JP2022042242A - Method of manufacturing recycled article of ash and system for manufacturing recycled article of ash - Google Patents

Method of manufacturing recycled article of ash and system for manufacturing recycled article of ash Download PDF

Info

Publication number
JP2022042242A
JP2022042242A JP2020147575A JP2020147575A JP2022042242A JP 2022042242 A JP2022042242 A JP 2022042242A JP 2020147575 A JP2020147575 A JP 2020147575A JP 2020147575 A JP2020147575 A JP 2020147575A JP 2022042242 A JP2022042242 A JP 2022042242A
Authority
JP
Japan
Prior art keywords
ash
concentration
recycled
environmentally regulated
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020147575A
Other languages
Japanese (ja)
Other versions
JP6942392B1 (en
Inventor
誉幸 奴留湯
Takayuki Nuruyu
大造 福岡
Daizo Fukuoka
慶太 工藤
Keita Kudo
正貴 峯松
Masataka Minematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Kensetsu Gozai Co Ltd
Original Assignee
Fukuoka Kensetsu Gozai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Kensetsu Gozai Co Ltd filed Critical Fukuoka Kensetsu Gozai Co Ltd
Priority to JP2020147575A priority Critical patent/JP6942392B1/en
Priority to PCT/JP2021/028397 priority patent/WO2022049950A1/en
Application granted granted Critical
Publication of JP6942392B1 publication Critical patent/JP6942392B1/en
Publication of JP2022042242A publication Critical patent/JP2022042242A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/08Lowering or sinking caissons
    • E02D23/12Inclined lowering
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Paleontology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Architecture (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

To provide a method of manufacturing a recycled article of ash which is managed at an appropriate environmentally-regulated material concentration, even when fluctuation is caused in the state of ash.SOLUTION: Concerning a method of manufacturing a recycled article of ash in which an environmentally-regulated material concentration is managed, the method of manufacturing the recycled article of ash includes an analysis process (S11) of analyzing an element concentration of ash used in the recycled article of ash, a calculation process (S21) of calculating a raw material concentration for setting the environmentally-regulated material concentration of the recycled article of ash so as to be a managed value or less, with respect to element concentration of the ash analyzed in the analysis process, based on an estimation relation of concentration correlation provided by performing multivariate analysis by using element concentration of ash, the raw material concentration of raw material to be used for the recycled article and the environmentally-regulated material concentration of the recycled article of ash provided by combination of these as teacher data, and a mixing process (S31) of mixing the raw material at a raw material concentration calculated in the calculation process.SELECTED DRAWING: Figure 2

Description

本発明は、灰の環境規制物質を低減して、灰の再生品を製造する方法、および灰の再生品を製造するシステムに関する。 The present invention relates to a method for producing a recycled ash product by reducing environmentally regulated substances in the ash, and a system for producing a recycled ash product.

火力発電は、電力会社等の発電所や、各種の工場などでも行われており、重要な電力源である。この火力発電には、石炭やバイオマスなど、様々な燃料源が用いられており、発電に伴い、焼却灰が生じる。また、火力発電以外にも、熱源としての利用や、廃棄物の焼却処理などでも焼却灰が生じる。 Thermal power generation is also performed at power plants such as electric power companies and various factories, and is an important power source. Various fuel sources such as coal and biomass are used for this thermal power generation, and incinerator ash is generated with the power generation. In addition to thermal power generation, incineration ash is also generated when used as a heat source or when incinerating waste.

これらの焼却灰には、重金属などの環境規制物質が含まれる場合もある。焼却灰の最終処分としては、埋め立て処理や、セメントなどの建材等への利用などが行われる。この最終処分を行う前に、焼却灰に対して環境規制物質の処理などが必要となる。 These incinerator ash may also contain environmentally regulated substances such as heavy metals. The final disposal of incinerated ash includes landfill processing and use for building materials such as cement. Before performing this final disposal, it is necessary to treat the incinerator ash with environmentally regulated substances.

これらの適宜燃料などとしても用いられ、焼却された後に残る焼却灰の主灰や飛灰は、燃え殻や、ばいじんなどとして、その由来や状態、処理施設、処理状況、再利用先などに応じた法規制などが行われている。そして、これらの灰を再利用等しようとするとき、多様な環境規制物質の処理手法が提案や実施されている。 The main ash and fly ash of the incinerated ash that remains after being incinerated, which are also used as appropriate fuels, are used as cinders, soot and dust, etc., depending on their origin, condition, treatment facility, treatment status, reuse destination, etc. Laws and regulations are in place. Then, when trying to reuse these ashes, various treatment methods for environmentally regulated substances have been proposed and implemented.

特許文献1は、重金属含有飛灰を、該重金属含有飛灰中のカルシウム量と、該重金属含有飛灰懸濁水溶液のpHに基づいて分類し、該分類された重金属含有飛灰の種類に応じて、a)ケイ酸質物質、或いはb)アーウィン系セメント、或いはc)アーウィン系セメント及びpH低減材のいずれかの固化処理材を使い分けて使用することを特徴とする、重金属含有飛灰の固化処理方法を開示している。 Patent Document 1 classifies heavy metal-containing fly ash based on the amount of calcium in the heavy metal-containing fly ash and the pH of the heavy metal-containing fly ash suspended aqueous solution, and corresponds to the type of the classified heavy metal-containing fly ash. The solidification of heavy metal-containing fly ash is characterized by using either a) siliceous substance, b) Irwin-based cement, or c) Irwin-based cement or pH-reducing material. The processing method is disclosed.

特許文献2は、重金属含有灰に水と活性炭を加えて混練することにより、重金属含有灰中の重金属を固定化することを特徴とする重金属含有灰の処理方法を開示している。 Patent Document 2 discloses a method for treating heavy metal-containing ash, which comprises immobilizing heavy metals in heavy metal-containing ash by adding water and activated carbon to heavy metal-containing ash and kneading them.

特許文献3は、ジチオカルバミン酸塩の水溶液を主成分とする重金属固定剤を使用して飛灰処理をするにあたり、この固定剤を水で希釈した時の希釈液のpHが12以上となるように調整した後、飛灰と混練して処理することを特徴とする有害重金属含有飛灰の処理方法を開示している。 According to Patent Document 3, when a heavy metal fixing agent containing an aqueous solution of dithiocarbamate as a main component is used for fly ash treatment, the pH of the diluted solution when the fixing agent is diluted with water is 12 or more. Disclosed is a method for treating fly ash containing a harmful heavy metal, which is characterized by being kneaded with fly ash and then treated.

特許文献4は、重金属含有灰に水を加え、酸もしくはOH基を含むアルカリを加えてpH9~12にした後、酸及び2価鉄を加え、この混合物のpHを6.0~8.5にすることを特徴とする重金属含有灰の処理方法を開示している。 In Patent Document 4, water is added to heavy metal-containing ash, an acid or an alkali containing an OH group is added to adjust the pH to 9 to 12, and then an acid and ferrous iron are added to adjust the pH of this mixture to 6.0 to 8.5. Discloses a method for treating heavy metal-containing ash, which is characterized by the above.

特開平9-108649号公報Japanese Unexamined Patent Publication No. 9-108649 特開平9-174017号公報Japanese Unexamined Patent Publication No. 9-174017 特開平10-118612号公報Japanese Unexamined Patent Publication No. 10-18612 特開平7-108248号公報Japanese Unexamined Patent Publication No. 7-108248

特許文献1~4のように様々な灰の処理技術が提案されている。しかし、灰は、石炭や木材、産業ゴミ、家庭ゴミなど多様なものを、焼却する目的や環境などにより多様な条件で処理されたものである。このため、灰の種類が変わったり、経時的な変動が生じたりすると、処理条件が適切ではなくなる場合がある。このような適切ではない条件で処理を行い続けると、環境基準を満足しない状態で排出される恐れがあったり、排出できない灰が溜まってしまったり、繰り返し処理を行わないといけないおそれがある。 Various ash treatment techniques have been proposed as in Patent Documents 1 to 4. However, ash is a variety of waste such as coal, wood, industrial waste, and household waste, which are treated under various conditions depending on the purpose of incineration and the environment. Therefore, if the type of ash changes or fluctuations occur over time, the treatment conditions may not be appropriate. If the treatment is continued under such inappropriate conditions, it may be discharged in a state that does not satisfy the environmental standard, ash that cannot be discharged may be accumulated, or the treatment may have to be repeated.

かかる状況下、本発明は、灰の状態に変動が生じても、適切な環境規制物質濃度で管理した灰の再生品を製造する方法やシステムを提供することを目的とする。 Under such circumstances, it is an object of the present invention to provide a method and a system for producing a recycled ash product controlled at an appropriate concentration of environmentally regulated substances even if the state of the ash fluctuates.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。すなわち、本発明は、以下の発明に係るものである。 As a result of diligent research to solve the above problems, the present inventor has found that the following invention meets the above object, and has arrived at the present invention. That is, the present invention relates to the following invention.

<1> 環境規制物質濃度を管理した灰の再生品を製造する方法であって、
灰の再生品に用いる灰の元素濃度を分析する分析工程と、
灰の元素濃度と、再生品に用いる素材の素材濃度と、これらの組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして多変量解析して得られる濃度相関の予測式を基に、前記分析工程で分析された前記灰の元素濃度に対して、前記灰の再生品の環境規制物質濃度を管理値以下とするための前記素材濃度を算出する算出工程と、
前記算出工程により算出された前記素材濃度で前記素材を混合する混合工程とを有する、灰の再生品を製造する方法。
<2> 前記分析工程で分析する灰の元素が、Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、As、Se、Br、Ag、Cd、およびPbからなる群から選択される5以上の元素を分析するものである前記<1>に記載の方法。
<3> 前記素材が、灰、固化材、水、および薬剤である前記<1>または<2>に記載の方法。
<4> 前記薬剤が、石こう、石灰、塩化カルシウム、硫化ナトリウム、塩化第二鉄、ポリ硫酸第二鉄、ケイ酸ナトリウム、アルミン酸ナトリウム、アルミン酸カルシウム、水酸化アルミニウム、アルミドロス、および有機系キレート薬剤からなる群から選択される1以上の薬剤である前記<3>に記載の方法。
<5> 環境規制物質が、F(フッ素)、Hg(水銀)、Cd(カドミウム)、Pb(鉛)、Cr6+(六価クロム)、As(ヒ素)、Se(セレン)、およびB(ホウ素)からなる群から選択される前記<1>~<4>のいずれかに記載の方法。
<6> 環境規制物質濃度を管理した灰の再生品を製造するシステムであって、
灰の再生品に用いる灰の元素濃度を分析する分析手段と、
灰の元素濃度と、再生品に用いる素材の素材濃度と、これらの組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして多変量解析して得られる濃度相関の予測式を基に、前記分析工程で分析された前記灰の元素濃度に対して、前記灰の再生品の環境規制物質濃度を管理値以下とするための前記素材濃度を算出する算出手段と、
前記算出工程により算出された前記素材濃度で前記素材を混合する混合手段とを有する、灰の再生品を製造するシステム。
<1> A method for manufacturing recycled ash with controlled concentration of environmentally regulated substances.
An analysis process that analyzes the elemental concentration of ash used in recycled ash products,
Based on the concentration correlation prediction formula obtained by multivariate analysis using the element concentration of ash, the material concentration of the material used for the recycled product, and the environmentally regulated substance concentration of the recycled ash product obtained by these combinations as teacher data. In addition, a calculation step of calculating the material concentration for keeping the concentration of the environmentally regulated substance of the recycled product of the ash below the control value with respect to the element concentration of the ash analyzed in the analysis step.
A method for producing a recycled ash product, which comprises a mixing step of mixing the materials at the material concentration calculated by the calculation step.
<2> The elements of ash analyzed in the analysis step are Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, The method according to <1> above, which analyzes 5 or more elements selected from the group consisting of Br, Ag, Cd, and Pb.
<3> The method according to <1> or <2>, wherein the material is ash, a solidifying material, water, and a chemical.
<4> The chemicals are gypsum, lime, calcium chloride, sodium sulfide, ferric chloride, ferric polysulfate, sodium silicate, sodium aluminate, calcium aluminate, aluminum hydroxide, aluminum dross, and organic. The method according to <3> above, which is one or more agents selected from the group consisting of chelating agents.
<5> Environmentally regulated substances are F (fluorine), Hg (mercury), Cd (cadmium), Pb (lead), Cr 6+ (hexavalent chromium), As (arsenic), Se (selenium), and B ( The method according to any one of <1> to <4>, which is selected from the group consisting of (boron).
<6> A system for manufacturing recycled ash products with controlled concentrations of environmentally regulated substances.
Analytical means for analyzing the elemental concentration of ash used in recycled ash products,
Based on the concentration correlation prediction formula obtained by multivariate analysis using the element concentration of ash, the material concentration of the material used for the recycled product, and the environmentally regulated substance concentration of the recycled ash product obtained by these combinations as teacher data. In addition, a calculation means for calculating the material concentration for keeping the concentration of the environmentally regulated substance of the recycled product of the ash below the control value with respect to the element concentration of the ash analyzed in the analysis step.
A system for producing a recycled ash product, which comprises a mixing means for mixing the materials at the material concentration calculated by the calculation step.

本発明の方法およびシステムによれば、適切な環境規制物質濃度で管理した灰の再生品を製造することができる。 According to the method and system of the present invention, it is possible to produce a recycled ash product controlled at an appropriate concentration of environmentally regulated substances.

灰の組成例を示す図である。It is a figure which shows the composition example of ash. 本発明の製造方法を行うためのフローの一例を示す図である。It is a figure which shows an example of the flow for performing the manufacturing method of this invention. 本発明の製造システムに係る構成の一例を示す図である。It is a figure which shows an example of the structure which concerns on the manufacturing system of this invention. 本発明の製造システムに係る構成の他の一例を示す図である。It is a figure which shows another example of the structure which concerns on the manufacturing system of this invention.

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を変更しない限り、以下の内容に限定されない。なお、本明細書において「~」という表現を用いる場合、その前後の数値を含む表現として用いる。 Hereinafter, embodiments of the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention is described below unless the gist thereof is changed. It is not limited to the contents of. In addition, when the expression "-" is used in this specification, it is used as an expression including numerical values before and after it.

[本発明の灰の再生品を製造する方法]
本発明の灰の再生品を製造する方法は、灰の再生品に用いる灰の元素濃度を分析する分析工程と、灰の元素濃度と、再生品に用いる素材の素材濃度と、これらの組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして多変量解析して得られる濃度相関の予測式を基に、前記分析工程で分析された前記灰の元素濃度に対して、前記灰の再生品の環境規制物質濃度を管理値以下とするための前記素材濃度を算出する算出工程と、前記算出工程により算出された前記素材濃度で前記素材を混合する混合工程とを有する。本発明の灰の再生品を製造する方法を、本願では、単に、本発明の製造方法と記載する場合がある。
[Method for manufacturing recycled ash of the present invention]
The method for producing a recycled ash product of the present invention is based on an analysis step of analyzing the elemental concentration of ash used in the recycled ash product, the elemental concentration of ash, the material concentration of the material used in the recycled product, and a combination thereof. Based on the concentration correlation prediction formula obtained by multivariate analysis using the concentration of environmentally regulated substances in the obtained recycled ash as teacher data, the ash is compared with the element concentration of the ash analyzed in the analysis step. It has a calculation step of calculating the material concentration for keeping the concentration of the environmentally regulated substance of the recycled product below the control value, and a mixing step of mixing the material with the material concentration calculated by the calculation step. In the present application, the method for producing a recycled ash product of the present invention may be simply referred to as the production method of the present invention.

本発明の製造方法は、環境規制物質濃度を管理した灰の再生品を製造するものである。本発明の製造方法によれば、灰の状態に変動が生じても、適切な環境規制物質濃度で管理された灰の再生品を得ることができる。 The production method of the present invention is for producing a recycled ash product in which the concentration of an environmentally regulated substance is controlled. According to the production method of the present invention, even if the state of ash fluctuates, it is possible to obtain a recycled ash product controlled at an appropriate concentration of environmentally regulated substances.

[本発明の灰の再生品を製造するシステム]
本発明の灰の再生品を製造するシステムは、灰の再生品に用いる灰の元素濃度を分析する分析手段と、灰の元素濃度と、再生品に用いる素材の素材濃度と、これらの組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして多変量解析して得られる濃度相関の予測式を基に、前記分析工程で分析された前記灰の元素濃度に対して、前記灰の再生品の環境規制物質濃度を管理値以下とするための前記素材濃度を算出する算出手段と、前記算出工程により算出された前記素材濃度で前記素材を混合する混合手段とを有する。本発明の灰の再生品を製造するシステムを、本願では、単に、本発明の製造システムと記載する場合がある。
[System for manufacturing recycled ash of the present invention]
The system for producing a recycled ash product of the present invention is based on an analytical means for analyzing the elemental concentration of ash used in the recycled ash product, the elemental concentration of ash, the material concentration of the material used in the recycled product, and a combination thereof. Based on the concentration correlation prediction formula obtained by multivariate analysis using the concentration of environmentally regulated substances in the obtained recycled ash as teacher data, the ash is compared with the element concentration of the ash analyzed in the analysis step. It has a calculation means for calculating the material concentration for reducing the concentration of the environmentally regulated substance of the recycled product to the control value or less, and a mixing means for mixing the material with the material concentration calculated by the calculation step. In the present application, the system for producing a recycled ash product of the present invention may be simply referred to as the production system of the present invention.

本発明の製造システムは、環境規制物質濃度を管理した灰の再生品を製造するものである。本発明の製造システムによれば、灰の状態に変動が生じても、適切な環境規制物質濃度で管理された灰の再生品を得ることができる。 The manufacturing system of the present invention manufactures a recycled ash product in which the concentration of an environmentally regulated substance is controlled. According to the manufacturing system of the present invention, even if the state of ash fluctuates, it is possible to obtain a recycled ash product controlled at an appropriate concentration of environmentally regulated substances.

なお、本願において本発明の製造システムを用いて本発明の製造方法を行うこともでき、本願においてそれぞれに対応する構成は相互に利用することができる。 It should be noted that the manufacturing method of the present invention can also be performed using the manufacturing system of the present invention in the present application, and the configurations corresponding to the respective can be mutually used in the present application.

火力発電や温水ボイラーなどに利用するために用いられた、燃料やごみなどの焼却灰は、その燃料源や燃焼手法などにより、主灰や飛灰(フライアッシュ)、燃え殻、ばいじんなどに分類されるように状態が異なるものとなる。 Incinerated ash such as fuel and garbage used for thermal power generation and hot water boilers is classified into main ash, fly ash, cinders, soot and dust, etc. according to the fuel source and combustion method. The state will be different.

これらの最終処分のための埋め立てや再生処理にあたっては、環境規制を順守する必要がある。環境規制は、これらの灰からフッ素や重金属などが検出される場合もあることから設けられている。灰の処理手法は、種々提案されているが、単独の手法では、典型的な系の灰では十分に環境規制を守ることができる場合が多い。しかし、実際の現場では、定常化されている条件で処理しても、環境規制内や自主基準内で制御できない場合がある。 It is necessary to comply with environmental regulations when landfilling or reclaiming for these final disposals. Environmental regulations are in place because fluorine and heavy metals may be detected in these ash. Various ash treatment methods have been proposed, but in many cases, a single method can sufficiently comply with environmental regulations with a typical system of ash. However, in the actual field, even if processing is performed under steady-state conditions, it may not be possible to control within environmental regulations or voluntary standards.

従来、提案されてきた灰の処理方法は、例えば石炭灰における六価クロムを低減するなどの、特定の種類の灰に対する特定の重金属に着目したものであった。しかしながら、実際の灰は前述したように、種類や燃焼方法、ロット等によって組成が大きく異なる。さらに、これらの組成の違いは、イオン化傾向やpH、溶解度、溶解度積などの反応性にも影響を与えうるものが多い。また、環境規制の対象となるものも多く、それぞれに異なる処理条件や薬剤などが必要となる。 Conventionally, the proposed ash treatment method has focused on a specific heavy metal for a specific type of ash, for example, reducing hexavalent chromium in coal ash. However, as described above, the composition of the actual ash varies greatly depending on the type, burning method, lot, and the like. Furthermore, many of these differences in composition can affect reactivity such as ionization tendency, pH, solubility, and solubility product. In addition, many of them are subject to environmental regulations, and different treatment conditions and chemicals are required for each.

一方で、単一の事業所内などで用いる灰は、基本的に組成が限られたものとの認識で処理していることが多い。このため、非定常的な対象物が混入されたり、処理日や季節などの経時的なばらつきが生じたときに、どのように対応すればよいかの知見が蓄積されない状態にあった。本発明者らは、様々な現場から回収された灰を分析することでこのような問題が生じる原因とその対策等を検討した。 On the other hand, ash used in a single business establishment is often treated with the recognition that the composition is basically limited. For this reason, there has been no accumulation of knowledge on how to deal with unsteady objects being mixed in or variations over time such as treatment dates and seasons. The present inventors have investigated the causes of such problems and their countermeasures by analyzing the ash recovered from various sites.

本発明者らは、灰や使用する薬剤によって、重金属やフッ素などの環境規制物質の処理状況との関係に着目した。その結果、灰の再生品を製造するときの条件から、以下の検討を行い、本発明に係る知見を得た。 The present inventors focused on the relationship with the treatment status of environmentally regulated substances such as heavy metals and fluorine depending on the ash and the chemicals used. As a result, the following studies were carried out based on the conditions for producing a recycled ash product, and the knowledge according to the present invention was obtained.

灰の元素濃度と、再生品に用いる素材の素材濃度と、その組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして、多変量解析をおこなった。この多変量解析により得られる濃度相関に関する予測式は、既知の値、または設定値を入力して利用するときも実際に再現性が高いものとなることがわかった。よって、この予測式を用いれば、処理対象となる灰の元素濃度と、管理する環境規制物質濃度を設定することで、そのための素材濃度を効率よく把握することができる。 Multivariate analysis was performed using the elemental concentration of ash, the material concentration of the material used for the recycled product, and the environmentally regulated substance concentration of the recycled ash product obtained by the combination as teacher data. It was found that the prediction formula for the concentration correlation obtained by this multivariate analysis is actually highly reproducible even when a known value or a set value is input and used. Therefore, by using this prediction formula, the element concentration of the ash to be treated and the concentration of the environmentally regulated substance to be controlled can be set, and the material concentration for that purpose can be efficiently grasped.

そして、実際にこの予測式を用いて、従来、当該事業者で使用しないものや、実験的に混合したもののように、処理実績がない灰の処理を行った。このような処理においても、その組成にかかる成分濃度の分析結果を利用して、環境規制物質濃度を管理した灰の再生品を得ることができた。これは灰の様々な元素が反応に影響を与えたり、薬剤間での競合を防止したり、過剰な薬剤の使用を抑制することなどを総合的に調整する範囲を見出すものになっているためと考えられる。本発明はこのような知見に基づくものである。 Then, using this prediction formula, ash that has not been treated, such as those that have not been used by the business operator in the past or those that have been experimentally mixed, was treated. Even in such a treatment, it was possible to obtain a recycled ash product in which the concentration of environmentally regulated substances was controlled by utilizing the analysis result of the component concentration related to the composition. This is because various elements of ash affect the reaction, prevent competition between drugs, suppress the use of excess drugs, etc. to find a range to comprehensively adjust. it is conceivable that. The present invention is based on such findings.

本発明のための知見について、図1は、石炭灰と、バイオマス灰のXRD分析したときの組成を示すものである。石炭灰は、Si(シリカ)が主たる成分であり、その他、Al、Ca、Fe、K、Ti、S、Pなどが検出される。他方、バイオマス灰は、Ca(カルシウム)が主たる成分であり、K、Si、Fe、S、Mg、Al、P、Mnなどが検出される。このように、単に灰と呼んでも組成は大きく異なる。また、石炭灰、バイオマス灰のそれぞれでも組成にはばらつきが生じるし、さらに他の燃料源を用いたときの組成も異なるものとなる。また、これらの混焼灰等が生じる場合もある。本発明はこのような、成分濃度が大きく異なる組成の影響を踏まえた処理条件を効率的に見出すことができるものであると考えられる。 Regarding the findings for the present invention, FIG. 1 shows the composition of coal ash and biomass ash when XRD analysis is performed. Si (silica) is the main component of coal ash, and Al, Ca, Fe, K, Ti, S, P and the like are also detected. On the other hand, in the biomass ash, Ca (calcium) is the main component, and K, Si, Fe, S, Mg, Al, P, Mn and the like are detected. Thus, the composition is very different even if it is simply called ash. In addition, the composition of coal ash and biomass ash varies, and the composition when other fuel sources are used is also different. In addition, these mixed-burning ash and the like may occur. It is considered that the present invention can efficiently find treatment conditions based on the influence of such compositions having significantly different component concentrations.

[本発明の製造方法の実施形態]
図2は、本発明の灰の再生品を製造する方法を行うフローの一例を示す図である。本発明の製造方法は、分析工程に係る灰の元素濃度を分析するステップS11を行い、算出工程に係る予測式から素材濃度を算出するステップS21と、混合工程に係る素材濃度で混合するステップS31を有するものとすることができる。素材を混合したものは例えば使用する場に展開して養生したり、型枠内で養生したりすることで再生品となる。
[Embodiment of the manufacturing method of the present invention]
FIG. 2 is a diagram showing an example of a flow for manufacturing a recycled ash product of the present invention. In the production method of the present invention, step S11 for analyzing the element concentration of ash according to the analysis step is performed, step S21 for calculating the material concentration from the prediction formula for the calculation step, and step S31 for mixing at the material concentration according to the mixing step. Can be. A mixture of materials can be recycled, for example, by expanding it to the place where it is used and curing it, or by curing it in a mold.

[分析工程]
本発明の製造方法は、灰の再生品に用いる灰の元素濃度を分析する分析工程を有する。分析する灰の元素成分は、製造に用いる灰を構成する元素を対象とする。分析は、予測式を作成する段階の教師データとして用いるときと、分析工程を行うときとで十分な対応関係が得られるものを採用する。よって、予測式の作成時と分析工程を行うときで共通の分析手法で行うか、数値の相関関係や対応関係が高いものを用いる。例えば、XRF(蛍光X線)分析などを行うことができる。
[Analysis process]
The production method of the present invention includes an analysis step for analyzing the elemental concentration of ash used in a recycled ash product. The elemental components of the ash to be analyzed are the elements that make up the ash used in production. For the analysis, the one that can obtain a sufficient correspondence between the time when it is used as the teacher data at the stage of creating the prediction formula and the time when the analysis process is performed is adopted. Therefore, either use a common analysis method when creating the prediction formula and when performing the analysis process, or use one with a high numerical correlation or correspondence. For example, XRF (X-ray fluorescence) analysis can be performed.

分析工程で灰の元素濃度を分析する元素は、Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、As、Se、Br、Ag、Cd、およびPbからなる群から選択される5以上の元素を分析するものであることが好ましい。元素数は、7以上や、8以上、10以上、12以上としてもよい。上限は設けなくてもよいが、灰からほとんど検出されない元素は予測式への影響も軽微と考えられるため、20以下や、18以下の上限を設けてもよい。また、この数は、元素として検出される濃度が高いものから順に設定してもよい。特に、これらの中でも、少なくとも、Si、Al、Ca、K、Feを含むものとすることが好ましい。また、さらに、Cr、Pb、As、Se、Cdも含むものとすることがより好ましい。 The elements for which the elemental concentration of ash is analyzed in the analysis step are Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br. , Ag, Cd, and Pb are preferably analyzed for 5 or more elements selected from the group. The number of elements may be 7 or more, 8 or more, 10 or more, and 12 or more. Although it is not necessary to set an upper limit, an upper limit of 20 or less or 18 or less may be set because elements that are hardly detected in ash are considered to have a slight influence on the prediction formula. Further, this number may be set in order from the one having the highest concentration detected as an element. In particular, among these, it is preferable that at least Si, Al, Ca, K, and Fe are contained. Further, it is more preferable that Cr, Pb, As, Se, and Cd are also contained.

例えば、灰の元素濃度は、XRF(蛍光X線)で分析しNa(原子番号:11)以上の原子番号の元素量を測定し、その中で各元素が占める割合として計算される値を用いることができる。例えば、元素分析(XRF)は、日本電子社製「JSX―1000s」を用いて、灰の元素濃度の分析などを行うことができる。 For example, the element concentration of ash is analyzed by XRF (fluorescent X-ray), the amount of elements with atomic numbers of Na (atomic number: 11) or higher is measured, and the value calculated as the ratio of each element in it is used. be able to. For example, in elemental analysis (XRF), "JSX-1000s" manufactured by JEOL Ltd. can be used to analyze the elemental concentration of ash.

また、灰に関する情報や、反応条件に影響する条件の分析や測定を行っておくことも有効である。例えば、灰に関する情報としては、かさ比重や粒径を測定しておくことが好ましい。また、反応条件に影響するものとしては、気温を測定しておくことが好ましい。 It is also effective to analyze and measure information on ash and conditions that affect reaction conditions. For example, as information on ash, it is preferable to measure the bulk specific density and the particle size. In addition, it is preferable to measure the air temperature as a factor that affects the reaction conditions.

[算出工程]
本発明の製造方法は、灰の元素濃度と、再生品に用いる素材の素材濃度と、これらの組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして多変量解析して得られる濃度相関の予測式を基に、前記分析工程で分析された前記灰の元素濃度に対して、前記灰の再生品の環境規制物質濃度を管理値以下とするための前記素材濃度を算出する算出工程を有する。
[Calculation process]
The production method of the present invention is obtained by multivariate analysis of the element concentration of ash, the material concentration of the material used for the recycled product, and the environmentally regulated substance concentration of the recycled ash product obtained by combining these as teacher data. Calculation to calculate the material concentration to keep the concentration of environmentally regulated substances in the recycled ash product below the control value with respect to the element concentration of the ash analyzed in the analysis step based on the concentration correlation prediction formula. Has a process.

[予測式の設定]
算出工程を行うために、「灰の元素濃度」と「管理値として設定する灰の再生品の環境規制物質濃度(再生品の濃度))」を説明変数とし、「再生品に用いる素材濃度(素材濃度)」を目的変数とする多変量解析を行って所定の写像(例えば、検索空間など)を構成する。これを灰の元素濃度と、再生品の濃度に対する素材濃度の予測式として用いる。
[Prediction formula setting]
In order to perform the calculation process, "elemental concentration of ash" and "concentration of environmentally regulated substances in recycled ash (concentration of recycled product) set as control values)" are set as explanatory variables, and "concentration of material used in recycled product (concentration of recycled product)". Multivariate analysis with "material concentration)" as the objective variable is performed to construct a predetermined map (for example, search space). This is used as a prediction formula for the elemental concentration of ash and the material concentration with respect to the concentration of recycled products.

多変量解析とは、互いに関係のある多変量(他種類の特性値)のデータが持つ特徴を要約し、かつ、目的に応じて総合するための手法のことである。 Multivariate analysis is a method for summarizing the characteristics of multivariate (other types of characteristic values) data that are related to each other and integrating them according to the purpose.

多変量解析には、以下の(1)~(3)などが含まれる。また、これらを適宜組わせて応用するものも含まれる。なお、これらの方法のいずれを採用するかは、その多変量解析を用いて得られる予測式として許容できるものを選択すれば良い。(1)関係式の発見や量の推定などに用いる重回帰分析や正準相関分析、またこれらの手法を応用する応答曲面法。(2)標本の分類や質の推定などに用いるクラスター分析や判別分析。(3)多変量の統合整理(減らす)、変量の分類、および代表変量の発見などに用いる主成分分析や因子分析。 The multivariate analysis includes the following (1) to (3) and the like. It also includes those that are applied by combining them as appropriate. Which of these methods should be adopted may be selected as an acceptable prediction formula obtained by using the multivariate analysis. (1) Multiple regression analysis and canonical correlation analysis used for finding relational expressions and estimating quantities, and response surface methodology to which these methods are applied. (2) Cluster analysis and discriminant analysis used for sample classification and quality estimation. (3) Principal component analysis and factor analysis used for integrated organization (reduction) of multivariates, classification of variables, and discovery of representative variables.

f(灰の元素濃度、素材の濃度) → 再生品の濃度 ・・・式(1)
予測式を作成する過程では、再生品を製造する作業の流れに準じて、式(1)のように、灰の元素濃度、素材の濃度に基づいて、再生品の濃度を求めるものとする関連性を把握するものを作成してもよい。
f (elemental concentration of ash, concentration of material) → Concentration of recycled product ・ ・ ・ Equation (1)
In the process of creating the prediction formula, the concentration of the recycled product is obtained based on the elemental concentration of ash and the concentration of the material, as in formula (1), according to the work flow for manufacturing the recycled product. You may create something that grasps the sex.

f´(灰の元素濃度、再生品の濃度) → 素材の濃度 ・・・式(2)
本発明の製造方法や本発明の製造システムにおいては、処理対象となる灰の元素濃度を分析工程で分析し再生品の濃度を事前に設定して、これに対応する素材の濃度を求める式(2)の予測式を設定する。なお、予測式を作成するための教師データは、予め予測式を行うためのモデル試験を行ったものに基づいて作成することができる。また、本発明の製造方法等を行うことで得られた結果を、さらに教師データとして利用することで継続学習するものとしてもよい。
f'(elemental concentration of ash, concentration of recycled product) → Concentration of material ・ ・ ・ Equation (2)
In the manufacturing method of the present invention and the manufacturing system of the present invention, the element concentration of the ash to be treated is analyzed in the analysis step, the concentration of the recycled product is set in advance, and the concentration of the corresponding material is obtained. Set the prediction formula of 2). The teacher data for creating the prediction formula can be created based on the model test for performing the prediction formula in advance. Further, the result obtained by performing the manufacturing method of the present invention or the like may be further used as teacher data for continuous learning.

また予測式には、灰の情報や、反応条件の情報を変数として含み解析するものとしてもよい。特に、灰の成分濃度に加えて、灰のかさ密度や、反応時の気温を用いることが好ましい。これらを用いることで、より高い精度で環境規制物質の濃度を制御した灰の再生品を得ることができる。 Further, the prediction formula may include information on ash and information on reaction conditions as variables for analysis. In particular, it is preferable to use the bulk density of the ash and the air temperature at the time of reaction in addition to the component concentration of the ash. By using these, it is possible to obtain a recycled ash product in which the concentration of the environmentally regulated substance is controlled with higher accuracy.

[灰の再生品]
灰は、灰に含まれる環境規制物質が溶出等しないように処理された状態で、固化剤等を用いて、適宜、型枠内で固化させたり、造粒や固化、破砕等して成形した人工再生砕石などの再生品として利用することができる。この再生品は、例えば、石や砂、土、岩、コンクリートブロック、路盤材などに相当するものとして用いるための形状とすることができる。
[Recycled ash]
The ash was formed by solidifying it in a mold, granulating, solidifying, crushing, etc., using a solidifying agent, etc., in a state where the environmentally restrictive substances contained in the ash were treated so as not to elute. It can be used as a recycled product such as artificially recycled crushed stone. This recycled product can be shaped so as to correspond to, for example, stone, sand, soil, rock, concrete block, roadbed material, or the like.

[素材]
素材は、灰を再生品とするために用いるものである。再生品は、再生品の態様に応じて適宜設定される。再生品は、代表的なものとして、固化した人工再生砕石などである。また、灰自体も再生品に用いられるため、素材である。素材濃度を設定する対象は、例えば、灰、セメントなどの固化材、水、および薬剤などである。すなわち、算出工程は、再生品を製造するときの、灰の量、固化材の量、水の量、薬剤の量を算出する。
[material]
The material is used to recycle ash. The recycled product is appropriately set according to the mode of the recycled product. Recycled products are typically solidified artificially regenerated crushed stones. The ash itself is also a material because it is used in recycled products. Targets for setting the material concentration are, for example, solidifying materials such as ash and cement, water, and chemicals. That is, the calculation step calculates the amount of ash, the amount of solidifying material, the amount of water, and the amount of chemicals when manufacturing a recycled product.

[薬剤]
薬剤は、再生品を製造するときに、固化の程度を調整したり、灰の環境規制物質の溶出を防止するために素材として用いるものである。薬剤は、再生品の種類によって適宜選択される。薬剤は、塩系薬剤、鉄系薬剤、ケイ酸ナトリウム系薬剤、アルミン酸計薬剤、キレート系薬剤、硫酸系薬剤、高分子系薬剤、これらの組み合わせなどを用いることができる。より具体的には、石こう、石灰、塩化カルシウム、硫化ナトリウム、塩化第二鉄、ポリ硫酸第二鉄、ケイ酸ナトリウム、アルミン酸ナトリウム、アルミン酸カルシウム、水酸化アルミニウム、アルミドロス、有機系キレート薬剤、PAC(ポリ塩化アルミニウム)、硫酸バンドからなる群から選択される1以上の薬剤などを用いることができる。これらは、2種以上や3種以上、4種以上を用いるものとすることができる。
[Drug]
The chemical is used as a material for adjusting the degree of solidification and preventing the elution of environmentally regulated substances in ash when manufacturing recycled products. The drug is appropriately selected depending on the type of recycled product. As the drug, a salt-based drug, an iron-based drug, a sodium silicate-based drug, an aluminometer drug, a chelate-based drug, a sulfuric acid-based drug, a polymer-based drug, a combination thereof, or the like can be used. More specifically, gypsum, lime, calcium chloride, sodium sulfide, ferric chloride, ferric polysulfate, sodium silicate, sodium aluminate, calcium aluminate, aluminum hydroxide, aluminum dross, organic chelating agents. , PAC (polyaluminum chloride), one or more agents selected from the group consisting of a sulfate band, and the like can be used. These may use 2 or more types, 3 or more types, or 4 or more types.

[環境規制物質]
灰の再生処理にあたっては、環境規制物質が所定の濃度とすることが求められる。この環境規制物質には、各種法規制などが設けられている。本発明における灰の再生品の環境規制物質濃度を管理値は各種法規制による濃度そのものとしてもよいし、安全係数を設定して各種法規制の濃度よりも低いものを、その使用環境での管理値としてもよい。
[Environmentally regulated substances]
In the ash regeneration process, it is required that the concentration of environmentally regulated substances be a predetermined level. Various laws and regulations are set for this environmentally regulated substance. The control value of the concentration of environmentally regulated substances in the recycled ash product in the present invention may be the concentration itself according to various laws and regulations, or the concentration lower than the concentration of various laws and regulations by setting a safety factor is controlled in the usage environment. It may be a value.

環境規制物質は、例えば、F(フッ素)、Hg(水銀)、Cd(カドミウム)、鉛(Pb)、Cr6+(六価クロム)、As(ヒ素)、Se(セレン)、およびB(ホウ素)からなる群から選択されるものとすることができる。これらの全てを、管理値を設定する環境規制物質としてもよい。または、分析工程で検出されたものを、管理値を設定する環境規制物質としてもよい。または、灰が発生した経緯等を鑑みて、管理する必要性が高いものを、管理値を設定する環境規制物質としてもよい。管理対象の環境規制物質は、1以上や、2以上、3以上、4以上としてもよい。 Environmentally regulated substances include, for example, F (fluorine), Hg (mercury), Cd (cadmium), lead (Pb), Cr 6+ (hexavalent chromium), As (arsenic), Se (selenium), and B (boron). ) Can be selected from the group. All of these may be environmentally regulated substances for which control values are set. Alternatively, the substance detected in the analysis step may be used as an environmentally regulated substance for which a control value is set. Alternatively, substances that are highly necessary to be controlled in consideration of the background of ash generation may be used as environmentally regulated substances for which control values are set. The environmentally regulated substances to be controlled may be 1 or more, 2 or more, 3 or more, and 4 or more.

[混合工程]
本発明の製造方法は、算出工程により算出された素材濃度で素材を混合する混合工程とを有する。混合は、再生品の種類に応じて、その製造の所定の順序で行う。この混合を行い、混合状態で使用環境に設置して養生したり、適宜成形したりして、再生品が得られる。
[Mixing process]
The production method of the present invention includes a mixing step of mixing the materials at the material concentration calculated by the calculation step. The mixing is carried out in a predetermined order of production thereof, depending on the type of the recycled product. A recycled product can be obtained by performing this mixing, installing it in a use environment in a mixed state and curing it, or appropriately molding it.

[製造システムの実施形態の一例]
図3は、本発明の製造システムに係る構成の一例である製造システム100を示す図である。製造システム100は、分析手段1と、算出手段2と混合手段3を有する。また、これらのために用いられるデータ等を記憶する記憶部4を有する。
[Example of an embodiment of a manufacturing system]
FIG. 3 is a diagram showing a manufacturing system 100 which is an example of the configuration according to the manufacturing system of the present invention. The manufacturing system 100 includes an analysis means 1, a calculation means 2, and a mixing means 3. Further, it has a storage unit 4 for storing data and the like used for these purposes.

製造システム100は、環境規制物質濃度を管理した灰の再生品を製造するシステムである。分析手段1は、灰の再生品に用いる灰の元素濃度を分析する手段である。算出手段2は、記憶部4に記憶された予め得られた予測式を基に、分析手段1で分析した灰の元素濃度と、再生品の環境規制物質濃度の管理値とに対応する素材濃度を算出する。混合手段3は、算出手段2の算出結果を基に、灰や、水、固化材、薬剤などの灰の再生品の素材を混合する。 The manufacturing system 100 is a system for manufacturing recycled ash products in which the concentration of environmentally regulated substances is controlled. The analysis means 1 is a means for analyzing the elemental concentration of ash used in the recycled ash product. The calculation means 2 is a material concentration corresponding to the element concentration of ash analyzed by the analysis means 1 and the control value of the environmentally regulated substance concentration of the recycled product based on the prediction formula stored in the storage unit 4 in advance. Is calculated. The mixing means 3 mixes ash and recycled ash materials such as water, solidifying material, and chemicals based on the calculation result of the calculating means 2.

[混合工程]
図4は、本発明の製造システムに係る構成の他の一例である製造システム101を示す図である。製造システム101は、分析手段1や混合手段(混合槽30等)に係るユニット51と、算出手段2に係るユニット52とが異なる場所に設けられている構成である。
[Mixing process]
FIG. 4 is a diagram showing a manufacturing system 101 which is another example of the configuration according to the manufacturing system of the present invention. The manufacturing system 101 has a configuration in which the unit 51 related to the analysis means 1 and the mixing means (mixing tank 30 and the like) and the unit 52 related to the calculation means 2 are provided at different locations.

ユニット51は、分析手段1や、混合槽30等の混合手段に係る構成を有している。これらは、灰を直接取り扱うことが必要な手段に対応するユニットである。よって、ユニット51は、灰が発生する工場や発電所等や、それらを回収して再生処理する再生処理工場などに設けられる。他方、ユニット52は、算出手段2などであり、これらは分析手段の分析結果を基に素材濃度等に係る情報を混合手段が利用できるように送信することができればよい構成に関するものであり、これらは、ユニット51とは別に、中央制御用の施設等で別途管理することができる。 The unit 51 has a configuration related to a mixing means such as an analysis means 1 and a mixing tank 30. These are the units corresponding to the means that require direct handling of the ash. Therefore, the unit 51 is provided in a factory or a power plant where ash is generated, or a recycling factory that collects and regenerates them. On the other hand, the unit 52 is a calculation means 2 or the like, and these are related to a configuration as long as information related to the material concentration or the like can be transmitted so that the mixing means can use it based on the analysis result of the analysis means. Can be managed separately from the unit 51 at a facility for central control or the like.

ユニット51において、分析手段1は、灰10の灰の元素濃度を分析する。分析結果の情報は、通信手段11を介して、ユニット52の通信手段21に、有線や無線などの任意の手法で送信される。さらに、ユニット52で算出された結果などを通信手段21から通信手段11に送信し、その情報に基づいて混合が行われる。混合槽30は、素材を混合するための槽である。灰10は、灰の混合量を調整する調整手段31を利用して、素材量として指定された量を混合槽30に加えられ混合される。また、他の素材に関しても素材槽321、331、341に含まれている素材は、それぞれに対応する調整手段32、33、34を用いて、算出手段2より算出された情報を基に混合槽30に加えられ混合される。これらの調整手段31~34は、混合する素材量を表示するモニターや、各種素材を混合槽30に送出するフィーダーやポンプ、コントローラーなどを組み合わせたものとすることができる。 In the unit 51, the analysis means 1 analyzes the elemental concentration of the ash of the ash 10. The information of the analysis result is transmitted to the communication means 21 of the unit 52 via the communication means 11 by any method such as wired or wireless. Further, the result calculated by the unit 52 and the like are transmitted from the communication means 21 to the communication means 11, and mixing is performed based on the information. The mixing tank 30 is a tank for mixing materials. The ash 10 is mixed by adding an amount designated as a material amount to the mixing tank 30 by using the adjusting means 31 for adjusting the mixing amount of the ash. Further, regarding other materials, the materials contained in the material tanks 321, 331, 341 are mixed tanks based on the information calculated by the calculation means 2 by using the adjustment means 32, 33, 34 corresponding to each. 30 is added and mixed. These adjusting means 31 to 34 may be combined with a monitor that displays the amount of material to be mixed, a feeder, a pump, a controller, and the like that send various materials to the mixing tank 30.

ユニット52において、算出手段2は、素材濃度を算出する。また、通信手段21が受信した情報や、算出手段2において算出を行うための予測式、算出結果の素材濃度などは、適宜、記憶部4に記憶することができる。算出手段2が算出した素材濃度は、前述のように通信手段21を介して、通信手段11に送信され、調整手段31~34を制御するための情報として用いられる。このようなユニット51やユニット52に係る構成は、適宜、パーソナルコンピュータやサーバー、携帯型端末、各種通信システムなどを適宜組わせて達成することができる。 In the unit 52, the calculation means 2 calculates the material concentration. Further, the information received by the communication means 21, the prediction formula for performing the calculation by the calculation means 2, the material density of the calculation result, and the like can be appropriately stored in the storage unit 4. The material concentration calculated by the calculation means 2 is transmitted to the communication means 11 via the communication means 21 as described above, and is used as information for controlling the adjustment means 31 to 34. Such a configuration related to the unit 51 and the unit 52 can be realized by appropriately assembling a personal computer, a server, a portable terminal, various communication systems, and the like.

ユニット52に係る構成を、ユニット51とは別に設けることで、各種の利点が得られる。例えば、ユニット52に相当する情報を表示、管理することができれば、実際の灰処理は遠隔操作で管理することができる。また、ユニット51は、灰を再生処理する現場ごとに設置することが求められる。他方、ユニット52は、複数のユニット51と連動するものとしてもよい。このような複数のユニット51と連動するものとすれば、灰の種類が大きく異なるような場所の情報も収集して管理することができる。よって、特定のユニット51にとっては非定常的で処理しにくい灰が発生してもその適切な処理のための情報を算出して提供しやすい。また、これらの複数のユニット51に係るデータを教師データとして継続学習することでより信頼性が高い製造システム101とすることもできる。 By providing the configuration related to the unit 52 separately from the unit 51, various advantages can be obtained. For example, if the information corresponding to the unit 52 can be displayed and managed, the actual ash processing can be managed by remote control. Further, the unit 51 is required to be installed at each site where the ash is regenerated. On the other hand, the unit 52 may be interlocked with a plurality of units 51. If it is linked with such a plurality of units 51, it is possible to collect and manage information on places where the types of ash are significantly different. Therefore, even if ash that is unsteady and difficult to process is generated for a specific unit 51, it is easy to calculate and provide information for appropriate processing thereof. Further, by continuously learning the data related to these plurality of units 51 as teacher data, a more reliable manufacturing system 101 can be obtained.

本発明の製造システムは、処理条件を解析する企業等に算出手段2に係るユニット52を設置し、灰処理などのために提携するパートナーの企業等が、灰の再生品製造の事業を行いたいときに、ユニット51を導入することができる。灰処理は広範に多様な場所で、様々な灰に対して需要がある。本発明の製造システムを利用して、このような運用とすることで、これらの需要に対してその近隣の現地の企業等が、ユニット51に相当する灰の測定や、灰の無害化、再生品の製品化を行うことができる。このとき、処理条件等はユニット52で情報収集したものを利用することで、灰処理設備や技術を導入するための検討時間や費用を低減できる。これは灰の排出者や処理者といった関連するパートナー企業等にとってもそれぞれ非常に有用である。 In the manufacturing system of the present invention, a unit 52 related to the calculation means 2 is installed in a company or the like that analyzes treatment conditions, and a partner company or the like that is affiliated for ash treatment or the like wants to carry out a business of manufacturing recycled ash products. Occasionally, the unit 51 can be introduced. Ash treatment is widespread and diverse, and there is a demand for a variety of ash. By using the manufacturing system of the present invention and performing such an operation, a local company or the like in the vicinity thereof can measure the ash corresponding to the unit 51, detoxify the ash, and regenerate the ash in response to these demands. It is possible to commercialize the product. At this time, by using the processing conditions and the like collected by the unit 52, it is possible to reduce the examination time and cost for introducing the ash processing equipment and technology. This is also very useful for related partner companies such as ash emitters and processors.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is changed.

[実施例1]
タイヤ灰などを含む灰の再生品を対象として、再生品の素材濃度に対する環境規制物質の濃度を測定し、素材濃度との相関性を把握することを試みた。この灰は、未処理の状態では、環境規制物質の中でも、鉛(Pb)、六価クロム(Cr6+)、フッ素(F)、セレン(Se)が特に検出される場合があった。
[Example 1]
For recycled ash including tire ash, we measured the concentration of environmentally regulated substances with respect to the material concentration of the recycled product and tried to understand the correlation with the material concentration. In the untreated state, lead (Pb), hexavalent chromium (Cr 6+ ), fluorine (F), and selenium (Se) may be particularly detected among the environmentally regulated substances in this ash.

灰の元素濃度や、再生品として砕石を製造するための素材の組み合わせと、そのときの再生品における溶出環境規制物質濃度の測定を、実験条件を47系統で行った。 The elemental concentration of ash, the combination of materials for producing crushed stone as a recycled product, and the concentration of the elution environment regulated substance in the recycled product at that time were measured under 47 experimental conditions.

・灰の元素濃度
灰の元素濃度は、Na、Mg、Al、Si、P、S、Cl、K、Ca、Mn、Fe、Ni、Cu、Zn、As、Se、Br、Ag、Cd、Pbを測定対象として、日本電子社製「JSX―1000s」を用いて、測定条件:管電圧50kV、フィルターND、コリメーター9として測定した。なお、本系統では、Cl、Ni、As、Cdは検出されなかった。
-Elemental concentration of ash The elemental concentration of ash is Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Ag, Cd, Pb. As a measurement target, "JSX-1000s" manufactured by JEOL Ltd. was used, and the measurement conditions were: tube voltage 50 kV, filter ND, and collimator 9. In this system, Cl, Ni, As, and Cd were not detected.

この試験系統では、元素濃度の測定結果として、例えば、Caは41%~65%(平均56%)、Pbは0.0009%~0.084%(平均0.043%)、Crは0.0012%~0.049%(平均0.025%)などが挙げられる。また、灰のかさ密度は、0.55~0.80(平均0.70)であった。 In this test system, as the measurement results of the element concentration, for example, Ca is 41% to 65% (average 56%), Pb is 0.0009% to 0.084% (average 0.043%), and Cr is 0. Examples thereof include 0012% to 0.049% (average 0.025%). The bulk density of the ash was 0.55 to 0.80 (average 0.70).

・素材の濃度
試験系統において、灰は100質量部に対して、セメントは28質量部~52質量部(平均40質量部)、FeCl3は0.27質量部~6.9質量部(平均3.6質量部)、Na2SiO3は0質量部~5.1質量部(平均1.5質量部)、水60質量部~100質量部(平均80質量部)とするものとした。このような素材の濃度を気温約24℃で混合し、その後、養生した。
-Material concentration In the test system, ash was 100 parts by mass, cement was 28 parts by mass to 52 parts by mass (40 parts by mass on average), and FeCl 3 was 0.27 parts by mass to 6.9 parts by mass (average 3). .6 parts by mass), Na 2 SiO 3 was 0 parts by mass to 5.1 parts by mass (1.5 parts by mass on average), and 60 parts by mass to 100 parts by mass of water (80 parts by mass on average). The concentrations of such materials were mixed at a temperature of about 24 ° C. and then cured.

・再生品の環境規制物質の濃度
試験系統において、再生品から溶出したものは、Pbは0mg/L(検出下限以下)~0.016mg/L(平均0.0052mg/L)、六価クロムは0.013mg/L~0.22mg/L(平均0.07mg/L)、フッ素は0.15mg/L~0.79mg/L、セレンは0.001mg/L~0.003mg/L(平均0.002mg/L)であった。
-Concentration of environmentally regulated substances in recycled products In the test system, Pb eluted from recycled products was 0 mg / L (below the lower limit of detection) to 0.016 mg / L (average 0.0052 mg / L), and hexavalent chromium was 0.013 mg / L to 0.22 mg / L (average 0.07 mg / L), fluorine 0.15 mg / L to 0.79 mg / L, selenium 0.001 mg / L to 0.003 mg / L (average 0) It was .002 mg / L).

この試験系統の47例を教師データとして、灰の元素濃度と、素材の濃度と、環境規制物質の濃度とを教師データとして、統計解析業務パッケージ JUSEーStatWorks(登録商標)/V5(株式会社日本科学技術研修所)を用いて応答曲面法により多変量解析して予測式を作成した。予測式は、セメントを解とするもの、Na2SiO3を解とするもの、FeCl3を解とするものについて、硬度、鉛溶出、六価クロム溶出の予測式を作成し、これらを同時に満足するものを混合に用いる予測式(A1)とした。 Forty-seven examples of this test system are used as teacher data, and the element concentration of ash, the concentration of the material, and the concentration of environmentally regulated substances are used as teacher data. A prediction formula was created by multivariate analysis by the response surface methodology using the Science and Technology Training Institute). As for the prediction formulas, the hardness, lead elution, and hexavalent chromium elution prediction formulas were created for those with cement as the solution, those with Na 2 SiO 3 as the solution, and those with FeCl 3 as the solution, and these were satisfied at the same time. The prediction formula (A1) used for mixing was used.

・予測式を用いた再生品の製造
再生処理を検討する新たな灰の3サンプルについて、灰の元素濃度を、前述の予測式の検討に用いた試験系統と同じ手段で測定した。その測定データを用いて、環境規制物質の濃度に管理値を設けて、予測式(A1)により、素材濃度を算出した。算出結果に基づいて、素材を混合して、再生品を製造した結果、いずれも管理値として設定した値以下の環境規制物質濃度であった。
-Manufacturing of recycled products using the prediction formula For the three samples of new ash for which the regeneration treatment was examined, the elemental concentration of the ash was measured by the same means as the test system used for the above-mentioned examination of the prediction formula. Using the measured data, a control value was set for the concentration of the environmentally regulated substance, and the material concentration was calculated by the prediction formula (A1). As a result of manufacturing recycled products by mixing the materials based on the calculation results, the concentrations of the environmentally regulated substances were less than or equal to the values set as the control values.

[実施例2]
バイオマス灰と石炭を混合し燃焼させた混合灰などを含む灰の再生品を対象として、再生品の素材濃度に対する環境規制物質の濃度を測定し、素材濃度との相関性を把握することを試みた。この灰は、未処理の状態では、環境規制物質の中でも、鉛(Pb)、六価クロム(Cr6+)、フッ素(F)、セレン(Se)、ホウ素(B)が特に検出される場合があった。
[Example 2]
Attempts to measure the concentration of environmentally regulated substances with respect to the material concentration of recycled products and to understand the correlation with the material concentration, targeting recycled ash products including mixed ash that is obtained by mixing and burning biomass ash and coal. rice field. In the untreated state, this ash is especially when lead (Pb), hexavalent chromium (Cr 6+ ), fluorine (F), selenium (Se), and boron (B) are detected among the environmentally regulated substances. was there.

灰の元素濃度や、再生品として砕石を製造するための素材の組み合わせと、そのときの再生品における溶出環境規制物質濃度の測定を、実験条件を27系統で行った。 The elemental concentration of ash, the combination of materials for producing crushed stone as a recycled product, and the concentration of the elution environment regulated substance in the recycled product at that time were measured under 27 experimental conditions.

・灰の元素濃度
灰の元素濃度は、Na、Mg、Al、Si、P、S、Cl、K、Ca、Mn、Fe、Ni、Cu、Zn、As、Se、Br、Ag、Cd、Pbを測定対象として、日本電子社製「JSX―1000s」を用いて、測定条件:管電圧50kV、フィルターND、コリメーター9として測定した。
-Elemental concentration of ash The elemental concentration of ash is Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Ag, Cd, Pb. As a measurement target, "JSX-1000s" manufactured by JEOL Ltd. was used, and the measurement conditions were: tube voltage 50 kV, filter ND, and collimator 9.

この試験系統では、元素濃度の測定結果として、例えば、Alは9.4%~11.5%(10.5%)、Siは26.3%~34.6%(平均29.5%)、Caは20.1%~27.9%(平均24.1%)、Pbは0.137%~0.952%(平均0.223%)などが挙げられる。また、灰のかさ密度は、0.4~0.80(平均0.69)であった。 In this test system, as the measurement result of the element concentration, for example, Al is 9.4% to 11.5% (10.5%), Si is 26.3% to 34.6% (average 29.5%). , Ca is 20.1% to 27.9% (average 24.1%), Pb is 0.137% to 0.952% (average 0.223%), and the like. The bulk density of the ash was 0.4 to 0.80 (average 0.69).

・素材の濃度
試験系統において、灰は100質量部に対して、セメントは15質量部~55質量部(平均35質量部)、水60質量部~96質量部(平均71質量部)とするものとした。このような素材の濃度を気温約24℃で混合し、その後、養生した。
-Material concentration In the test system, ash is 100 parts by mass, cement is 15 parts by mass to 55 parts by mass (35 parts by mass on average), and water is 60 parts by mass to 96 parts by mass (71 parts by mass on average). And said. The concentrations of such materials were mixed at a temperature of about 24 ° C. and then cured.

・再生品の環境規制物質の濃度
試験系統において、再生品から溶出したものは、Pbは0mg/L(検出下限以下)~0.031mg/L(平均0.009mg/L)、六価クロムは0.008mg/L~0.079mg/L(平均0.032mg/L)、フッ素は0.10mg/L~0.69mg/L(平均0.28mg/L)、セレンは0.002mg/L~0.010mg/L(平均0.0046mg/L))、ホウ素は0.21mg/L~0.49mg/L(平均0.41mg/L)であった。
-Concentration of environmentally regulated substances in recycled products In the test system, Pb eluted from recycled products was 0 mg / L (below the lower limit of detection) to 0.031 mg / L (average 0.009 mg / L), and hexavalent chromium was 0.008 mg / L to 0.079 mg / L (average 0.032 mg / L), fluorine 0.10 mg / L to 0.69 mg / L (average 0.28 mg / L), selenium 0.002 mg / L to 0.010 mg / L (average 0.0046 mg / L)) and boron were 0.21 mg / L to 0.49 mg / L (average 0.41 mg / L).

この試験系統の27例を教師データとして、灰の元素濃度と、素材の濃度と、環境規制物質の濃度とを教師データとして、統計解析業務パッケージ JUSEーStatWorks(登録商標)/V5(株式会社日本科学技術研修所)を用いて応答曲面法により多変量解析して予測式を作成した。予測式は、セメントを解とするものについて、硬度、鉛溶出、六価クロム溶出の予測式を作成し、これらを同時に満足するものを混合に用いる予測式(B1)とした。 Twenty-seven examples of this test system are used as teacher data, and the element concentration of ash, the concentration of materials, and the concentration of environmentally regulated substances are used as teacher data. Statistical analysis business package JUSE-StatWorks (registered trademark) / V5 (Japan Co., Ltd.) A prediction formula was created by multivariate analysis by the response surface methodology using the Science and Technology Training Institute). As the prediction formula, a prediction formula for hardness, lead elution, and hexavalent chromium elution was prepared for cement as a solution, and a prediction formula (B1) was used in which those satisfying these at the same time were used for mixing.

・予測式を用いた再生品の製造
再生処理を検討する新たな灰の4サンプルについて、灰の元素濃度を、前述の予測式の検討に用いた試験系統と同じ手段で測定した。その測定データを用いて、環境規制物質の濃度に管理値を設けて、予測式(B1)により、素材濃度を算出した。算出結果に基づいて、素材を混合して、再生品を製造した結果、いずれも管理値として設定した値以下の環境規制物質濃度であった。
-Manufacturing of recycled products using the prediction formula For the four samples of new ash for which the regeneration treatment was examined, the elemental concentration of the ash was measured by the same means as the test system used for the above-mentioned examination of the prediction formula. Using the measured data, a control value was set for the concentration of the environmentally regulated substance, and the material concentration was calculated by the prediction formula (B1). As a result of manufacturing recycled products by mixing the materials based on the calculation results, the concentrations of the environmentally regulated substances were less than or equal to the values set as the control values.

本発明は、人工砕石などの灰の再生品の製造に利用することができ、産業上有用である。 INDUSTRIAL APPLICABILITY The present invention can be used for producing a recycled ash product such as artificial crushed stone, and is industrially useful.

1 分析手段
10 灰
11、21 通信手段
100、101 製造システム
2 算出手段
3 混合手段
30 混合槽
31~34 調整手段
321、331、341 素材槽
4 記憶部
51、52 ユニット
1 Analytical means 10 Ash 11, 21 Communication means 100, 101 Manufacturing system 2 Calculation means 3 Mixing means 30 Mixing tanks 31 to 34 Adjusting means 321, 331, 341 Material tank 4 Storage units 51, 52 units

Claims (6)

環境規制物質濃度を管理した灰の再生品を製造する方法であって、
灰の再生品に用いる灰の元素濃度を分析する分析工程と、
灰の元素濃度と、再生品に用いる素材の素材濃度と、これらの組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして多変量解析して得られる濃度相関の予測式を基に、前記分析工程で分析された前記灰の元素濃度に対して、前記灰の再生品の環境規制物質濃度を管理値以下とするための前記素材濃度を算出する算出工程と、
前記算出工程により算出された前記素材濃度で前記素材を混合する混合工程とを有する、
灰の再生品を製造する方法。
It is a method of manufacturing recycled ash with controlled concentration of environmentally regulated substances.
An analysis process that analyzes the elemental concentration of ash used in recycled ash products,
Based on the concentration correlation prediction formula obtained by multivariate analysis using the element concentration of ash, the material concentration of the material used for the recycled product, and the environmentally regulated substance concentration of the recycled ash product obtained by these combinations as teacher data. In addition, a calculation step of calculating the material concentration for keeping the concentration of the environmentally regulated substance of the recycled product of the ash below the control value with respect to the element concentration of the ash analyzed in the analysis step.
It has a mixing step of mixing the material at the material concentration calculated by the calculation step.
A method of manufacturing recycled ash.
前記分析工程で分析する灰の元素が、Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、Cr、Mn、Fe、Ni、Cu、Zn、As、Se、Br、Ag、Cd、およびPbからなる群から選択される5以上の元素を分析するものである請求項1に記載の方法。 The elements of ash analyzed in the analysis step are Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Ag. The method of claim 1, wherein 5 or more elements selected from the group consisting of, Cd, and Pb are analyzed. 前記素材が、灰、固化材、水、および薬剤である請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the material is ash, a solidifying material, water, and a drug. 前記薬剤が、石こう、石灰、塩化カルシウム、硫化ナトリウム、塩化第二鉄、ポリ硫酸第二鉄、ケイ酸ナトリウム、アルミン酸ナトリウム、アルミン酸カルシウム、水酸化アルミニウム、アルミドロス、および有機系キレート薬剤からなる群から選択される1以上の薬剤である請求項3に記載の方法。 The agents are from gypsum, lime, calcium chloride, sodium sulfide, ferric chloride, ferric polysulfate, sodium silicate, sodium aluminate, calcium aluminate, aluminum hydroxide, aluminum dross, and organic chelating agents. The method according to claim 3, wherein the agent is one or more agents selected from the group. 環境規制物質が、フッ素、水銀、カドミウム、鉛、六価クロム、ヒ素、セレン、およびホウ素からなる群から選択される請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the environmentally regulated substance is selected from the group consisting of fluorine, mercury, cadmium, lead, hexavalent chromium, arsenic, selenium, and boron. 環境規制物質濃度を管理した灰の再生品を製造するシステムであって、
灰の再生品に用いる灰の元素濃度を分析する分析手段と、
灰の元素濃度と、再生品に用いる素材の素材濃度と、これらの組み合わせにより得られる灰の再生品の環境規制物質濃度とを教師データとして多変量解析して得られる濃度相関の予測式を基に、前記分析工程で分析された前記灰の元素濃度に対して、前記灰の再生品の環境規制物質濃度を管理値以下とするための前記素材濃度を算出する算出手段と、
前記算出工程により算出された前記素材濃度で前記素材を混合する混合手段とを有する、
灰の再生品を製造するシステム。
A system for manufacturing recycled ash products with controlled concentrations of environmentally regulated substances.
Analytical means for analyzing the elemental concentration of ash used in recycled ash products,
Based on the concentration correlation prediction formula obtained by multivariate analysis using the element concentration of ash, the material concentration of the material used for the recycled product, and the environmentally regulated substance concentration of the recycled ash product obtained by these combinations as teacher data. In addition, a calculation means for calculating the material concentration for keeping the concentration of the environmentally regulated substance of the recycled product of the ash below the control value with respect to the element concentration of the ash analyzed in the analysis step.
It has a mixing means for mixing the material at the material concentration calculated by the calculation step.
A system for manufacturing recycled ash.
JP2020147575A 2020-09-02 2020-09-02 A method for manufacturing recycled ash and a system for manufacturing recycled ash Active JP6942392B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020147575A JP6942392B1 (en) 2020-09-02 2020-09-02 A method for manufacturing recycled ash and a system for manufacturing recycled ash
PCT/JP2021/028397 WO2022049950A1 (en) 2020-09-02 2021-07-30 Method and system for producing recycled product of ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020147575A JP6942392B1 (en) 2020-09-02 2020-09-02 A method for manufacturing recycled ash and a system for manufacturing recycled ash

Publications (2)

Publication Number Publication Date
JP6942392B1 JP6942392B1 (en) 2021-09-29
JP2022042242A true JP2022042242A (en) 2022-03-14

Family

ID=77847072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020147575A Active JP6942392B1 (en) 2020-09-02 2020-09-02 A method for manufacturing recycled ash and a system for manufacturing recycled ash

Country Status (2)

Country Link
JP (1) JP6942392B1 (en)
WO (1) WO2022049950A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985003B (en) * 2021-11-01 2023-12-22 西安热工研究院有限公司 Method for calculating proportion of fly ash to large slag based on mercury concentration measurement
CN117772763B (en) * 2024-02-27 2024-05-17 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Method for separating and recovering arsenic, phosphorus and aluminum from vanadium-phosphorus-containing arsenic slag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104848A (en) * 2011-11-16 2013-05-30 Chubu Electric Power Co Inc Simple method for analyzing arsenic concentration in coal ash
JP2013139545A (en) * 2011-12-07 2013-07-18 Taiheiyo Materials Corp Civil engineering material
CN104230229A (en) * 2014-08-26 2014-12-24 许冬梅 Hollow building block brick prepared from detoxified chromium residue
JP2017066020A (en) * 2015-09-30 2017-04-06 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of fly ash cement
JP2020001978A (en) * 2018-06-29 2020-01-09 宇部興産株式会社 Manufacturing method of coal ash mixed material
JP6683328B1 (en) * 2019-04-16 2020-04-15 株式会社福岡建設合材 Carbon dioxide concentration reducing method and carbon dioxide concentration reducing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104848A (en) * 2011-11-16 2013-05-30 Chubu Electric Power Co Inc Simple method for analyzing arsenic concentration in coal ash
JP2013139545A (en) * 2011-12-07 2013-07-18 Taiheiyo Materials Corp Civil engineering material
CN104230229A (en) * 2014-08-26 2014-12-24 许冬梅 Hollow building block brick prepared from detoxified chromium residue
JP2017066020A (en) * 2015-09-30 2017-04-06 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of fly ash cement
JP2020001978A (en) * 2018-06-29 2020-01-09 宇部興産株式会社 Manufacturing method of coal ash mixed material
JP6683328B1 (en) * 2019-04-16 2020-04-15 株式会社福岡建設合材 Carbon dioxide concentration reducing method and carbon dioxide concentration reducing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
野澤 昌弘 MASAHIRO NOZAWA, JUSE−STATWORKSによる多変量解析入門 [第2版], vol. 第2版, JPN6020050846, ISSN: 0004418810 *

Also Published As

Publication number Publication date
WO2022049950A1 (en) 2022-03-10
JP6942392B1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
CA2641311C (en) Production of cementitious ash products with reduced carbon emissions
WO2022049950A1 (en) Method and system for producing recycled product of ash
Zhang et al. Solidification/stabilization and risk assessment of heavy metals in municipal solid waste incineration fly ash: A review
Hendrych et al. Stabilisation/solidification of landfill leachate concentrate and its residue obtained by partial evaporation
JP2009523997A (en) Operation method of coal combustion facility
Blahuskova et al. Study connective capabilities of solid residues from the waste incineration
Cerbo et al. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives
Al-Kindi Evaluation the solidification/stabilization of heavy metals by Portland cement
Baek et al. Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching
Gori et al. Effect of natural ageing on volume stability of MSW and wood waste incineration residues
JP4871329B2 (en) Method for predicting ash adhesion to sewage sludge incinerator and sewage sludge incineration method using the method
Qiao et al. Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems
Belebchouche et al. Evaluation of the encapsulation of nickel, chromium and lead-rich wastes in cement matrices by TCLP test
Gao et al. Environmental, economic, and social sustainability assessment: A case of using contaminated tailings stabilized by waste-based geopolymer as road base
Beikmohammadi et al. Analysis of heavy metal, rare, precious, and metallic element content in bottom ash from municipal solid waste incineration in Tehran based on particle size
Kim et al. Applying machine learning random forest (RF) method in predicting the cement products with a co-processing of input materials: Optimizing the hyperparameters
Zhou et al. Non-carbonate geochemical options for long-term sustainable acid and metalliferous drainage control at-source
da Silva et al. Evaluation of pozzolanic activity and environmental assessment of cement composites with lubricating oil re-refining ash
Gürkan et al. Adsorption of lead and copper using waste foundry sand: statistical evaluation
CN114130785B (en) Fly ash treatment method of garbage incinerator
Quina et al. Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
CN101374585A (en) Methods of operating a coal burning facility
JP6608575B2 (en) Combustion ash treatment method
Moon Regulatory and legal applications: Fly ash use in cement and cementitious products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6942392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250