becomes smaller and the sandbag can be made lighter. Further, even if porous ceramics (middle) is used as the debris (middle), it does not affect the water stopping property so much.

尚、上記の実施例では、多孔質セラミックスの原料として、粘土と有機汚泥、発泡剤及び珪藻土との混合物を用いた場合を例示したが、本開示の技術はこれに限定されるものではない。多孔質セラミックスが得られる限り、これ以外の原料を用いてもよい。ただし、本発明者の知見によれば、多孔質セラミックスの原料として、粘土と有機汚泥とを少なくとも含む混合物を用いた場合に、孔径が10nm超1000nm以下のナノメートルオーダーの気孔および孔径が1μm超70μm以下のマイクロメートルオーダーの気孔を有する多孔質セラミックスが得られ易い。 In the above embodiment, a case where a mixture of clay, organic sludge, a foaming agent and diatomaceous earth is used as a raw material for the porous ceramics has been exemplified, but the technique of the present disclosure is not limited to this. Other raw materials may be used as long as porous ceramics can be obtained. However, according to the findings of the present inventor, when a mixture containing at least clay and organic sludge is used as a raw material for the porous ceramics, the pores and pore diameters on the order of nanometers having a pore size of more than 10 nm and 1000 nm or less are more than 1 μm. Porous ceramics having micrometer-order pores of 70 μm or less can be easily obtained.

本発明の一実施形態の土嚢は、粒度が小さい多孔質セラミックスを含み、かつ、その含有量が所定範囲内であることから、軽量で、形状追随性に優れ、かつ吸湿しても塊になりにくいため、土嚢を隙間なく並べたり積み上げたりすることが容易である。また、充填物を地表に散布するだけで処分することが可能であり、また、長期保存しても変質しにくい効果を有するため、取り扱いが容易である。 Since the sandbag of one embodiment of the present invention contains porous ceramics having a small particle size and the content thereof is within a predetermined range, it is lightweight, has excellent shape followability, and becomes a lump even if it absorbs moisture. Since it is difficult, it is easy to arrange and stack sandbags without gaps. In addition, the filling can be disposed of by simply spraying it on the surface of the earth, and it is easy to handle because it has the effect of not easily deteriorating even after long-term storage.

Claims (7)

(A)篩分級による粒度が75μm以下の多孔質セラミックス30質量%以上80質量%以下と、(B)篩分級による粒度が75μmを超える砕屑物と、からなる充填物が、透水性を有する袋中に充填されてなる、土嚢。 A bag containing (A) 30% by mass or more and 80% by mass or less of porous ceramics having a particle size of 75 μm or less by sieving, and (B) debris having a particle size of more than 75 μm by sieving, and a bag having water permeability. A sandbag filled inside. 前記(B)砕屑物が、(B’)篩分級による粒度が75μm超1000μm以下の砕屑物を含み、前記(B’)砕屑物が充填物の全体に対して20質量%以上含まれることを特徴とする、
請求項1に記載の土嚢。
The (B) debris contains a debris having a particle size of more than 75 μm and 1000 μm or less by (B') sieving classification, and the (B') debris is contained in an amount of 20% by mass or more based on the total amount of the packing. Characteristic,
The sandbag according to claim 1.
前記(B)砕屑物が、多孔質セラミックスを含むことを特徴とする、
請求項1又は請求項2に記載の土嚢。
The debris (B) contains porous ceramics.
The sandbag according to claim 1 or 2.
前記(A)篩分級による粒度が75μm以下の多孔質セラミックスには、孔径が10nm超1000nm以下のナノメートルオーダーの気孔および孔径が1μm超70μm以下のマイクロメートルオーダーの気孔が存在することを特徴とする、
請求項1~請求項3のいずれか1項に記載の土嚢。
The porous ceramics having a particle size of 75 μm or less by the sieve classification (A) are characterized by having nanometer-order pores having a pore diameter of more than 10 nm and 1000 nm or less and micrometer-order pores having a pore diameter of more than 1 μm and 70 μm or less. do,
The sandbag according to any one of claims 1 to 3.
前記充填物の、JIS A1218:2009に記載の変水位透水試験に準じて測定した透水係数が、1.0×10-5cm/s以下であることを特徴とする、
請求項1~請求項4のいずれか1項に記載の土嚢。
The filler has a hydraulic conductivity of 1.0 × 10-5 cm / s or less measured according to the variable hydraulic conductivity test described in JIS A1218: 2009.
The sandbag according to any one of claims 1 to 4.
前記袋が、天然繊維、または生分解性を有する繊維の織物であることを特徴とする、
請求項1~請求項5のいずれか1項に記載の土嚢。
The bag is characterized by being a woven fabric of natural fibers or biodegradable fibers.
The sandbag according to any one of claims 1 to 5.
粘土と有機汚泥とを含む混合物を焼成して、(A)篩分級による粒度が75μm以下の多孔質セラミックスを得ること、
前記(A)篩分級による粒度が75μm以下の多孔質セラミックス30質量%以上80質量%以下と、(B)篩分級による粒度が75μmを超える砕屑物と、からなる充填物を得ること、および
透水性を有する袋中に前記充填物を充填すること、
を含む、土嚢の製造方法。
A mixture containing clay and organic sludge is calcined to obtain (A) porous ceramics having a particle size of 75 μm or less by sieving.
Obtaining a filling consisting of (A) 30% by mass or more and 80% by mass or less of porous ceramics having a particle size of 75 μm or less by sieving classification and (B) debris having a particle size of more than 75 μm by sieving classification, and water permeability. Filling a bag with the property with the filling,
How to make sandbags, including.
JP2021138145A 2020-09-07 2021-08-26 Sandbag and sandbag manufacturing method Pending JP2022044562A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020150172 2020-09-07
JP2020150172 2020-09-07

Publications (1)

Publication Number Publication Date
JP2022044562A true JP2022044562A (en) 2022-03-17

Family

ID=80679227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021138145A Pending JP2022044562A (en) 2020-09-07 2021-08-26 Sandbag and sandbag manufacturing method

Country Status (1)

Country Link
JP (1) JP2022044562A (en)

Similar Documents

Publication Publication Date Title
CN102838378B (en) Complete harmless and resourceful treatment process of building solid waste
Tang et al. Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry
TWI397511B (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
Cheng Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars
Yadav et al. Effect of inclusion of crumb rubber on the unconfined compressive strength and wet-dry durability of cement stabilized clayey soil
EP2161067A1 (en) Particulate filter
Moreno-Maroto et al. Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes
Vasudevan Performance of Alum Sludge as partial replacement for cement adding superplasticizer
Moses et al. Compacted foundry sand treated with cement kiln dust as hydraulic barrier material
Ennahal et al. Performance of lightweight aggregates comprised of sediments and thermoplastic waste
Marchiori et al. Geotechnical characterization of water treatment sludge for liner material production and soft soil reinforcement
Moses et al. The impact of compactive effort on the long term hydraulic conductivity of compacted foundry sand treated with bagasse ash and permeated with municipal solid waste landfill leachate
KR101879195B1 (en) Interlocking block
JP2022044562A (en) Sandbag and sandbag manufacturing method
US20240083814A1 (en) Coal Combustion Residuals, Leachate and Wet Ash Wastes Solidification Devices, Kits, and Assemblies
Sahu et al. Strength studies of Dadri fly ash modified with lime sludge–a composite material
Pal et al. Compaction and hydraulic conductivity characteristics of Indian fly ashes
Okonkwo et al. Lateritic Soil Treated with Polyvinyl Waste Powder As a Potential Material for Liners and Cover in Waste Containment
Amadi et al. Hydraulic conductivity of modified clay treated with CKD
JP6393950B2 (en) Artificial turf filler and artificial turf using the same
US20160251918A1 (en) Composition of and Method of Manufacturing and Using Composite Pellets for Liquid Solidification
KR101053658B1 (en) Method of manufacturing sintering brick used sewage sludge ash
Harle Experimental Investigation on the use of Pond Ash in the Concrete
Adedokun et al. Effect of Cement Kiln Dust on the Geotechnical Properties of Clay in Ede, South-western, Nigeria
Ewemoje et al. Development of a Sludge Dewatering Filter and Utilization of Dried Sludge in Brick Making

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210917