JP2022042452A - Method for preparing water-soluble macroporous zirconium porphyrin structure compound and application thereof - Google Patents

Method for preparing water-soluble macroporous zirconium porphyrin structure compound and application thereof Download PDF

Info

Publication number
JP2022042452A
JP2022042452A JP2020153392A JP2020153392A JP2022042452A JP 2022042452 A JP2022042452 A JP 2022042452A JP 2020153392 A JP2020153392 A JP 2020153392A JP 2020153392 A JP2020153392 A JP 2020153392A JP 2022042452 A JP2022042452 A JP 2022042452A
Authority
JP
Japan
Prior art keywords
hours
pcn
product
solution
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020153392A
Other languages
Japanese (ja)
Other versions
JP6868759B1 (en
Inventor
付▲ふぇ▼雲
Fe Yun Hu
陳倍寧
bei ning Chen
周至城
zhi cheng Zhou
李玉凡
yu fan Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Nanjing Tech University
Original Assignee
Nanjing University
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University, Nanjing Tech University filed Critical Nanjing University
Application granted granted Critical
Publication of JP6868759B1 publication Critical patent/JP6868759B1/en
Publication of JP2022042452A publication Critical patent/JP2022042452A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/183Metal complexes of the refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

To provide the technical field of a spectrum probe, especially a method for preparing a water-soluble macroporous zirconium porphyrin structure compound, and the application thereof.SOLUTION: A method for preparing a water-soluble macroporous zirconium porphyrin structure compound includes a step of dissolving ZrCl4, H2-TCPP and benzoic acid into N, N diethyl formamide by ultrasonication to obtain a solution. Ultra-high sensitive detection of fluorine ions is achieved by using the concentration effect of a MOF porous structure to the fluorine ions and high selectivity of metal zirconium; the sensor has excellent chemical stability and extremely fast response speed; and the detection limit is lowered by one or more digits than values reported by articles of the prior art.SELECTED DRAWING: Figure 11

Description

本発明は、分光プローブ技術分野、特に水溶性マクロポーラスジルコニウムポルフィリン
構造化合物の調製方法およびその用途に関する。
The present invention relates to the field of spectroscopic probe technology, in particular to methods for preparing water-soluble macroporous zirconium porphyrin structural compounds and their uses.

フッ素は水域の一般的な汚染物質であり、フッ素の過剰摂取は、フッ素症を引き起こした
り、人間の骨や歯を損傷したり、腎臓の損傷や甲状腺ホルモン障害を引き起こす可能性が
ある。
従って、水域のフッ素イオンの監視および管理は、水環境の安全性を確保する上で重要な
要素であり、水域のフッ素イオンを分析および検出するための正確で高速かつ高感度な方
法を提供する必要がある。
Fluoride is a common pollutant in waters, and overdose of fluoride can cause fluorinosis, damage to human bones and teeth, kidney damage and thyroid hormone disorders.
Therefore, monitoring and management of fluorine ions in water bodies is an important factor in ensuring the safety of the water environment, and provides an accurate, fast and sensitive method for analyzing and detecting fluorine ions in water bodies. There is a need.

一、発明原理と目的
発光性有機金属フレームワーク材料(LMOFs)は、MOFsの重要な分野である。他
の発光プローブ材料と比較して、LMOFsの固有の多孔性により、いくつかの重要な利
点が得られる。LMOFsの多孔性は、分析物-MOFの距離を制限し、MOFと分析物
間の密接な相互作用を可能にする。細孔のサイズと親疎水性/極性などを変更することで
選択的にセンサーの相互作用を制御することができる。LMOFsは、分析物を孔に濃縮
し、感度を大幅に向上させることもできる。現在、合成LMOFによるフッ素イオンの検
出に関する報告がいくつかあるが、ほとんどは水系媒体中で安定に存在することができず
、細孔径が微細孔であるか、または比表面積が大きくないため感度が低くなる。
1. Invention Principles and Objectives Luminescent organic metal framework materials (LMOFs) are an important area of MOFs. The inherent porosity of LMOFs compared to other luminescent probe materials provides several important advantages. The porosity of LMOFs limits the distance between the analyte and the MOF, allowing for close interaction between the MOF and the analyte. Sensor interaction can be selectively controlled by changing the size of the pores and the hydrophobicity / polarity. LMOFs can also concentrate the analyte into pores and significantly improve sensitivity. Currently, there are some reports on the detection of fluorine ions by synthetic LMOF, but most of them cannot exist stably in an aqueous medium, and the sensitivity is high because the pore diameter is fine or the specific surface area is not large. It gets lower.

二、解決策
上記の問題を解決するために、本発明は、廃水中のフッ素イオンに対して高い選択性を有
する蛍光プローブを提供し、リガンドとしてH2-TCPP(TCPP=テトラ(4-カ
ルボキシフェニル)ポルフィリン)を使用し、非常に安定なZr6クラスターをアセンブ
リノードとして使用し、ZrポルフィリンMOF--PCN-222(PCNPorou
sCoordinationNetwork、多孔性調整ネットワーク)を正常に合成し
た。
PCN-222は、大きな開放チャンネル、非常に大きな比表面積および優れた安定性を
有する。PCN-222は選択的にF‐に対する顕著な蛍光消光応答を高感度で示し、そ
の実用性はスパイクされた水サンプルを検出することによってさらに検証される。
2. Solution In order to solve the above problems, the present invention provides a fluorescent probe having high selectivity for fluorine ions in waste water, and H2-TCPP (TCPP = tetra (4-carboxyphenyl)) is used as a ligand. ) Porphyrin), using a very stable Zr6 cluster as an assembly node, Zr Porphyrin MOF-PCN-222 (PCNFluor)
sCoordinationNetwork, porosity adjustment network) was synthesized normally.
PCN-222 has a large open channel, a very large specific surface area and excellent stability. PCN-222 selectively exhibits a remarkable fluorescence quenching response to F-with high sensitivity, and its utility is further verified by detecting spiked water samples.

具体的に技術的解決策は以下の通りである。
S1、化合物合成
S11、ZrCl、H2-TCPPおよび安息香酸を超音波処理によりN、N-ジエチ
ルホルムアミドに溶解し、溶液を得る。
S12、ステップS11で調製された溶液をポリテトラフルオロエチレンのオートクレー
ブに移し、ブラストオーブンに入れ120℃まで加熱し、48時間保持する。
S13、ステップS12で加熱された溶液を室温まで冷却した後、N、N-ジメチルホル
ムアミドを使用して複数回吸引濾過で洗浄を行い、その後N、N-ジメチルホルムアミド
の代わりにアセトンを使用して数回洗浄を続け、最終的に固体化合物の生成物を収穫する

S2、化合物の活性化
S21、活性化プロセスを最適化するために、まず少量の濃塩酸をDMF懸濁液に加え、
次にステップS213で合成した生成物を120℃のDMFで12時間浸漬する。
S22、ステップS21で浸漬した後の生成物をDMFとアセトンで数回洗浄し、次に生
成物をアセトンに浸漬し24時間放置する。
S23、ステップS22で放置した生成物を真空乾燥オーブンで6時間真空乾燥して活性
化処理を行い、最後に脱ガス機能を用い120℃で12時間再度乾燥させる。
Specifically, the technical solution is as follows.
S1, compound synthesis S11, ZrCl 4 , H2-TCPP and benzoic acid are dissolved in N, N-diethylformamide by sonication to obtain a solution.
The solution prepared in S12 and step S11 is transferred to an autoclave of polytetrafluoroethylene, placed in a blast oven, heated to 120 ° C., and held for 48 hours.
After cooling the solution heated in S13, step S12 to room temperature, it was washed by suction filtration multiple times using N, N-dimethylformamide, and then acetone was used instead of N, N-dimethylformamide. Continue washing several times and finally harvest the product of the solid compound.
S2, compound activation S21, to optimize the activation process, first add a small amount of concentrated hydrochloric acid to the DMF suspension.
The product synthesized in step S213 is then immersed in DMF at 120 ° C. for 12 hours.
The product after soaking in S22 and step S21 is washed with DMF and acetone several times, and then the product is soaked in acetone and left for 24 hours.
The product left in S23 and step S22 is vacuum dried in a vacuum drying oven for 6 hours for activation treatment, and finally dried again at 120 ° C. for 12 hours using the degassing function.

好ましくは、上記調製方法は、具体的には、
S1、化合物合成
S11、75~100mgのZrCl4、50~70mgのH2-TCPPおよび2.7
~3.6gの安息香酸を超音波処理により8~12mlのN、N-ジエチルホルムアミド
に溶解し、溶液を得る、
S12、ステップS11で調製された溶液をポリテトラフルオロエチレンのオートクレー
ブに移し、ブラストオーブンに入れ120℃まで加熱し、48時間保持する、
S13、ステップS12で加熱された溶液を室温まで冷却した後、N、N-ジメチルホル
ムアミドを使用して2~4回吸引濾過で洗浄を行い、その後N、N-ジメチルホルムアミ
ドの代わりにアセトンを使用して2~5回洗浄し、最終的に固体化合物の生成物を収穫す
る、
S2、化合物の活性化
S21、まず0.5~1mLの濃塩酸を20~40mlのDMF懸濁液に加え、ステップ
S13で合成した生成物を120℃のDMFで12時間浸漬する、
S22、ステップS21で浸漬した生成物をDMFとアセトンで2~5回洗浄し、生成物
をアセトンに洗浄し24時間放置する、
S23、ステップS22で放置した生成物を真空乾燥オーブンで6時間真空乾燥して活性
化処理を行い、最後に脱ガス機能を用い120℃で12時間再度乾燥させる。
Preferably, the above preparation method specifically comprises
S1, compound synthesis S11, 75-100 mg ZrCl4, 50-70 mg H2-TCPP and 2.7
Dissolve ~ 3.6 g of benzoic acid in 8-12 ml of N, N-diethylformamide by sonication to give a solution.
Transfer the solution prepared in S12 and step S11 to an autoclave of polytetrafluoroethylene, place it in a blast oven, heat it to 120 ° C., and hold it for 48 hours.
After cooling the solution heated in S13 and step S12 to room temperature, the solution is washed by suction filtration 2 to 4 times using N, N-dimethylformamide, and then acetone is used instead of N, N-dimethylformamide. Then wash 2-5 times and finally harvest the product of the solid compound,
S2, activation of compound S21, first, 0.5 to 1 mL of concentrated hydrochloric acid is added to 20 to 40 ml of DMF suspension, and the product synthesized in step S13 is immersed in DMF at 120 ° C. for 12 hours.
The product soaked in S22 and step S21 is washed with DMF and acetone 2 to 5 times, and the product is washed with acetone and left for 24 hours.
The product left in S23 and step S22 is vacuum dried in a vacuum drying oven for 6 hours for activation treatment, and finally dried again at 120 ° C. for 12 hours using the degassing function.

本発明の一態様によれば、本発明で調製された水溶性マクロポーラスジルコニウムポルフ
ィリン構造化合物の用途は、イオン条件下で廃水中のF-を検出するための蛍光プローブ
として使用される。
According to one aspect of the invention, the water-soluble macroporous zirconium porphyrin structural compound prepared in the present invention is used as a fluorescent probe for detecting F- in waste water under ionic conditions.

本発明の一態様によれば、前記蛍光プローブによるF-の検出方法は、水溶液の蛍光スペ
クトルを検出し、421nmでの蛍光強度を検出することでF-濃度を得る。
According to one aspect of the present invention, the F-detection method using the fluorescent probe detects the fluorescence spectrum of an aqueous solution and obtains the F- concentration by detecting the fluorescence intensity at 421 nm.

本発明の一態様によれば、F-による前記蛍光プローブの蛍光消光は1~100μM(マ
イクロモル)の範囲で比較的強く、蛍光消光率とF‐濃度が1~20μM(マイクロモル
)以内に顕著な線形関係があり、F‐の定量的検出のためのツールとして使用できる。
According to one aspect of the present invention, the fluorescence quenching of the fluorescent probe by F-is relatively strong in the range of 1 to 100 μM (micromol), and the fluorescence quenching rate and F-concentration are within 1 to 20 μM (micromol). It has a remarkable linear relationship and can be used as a tool for quantitative detection of F-.

本発明の一態様によれば、前記蛍光プローブはF‐に対する優れた選択性、非常に低い検
出限界(56nM)、および非常に速い応答速度(<5s)を有し、同時にPCN-22
は、耐水性、耐酸性、耐光性に優れた化学的安定性を有する。
According to one aspect of the invention, the fluorescent probe has excellent selectivity for F-, a very low detection limit (56 nM), and a very fast response rate (<5s), while at the same time PCN-22.
Has excellent chemical stability in water resistance, acid resistance, and light resistance.

従来のフッ素イオン蛍光プローブと比較して、本発明で調製されたPCN-222は以下
の有益な効果を有する。
(1)水熱法により蛍光機能を備えたMOF--PCN-222を成功に調製し、390
~450nmに広い吸収帯を有し、最大吸収波長は421nmであり、650~750n
mに蛍光発光帯があり、最大発光波長が680nmである。
(2)PCN-222は、修飾なしでF‐に対する蛍光消光応答を示し、F‐によるPC
N-222の蛍光消光は0~100μMの範囲でより強く、蛍光消光率とF‐濃度が0~
20μM内に顕著な線形関係があり、F‐の定量的検出のためのツールとして使用される

(3)PCN-222はF‐に対して優れた選択性、非常に低い検出限界(56nM)、
および非常に速い応答速度(<5s)を備え、同時にPCN-22は耐水性、耐酸性、耐
光性に優れた化学的安定性を有する。
(4)PCN-222による水道水および太湖の水に対するF‐検出は大きな干渉を受け
ず、良好な結果を示したため、この蛍光プローブ検出方法は水中のF‐の通常検出に適し
ている。
Compared with conventional fluorine ion fluorescent probes, PCN-222 prepared in the present invention has the following beneficial effects.
(1) MOF-PCN-222 having a fluorescent function was successfully prepared by a hydrothermal method, and 390.
It has a wide absorption band of about 450 nm, the maximum absorption wavelength is 421 nm, and it is 650 to 750 n.
There is a fluorescence emission band in m, and the maximum emission wavelength is 680 nm.
(2) PCN-222 shows a fluorescence quenching response to F- without modification, and PC by F-
The fluorescence quenching of N-222 is stronger in the range of 0 to 100 μM, and the fluorescence quenching rate and F-concentration are 0 to 0.
There is a remarkable linear relationship within 20 μM and it is used as a tool for quantitative detection of F-.
(3) PCN-222 has excellent selectivity for F-, very low detection limit (56nM),
And with a very fast response rate (<5s), PCN-22 has excellent chemical stability in water resistance, acid resistance and light resistance.
(4) Since F-detection by PCN-222 against tap water and Taihu water did not receive much interference and showed good results, this fluorescent probe detection method is suitable for normal detection of F- in water.

本発明で調製されたPCN-222の走査型顕微鏡SEM画像である。It is a scanning microscope SEM image of PCN-222 prepared by this invention. 本発明で調製されたPCN-222のFT-IRスペクトルおよびXRDスペクトルである。FT-IR spectrum and XRD spectrum of PCN-222 prepared in the present invention. 本発明で調製されたPCN-222の77Kでの窒素吸着-脱着等温線および対応する細孔径分布図である。FIG. 3 is a nitrogen adsorption-desorption isotherm and a corresponding pore size distribution map of PCN-222 prepared in the present invention at 77K. 本発明で調製されたPCN-222の水溶液の紫外線可視光吸収スペクトルおよび三次元蛍光スペクトルである。It is an ultraviolet visible light absorption spectrum and a three-dimensional fluorescence spectrum of the aqueous solution of PCN-222 prepared in this invention. 本発明のPCN-222蛍光発光強度に対するF‐濃度の影響である。It is the influence of F-concentration on the fluorescence emission intensity of PCN-222 of the present invention. 本発明で調製されたPCN-222のF‐濃度に従う変化傾向および線形関係である。It is a change tendency and a linear relationship according to the F-concentration of PCN-222 prepared in this invention. 本発明で調製された元のPCN-222および24時間水中に浸漬されたPCN-222のX線回折(XRD)図である。FIG. 5 is an X-ray diffraction (XRD) diagram of the original PCN-222 prepared in the present invention and the PCN-222 immersed in water for 24 hours. 本発明で調製されたPCN-222溶液の連続的励起光照射下での蛍光発光強度である。The fluorescence emission intensity of the PCN-222 solution prepared in the present invention under continuous excitation light irradiation. 本発明で調製されたPCN-222のアニオンの蛍光応答時間を示すグラフである。It is a graph which shows the fluorescence response time of the anion of PCN-222 prepared in this invention. 本発明で調製されたPCN-222の200μMのF‐添加後の蛍光強度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the fluorescence intensity after the addition of 200 μM F- of PCN-222 prepared in this invention. 本発明で調製されたPCN-222の構造概略図である。It is a structural schematic diagram of PCN-222 prepared by this invention.

ただし、
図2では、(a)はFT-IRスペクトルであり、(b)はXRDスペクトルである。
図3では、PCN-222の細孔径分布図が示される。
図4では、(a)は紫外線可視光吸収スペクトルであり、(b)は三次元蛍光スペクトル
であり、図の色が濃いほど蛍光強度が強い。
図5では、(λEx=421nm)
図6では、(a)は蛍光消光効率のF‐濃度に従う変化の傾向図であり、(b)は蛍光消
光効率とF‐濃度(0~20μM)の線形関係図であり、λEx=421nm、λEm=6
80nm
図8では、F‐濃度は200μMである。
図9では、(a)はPCN-222の低濃度(20μM)アニオンの蛍光応答グラフであ
り、(b)はPCN-222の高濃度(200μM)アニオンの蛍光応答グラフである。
However,
In FIG. 2, (a) is an FT-IR spectrum and (b) is an XRD spectrum.
FIG. 3 shows a pore size distribution map of PCN-222.
In FIG. 4, (a) is an ultraviolet visible light absorption spectrum, (b) is a three-dimensional fluorescence spectrum, and the darker the color in the figure, the stronger the fluorescence intensity.
In FIG. 5, (λEx = 421 nm)
In FIG. 6, (a) is a trend diagram of the change of fluorescence quenching efficiency according to F-concentration, and (b) is a linear relationship diagram of fluorescence quenching efficiency and F-concentration (0 to 20 μM), λEx = 421 nm. λEm = 6
80nm
In FIG. 8, the F-concentration is 200 μM.
In FIG. 9, (a) is a fluorescence response graph of a low concentration (20 μM) anion of PCN-222, and (b) is a fluorescence response graph of a high concentration (200 μM) anion of PCN-222.

本発明によって達成される方法および効果をさらに説明するために、本発明の技術的解決
策を、添付の図面と併せて以下に明確かつ完全に説明する。
To further illustrate the methods and effects achieved by the present invention, the technical solutions of the present invention, together with the accompanying drawings, will be described clearly and completely below.

実施例1
本実施例では、本発明で設計された水溶性マクロポーラスジルコニウムポルフィリン構造
化合物の蛍光プローブ--PCN-222の調製方法を中心に説明する。
Example 1
In this example, the method for preparing the fluorescent probe-PCN-222 of the water-soluble macroporous zirconium porphyrin structural compound designed by the present invention will be mainly described.

一、実験機器および試薬
本発明で使用される機器および試薬は表1および表2に示される。
表1 実験機器

Figure 2022042452000002

表2 実験試薬

Figure 2022042452000003
1. Experimental equipment and reagents The equipment and reagents used in the present invention are shown in Tables 1 and 2.
Table 1 Experimental equipment

Figure 2022042452000002

Table 2 Experimental reagents

Figure 2022042452000003

二、PCN-222の調製
S11、ZrCl4(80mg)、H2-TCPP(50mg)および安息香酸(2.7
g)を超音波処理によりN、N-ジエチルホルムアミド(8ml)に溶解し、溶液を得る

S12、ステップS11で調製された溶液をポリテトラフルオロエチレンのオートクレー
ブに移し、ブラストオーブンに入れ120℃まで加熱し、48時間保持する。
S13、ステップS12で加熱された溶液を室温まで冷却した後、N、N-ジメチルホル
ムアミドを使用して吸引濾過で2回洗浄し、その後N、N-ジメチルホルムアミドの代わ
りにアセトンを使用して3回洗浄を続け、最終的に固体化合物の生成物を収穫する。
S2、化合物の活性化
S21、活性化プロセスを最適化するために、まず0.5mLの濃塩酸を20mLDMF
懸濁液に加え、次にステップS213で合成した生成物を120℃のDMFに12時間浸
漬する。
S22、ステップS21で浸漬された生成物をDMFで2回洗浄してから、アセトンで3
回洗浄し、最後に生成物をアセトンに浸漬し24時間放置する。
S23、ステップS22で放置した生成物を真空乾燥オーブンで6時間真空乾燥して活性
化処理を行い、最後に脱ガス機能を用い120℃で12時間再度乾燥させる。
2. Preparation of PCN-222 S11, ZrCl4 (80 mg), H2-TCPP (50 mg) and benzoic acid (2.7)
g) is dissolved in N, N-diethylformamide (8 ml) by sonication to obtain a solution.
The solution prepared in S12 and step S11 is transferred to an autoclave of polytetrafluoroethylene, placed in a blast oven, heated to 120 ° C., and held for 48 hours.
After cooling the solution heated in S13, step S12 to room temperature, it was washed twice by suction filtration using N, N-dimethylformamide, and then using acetone instead of N, N-dimethylformamide 3 Continue washing and finally harvest the product of the solid compound.
S2, compound activation S21, 20 mL DMF first with 0.5 mL concentrated hydrochloric acid to optimize the activation process
In addition to the suspension, the product synthesized in step S213 is then immersed in DMF at 120 ° C. for 12 hours.
The product soaked in S22 and step S21 was washed twice with DMF and then with acetone for 3
Wash once and finally soak the product in acetone and leave for 24 hours.
The product left in S23 and step S22 is vacuum dried in a vacuum drying oven for 6 hours for activation treatment, and finally dried again at 120 ° C. for 12 hours using the degassing function.

実施例2
実施例2では、主に実施例1と異なる組成の調製方法を説明するが、以下の内容以外は実
施例1と同様である。
S1、化合物合成
S11、ZrCl4(100mg)、H2-TCPP(60mg)および安息香酸(3g
)を超音波処理によりN、N-ジエチルホルムアミド(12ml)に溶解し、溶液を得る

S12、ステップS11で調製された溶液をポリテトラフルオロエチレンのオートクレー
ブに移し、ブラストオーブンに入れ120℃まで加熱し、48時間保持する。
S13、ステップS12で加熱された溶液を室温まで冷却した後、N、N-ジメチルホル
ムアミドを使用して吸引濾過で4回洗浄し、その後N、N-ジメチルホルムアミドの代わ
りにアセトンを使用して3回洗浄を続け、最終的に固体化合物の生成物を収穫する。
S2、化合物の活性化
S21、活性化プロセスを最適化するために、まず1mLの濃塩酸を40mLのDMF懸
濁液に加え、次にステップS213で合成した生成物を120℃のDMFに12時間浸漬
する。
S22、ステップS21で浸漬された生成物をDMFで3回洗浄してから、アセトンで3
回洗浄し、最後に生成物をアセトンに浸漬し24時間放置する。
S23、ステップS22で放置した生成物を真空乾燥オーブンで6時間真空乾燥して活性
化処理を行い、最後に脱ガス機能を用い120℃で12時間再度乾燥させる。
Example 2
In Example 2, a method for preparing a composition different from that in Example 1 will be mainly described, but the same as in Example 1 except for the following contents.
S1, compound synthesis S11, ZrCl4 (100 mg), H2-TCPP (60 mg) and benzoic acid (3 g)
) Is dissolved in N, N-diethylformamide (12 ml) by sonication to obtain a solution.
The solution prepared in S12 and step S11 is transferred to an autoclave of polytetrafluoroethylene, placed in a blast oven, heated to 120 ° C., and held for 48 hours.
After cooling the solution heated in S13, step S12 to room temperature, it was washed four times by suction filtration using N, N-dimethylformamide, and then acetone was used instead of N, N-dimethylformamide 3 Continue washing and finally harvest the product of the solid compound.
S2, compound activation S21, to optimize the activation process, first add 1 mL of concentrated hydrochloric acid to 40 mL of DMF suspension, then place the product synthesized in step S213 in 120 ° C. DMF for 12 hours. Soak.
The product soaked in S22 and step S21 was washed 3 times with DMF and then 3 with acetone.
Wash once and finally soak the product in acetone and leave for 24 hours.
The product left in S23 and step S22 is vacuum dried in a vacuum drying oven for 6 hours for activation treatment, and finally dried again at 120 ° C. for 12 hours using the degassing function.

実験例1
実験例1では、上記実施例1の方法で調製されたPCN-222を対象として特徴付ける
ものであり、PCN-222の走査型電子顕微鏡写真、フーリエ変換赤外線スペクトルお
よびXRDスペクトルを説明することを目的とする。
PCN-222の走査型電子顕微鏡(SEM)画像は図1に示すように、写真は、PCN
-222の3次元形態が0.5~1μm太さの棒状構造であることを示し、文献で報告さ
れたPCN-222の形態と一致している。
図2(a)は、PCN-222のフーリエ変換赤外線(FT-IR)スペクトルを示し、
1697cm1での吸収ピークはC=Oの伸縮振動に起因し、1602cm1での吸
収ピークはC=Cの伸縮振動に対応し、1413cm1での吸収ピークはC-Hおよび
O-Hの曲げ振動に対応し、1178cm1、1020cm1での吸収ピークはC-
Oの伸縮振動に対応し、700cm1~1000cm1間の吸収ピークはC-Hの曲
げ振動に対応し、これらの特徴帯はすべて文献で報告されたPCN-222の特徴帯と一
致している。
図2(b)はPCN-222のXRDスペクトルを示し、図の回折ピークは2.4°、4
.8°、7.1°および9.8°に現れ、文献で報告されたPCN-222のXRDスペ
クトルと非常に一致している。赤外線特徴評価とXRD特徴評価の結果により、PCN-
222の合成が成功したことがさらに証明された。
Experimental Example 1
Experimental Example 1 is characterized for PCN-222 prepared by the method of Example 1 above, and an object thereof is to explain a scanning electron micrograph, Fourier transform infrared spectrum and XRD spectrum of PCN-222. do.
The scanning electron microscope (SEM) image of PCN-222 is shown in FIG. 1, and the photograph is PCN.
It is shown that the three-dimensional morphology of -222 is a rod-like structure having a thickness of 0.5 to 1 μm, which is consistent with the morphology of PCN-222 reported in the literature.
FIG. 2A shows the Fourier transform infrared (FT-IR) spectrum of PCN-222.
The absorption peak at 1697 cm - 1 is due to the expansion and contraction vibration of C = O, the absorption peak at 1602 cm - 1 corresponds to the expansion and contraction vibration of C = C, and the absorption peak at 1413 cm - 1 is CH and O-. Corresponding to the bending vibration of H, the absorption peak at 1178 cm - 1, 1020 cm - 1 is C-
Corresponding to the expansion and contraction vibration of O, the absorption peak between 700 cm - 1 to 1000 cm - 1 corresponds to the bending vibration of CH, and all of these characteristic bands are consistent with the characteristic bands of PCN-222 reported in the literature. ing.
FIG. 2B shows the XRD spectrum of PCN-222, and the diffraction peak in the figure is 2.4 °, 4
.. It appears at 8 °, 7.1 ° and 9.8 ° and is very consistent with the XRD spectra of PCN-222 reported in the literature. Based on the results of infrared feature evaluation and XRD feature evaluation, PCN-
Further proof that the synthesis of 222 was successful.

実験例2
実験例2では、上記実施例1の方法で調製されたPCN-222を対象として説明し、P
CN-222の表面積および細孔径情報を示すことを目的とし、図3に示すように、PC
N-222の窒素吸着/脱着等温線および細孔径分布の結果が示される。
結果は、PCN-222のBrunauer-Emmett-Teller(BET)比
表面積が2080m2g-1であり、これは、PCN-222は非常に大きい比表面積を
有することを示す。窒素吸着曲線に基づく密度汎関数理論(DFT)結果は、PCN-2
22が2種類の細孔、それぞれ1.3nmおよび3.2nm(図3の図)があることを示
し、PCN-222は非常に大きい開放チャンネルがあることを示し、これは、文献で報
告されたPCN-222の孔道構造と一致している。以上の結果は、PCN-222の合
成が成功したことを示し、その構造特性も検出性能を良好にサポートする。
Experimental Example 2
In Experimental Example 2, PCN-222 prepared by the method of Example 1 above will be described as a target, and P.
For the purpose of showing the surface area and pore diameter information of CN-222, as shown in FIG. 3, PC
The results of the nitrogen adsorption / desorption isotherm and pore size distribution of N-222 are shown.
The results show that the Brunauer-Emmett-Teller (BET) specific surface area of PCN-222 is 2080 m2g-1, which indicates that PCN-222 has a very large specific surface area. Density functional theory (DFT) results based on the nitrogen adsorption curve are PCN-2
22 indicates that there are two types of pores, 1.3 nm and 3.2 nm (Figure 3), respectively, and PCN-222 indicates that there are very large open channels, which are reported in the literature. It is consistent with the hole structure of PCN-222. The above results indicate that the synthesis of PCN-222 was successful, and its structural characteristics also well support the detection performance.

実験例3
実験例3では、上記実施例1の方法で調製されたPCN-222を対象として説明し、P
CN-222の紫外線可視光吸収スペクトルおよび蛍光発光スペクトルを説明することを
目的とし、2つのスペクトルの検出はすべて水溶液で行われる。
図4(a)に示すように、紫外線可視光吸収スペクトルの390nm~450nm間に1
つの吸収ピークが観察され、最大吸収波長は421nm(Soret帯)であり、ポルフ
ィリン化合物の紫外線可視光領域の特徴吸収ピークであり、PCN-222はポルフィリ
ン構造を有することが検証される。
図4(b)はPCN-222の三次元蛍光スペクトルであり、650nm~750nm間
のPCN-222の強い蛍光発光が明確に示され、最大発光波長は680nmであり、同
時に強い蛍光発光領域間の対応する励起波長も390nm~450nmであり、これは吸
収スペクトルの結果と同様である。
Experimental Example 3
In Experimental Example 3, PCN-222 prepared by the method of Example 1 above will be described as a target, and P.
For the purpose of explaining the ultraviolet visible light absorption spectrum and the fluorescence emission spectrum of CN-222, the detection of the two spectra is performed in an aqueous solution.
As shown in FIG. 4A, 1 between 390 nm and 450 nm of the ultraviolet visible light absorption spectrum.
Two absorption peaks are observed, the maximum absorption wavelength is 421 nm (Soret band), which is a characteristic absorption peak in the ultraviolet visible light region of the porphyrin compound, and it is verified that PCN-222 has a porphyrin structure.
FIG. 4B is a three-dimensional fluorescence spectrum of PCN-222, which clearly shows the strong fluorescence emission of PCN-222 between 650 nm and 750 nm, the maximum emission wavelength is 680 nm, and at the same time between the strong fluorescence emission regions. The corresponding excitation wavelength is also 390 nm to 450 nm, which is similar to the result of the absorption spectrum.

実験例4
実験例4では、上記実施例1の方法で調製されたPCN-222を対象として説明し、P
CN-222のF‐に対する感度を求めることを目的とし、水溶液中での相互作用の蛍光
応答を調べたが、具体的に図5に示される。
具体的な実験方法は、以下の通りである。
PCN-222溶液を等量的に10mL遠心管に各管に5mLずつ加え、PCN-222
溶液を含む遠心管に様々な濃度(0~500μM)のフッ素イオンを加え、30s混合し
て各遠心管中PCN-222溶液の蛍光発光スペクトルを測定した。
図5に示すように、F‐濃度が0から徐々に500μMまで増加すると、PCN-222
の蛍光強度が徐々に低下し、これはF‐がPCN-222の蛍光を消光したことを示した
Experimental Example 4
In Experimental Example 4, PCN-222 prepared by the method of Example 1 above will be described as a target, and P.
The fluorescence response of the interaction in an aqueous solution was investigated for the purpose of determining the sensitivity of CN-222 to F-, and is specifically shown in FIG.
The specific experimental method is as follows.
Add 5 mL of PCN-222 solution to each tube in an equal volume of 10 mL centrifuge tube, and add PCN-222 to each tube.
Fluorine ions of various concentrations (0 to 500 μM) were added to the centrifuge tube containing the solution, mixed for 30 s, and the fluorescence emission spectrum of the PCN-222 solution in each centrifuge tube was measured.
As shown in FIG. 5, when the F-concentration gradually increases from 0 to 500 μM, PCN-222
The fluorescence intensity of PCN-222 gradually decreased, indicating that F-quenched the fluorescence of PCN-222.

実験例5
実験例5では、上記実施例1の方法で調製されたPCN-222を対象として説明し、P
CN-222のF‐濃度に従う変化傾向および線形関係を示し、具体的には図6に示され
る。
図6(a)は、PCN-222蛍光消光率とF‐濃度の関係を示し、蛍光消光率とは、消
光した蛍光強度と元の蛍光強度の比率を意味し、(1-F/F0)で表され、ただし、F
およびF0はそれぞれF‐の存在下および非存在下での蛍光強度(λEx=421nm、
λEm=680nm)である。
図6(a)から分かるように、0~100μMF‐の範囲に、消光効率が急激増加し、そ
の後増加率が低下する。さらに重要なことは、図6(b)から分かるように、消光効率(
1-F/F0)とF‐濃度は0~20μM範囲内で良好な線形関係があり、これは、PC
N-222はF‐濃度を定量的に検出するための蛍光センサーとして使用されることが示
される。検出限界の計算式(LOD=3σ/slope、σはブランクサンプルの標準偏
差)により得られたPCN-222のF‐に対する検出限界は56nMであり、WHOの
飲料水に対して規定されるF‐の限界値(~1.5mg/L)よりも顕著に低く、かつ報
告されているほとんどのMOFセンサーのF‐検出限界よりも低い。
検出限界が低いのは、次の2つの理由が考えられる。第一、金属ポルフィリン構造におけ
るZr(IV)カチオンとF‐間の強い相互作用により、PCN-222とF‐が非常に
反応しやすい、第二、PCN-222は非常に大きい比表面積および孔道を有するので、
F‐が濃縮されて効果を生み出す。
Experimental Example 5
In Experimental Example 5, PCN-222 prepared by the method of Example 1 above will be described as a target, and P.
The tendency of change and the linear relationship according to the F-concentration of CN-222 are shown, and specifically shown in FIG.
FIG. 6A shows the relationship between the PCN-222 fluorescence quenching rate and the F-concentration, and the fluorescence quenching rate means the ratio of the extinguished fluorescence intensity to the original fluorescence intensity (1-F / F0). Represented by, however, F
And F0 are fluorescence intensities in the presence and absence of F-, respectively (λEx = 421 nm,
λEm = 680 nm).
As can be seen from FIG. 6 (a), the quenching efficiency rapidly increases in the range of 0 to 100 μMF-, and then the increase rate decreases. More importantly, as can be seen from FIG. 6 (b), the quenching efficiency (
1-F / F0) and F-concentration have a good linear relationship in the range of 0-20 μM, which is the PC.
N-222 is shown to be used as a fluorescence sensor for quantitatively detecting F-concentration. The detection limit of PCN-222 for F- obtained by the detection limit calculation formula (LOD = 3σ / slope, σ is the standard deviation of the blank sample) is 56 nM, which is defined for the drinking water of WHO. Significantly below the limit of (~ 1.5 mg / L) and below the F-detection limit of most MOF sensors reported.
There are two possible reasons why the detection limit is low. First, due to the strong interaction between the Zr (IV) cation and F- in the metallic porphyrin structure, PCN-222 and F- are very susceptible to reaction, second, PCN-222 has a very large specific surface area and pore path. Because it has
F- is concentrated to produce an effect.

実験例6
実験例6では、上記実施例1の方法で調製されたPCN-222を対象として説明し、P
CN-222の水中の安定性を説明することを目的とし、24時間浸漬と非浸漬のPCN
-222のXRD画像を示し、具体的に図7に示される。
具体的な実験方法は以下の通りである。
PCN-222溶液を等量的に2つの10mL遠心管に各管に5mLずつ加え、一方に2
00μMのフッ素イオンを加え、他方に同じ体積の純水を加えた。
図7に示すように、浸水前後のXRD画像が大体同じであり、PCN-222の主な構造
は基本的に変化しないことが観察され、この結果は、PCN-222が優れた水安定性を
有することを示した。
Experimental Example 6
In Experimental Example 6, PCN-222 prepared by the method of Example 1 above will be described as a target, and P.
A 24-hour soaked and non-soaked PCN for the purpose of explaining the stability of CN-222 in water.
An XRD image of -222 is shown, specifically shown in FIG.
The specific experimental method is as follows.
Equally add 5 mL of PCN-222 solution to each of the two 10 mL centrifuge tubes, and 2 to one.
00 μM of fluorine ion was added, and the same volume of pure water was added to the other.
As shown in FIG. 7, it was observed that the XRD images before and after the inundation were almost the same, and the main structure of PCN-222 was basically unchanged, and the result was that PCN-222 had excellent water stability. Shown to have.

実験例7
蛍光プローブは、蛍光強度の変化により検出目的を達成するために、実験例7では、上記
実施例1の方法で調製されたPCN-222を対象として説明し、PCN-222の励起
光下での蛍光安定性を説明することを目的とし、元のPCN-222溶液およびF‐添加
後のPCN-222溶液をそれぞれそれぞれ励起光下で連続的に1時間照射し、1分ごと
にその蛍光強度を測定し、具体的な結果が図8に示される。
具体的な実験方法は、以下の通りである。
蛍光分光計を使用して、2つの遠心管中のPCN-222溶液を動的に検出し、1分ごと
1回検出するように1時間の検出を行い、検出過程中に励起光を照射し続ける。
図8に示すように、F‐非添加の元のPCN-222溶液の蛍光強度およびF‐で消光さ
れたPCN-222溶液の蛍光強度は1時間以内に顕著な変動がなかった。これは、PC
N-222は良好な蛍光安定性を有し、蛍光プローブとして使用される条件があることを
示した。上記の結果に基づいて、PCN-222は同時に水安定性、酸安定性、光安定性
を備えた材料であり、その優れた化学的安定性の理由は、PCN-222構造中のZr6
クラスターであると考えられ、これは、Zr6クラスターがMOF構造中で最も安定した
構築単位の1つと見なされている。
Experimental Example 7
In order to achieve the detection purpose by changing the fluorescence intensity, the fluorescent probe will be described in Experimental Example 7 for PCN-222 prepared by the method of Example 1 above, and under the excitation light of PCN-222. For the purpose of explaining the fluorescence stability, the original PCN-222 solution and the F-added PCN-222 solution are continuously irradiated with excitation light for 1 hour, respectively, and the fluorescence intensity is measured every 1 minute. Measured and specific results are shown in FIG.
The specific experimental method is as follows.
Using a fluorescence spectrometer, the PCN-222 solution in the two centrifuge tubes is dynamically detected, detected for 1 hour so as to be detected once every minute, and irradiated with excitation light during the detection process. continue.
As shown in FIG. 8, the fluorescence intensity of the original PCN-222 solution without F-addition and the fluorescence intensity of the PCN-222 solution extinguished with F- did not change significantly within 1 hour. This is a PC
N-222 has good fluorescence stability, indicating that there are conditions for use as a fluorescent probe. Based on the above results, PCN-222 is a material with water stability, acid stability and photostability at the same time, and the reason for its excellent chemical stability is Zr6 in the PCN-222 structure.
Considered to be a cluster, it is considered that the Zr6 cluster is one of the most stable building units in the MOF structure.

実験例8
実験例8では、上記実施例1の方法で調製されたPCN-222を対象として説明し、P
CN-222のF‐の特定の選択性を明確説明することを目的とし、いくつかの一般的な
イオン(F‐、K+、Mg2+、Ca2+、Al3+、Cl、Br、I-、NO3、B
rO3-、SO42-、CO32-)のPCN-222蛍光強度に対する影響を測定し、
結論をより説得力のあるものにするために、同時に低濃度(20μM)と高濃度(200
μM)の2つの濃度の実験を行い、具体的な結果が図9に示される。
具体的な試験方法は、以下の通りである。
この実験は、低濃度グループと高濃度グループに分けられ、PCN-222の低濃度と高
濃度のフッ素イオンに対する選択性を検出することを目的とする。
低濃度グループ:PCN-222水溶液を等量的に10mL遠心管に各管に5mLずつ加
え、それぞれPCN-222溶液を含む遠心管に同じ体積、同じ濃度(20μM)の様々
なアニオン(F‐、K+、Mg2+、Ca2+、Al3+、Cl、Br、I-、NO3
、BrO3-、SO42-、CO32-)を加え、ブランク対照グループでは同じ体積の
純水だけ加え、30s混合した後各遠心管中のPCN-222溶液の蛍光発光スペクトル
を測定した。3グループの実験が並行して行われた。
高濃度グループ:PCN-222水溶液を等量的に10mL遠心管に各管に5mLずつ加
え、それぞれPCN-222溶液を含む遠心管中に同じ体積、同じ濃度(200μM)の
様々なアニオン(F‐、K+、Mg2+、Ca2+、Al3+、Cl、Br、I-、NO
、SO42-、BrO3、CO32-)を加え、ブランク対照グループでは同じ体
積の純水だけを加え、30s混合した後各遠心管中PCN-222溶液の蛍光発光スペク
トルを測定した。3グループの実験が並行して行われた。
その結果、低濃度(図9a)と高濃度(図9b)のF‐はPCN-222蛍光強度に対す
る消光が顕著であり、他のイオンは蛍光強度に対する影響が非常に小さいことを示した。
これは、PCN-222はF‐に対して非常に強い選択性を持ち、F‐検出用プローブに
適していることが示される。選択性が高い理由は、Zr(IV)とF‐間の親和力がZr
(IV)と他のアニオン間の親和力よりもはるかに高いためである。
Experimental Example 8
In Experimental Example 8, PCN-222 prepared by the method of Example 1 above will be described as a target, and P.
Some common ions (F-, K +, Mg2 +, Ca2 +, Al3 +, Cl- , Br- , I - , NO3-, B
The effect of rO3-, SO42-, CO32-) on the fluorescence intensity of PCN-222 was measured.
To make the conclusion more convincing, at the same time low concentration (20 μM) and high concentration (200)
Experiments with two concentrations of μM) were performed and specific results are shown in FIG.
The specific test method is as follows.
This experiment is divided into a low concentration group and a high concentration group, and aims to detect the selectivity of PCN-222 for low concentration and high concentration fluorine ions.
Low Concentration Group: Equally add 5 mL of each tube to a 10 mL centrifuge tube and add various anions (F-,) of the same volume and concentration (20 μM) to the centrifuge tube containing the PCN-222 solution, respectively. K +, Mg2 +, Ca2 +, Al3 +, Cl- , Br- , I-, NO3-
, BrO3-, SO42-, CO32-), only the same volume of pure water was added in the blank control group, and after mixing for 30 s, the fluorescence emission spectrum of the PCN-222 solution in each centrifuge tube was measured. Three groups of experiments were conducted in parallel.
High Concentration Group: Equally add 5 mL of PCN-222 aqueous solution to each tube in a 10 mL centrifuge tube and place various anions (F-) in the centrifuge tube containing the PCN-222 solution in the same volume and concentration (200 μM). , K +, Mg2 +, Ca2 +, Al3 +, Cl- , Br-, I-, NO
3- , SO42-, BrO3- , CO32-) were added, only the same volume of pure water was added in the blank control group, and after mixing for 30 s, the fluorescence emission spectrum of the PCN-222 solution in each centrifuge tube was measured. Three groups of experiments were conducted in parallel.
As a result, it was shown that the low-concentration (FIG. 9a) and high-concentration (FIG. 9b) F-s had a remarkable quenching effect on the fluorescence intensity of PCN-222, and the other ions had a very small effect on the fluorescence intensity.
This indicates that PCN-222 has a very strong selectivity for F- and is suitable for an F-detection probe. The reason for the high selectivity is that the affinity between Zr (IV) and F- is Zr.
This is because it is much higher than the affinity between (IV) and other anions.

実験例9
実験例9は、上記実施例1の方法で調製されたPCN-222を対象として説明し、F‐
添加後のPCN-222の蛍光強度の経時変化を説明し、具体的には図10に示される。
図10に示すように、F‐添加後5s以内に蛍光強度がほぼ完全に消光され、安定になる
傾向があることが明確に示される。これは、この検出方法は応答速度が速い利点を有する
ことを示した。
Experimental Example 9
Experimental Example 9 is described for PCN-222 prepared by the method of Example 1 above, and F-
The change over time in the fluorescence intensity of PCN-222 after the addition will be described, and more specifically, it is shown in FIG.
As shown in FIG. 10, it is clearly shown that the fluorescence intensity tends to be almost completely quenched and stabilized within 5 s after the addition of F-. This indicates that this detection method has the advantage of high response speed.

実験例10
実験例10では、上記実施例1の方法で調製されたPCN-222を対象として説明し、
本発明で調製されたPCN-222蛍光プローブ検出法と近年報告されているF‐の蛍光
検出方法を比較して、具体的な結果を表3に示す。
表3では、文献1で記載された蛍光プローブ番号を1、文献2で記載された蛍光プローブ
番号を2、文献3で記載された蛍光プローブ番号を3、文献4で記載された蛍光プローブ
番号を4、文献5で記載された蛍光プローブ番号を5、文献6で記載された蛍光プローブ
番号を6、文献7で記載された蛍光プローブ番号を7、文献8で記載された蛍光プローブ
番号を8とする。
表3 近年報告されているフッ素イオン蛍光検出方法


Figure 2022042452000004


ただし、
文献1:2019「Selective、Fast-Response、andRege
nerableMetal-OrganicFrameworkforSampling
ExcessFluorideLevelsinDrinkingWater」、
文献2:2017「Fluorescentmoleculeincorporated
metal-organicframeworkforfluoridesensing
inaqueoussolution」、.
文献3:2017「Silsesquioxanecagesasfluoridese
nsors」、
文献4:2017「DevelopmentofanInnerFilterEffec
ts-BasedUpconversionNanoparticles-Curcum
inNanosystemfortheSensitiveSensingofFluo
rideIon」、
文献5:2017「Boric-Acid-FunctionalLanthanide
MetalOrganicFrameworksforSelectiveRatiom
etricFluorescenceDetectionofFluorideIons
」、
文献6:2016「AIEactivepyridiniumfusedtetraph
enylethene:Rapidandselectivefluorescent"t
urn-on"sensorforfluorideioninaqueousmedi
a」、
文献7:2016「Simpleandefficientcoumarin-base
dcolorimetricandfluorescentchemosensorfo
rF-detection:AnON1-OFF-ON2fluorescentass
ay」、
文献8:2015「Fluorescentcarbonnanodotsforopt
icaldetectionoffluorideioninaqueousmedia
」。 Experimental Example 10
In Experimental Example 10, PCN-222 prepared by the method of Example 1 above will be described as a target.
Table 3 compares the PCN-222 fluorescent probe detection method prepared in the present invention with the F- fluorescence detection method reported in recent years, and the specific results are shown in Table 3.
In Table 3, the fluorescent probe number described in Document 1 is 1, the fluorescent probe number described in Document 2 is 2, the fluorescent probe number described in Document 3 is 3, and the fluorescent probe number described in Document 4 is. 4. The fluorescent probe number described in Document 5 is 5, the fluorescent probe number described in Document 6 is 6, the fluorescent probe number described in Document 7 is 7, and the fluorescent probe number described in Document 8 is 8. do.
Table 3 Fluorine ion fluorescence detection methods reported in recent years


Figure 2022042452000004


However,
Reference 1: 2019 "Selective, Fast-Response, andRege"
nullleMetal-OrganicFrameworkforSampling
"ExcessFluorideLevelsinDrinkingWater",
Reference 2: 2017 "Fluorescentmoleculeincorporated"
metallic-organicframeworkformformsolvising
inakueuussolution ”,.
Reference 3: 2017 "Silsesquioxanecagesasfluoridese
nsors ",
Reference 4: 2017 "DevelopmentofanInnerFiltererEffec"
ts-BasedUpconversionNanoparticles-Curcum
inNanosystemforceSensitiveSensingofFluoro
rideIon ",
Reference 5: 2017 "Boric-Acid-Fundational Landande"
MetalorganicFrameworksforSelectiveRatiom
trickFluorescenceDectionofFluorideIons
",
Reference 6: 2016 "AIEactivepyridiniumfusedtraph"
enable: Rapidsselectivefluorescent "t"
urn-on "sensorformoredoioninaqueousmedi
a ",
Reference 7: 2016 "Simplifieddeficientcomaline-base"
dcolorimetricandfluorescentcemosensorfo
rF-direction: AnON1-OFF-ON2fluorescentass
ay ",
Document 8: 2015 "Fluorescentcarbonnodotsfort
icardectionoffluorideioninaqueousmediaa
".

実験例11
実験例11では、上記実施例1の方法で調製されたPCN-222を対象として説明し、
本発明で調製されたPCN-222蛍光プローブの水中フッ素イオン分析への適用性を検
証することを目的とするため、さらに実際の水サンプルを使用してF‐のスパイク検出を
行う。
本実施例では、水道水サンプルおよび太湖の水サンプルの2つの実際の水サンプルを使用
して分析を行う。水サンプルは事前に前処理されており、処理後の水サンプルに様々な濃
度の既知標準フッ化物を加え、その後PCN-222を使用して蛍光検出を行い、得られ
た測定結果が表4に示される。
具体的な実験方法は、以下の通りである。
水道水および太湖の水の水サンプルをいくつか採取し、0.22μmフィルター膜で濾過
して水中の不純物を除去した。水サンプルに様々な濃度(20、40、60、80、10
0μM)のフッ素イオンを加え、一連の異なる濃度のフッ素イオンの水サンプルを調製し
、水サンプルとPCN-222分散液を1:9の割合で混合し(つまり、10倍に希釈し
、この時フッ素イオン濃度はそれぞれ2、4、6、8、10μMである)、混合溶液を等
量的に10mL遠心管に各管に5mLずつ加え、各遠心管中PCN-222溶液の蛍光発
光スペクトルを測定した。
表4 水道水サンプルおよび太湖の水サンプルのF‐スパイク検出結果


Figure 2022042452000005
表4に示すように、水道水サンプルの回収率は88.0%~103.5%であり、太湖水
サンプルの回収率は93.0%~105.6%であり、これは、PCN-222による実
際の水サンプル中のフッ素イオンの検出は顕著な干渉を受けなかった。これらの結果から
分かるように、この蛍光プローブ検出方法は高い正確性および信頼性を有し、水サンプル
中のF‐の測定に使用され得る。 Experimental Example 11
In Experimental Example 11, PCN-222 prepared by the method of Example 1 above will be described as a target.
In order to verify the applicability of the PCN-222 fluorescent probe prepared in the present invention to fluorine ion analysis in water, F- spike detection is further performed using an actual water sample.
In this example, two actual water samples, a tap water sample and a Taihu water sample, are used for analysis. The water sample was pretreated, and various concentrations of known standard fluoride were added to the treated water sample, followed by fluorescence detection using PCN-222, and the measurement results obtained are shown in Table 4. Shown.
The specific experimental method is as follows.
Several water samples of tap water and Taiko water were taken and filtered through a 0.22 μm filter membrane to remove impurities in the water. Various concentrations in water samples (20, 40, 60, 80, 10
Add 0 μM) of fluoride ions to prepare a series of water samples of fluoride ions of different concentrations, mix the water sample with the PCN-222 dispersion at a ratio of 1: 9 (ie, dilute 10-fold, at this time. Fluorine ion concentration is 2, 4, 6, 8, 10 μM, respectively), add 5 mL of the mixed solution to each tube in an equal volume of 10 mL centrifuge tube, and measure the fluorescence emission spectrum of the PCN-222 solution in each centrifuge tube. did.
Table 4 F-spike detection results for tap water samples and Taihu water samples


Figure 2022042452000005
As shown in Table 4, the recovery rate of the tap water sample is 88.0% to 103.5%, and the recovery rate of the Taihu lake water sample is 93.0% to 105.6%, which is PCN-. The detection of fluorine ions in the actual water sample by 222 was not significantly interfered with. As can be seen from these results, this fluorescent probe detection method has high accuracy and reliability and can be used for the measurement of F- in water samples.

Claims (6)

S1、化合物合成
S11、ZrCl、H-TCPPおよび安息香酸を超音波処理によりN、N-ジエチ
ルホルムアミドに溶解し、溶液を得るステップと、
S12、ステップS11で調製された溶液をポリテトラフルオロエチレンのオートクレー
ブに移し、ブラストオーブンに入れ120℃まで加熱し、48時間保持するステップと、
S13、ステップS12で加熱された溶液を室温まで冷却した後、N、N-ジメチルホル
ムアミドを使用して複数回の吸引濾過で洗浄し、N、N-ジメチルホルムアミドの代わり
にアセトンを使用して数回洗浄を続け、固体化合物の生成物を収穫するステップと、
S2、化合物の活性化
S21、濃塩酸をDMF懸濁液に加え、次にステップS13で合成された生成物を120
℃のDMFで12時間浸漬するステップと、
S22、ステップS21で浸漬した後の生成物をDMFとアセトンで洗浄し、次に生成物
をアセトンに浸漬し24時間放置するステップと、
S23、ステップS22で放置した生成物を真空乾燥オーブンで6時間真空乾燥して活性
化処理を行い、最後に脱ガス機能を用いて120℃で12時間再度乾燥させるステップと

を含むことを特徴とする水溶性マクロポーラスジルコニウムポルフィリン構造化合物の調
製方法。
S1, compound synthesis S11, ZrCl 4 , H2 - TCPP and benzoic acid are dissolved in N, N-diethylformamide by sonication to obtain a solution.
In steps S12, the solution prepared in step S11 is transferred to an autoclave of polytetrafluoroethylene, placed in a blast oven, heated to 120 ° C., and held for 48 hours.
After cooling the solution heated in S13, step S12 to room temperature, wash with multiple suction filtrations using N, N-dimethylformamide and use acetone instead of N, N-dimethylformamide. Steps to continue washing and harvesting the product of the solid compound,
S2, compound activation S21, concentrated hydrochloric acid was added to the DMF suspension, and then the product synthesized in step S13 was added to 120.
The step of immersing in DMF at ° C for 12 hours and
The product after soaking in S22 and step S21 was washed with DMF and acetone, and then the product was soaked in acetone and left for 24 hours.
The product left in S23 and step S22 is vacuum-dried in a vacuum-drying oven for 6 hours for activation treatment, and finally dried again at 120 ° C. for 12 hours using the degassing function.
A method for preparing a water-soluble macroporous zirconium porphyrin structural compound, which comprises.
S1、化合物合成
S11、75~100mgのZrCl、50~70mgのH-TCPPおよび2.7
~3.6gの安息香酸を超音波処理により8~12mlのN、N-ジエチルホルムアミド
に溶解し、溶液を得るステップと、
S12、ステップS11で調製された溶液をポリテトラフルオロエチレンのオートクレー
ブに移し、ブラストオーブンに入れ120℃まで加熱し、48時間保持するステップと、
S13、ステップS12で加熱された溶液を室温まで冷却した後、N、N-ジメチルホル
ムアミドを使用して2~4回の吸引濾過で洗浄し、N、N-ジメチルホルムアミドの代わ
りにアセトンを使用して2~5回の洗浄を続け、固体化合物の生成物を収穫するステップ
と、
S2、化合物の活性化
S21、まず0.5~1mLの濃塩酸を20~40mlのDMF懸濁液に加え、ステップ
S13で合成した生成物を120℃のDMFに12時間浸漬するステップと、
S22、ステップS21で浸漬した後の生成物をDMFとアセトンで2~5回洗浄し、生
成物をアセトンに浸漬し24時間放置するステップと、
S23、ステップS22で放置した後の生成物を真空乾燥オーブンに6時間真空乾燥して
活性化処理を行い、最後に脱ガス機能を用い120℃で12時間再度乾燥させるステップ
と、を
含むことを特徴とする請求項1に記載の調製方法。
S1, compound synthesis S11, 75-100 mg ZrCl 4 , 50-70 mg H2 - TCPP and 2.7
A step of dissolving ~ 3.6 g of benzoic acid in 8-12 ml of N, N-diethylformamide by sonication to obtain a solution.
In steps S12, the solution prepared in step S11 is transferred to an autoclave of polytetrafluoroethylene, placed in a blast oven, heated to 120 ° C., and held for 48 hours.
After cooling the solution heated in S13 and step S12 to room temperature, the solution was washed with N, N-dimethylformamide by suction filtration 2 to 4 times, and acetone was used instead of N, N-dimethylformamide. The step of harvesting the product of the solid compound by continuing the washing 2 to 5 times,
S2, compound activation S21, first adding 0.5 to 1 mL of concentrated hydrochloric acid to 20 to 40 ml of DMF suspension, and immersing the product synthesized in step S13 in DMF at 120 ° C. for 12 hours.
The product after soaking in S22 and step S21 was washed with DMF and acetone 2 to 5 times, and the product was immersed in acetone and left for 24 hours.
S23, the product after being left in step S22 is vacuum dried in a vacuum drying oven for 6 hours to perform an activation treatment, and finally, a step of drying again at 120 ° C. for 12 hours using a degassing function is included. The preparation method according to claim 1.
イオン条件下で廃水中のFを検出するための蛍光プローブとして使用されることを特徴
とする、請求項1または2に記載の方法で調製された化合物の用途。
Use of a compound prepared by the method according to claim 1 or 2, characterized in that it is used as a fluorescent probe for detecting F in wastewater under ionic conditions.
前記蛍光プローブを用いてFを検出する方法が、水溶液中の蛍光スペクトルを検出し、
421nmでの蛍光強度を検出することによりF濃度を得る、ことを特徴とする請求項
3に記載の用途。
The method of detecting F using the fluorescent probe detects the fluorescence spectrum in an aqueous solution and
The application according to claim 3, wherein the F - concentration is obtained by detecting the fluorescence intensity at 421 nm.
濃度が、1~100μMの範囲の前記蛍光プローブの蛍光の消光を有し、蛍光消光率
とF‐濃度が1~20μM以内に線形関係があることを特徴とする請求項3に記載の用途
The third aspect of claim 3, wherein the F - concentration has quenching of the fluorescence of the fluorescent probe in the range of 1 to 100 μM, and the fluorescence quenching rate and the F-concentration have a linear relationship within 1 to 20 μM. Use.
前記蛍光プローブのF‐の検出限界が56nMであり、F‐の応答速度が5s未満である
、ことを特徴とする請求項3に記載の用途。
The application according to claim 3, wherein the detection limit of F-of the fluorescent probe is 56 nM, and the response speed of F- is less than 5 s.
JP2020153392A 2020-09-02 2020-09-12 Method for preparing water-soluble macroporous zirconium porphyrin structural compound and its use Active JP6868759B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010911680.8 2020-09-02
CN202010911680.8A CN114196030B (en) 2020-09-02 2020-09-02 Preparation method and application of water-soluble macroporous zirconium porphyrin structure compound

Publications (2)

Publication Number Publication Date
JP6868759B1 JP6868759B1 (en) 2021-05-12
JP2022042452A true JP2022042452A (en) 2022-03-14

Family

ID=75801790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020153392A Active JP6868759B1 (en) 2020-09-02 2020-09-12 Method for preparing water-soluble macroporous zirconium porphyrin structural compound and its use

Country Status (2)

Country Link
JP (1) JP6868759B1 (en)
CN (1) CN114196030B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073756B (en) * 2021-10-28 2023-09-12 中国人民解放军国防科技大学 Metal-organic framework nano material and preparation method thereof, composite material loaded with metal-organic framework nano material and preparation method thereof
CN114034656B (en) * 2021-11-10 2023-07-04 国网四川省电力公司电力科学研究院 Probe for detecting fluoride ions, preparation method and application of probe
CN114805826B (en) * 2022-03-11 2023-03-21 湖北工业大学 Eu & lt 3+ & gt functionalized MOF fluorescent probe, preparation method thereof and application of Eu & lt 3+ & gt functionalized MOF fluorescent probe in detection of tetracycline drugs
CN114733574B (en) * 2022-04-20 2023-02-03 大连理工大学 Preparation method of Au nanorod-modified PCN-222 (Cu) catalyst
CN116003814A (en) * 2022-12-23 2023-04-25 天津科技大学 Preparation method of porphin-based metal organic framework material and application of porphin-based metal organic framework material in detection of F ions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432366A (en) * 2016-09-14 2017-02-22 哈尔滨理工大学 Preparation and application of nano metal-organic framework material PCN-223 based on porphyrin ligand
CN106959279B (en) * 2017-04-14 2020-06-23 浙江省农业科学院 PCN222 metal organic framework material and preparation method and application thereof
CN107179301B (en) * 2017-04-24 2020-09-29 西北师范大学 Application of zirconium-porphyrin metal organic framework material as fluorescent probe in detection of hydrogen phosphate ions
CN109821579A (en) * 2019-03-11 2019-05-31 金鹏霞 Based on copper porphyrin MOFs and TiO2Nanocomposite preparation method and application
CN113791057B (en) * 2021-09-15 2022-08-19 南京大学 Perfluoro compound high-throughput screening method based on fluorescent sensor array

Also Published As

Publication number Publication date
CN114196030B (en) 2022-09-23
JP6868759B1 (en) 2021-05-12
CN114196030A (en) 2022-03-18

Similar Documents

Publication Publication Date Title
JP6868759B1 (en) Method for preparing water-soluble macroporous zirconium porphyrin structural compound and its use
Zhong et al. Two isomeric In (III)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water
Zhu et al. Dual-emitting dye-CDs@ MOFs for selective and sensitive identification of antibiotics and MnO 4− in water
Shenashen et al. Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors
Shenashen et al. Ultra-trace recognition and removal of toxic chromium (VI) ions from water using visual mesocaptor
Taheri et al. Water stability of cobalt doped ZIF-8: A quantitative study using optical analyses
CN108535231B (en) Method for detecting phosphate ions based on dual-emission europium metal organic framework material
El-Safty et al. Visual detection and revisable supermicrostructure sensor systems of Cu (II) analytes
Ming et al. Copper-based metal–organic framework nanoparticles for sensitive fluorescence detection of ferric ions
Parvizi et al. Preconcentration and ultra-trace determination of hexavalent chromium ions using tailor-made polymer nanoparticles coupled with graphite furnace atomic absorption spectrometry: ultrasonic assisted-dispersive solid-phase extraction
Feng et al. Microwave-assisted synthesis of nitrogen-rich carbon dots as effective fluorescent probes for sensitive detection of Ag+
Salimi et al. Trace measurement of lead and cadmium ions in wastewater samples using a novel dithizone immobilized metal–organic framework‐based μ‐dispersive solid‐phase extraction
CN110940648B (en) Synthesis method of green fluorescent carbon quantum dots and application of green fluorescent carbon quantum dots in detection of nitrite
Wang et al. In situ growth of polyoxometalate in COF for trace monitoring of Ag+ and hepatocellular carcinoma biomarker via a dual responsive strategy
CN113201335B (en) Enhanced fluorescent carbon dot, preparation method and application in cadmium ion detection
CN114854405A (en) Multi-emission fluorescent carbon dot and preparation method and application thereof
Salahandish et al. Rapid and efficient lead (II) ion removal from aqueous solutions using Malva sylvestris flower as a green biosorbent
Hemmati Tirabadi et al. Trithiocyanuric acid-functionalized nanoporous silica: synthesis and application as an Ag+ selective optical probe
CN114044915A (en) Preparation method and application of ratiometric fluorescent probe Eu/Zr-UiO-66 with high selectivity on cyclohexanone
CN112321841B (en) Metal organic framework material based on biomolecules as well as preparation method and application thereof
CN111715891A (en) Copper nanoparticle solution and preparation method and application thereof
CN109580564B (en) Method for detecting mercury ions in water
CN116337852A (en) Cr simulating enzyme activity based on two-dimensional MOFs oxide 6+ Rapid detection method and test paper
Xu et al. Adsorption of fluoride from aqueous solutions by polyacrylic acid modified with aluminium
CN115541549A (en) Rapid screening method for perfluorooctane sulfonate in water body based on zirconium-based fluorescent MOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200912

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200912

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R150 Certificate of patent or registration of utility model

Ref document number: 6868759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150