JP2022039923A - Nickel zinc-based ferrite - Google Patents

Nickel zinc-based ferrite Download PDF

Info

Publication number
JP2022039923A
JP2022039923A JP2021046745A JP2021046745A JP2022039923A JP 2022039923 A JP2022039923 A JP 2022039923A JP 2021046745 A JP2021046745 A JP 2021046745A JP 2021046745 A JP2021046745 A JP 2021046745A JP 2022039923 A JP2022039923 A JP 2022039923A
Authority
JP
Japan
Prior art keywords
mol
less
complex relative
terms
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021046745A
Other languages
Japanese (ja)
Inventor
智 田中
Satoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2022039923A publication Critical patent/JP2022039923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

To provide a NiZn-based ferrite which is superior in productivity, and which can suppress the increase in changing rate of a complex relative permeability to a temperature.SOLUTION: A NiZn-based ferrite comprises Fe of 47.50 mol% or more and 48.60 mol% or less in terms of Fe2O3, Zn of 29.00 mol% or more and 30.10 mol% or less in terms of ZnO, Cu of 5.50 mol% or more and 6.50 mol% or less in terms of CuO, and Ni of 14.80 mol% or more and 18.00 mol or less in terms of NiO. Supposing that the total quantity of Fe2O3, ZnO, NiO and CuO is 100 mol%, and the total quantities of Fe, Zn, Ni and Cu as primary components are 100 pts.mass in terms of Fe2O3, ZnO, NiO and CuO respectively, Mn is 0.250 pt.mass or less in terms of Mn3O4, Ca is 0.025 pt.mass or more and 0.250 pt.mass or less in terms of CaO, and Si is 0.050 pt.mass in terms of SiO2.SELECTED DRAWING: None

Description

本発明は、NiZn系フェライトに関するものである。 The present invention relates to NiZn-based ferrite.

近年の自動車では、複数の電子制御装置の間で差動伝送によるデータ通信を行う車載LAN(Local Area Network)による車両制御システムが採用されている。車両制御システムでは様々な電子部品が使用されているが、データ通信におけるノイズの漏洩防止や、外来ノイズが信号の経路に重畳するのを抑制し、車載機器の誤動作を防ぐように、信号の経路にノイズフィルタが使用されている。ノイズフィルタは、フェライトコア(以下磁心と呼ぶ)に導線を巻いたコモンモードチョークコイルが使用される。コモンモードチョークコイルの構成は様々だが、例えば特許文献1に記載されるような、ドラム型のコアと、それを覆う板状のコアを磁心として使用するコモンモードチョークコイルがある。 In recent automobiles, a vehicle control system using an in-vehicle LAN (Local Area Network) that performs data communication by differential transmission between a plurality of electronic control devices has been adopted. Various electronic components are used in vehicle control systems, but the signal path is to prevent noise leakage in data communication, suppress external noise from being superimposed on the signal path, and prevent malfunction of in-vehicle devices. A noise filter is used for. As the noise filter, a common mode choke coil in which a conducting wire is wound around a ferrite core (hereinafter referred to as a magnetic core) is used. The configuration of the common mode choke coil varies, but there are, for example, a drum type core as described in Patent Document 1 and a common mode choke coil using a plate-shaped core covering the drum-shaped core as a magnetic core.

ノイズフィルタでは、磁心を構成するソフトフェライトの複素比透磁率μと周波数の積で表されるインピーダンスZをノイズの除去に利用する。 In the noise filter, the impedance Z represented by the product of the complex relative permeability μ of the soft ferrite constituting the magnetic core and the frequency is used for noise removal.

一般にソフトフェライトの複素比透磁率μには、磁気共鳴による損失によって周波数が高くなると実数部μ’が低下するスネーク(Snoek)の限界があることが知られている。複素比透磁率μが高いソフトフェライトほど、相対的に低い周波数から実部μ’が低下し始める。実部μ’が低下するに従い、虚部μ”は増加し、ピークを示した後、低下する。このような複素比透磁率μは式1で表され、その実部μ’、虚部μ”の変化に応じて、インピーダンスZは周波数が高くなるに従い指数的に増加し、実部μ’と虚部μ”の低下に伴い減少する挙動を示す。 In general, it is known that the complex relative permeability μ of soft ferrite has a limit of snake (Snoek) in which the real part μ'decreases when the frequency increases due to the loss due to magnetic resonance. The higher the complex relative permeability μ, the lower the real part μ'begins to decrease from a relatively low frequency. As the real part μ'decreases, the imaginary part μ'increases, shows a peak, and then decreases. Such a complex relative permeability μ is expressed by Equation 1, and its real part μ', imaginary part μ'. Impedance Z increases exponentially as the frequency increases, and decreases as the real part μ'and the imaginary part μ'decrease.

Figure 2022039923000001
Figure 2022039923000001

例えば、車載LANとして広く普及する差動伝送によるデータ通信の規格としてCAN(Controller Area Network))が知られている。信号周波数(CANでは、250kHzあるいは500kHz)の高調波が数十MHz帯まで放射ノイズとなる場合があるため、信号経路に使用されるノイズフィルタは、コモンモードノイズを減衰させるように10MHz以上の高周波数帯でインピーダンスが大きいことが求められている。 For example, CAN (Control Area Network)) is known as a standard for data communication by differential transmission that is widely used as an in-vehicle LAN. Since the harmonics of the signal frequency (250 kHz or 500 kHz in CAN) may become radiated noise up to several tens of MHz band, the noise filter used in the signal path is as high as 10 MHz or more so as to attenuate the common mode noise. It is required that the impedance is large in the frequency band.

またノイズフィルタは、高温となる自動車のエンジンルーム内でも使用される。その為、例えば-40℃~+150℃の広い温度範囲で使用可能であるように、ソフトフェライトの磁気転移温度(キュリー温度Tc)は、少なくとも使用される温度を超える150℃超の温度であり、複素比透磁率μの温度依存性が小さいことが要求される。 Noise filters are also used in high temperature automobile engine rooms. Therefore, the magnetic transition temperature (Curie temperature Tc) of soft ferrite is at least a temperature exceeding 150 ° C., which exceeds the temperature used, so that it can be used in a wide temperature range of, for example, −40 ° C. to + 150 ° C. It is required that the temperature dependence of the complex relative magnetic permeability μ is small.

このような要求事項に対して、特許文献2ではFe、Zn、Ni、Cu、Tiを含み、Fe-Zn-Ni-Cu結晶の粒界にTiを含む化合物を分散させたノイズフィルタ用のソフトフェライトを開示している。キュリー温度が160℃以上であり、透磁率の温度変化率を-40%以上40%以下に抑えることができて、低温域から高温域にわたる広範囲な温度域において、安定したノイズ除去性能を有する優れたノイズフィルタとすることができると記載されている。 In response to such requirements, Patent Document 2 contains Fe, Zn, Ni, Cu, and Ti, and software for a noise filter in which a compound containing Ti is dispersed in the grain boundaries of Fe—Zn—Ni—Cu crystals. Discloses ferrite. The Curie temperature is 160 ° C or higher, the temperature change rate of magnetic permeability can be suppressed to -40% or higher and 40% or lower, and it has excellent stable noise reduction performance in a wide range of temperatures from low temperature to high temperature. It is stated that it can be used as a noise filter.

特開2012-89804号公報Japanese Unexamined Patent Publication No. 2012-89804 特開2011-246343号公報Japanese Unexamined Patent Publication No. 2011-246343

特許文献2では、結晶粒界にTiを含む化合物を分散させる粒界構造とするのに、Fe、ZnO、NiO、CuO粉末の仮焼粉体に、更にTiOを添加して粉砕し、得られた粉砕粉を成形して所定の温度で焼成することが必要である。TiOの後添加が必要となるため、ソフトフェライトの製造において、生産工数や、使用する設備、素原料の種類の増加が見込まれる。そのため、磁心を安価に提供するのに支障が生じる場合がある。また特許文献2の表2によれば、TiO量が増加するに従いキュリー温度Tcが減少し、高温側の透磁率の温度変化率は増加する傾向があり、更なる改善の余地があった。 In Patent Document 2, in order to form a grain boundary structure in which a compound containing Ti is dispersed at a grain boundary, TiO 2 is further added to the calcined powder of Fe 2O 3 , ZnO, NiO, and CuO powder and pulverized. Then, it is necessary to mold the obtained pulverized powder and bake it at a predetermined temperature. Since TiO 2 needs to be added afterwards, it is expected that the production man-hours, equipment used, and types of raw materials will increase in the production of soft ferrite. Therefore, it may be difficult to provide the magnetic core at a low price. Further, according to Table 2 of Patent Document 2, the Curie temperature Tc tends to decrease as the amount of TiO 2 increases, and the temperature change rate of the magnetic permeability on the high temperature side tends to increase, and there is room for further improvement.

そこで本発明は、キュリー温度が高く、温度に対する複素比透磁率の変化率を抑制可能でありながら、生産性に優れるNiZn系フェライトを提供することを目的とする。 Therefore, an object of the present invention is to provide a NiZn-based ferrite having a high Curie temperature, capable of suppressing the rate of change in complex relative permeability with respect to temperature, and having excellent productivity.

第1の発明は、Fe換算で47.50mol%以上48.60mol%以下のFe、ZnO換算で29.00mol%以上30.10mol%以下のZn、CuO換算で5.50mol%以上6.50mol%以下のCu、NiO換算で15.00mol%以上17.00mol%以下のNiからなり、Fe、ZnO、NiO、CuOの合計量が100mol%であって、Fe、Zn、Ni、Cuの合計量をそれぞれFe、ZnO、NiO、CuO換算で100質量部としたとき、
MnがMn換算で0.250質量部以下、CaがCaO換算で0.025質量部以上0.250質量部以下、SiがSiO換算で0.050質量部以下である、NiZn系フェライト。
In the first invention, Fe of 47.50 mol% or more and 48.60 mol% or less in terms of Fe 2 O 3 , Zn of 29.00 mol% or more and 30.10 mol% or less in terms of ZnO, and 5.50 mol% or more in terms of CuO 6 It is composed of .50 mol% or less of Cu and Ni of 15.00 mol% or more and 17.00 mol% or less in terms of NiO, and the total amount of Fe 2 O 3 , ZnO, NiO and CuO is 100 mol%, and Fe, Zn and Ni When the total amount of Cu and Cu is 100 parts by mass in terms of Fe 2 O 3 , ZnO, NiO and CuO, respectively.
NiZn-based Mn is 0.250 parts by mass or less in terms of Mn 3 O 4 , Ca is 0.025 parts by mass or more and 0.250 parts by mass or less in CaO conversion, and Si is 0.050 parts by mass or less in terms of SiO 2 . Ferrite.

本発明のNiZn系フェライトは、キュリー温度Tcが165℃以上であり、複素比透磁率μ25が650以上であり、複素比透磁率μ25に対する複素比透磁率μmaxの変化率Δμmaxが絶対値で5%以下であり、複素比透磁率μ25に対する複素比透磁率μminの変化率Δμminが絶対値で20%以下であるのが好ましい。
ただし、複素比透磁率μmaxは、-40℃から150℃までの間における、周波数100kHzの条件で最も高い複素比透磁率μであり、複素比透磁率μmin、-40℃から150℃までの間における、周波数100kHzの条件で最も低い複素比透磁率μである。
また、変化率Δμmax=(μmax-μ25)/μ25 × 100(%)であり、 変化率Δμmin=(μmin-μ25)/μ25 × 100(%)である。
また複素比透磁率μ25は、周波数100kHz、温度25℃における複素比透磁率μである。
The NiZn-based ferrite of the present invention has a Curie temperature Tc of 165 ° C. or higher, a complex relative magnetic permeability μ 25 of 650 or higher, and an absolute change rate Δμ max of the complex relative magnetic permeability μ max with respect to the complex relative magnetic permeability μ 25 . The value is preferably 5% or less, and the change rate Δμmin of the complex relative permeability μ min with respect to the complex relative permeability μ 25 is preferably 20% or less in absolute value.
However, the complex relative permeability μ max is the highest complex relative permeability μ under the condition of a frequency of 100 kHz between -40 ° C and 150 ° C, and the complex relative permeability μ min is -40 ° C to 150 ° C. It is the lowest complex relative permeability μ under the condition of a frequency of 100 kHz.
Further, the rate of change Δμ max = (μ max −μ 25 ) / μ 25 × 100 (%), and the rate of change Δμ min = ( μmin −μ 25 ) / μ 25 × 100 (%).
Further, the complex relative magnetic permeability μ 25 is a complex relative magnetic permeability μ at a frequency of 100 kHz and a temperature of 25 ° C.

本発明によれば、キュリー温度が高く、温度に対する複素比透磁率の変化率を抑制可能でありながら、生産性に優れるNiZn系フェライトと、それを用いた磁心、及びノイズフィルタを提供することが出来る。 According to the present invention, it is possible to provide a NiZn-based ferrite having a high Curie temperature, capable of suppressing the rate of change in complex relative permeability with respect to temperature, and having excellent productivity, a magnetic core using the same, and a noise filter. I can.

本発明のNiZn系フェライトのFeとZnOとの合計量と複素比透磁率μ25との関係を示す図である。It is a figure which shows the relationship between the total amount of Fe 2 O 3 and Zn O of the NiZn-based ferrite of this invention, and the complex relative magnetic permeability μ 25 . 本発明のNiZn系フェライトのZnO量とキュリー温度Tcとの関係を示す図である。It is a figure which shows the relationship between the ZnO amount of the NiZn-based ferrite of this invention, and the Curie temperature Tc. 本発明のNiZn系フェライトのFe量と変化率Δμmaxとの関係を示す図である。It is a figure which shows the relationship between the Fe 2 O 3 amount of NiZn-based ferrite of this invention, and the rate of change Δμmax. 本発明のNiZn系フェライトのFe量と変化率Δμminとの関係を示す図である。It is a figure which shows the relationship between the amount of Fe 2 O 3 of the NiZn-based ferrite of this invention, and the rate of change Δμmin. 本発明のNiZn系フェライトが用いられる電子部品の一例を示す等価回路図である。It is an equivalent circuit diagram which shows an example of the electronic component which uses the NiZn-based ferrite of this invention. 本発明のNiZn系フェライトが用いられた磁心にコイルと端子を設けた構造を示す斜視図である。It is a perspective view which shows the structure which provided the coil and the terminal in the magnetic core which used the NiZn-based ferrite of this invention. 図6に示した電子部品の外観構造を示す斜視図である。It is a perspective view which shows the appearance structure of the electronic component shown in FIG.

以下、本発明の一実施形態に係るNiZn系フェライトとそれを用いた磁心、ノイズフィルタについて具体的に説明する。特に断りがなければ一つの実施形態に関する説明は他の実施形態にも適用される。また下記説明は限定的ではなく、本発明の技術的思想の範囲内で種々の変更及び追加を施しても良く、適宜変更可能である。 Hereinafter, a NiZn-based ferrite according to an embodiment of the present invention, a magnetic core using the same, and a noise filter will be specifically described. Unless otherwise specified, the description of one embodiment also applies to other embodiments. Further, the following description is not limited, and various changes and additions may be made within the scope of the technical idea of the present invention, and the following changes can be made as appropriate.

図7はノイズフィルタの外観斜視図であり、本発明のNiZn系フェライトは、例えばその磁心に用いられる。ノイズフィルタ10は、ドラム型のコア(第1磁心)21と板状のコア(第2磁心)22と、第1磁心21に設けられた巻線30と端子31、32を含み、第1磁心21を覆うように第2磁心22が配置され、互いが接着固定された閉磁路構造に構成されている。 FIG. 7 is an external perspective view of the noise filter, and the NiZn-based ferrite of the present invention is used, for example, for the magnetic core thereof. The noise filter 10 includes a drum-shaped core (first magnetic core) 21, a plate-shaped core (second magnetic core) 22, windings 30 and terminals 31 and 32 provided on the first magnetic core 21, and the first magnetic core. The second magnetic core 22 is arranged so as to cover the 21 and is configured as a closed magnetic circuit structure in which the second magnetic cores 22 are adhered and fixed to each other.

図6は図7のノイズフィルタ10から第2磁心22を除いて示した斜視図である。第1磁心21は軸部(図示せず)と、その端部に第1の鍔部25と第2の鍔部26を有し、第1磁心21の軸部上には2本の導線が螺旋状にバイファイラ巻で巻かれていて、第1導線30aおよび第2導線30bを形成している。第1磁心21の第1の鍔部25には2つの端子31、32が形成されている。また第2の鍔部26には端子33のみが現れているが、第1の鍔部25と同様の2つの端子が形成されていて、鍔部のそれぞれには2つの端子を有している。第1導線30aの一端は第1の端子31と接続し、他端は図示されない第2の端子と接続する。また第2導線30bの一端は第3の端子32と接続し、他端は第4の端子33と接続する。 FIG. 6 is a perspective view showing the noise filter 10 of FIG. 7 excluding the second magnetic core 22. The first magnetic core 21 has a shaft portion (not shown), a first flange portion 25 and a second flange portion 26 at its ends, and two conducting wires are provided on the shaft portion of the first magnetic core 21. It is spirally wound with a bifilar winding to form the first conductor 30a and the second conductor 30b. Two terminals 31 and 32 are formed on the first flange portion 25 of the first magnetic core 21. Further, although only the terminal 33 appears on the second flange portion 26, two terminals similar to those of the first flange portion 25 are formed, and each of the flange portions has two terminals. .. One end of the first conductor 30a is connected to the first terminal 31, and the other end is connected to a second terminal (not shown). Further, one end of the second conductor 30b is connected to the third terminal 32, and the other end is connected to the fourth terminal 33.

図5は図7に示したノイズフィルタ(コモンモードチョークコイル)の等価回路図である。図中、ターミナルT1は図9のノイズフィルタにおいて第1の端子31に対応する。またターミナルT2は図示されない第2の端子に対応する。ターミナルT3は第3の端子32に対応し、ターミナルT4は第4の端子33に対応する。 FIG. 5 is an equivalent circuit diagram of the noise filter (common mode choke coil) shown in FIG. 7. In the figure, the terminal T1 corresponds to the first terminal 31 in the noise filter of FIG. Further, the terminal T2 corresponds to a second terminal (not shown). The terminal T3 corresponds to the third terminal 32, and the terminal T4 corresponds to the fourth terminal 33.

(NiZn系フェライトの組成)
磁心に用いるNiZn系フェライトは、Fe換算で47.50mol%以上48.60mol%以下のFe、ZnO換算で29.00mol%以上30.10mol%以下のZn、CuO換算で5.50mol%以上6.50mol%以下のCu、NiO換算で14.80mol%以上18.00mol%以のNiからなり、Fe、ZnO、NiO、CuOの合計量が100mol%であり、Fe、Zn、Ni、Cuの合計量をそれぞれFe、ZnO、NiO、CuO換算で100質量部としたとき、MnがMn換算で0.250質量部以下、CaがCaO換算で0.025質量部以上0.250質量部以下、SiがSiO換算で0.010質量部以下の組成で表される。この他に、素原料中の不可避的な不純物元素が含まれ得る。
(Composition of NiZn-based ferrite)
The NiZn-based ferrite used for the magnetic core is Fe of 47.50 mol% or more and 48.60 mol% or less in terms of Fe 2 O3 , Zn of 29.00 mol% or more and 30.10 mol% or less in terms of ZnO, and 5.50 mol% in terms of CuO. It is composed of Cu of 6.50 mol% or less and Ni of 14.80 mol% or more and 18.00 mol% or more in terms of NiO, and the total amount of Fe 2 O 3 , ZnO, NiO and CuO is 100 mol%, and Fe, Zn, When the total amount of Ni and Cu is 100 parts by mass in terms of Fe 2 O 3 , ZnO, NiO and CuO, respectively, Mn is 0.250 parts by mass or less in terms of Mn 3 O 4 , and Ca is 0.025 in terms of CaO. It is represented by a composition of 0 parts by mass or more and 0.250 parts by mass or less, and Si is 0.010 parts by mass or less in terms of SiO 2 . In addition to this, unavoidable impurity elements in the raw material may be contained.

FeはFe換算で47.50mol%以上48.60mol%以下であるのが好ましい。Fe量の増加とともに、後述する複素比透磁率μの変化率Δμminや変化率Δμmaxの絶対値が増加し、48.60mol%超だと所望の変化率Δμmin、Δμmaxが得られない場合がある。ここで所望の変化率Δμmin、Δμmaxとは、変化率Δμmin、Δμmaxの絶対値がそれぞれ40%以下である。また47.50mol%未満だと、温度25℃における複素比透磁率μ25が低下し、所望の複素比透磁率μ25が得られない場合がある。所望の複素比透磁率μ25は650以上である。Feは48.50mol%以下とするのが更に好ましい。また47.80mol%以上が更に好ましく、48.00mol%以上が一層好ましい。 Fe is preferably 47.50 mol% or more and 48.60 mol% or less in terms of Fe 2 O 3 . As the amount of Fe 2 O 3 increases, the absolute values of the rate of change Δμ min and the rate of change Δμ max of the complex relative permeability μ, which will be described later, increase . It may not be obtained. Here, the desired rate of change Δμ min and Δμ max are such that the absolute values of the rates of change Δμ min and Δμ max are 40% or less, respectively. If it is less than 47.50 mol%, the complex relative magnetic permeability μ 25 at a temperature of 25 ° C. may decrease, and the desired complex relative magnetic permeability μ 25 may not be obtained. The desired complex relative permeability μ 25 is 650 or more. Fe 2 O 3 is more preferably 48.50 mol% or less. Further, 47.80 mol% or more is more preferable, and 48.00 mol% or more is further preferable.

ZnはZnO換算で29.00mol%以上30.10mol%以下であるのが好ましい。ZnOが29.00mol%未満では、所望の複素比透磁率μ25が得られない場合がある。30.10mol%超では160℃以上のキュリー温度Tcが得られない場合がある。変化率Δμmaxを低減するのに29.25mol%以上であるのが好ましく、29.90mol%以下であるのが好ましい。 Zn is preferably 29.00 mol% or more and 30.10 mol% or less in terms of ZnO. If ZnO is less than 29.00 mol%, the desired complex relative permeability μ 25 may not be obtained. If it exceeds 30.10 mol%, a Curie temperature Tc of 160 ° C. or higher may not be obtained. In order to reduce the rate of change Δμ max , it is preferably 29.25 mol% or more, and preferably 29.90 mol% or less.

そしてFe及びZnOの含有量は77.00mol%以上78.50mol%以下であるのが好ましい。77.00mol%以上とすることで複素比透磁率μ25を800以上とすることが出来る。より好ましくは77.30mol%以上である。また78.40mol%以下であるのが好ましい。 The contents of Fe 2 O 3 and Zn O are preferably 77.00 mol% or more and 78.50 mol% or less. By setting it to 77.00 mol% or more, the complex relative magnetic permeability μ 25 can be set to 800 or more. More preferably, it is 77.30 mol% or more. Further, it is preferably 78.40 mol% or less.

CuはCuO換算で5.50mol%以上6.50mol%以下であるのが好ましい。CuOが5.50mol%未満、あるいは6.50mol%超であると、所望の複素比透磁率μ25が得られない場合がある。CuOの好ましい含有量は5.70mol%以上である。また6.30mol%以下が好ましい。 Cu is preferably 5.50 mol% or more and 6.50 mol% or less in terms of CuO. If CuO is less than 5.50 mol% or more than 6.50 mol%, the desired complex relative permeability μ 25 may not be obtained. The preferable content of CuO is 5.70 mol% or more. Further, it is preferably 6.30 mol% or less.

またNiはNiO換算で14.80mol%以上18.00mol%以下であるのが好ましい。NiO量はFe、ZnO、NiO、CuOの合計100mol%から、Fe、ZnO、CuOの上記成分の合計量を引いた残部である。 Further, Ni is preferably 14.80 mol% or more and 18.00 mol% or less in terms of NiO. The amount of NiO is the balance obtained by subtracting the total amount of the above components of Fe 2 O 3 , ZnO, and CuO from the total 100 mol% of Fe 2 O 3 , ZnO, NiO, and CuO.

不純物元素として、具体的には、Si、Ca、B、C、S、Cl、Se、Br、P、Te、I、Li、Na、Mg、Al、K、Ga、Ge、Sr、In、Sn、Sb、Ba、Bi、Sc、Ti、Mn,V、Cr、Y、Nb、Mo、Pd、Ag、Hf、Ta、Zr、Co、Pb等が挙げられる。本発明においては、Mn、Ca、Siを除き、いずれもNiZn系フェライトのキュリー温度Tcや温度に対する複素比透磁率の変化率Δμmin、Δμmaxに影響を与えない程度、すなわち所望の性能が得有れる範囲であれば含んでいても良い。 Specific examples of the impurity elements include Si, Ca, B, C, S, Cl, Se, Br, P, Te, I, Li, Na, Mg, Al, K, Ga, Ge, Sr, In, Sn. , Sb, Ba, Bi, Sc, Ti, Mn, V, Cr, Y, Nb, Mo, Pd, Ag, Hf, Ta, Zr, Co, Pb and the like. In the present invention, except for Mn, Ca, and Si, the Curie temperature Tc of NiZn-based ferrite and the rate of change of complex relative permeability with respect to temperature Δμmin and Δμmax are not affected, that is, desired performance is obtained. It may be included as long as it exists.

不純物元素の内、素原料となるFeに多く含まれるMnは、その量が増加するほど複素比透磁率の変化率Δμmin、Δμmaxの絶対値が増加する為、素原料に含まれるMnを酸化物換算で数千ppm程度以下とし、NiZn系フェライトに含まれるMnを、Fe、ZnO、NiO、CuO換算でFe、Zn、Ni、Cuの合計量100質量部に対してMn換算で0質量部以上0.250質量部以下とするのが好ましい。 Among the impurity elements, Mn contained in a large amount in Fe 2 O 3 which is a raw material is contained in the raw material because the absolute values of the rate of change of the complex ferrite permeability Δμ min and Δμ max increase as the amount increases. The amount of Mn contained in the NiZn-based ferrite is set to about several thousand ppm or less in terms of oxide, and the amount of Mn contained in NiZn-based ferrite is 100 parts by mass of the total amount of Fe, Zn, Ni, and Cu in terms of Fe 2O 3 , ZnO, NiO, and CuO. It is preferable that the amount is 0 parts by mass or more and 0.250 parts by mass or less in terms of Mn 3 O 4 .

Siはその量が増加するほどNiZn系フェライトのキュリー温度Tcや複素比透磁率μ25を増加させる点で好ましいものの、複素比透磁率の変化率Δμmin、Δμmaxの絶対値もまた増加する為、NiZn系フェライトに含まれるSiを、Fe、ZnO、NiO、CuO換算でFe、Zn、Ni、Cuの合計量100質量部に対してSiO換算で0質量部以上0.050質量部以下とするのが好ましい。更に好ましくは0.010質量部以下である。 Si is preferable in that the Curie temperature Tc and the complex relative permeability μ 25 of the NiZn-based ferrite increase as the amount increases, but the absolute values of the rate of change of the complex relative permeability Δμ min and Δμ max also increase. , Si contained in NiZn-based ferrite is 0 parts by mass or more and 0.050 mass in terms of SiO 2 with respect to 100 parts by mass of the total amount of Fe, Zn, Ni, and Cu in terms of Fe 2 O 3 , ZnO, NiO, and CuO. It is preferably less than or equal to the part. More preferably, it is 0.010 part by mass or less.

Caはその量が増加するほどNiZn系フェライトの複素比透磁率の変化率Δμmin、Δμmaxの絶対値を減少させる為、NiZn系フェライトに含まれるCaを、Fe、ZnO、NiO、CuO換算で100質量部に対してCaO換算で0.025質量部以上0.250質量部以下とするのが好ましい。 As the amount of Ca increases , the rate of change in the complex relative magnetic permeability of NiZn - based ferrite decreases in absolute values of Δμmin and Δμmax . It is preferable that the amount is 0.025 parts by mass or more and 0.250 parts by mass or less in terms of CaO with respect to 100 parts by mass in terms of CuO.

素原料中に含まれるその他の不純物元素は酸化物換算でそれぞれ数ppmから数十ppm程度を上限とするのが好ましい。またNiZn系フェライトに含まれる他の不可避的不純物は、いずれも0.005質量部以下であるのが好ましい。 It is preferable that the upper limit of the other impurity elements contained in the raw material is several ppm to several tens of ppm in terms of oxides. The amount of other unavoidable impurities contained in the NiZn-based ferrite is preferably 0.005 part by mass or less.

Fe、ZnO、NiO、CuOの各成分の定量は、蛍光X線分析及びICP発光分光分析により行うことができる。予め蛍光X線分析により含有元素(Fe、Zn、Ni、Cu、Mn、Zr、Sn、P、S、Bi、Mg、Al、Si、Cl、K、Ca、Ti、V、Cr、Co、Pbなど)の定性分析を行い、次に含有元素を標準サンプルと比較する検量線法により定量する。また不可避不純物は燃焼-赤外線吸収法や原子吸光法等の手段で定量することが出来る。なお、Feの素原料中に多く含まれるMnや、自然界に多く存在し、汚染を生じさせ易いCa、Siを除けば、他の元素は含まれていても微量であるので、Fe、ZnO、NiO、CuOの素原料の検査表に記載された量から、Fe、ZnO、NiO、CuOの組成比率に応じて算出した値を基に、組成比率からNiZn系フェライトに含まれる量を算出しても差し支えない。 The quantification of each component of Fe 2 O 3 , ZnO, NiO, and CuO can be performed by fluorescent X-ray analysis and ICP emission spectroscopic analysis. Contains elements (Fe, Zn, Ni, Cu, Mn, Zr, Sn, P, S, Bi, Mg, Al, Si, Cl, K, Ca, Ti, V, Cr, Co, Pb) by fluorescent X-ray analysis in advance. Qualitative analysis is performed, and then the contained elements are quantified by a calibration beam method comparing with a standard sample. Inevitable impurities can be quantified by means such as combustion-infrared absorption method and atomic absorption method. Except for Mn, which is abundant in the raw material of Fe 2 O 3 , and Ca and Si, which are abundant in nature and easily cause contamination, even if other elements are contained, they are in trace amounts. NiZn-based from the composition ratio based on the value calculated according to the composition ratio of Fe 2O 3 , ZnO, NiO, CuO from the amounts listed in the inspection table of the raw materials of 2O 3 , ZnO, NiO, and CuO. You may calculate the amount contained in ferrite.

(NiZn系フェライトの製造方法)
NiZn系フェライトを構成するFe、Zn、Ni、Cuの各元素の化合物(酸化物)粉末を素原料として用い、それらを所定割合で湿式混合した後、乾燥し、原料粉末とする。原料粉末を700℃以上でかつ焼結温度より低い温度で仮焼きしてスピネル化を進め、仮焼体を得る。
(Manufacturing method of NiZn-based ferrite)
A compound (oxide) powder of each element of Fe, Zn, Ni, and Cu constituting NiZn-based ferrite is used as a raw material, and they are wet-mixed at a predetermined ratio and then dried to obtain a raw material powder. The raw material powder is calcined at 700 ° C. or higher and at a temperature lower than the sintering temperature to promote spinelization, and a calcined body is obtained.

スピネル化が進むに従い仮焼体の粉砕に時間を要するようになるため、焼結温度より低い仮焼温度は具体的には焼結温度に対して100℃以上低いのが好ましい。一方、仮焼温度が700℃未満であると、スピネル化が遅すぎて仮焼に必要な時間が長くなりすぎるため、700℃以上であることが好ましい。仮焼温度は好ましくは850℃以上である。なお、仮焼体の組成が所望の組成と差(ずれ)があった場合に、仮焼体の粉砕の際に、Fe、Zn、Ni、Cuの各元素の化合物を添加して組成調整しても良い。 As the spinel formation progresses, it takes time to crush the calcined body. Therefore, the calcining temperature lower than the sintering temperature is preferably 100 ° C. or more lower than the sintering temperature. On the other hand, if the calcination temperature is less than 700 ° C., spinelization is too slow and the time required for calcination becomes too long, so that the temperature is preferably 700 ° C. or higher. The calcination temperature is preferably 850 ° C. or higher. If the composition of the calcined body is different (deviation) from the desired composition, the composition is adjusted by adding compounds of Fe, Zn, Ni, and Cu elements when the calcined body is pulverized. May be.

仮焼体をイオン交換水とともにボールミルに投入し、湿式粉砕してスラリーとする。仮焼体の粉砕は、粉砕粉末の平均粒径(空気透過法で測定)が1.2μm以上2.5μm以下となるまで行うのが好ましく、1.5μm以上2.0μm以下となるまで行うのがより好ましい。粉砕時間は0.1時間以上4.0時間以下が好ましい。0.1時間未満では好ましい粉砕粒径が得られないことがあり、また4.0時間超だと粉砕機の粉砕メディアや容器等の部材の磨耗等による不純物の混入が増加するおそれがある。 The calcined body is put into a ball mill together with ion-exchanged water and wet-ground to obtain a slurry. The pulverized body is preferably pulverized until the average particle size of the pulverized powder (measured by the air permeation method) is 1.2 μm or more and 2.5 μm or less, and 1.5 μm or more and 2.0 μm or less. Is more preferable. The crushing time is preferably 0.1 hours or more and 4.0 hours or less. If it is less than 0.1 hours, a preferable crushed particle size may not be obtained, and if it is more than 4.0 hours, impurities may increase due to wear of the crushing media of the crusher and members such as a container.

スラリーにポリビニルアルコール等のバインダを加え、スプレードライヤーで顆粒化した後、加圧成形して所定形状の成形体を得る。成形体を焼成炉で1000℃以上1200℃以下の温度で焼結して焼結体(NiZn系フェライトの磁心)とする。焼成工程は昇温工程と、温度保持工程と、降温工程とを有する。焼成工程における雰囲気は、不活性ガス雰囲気でも大気雰囲気でも良い。1000℃以上1200℃以下の温度となる温度保持工程では、所定の温度範囲に所定時間保持するのが好ましい。 A binder such as polyvinyl alcohol is added to the slurry, granulated with a spray dryer, and then pressure-molded to obtain a molded product having a predetermined shape. The molded body is sintered in a firing furnace at a temperature of 1000 ° C. or higher and 1200 ° C. or lower to obtain a sintered body (NiZn-based ferrite magnetic core). The firing step includes a temperature raising step, a temperature holding step, and a temperature lowering step. The atmosphere in the firing step may be an inert gas atmosphere or an atmospheric atmosphere. In the temperature holding step of 1000 ° C. or higher and 1200 ° C. or lower, it is preferable to hold the temperature within a predetermined temperature range for a predetermined time.

仮焼粉末の平均粉砕粒径が小さいと焼結反応活性が高く、低い温度から緻密化が促進され易いが、一方で焼成炉の設定温度が高いと焼結が過剰となり、粗大な結晶組織が生じて結晶粒径が均一で緻密な焼結体とするのが困難となる。粉砕粉末の平均粒径を1.2μm以上とし、焼成工程での焼結温度を1000℃以上1200℃以下とすることで、焼結体の複素比透磁率μ25や複素比透磁率μの変化率Δμmin、Δμmaxが安定するので好ましい。 When the average crushed particle size of the calcined powder is small, the sintering reaction activity is high and densification is easily promoted from a low temperature. As a result, it becomes difficult to obtain a dense sintered body having a uniform crystal grain size. By setting the average particle size of the crushed powder to 1.2 μm or more and the sintering temperature in the firing step to 1000 ° C or higher and 1200 ° C or lower, the complex relative magnetic permeability μ 25 and the complex relative magnetic permeability μ of the sintered body are changed. It is preferable because the rates Δμ min and Δμ max are stable.

得られた焼結体の複素比透磁率μ、焼結体密度ds、平均結晶粒径dは、下記の方法により測定することが出来る。また得られた複素比透磁率μから変化率Δμmax、Δμminを算出することが出来る。 The complex relative magnetic permeability μ, the sintered body density ds, and the average crystal grain size d of the obtained sintered body can be measured by the following methods. Further, the rate of change Δμ max and Δμ min can be calculated from the obtained complex relative permeability μ.

(1)複素比透磁率μ
焼結体を円環状の磁心とし、それに導線を巻回したコイル部品を評価用試料とする。LCRメータ(アジレント・テクノロジー株式会社製の4285A)により、100kHz、1mAの電流でのインダクタンスLと抵抗Rとを測定し、得られたインダクタンスLと抵抗Rから、式2~式4を用いて複素比透磁率μ、その実部μ’、虚部μ”を算出する。
(1) Complex relative permeability μ
The sintered body is an annular magnetic core, and the coil component around which the conducting wire is wound is used as an evaluation sample. An LCR meter (4285A manufactured by Agilent Technologies, Inc.) measures the inductance L m and resistance R m at a current of 100 kHz and 1 mA, and from the obtained inductance L m and resistance R m , formulas 2 to 4 The complex relative permeability μ, its real part μ', and its imaginary part μ'are calculated using.

(a)複素比透磁率μの実部μ’

Figure 2022039923000002
(A) The real part μ'of complex relative permeability μ
Figure 2022039923000002

(b)複素比透磁率μの虚部μ”

Figure 2022039923000003
(c)複素比透磁率μ (B) Imaginary part μ with complex relative permeability μ ”
Figure 2022039923000003
(C) Complex relative permeability μ

Figure 2022039923000004
Figure 2022039923000004

なお、円環状の磁心は、磁路と直交する断面が矩形で、内径φ20mm、外径φ30mm、厚み8mmの寸法とした。またAeは磁心の実効断面積(m)、leは磁心の実効磁路長(m)、μは真空の透磁率 [4π×10-7](H/m)、Nは導線の巻き回数、fは周波数(Hz)、Lmは測定インダクタンス(H)、Rmは測定抵抗(Ω)である。導線は線径がφ0.5mmのエニックワイヤーを使用し、巻き回数Nは20ターンとした。 The annular magnetic core has a rectangular cross section orthogonal to the magnetic path, and has dimensions of an inner diameter of φ20 mm, an outer diameter of φ30 mm, and a thickness of 8 mm. Ae is the effective cross-sectional area of the magnetic core (m 2 ), le is the effective magnetic path length of the magnetic core (m), μ 0 is the magnetic permeability of the vacuum [4π × 10-7 ] (H / m), and N is the winding of the conducting wire. The number of times, f is the frequency (Hz), Lm is the measurement inductance (H), and Rm is the measurement resistance (Ω). As the conducting wire, an ennick wire having a wire diameter of φ0.5 mm was used, and the number of windings N was 20 turns.

(2)複素比透磁率μの変化率Δμmax、Δμmin
複素比透磁率μの測定で使用する評価用試料を恒温槽内の測定治具に接続する。なお、測定治具はLCRメータ(4285A)に接続されており、-40℃から150℃の間で、評価用試料の温度を変化させ、100kHzの周波数で、インダクタンスLと抵抗Rを測定する。温度Tの条件で得られたインダクタンスLと抵抗Rから式2から式4によって複素比透磁率μを算出した。複素比透磁率μは温度Tにおける複素比透磁率μであり、例えば複素比透磁率μ25は温度25℃における複素比透磁率μである。また複素比透磁率μmaxは、-40℃から150℃までの温度にて最も高い複素比透磁率μであり、Tμmaxは複素比透磁率μmaxとなる温度である。また複素比透磁率μminは、-40℃から150℃ までの温度にて最も低い複素比透磁率μであり、Tμminは複素比透磁率μminとなる温度である。得られた複素比透磁率μを使って式5から変化率Δμmaxを、式6から変化率Δμminを算出する。
(2) Rate of change of complex relative permeability μ Δμ max , Δμ min
The evaluation sample used for measuring the complex relative permeability μ is connected to the measuring jig in the constant temperature bath. The measuring jig is connected to an LCR meter (4285A), changes the temperature of the evaluation sample between -40 ° C and 150 ° C, and measures the inductance L m and resistance R m at a frequency of 100 kHz. do. The complex relative magnetic permeability μ T was calculated from Equations 2 to 4 from the inductance L m and the resistance R m obtained under the condition of the temperature T. The complex relative magnetic permeability μ T is the complex relative magnetic permeability μ at the temperature T, and for example, the complex relative magnetic permeability μ 25 is the complex relative magnetic permeability μ at a temperature of 25 ° C. Further, the complex relative magnetic permeability μ max is the highest complex relative magnetic permeability μ at a temperature from −40 ° C. to 150 ° C., and Tμ max is the temperature at which the complex relative magnetic permeability μ max is obtained. The complex relative magnetic permeability μ min is the lowest complex relative magnetic permeability μ at a temperature from −40 ° C. to 150 ° C., and T μ min is a temperature at which the complex relative magnetic permeability μ min . Using the obtained complex relative permeability μ, the rate of change Δμ max is calculated from Equation 5 and the rate of change Δμ min is calculated from Equation 6.

複素比透磁率μの正の側の最大の変化率Δμmaxは式5で算出された絶対値である。

Figure 2022039923000005
The maximum rate of change Δμ max on the positive side of the complex relative permeability μ is an absolute value calculated by Equation 5.
Figure 2022039923000005

複素比透磁率μの負の側の最大の変化率Δμminは式6で算出された絶対値である。

Figure 2022039923000006
The maximum rate of change Δμmin on the negative side of the complex relative permeability μ is the absolute value calculated by Equation 6.
Figure 2022039923000006

(3)キュリー温度Tc
キュリー温度Tcは、同様の試料を用いて、LCRメータを用いてJIS C2560により求めた。
(3) Curie temperature Tc
The Curie temperature Tc was determined by JIS C2560 using a similar sample and using an LCR meter.

(4)焼結体密度ds
NiZn系フェライトの焼結体の寸法及び重量から体積重量法により密度を算出した。焼結体密度は5.10×10kg/mを閾値とし、閾値超を「良好」と判断した。焼結体密度が小さいと焼結不足が考えられ、機械的強度が劣り、欠けや割れが生じ易い。
(4) Sintered body density ds
The density was calculated by the volume gravimetric method from the dimensions and weight of the sintered body of NiZn-based ferrite. The sintered body density was set to 5.10 × 10 3 kg / m 3 as a threshold value, and the above threshold value was judged to be “good”. If the density of the sintered body is low, insufficient sintering may be considered, the mechanical strength is inferior, and chipping or cracking is likely to occur.

(5)平均結晶粒径
NiZn系フェライトの焼結体を焼成温度より低い温度でサーマルエッチングし、その表面の走査型電子顕微鏡(SEM)写真(3000倍)を撮った。SEM写真の観察面積は、3000倍で33μm×43μmであった。SEM写真上に長さL1の3本の任意の直線を引き、各直線上に存在する結晶粒の数N1をカウントし、各直線について長さL1を粒子数N1で除した値L1/N1を算出し、L1/N1の値の合計を3で割って、平均結晶粒径とした。なお、サーマルエッチングは結晶粒界が確認できる温度で行えばよく、典型的には焼成温度より50℃から100℃程度低い温度で行うのが好ましい。NiZn系フェライトの焼結体の焼成温度が不明な場合には、低い温度でサーマルエッチングを開始し、少しずつ温度を上げながら結晶粒界が確認できるようになるまで行えばよい。
(5) Average crystal grain size A sintered body of NiZn-based ferrite was thermally etched at a temperature lower than the firing temperature, and a scanning electron microscope (SEM) photograph (3000 times) of the surface thereof was taken. The observation area of the SEM photograph was 33 μm × 43 μm at a magnification of 3000. Draw three arbitrary straight lines of length L1 on the SEM photograph, count the number N1 of crystal grains existing on each straight line, and divide the length L1 by the number of particles N1 for each straight line to obtain the value L1 / N1. Calculated and the sum of the values of L1 / N1 was divided by 3 to obtain the average crystal grain size. The thermal etching may be performed at a temperature at which the crystal grain boundaries can be confirmed, and is typically performed at a temperature about 50 ° C. to 100 ° C. lower than the firing temperature. If the firing temperature of the NiZn-based ferrite sintered body is unknown, thermal etching may be started at a low temperature and gradually increased until the grain boundaries can be confirmed.

参考例1~21、及び比較例1~9
表1に示す組成のNiZn系フェライトが得られるように秤量したFe粉末、ZnO粉末、CuO粉末、及びNiO粉末の各素原料を湿式混合した後、乾燥し、900℃の温度で1時間仮焼した。得られた各仮焼体をイオン交換水とともにボールミルに投入し、粉砕してスラリーとした。得られたスラリーの一部を乾燥して空気透過法により平均粉砕粒径を評価した。平均粉砕粒径はいずれも1.5μmから1.7μmの範囲内であった。残りのスラリーにバインダとしてポリビニルアルコールを加え、スプレードライヤーにより乾燥とともに顆粒化し、加圧成形して円環状の各成形体を得た。なおNiZn系フェライト中のMnは、Fe、ZnO、CuO、及びNiOの総量を100質量部とするとき、酸化物換算でMn、CaO、SiO2の総量が0.250質量部以下となるように、使用する素原料を選定している。
Reference Examples 1 to 21 and Comparative Examples 1 to 9
Fe 2 O 3 powder, ZnO powder, CuO powder, and NiO powder raw materials weighed so as to obtain NiZn-based ferrite having the composition shown in Table 1 are wet-mixed, dried, and dried at a temperature of 900 ° C. Temporarily baked for hours. Each of the obtained calcined bodies was put into a ball mill together with ion-exchanged water and pulverized to obtain a slurry. A part of the obtained slurry was dried and the average pulverized particle size was evaluated by an air permeation method. The average pulverized grain size was in the range of 1.5 μm to 1.7 μm. Polyvinyl alcohol was added as a binder to the remaining slurry, granulated by drying with a spray dryer, and pressure-molded to obtain each annular molded product. The total amount of Mn in NiZn - based ferrite is 0.250 parts by mass in terms of oxide when the total amount of Fe 2 O 3 , ZnO, CuO, and NiO is 100 parts by mass. The raw materials to be used are selected as follows.

各成形体を1100℃の温度、保持時間は2時間で焼結し、外径30mm×内径20mm×厚さ8mmの円環状の各NiZn系フェライト焼結体を得た。焼成雰囲気は大気中である。 Each molded body was sintered at a temperature of 1100 ° C. and a holding time of 2 hours to obtain annular NiZn-based ferrite sintered bodies having an outer diameter of 30 mm, an inner diameter of 20 mm, and a thickness of 8 mm. The firing atmosphere is in the atmosphere.

各NiZn系フェライト焼結体の密度ds、複素比透磁率μ、複素比透磁率μの実部μ’、複素比透磁率μの虚部μ’、平均結晶粒径、キュリー温度Tc、複素比透磁率μの変化率Δμmin、Δμmax、及び正規化インピーダンスZを上記の方法により測定又は算出した。得られた結果も含め表1と図1から図6に示す。
表1において、複素比透磁率μの変化率Δμ-40、Δμ100、Δμ150は、μ25を基準とする複素比透磁率μ(T=-40℃、100℃、150℃)の変化率である。μ25よりもμが小さく変化率Δμが負となる場合はマイナスを付けて示している。図1から図4においては、参考例を白丸印で示し、比較例をばつ印と黒四角印で示し、その内黒四角印はキュリー温度Tcが160℃未満であることも示している。
Density ds of each NiZn-based ferrite sintered body, complex relative magnetic permeability μ, real part μ of complex relative magnetic permeability μ, imaginary part μ'of complex relative magnetic permeability μ, average crystal grain size, Curie temperature Tc, complex ratio The rate of change of magnetic permeability μ Δμmin, Δμmax , and normalized impedance ZN were measured or calculated by the above method. The results are also shown in Table 1 and FIGS. 1 to 6.
In Table 1, the rate of change of complex relative permeability μ Δμ- 40 , Δμ 100 , Δμ 150 is the change of complex relative permeability μ T (T = −40 ° C., 100 ° C., 150 ° C.) with respect to μ 25 . The rate. When μ T is smaller than μ 25 and the rate of change Δμ is negative, it is indicated by adding a minus. In FIGS. 1 to 4, reference examples are indicated by white circles, comparative examples are indicated by cross marks and black square marks, and the black square marks also indicate that the Curie temperature Tc is less than 160 ° C.

Figure 2022039923000007
Figure 2022039923000007

Figure 2022039923000008
Figure 2022039923000008

参考例、比較例ともに、いずれのNiZn系フェライト焼結体も密度dsが5.15×10kg/mを超えて良好であった。また平均結晶粒径は5μm~20μmの範囲内となっていた。 In both the reference example and the comparative example, the density ds of each of the NiZn-based ferrite sintered bodies was good, exceeding 5.15 × 10 3 kg / m 3 . The average crystal grain size was in the range of 5 μm to 20 μm.

図2はNiZn系フェライトのZnO量とキュリー温度Tcとの関係を示した図である。ZnO量の増加に伴ってキュリー温度Tcが低下し、ZnOが30.10mol%超えた比較例5から比較例8では160℃未満となった。 FIG. 2 is a diagram showing the relationship between the amount of ZnO in NiZn-based ferrite and the Curie temperature Tc. The Curie temperature Tc decreased as the amount of ZnO increased, and the temperature was less than 160 ° C. in Comparative Example 5 to Comparative Example 8 in which ZnO exceeded 30.10 mol%.

図3と図4は、Fe量と複素比透磁率μの変化率Δμmax、Δμminとの関係を示した図である。複素比透磁率μの変化率Δμmaxは、Fe量が48.60mol%超えると急激に増加した。また複素比透磁率μの変化率Δμminは、Fe量に対して緩やかに増加する傾向があった。また、キュリー温度Tcが160℃未満の比較例5から比較例8では複素比透磁率μminとなる温度が、他の評価用試料が-40℃であるのに対して150℃となり、また変化率Δμminは大きく増加した。 3 and 4 are diagrams showing the relationship between the amount of Fe 2 O 3 and the rate of change Δμmax and Δμmin of the complex relative permeability μ. The rate of change Δμ max of the complex relative permeability μ increased sharply when the amount of Fe 2 O 3 exceeded 48.60 mol%. Further, the rate of change Δμ min of the complex relative permeability μ tended to increase gradually with respect to the amount of Fe 2 O 3 . Further, in Comparative Example 5 to Comparative Example 8 in which the Curie temperature Tc is less than 160 ° C., the temperature at which the complex relative magnetic permeability is μ min is 150 ° C., which is 150 ° C., while the other evaluation samples are −40 ° C. The rate Δμ min increased significantly.

図1はNiZn系フェライトのFeとZnOとの合計量と複素比透磁率μとの関係を示す図である。FeとZnOとの合計量が増加する従い、複素比透磁率μも増加した。 FIG. 1 is a diagram showing the relationship between the total amount of Fe 2 O 3 and Zn O of NiZn-based ferrite and the complex relative permeability μ. As the total amount of Fe 2 O 3 and Zn O increased, the complex relative permeability μ also increased.

実施例1~4、及び比較例22~27
表2に示す組成のNiZn系フェライトが得られるように秤量したFe粉末、ZnO粉末、CuO粉末、NiO粉末、Mn粉末、CaCO粉末、及びSiO粉末の各素原料を使用し、Fe粉末、ZnO粉末、CuO粉末、NiO粉末を湿式混合した後、乾燥し、900℃の温度で1時間仮焼した。得られた各仮焼体を、Mn粉末、CaCO粉末、SiO粉末、イオン交換水とともにボールミルに投入し、アトライターで粉砕してスラリーとした。得られたスラリーの一部を乾燥して空気透過法により平均粉砕粒径を評価した。平均粉砕粒径はいずれも1.7μmから1.9μmの範囲内であった。残りのスラリーにバインダとしてポリビニルアルコールを加え、スプレードライヤーにより乾燥とともに顆粒化し、加圧成形して円環状の各成形体を得た。
Examples 1 to 4 and Comparative Examples 22 to 27
Fe 2 O 3 powder, ZnO powder, CuO powder, NiO powder, Mn 3 O 4 powder, CaCO 3 powder, and SiO 2 powder, which are weighed so as to obtain NiZn-based ferrite having the composition shown in Table 2, are used as raw materials. Fe 2 O 3 powder, ZnO powder, CuO powder, and NiO powder were wet-mixed, dried, and calcined at a temperature of 900 ° C. for 1 hour. Each of the obtained calcined bodies was put into a ball mill together with Mn 3 O 4 powder, CaCO 3 powder, SiO 2 powder, and ion-exchanged water, and pulverized with an attritor to obtain a slurry. A part of the obtained slurry was dried and the average pulverized particle size was evaluated by an air permeation method. The average pulverized grain size was in the range of 1.7 μm to 1.9 μm. Polyvinyl alcohol was added as a binder to the remaining slurry, granulated by drying with a spray dryer, and pressure-molded to obtain each annular molded product.

各成形体を1100℃の温度、保持時間は2時間で焼結し、外径30mm×内径20mm×厚さ8mmの円環状の各NiZn系フェライト焼結体を得た。焼成雰囲気は大気中である。 Each molded body was sintered at a temperature of 1100 ° C. and a holding time of 2 hours to obtain annular NiZn-based ferrite sintered bodies having an outer diameter of 30 mm, an inner diameter of 20 mm, and a thickness of 8 mm. The firing atmosphere is in the atmosphere.

各NiZn系フェライト焼結体の密度ds、複素比透磁率μ、キュリー温度Tc、複素比透磁率μの変化率Δμmin、Δμmaxを上記の方法により測定又は算出した。得られた結果を表3示す。なお表3では、Fe、Zn、Ni、Cuを主成分とするのに対して、Mn、CaO、SiOを副成分として示している。 The density ds, the complex relative permeability μ, the Curie temperature Tc, and the rate of change Δμ min and Δμ max of the complex relative permeability μ of each NiZn-based ferrite sintered body were measured or calculated by the above method. The results obtained are shown in Table 3. In Table 3, Fe, Zn, Ni, and Cu are the main components, while Mn 3 O 4 , CaO, and SiO 2 are shown as sub-components.

Figure 2022039923000009
Figure 2022039923000009

Figure 2022039923000010
Figure 2022039923000010

実施例、比較例ともに、いずれのNiZn系フェライト焼結体も密度dsが5.15×10kg/mを超えて良好であった。また平均結晶粒径は5μm~20μmの範囲内となっていた。 In both the examples and the comparative examples, the density ds of each of the NiZn-based ferrite sintered bodies was good, exceeding 5.15 × 10 3 kg / m 3 . The average crystal grain size was in the range of 5 μm to 20 μm.

CaO量が増加すると複素比透磁率の変化率Δμmin、Δμmaxの絶対値が小さくなり、0.025質量以上0.250質量部以下の範囲とした実施例1から5では、変化率Δμminの絶対値が20%以下で、Δμmaxの絶対値が5%以下で、温度に対する複素比透磁率の変化率を大きく低減している。一方で、CaOが0.010質量部以下の比較例22、24から26では変化率Δμmin、Δμmaxが大きく、CaOが0.019質量部の比較例23では変化率Δμmin、Δμmaxは改善されるが、変化率Δμmin20%を超えた。またMnO量が0.250質量部を超える比較例22、24やSiO量が0.050質量部を超える比較例26では変化率Δμmin、Δμmaxが大きく、比較例25、26ではキュリー温度Tcが165℃未満であった。 As the amount of CaO increases, the absolute values of the complex relative permeability change rate Δμ min and Δμ max become smaller, and in Examples 1 to 5 in the range of 0.025 mass or more and 0.250 part by mass or less, the change rate Δμ min . The absolute value of is 20% or less, the absolute value of Δμ max is 5% or less, and the rate of change of the complex relative magnetic permeability with respect to temperature is greatly reduced. On the other hand, in Comparative Examples 22 and 24 to 26 in which CaO was 0.010 parts by mass or less, the rate of change was large in Δμmin and Δμmax , and in Comparative Example 23 in which CaO was 0.019 parts by mass, the rate of change was Δμmin and Δμmax . Although it was improved, the rate of change exceeded 20%. Further, in Comparative Examples 22 and 24 in which the amount of Mn 3 O 4 exceeds 0.250 parts by mass and Comparative Example 26 in which the amount of SiO 2 exceeds 0.050 parts by mass, the rate of change Δμmin and Δμmax are large, and Comparative Examples 25 and 26. The Curie temperature Tc was less than 165 ° C.

以上の説明の通り、Fe換算で47.50mol%以上48.60mol%以下、ZnO換算で29.00mol%以上30.10mol%以下のZn、CuO換算で5.50mol%以上6.50mol%以下のCu、NiO換算で14.80mol%以上18.00mol%以下のNiからなり、Fe、ZnO、NiO、CuOの合計量が100mol%であって、Fe、Zn、Ni、Cuの合計量をそれぞれFe、ZnO、NiO、CuO換算で100質量部としたとき、MnがMn換算で0.250質量部以下、CaがCaO換算で0.025質量部以上0.250質量部以下、SiがSiO換算で0.050質量部以下である、NiZn系フェライトとすることで、キュリー温度Tcが高く、温度に対する複素比透磁率μの変化率Δμmin、Δμmaxが小さいNiZn系フェライトとすることが出来る。また複雑な組織構造とする必要がないため生産性にも優れる。 As described above, Zn of 47.50 mol% or more and 48.60 mol% or less in terms of Fe 2 O 3 , 29.00 mol% or more and 30.10 mol% or less in terms of ZnO, and 5.50 mol% or more and 6.50 mol in terms of CuO. % Or less Cu, consisting of 14.80 mol% or more and 18.00 mol% or less of Ni in terms of NiO, and the total amount of Fe 2 O 3 , ZnO, NiO and CuO is 100 mol%, and Fe, Zn, Ni and Cu When the total amount of Fe 2 O 3 , ZnO, NiO, and CuO is 100 parts by mass, Mn is 0.250 parts by mass or less in Mn 3 O 4 conversion, and Ca is 0.025 parts by mass or more in CaO conversion. By using NiZn-based ferrite having 0.250 parts by mass or less and Si of 0.050 parts by mass or less in terms of SiO 2 , the Curie temperature Tc is high, and the rate of change of the complex specific magnetic permeability μ with respect to temperature is Δμmin , Δμ. NiZn-based ferrite having a small max can be used. In addition, it is excellent in productivity because it does not need to have a complicated organizational structure.

10 電子部品
21 第1磁心
22 第2磁心
30 巻線(導線)
31、32.33 端子

10 Electronic components 21 First magnetic core 22 Second magnetic core 30 Winding (conductor)
31, 32.33 terminals

Claims (2)

Fe換算で47.50mol%以上48.60mol%以下のFe、ZnO換算で29.00mol%以上30.10mol%以下のZn、CuO換算で5.50mol%以上6.50mol%以下のCu、NiO換算で14.80mol%以上18.00mol%以下のNiからなり、Fe、ZnO、NiO、CuOの合計量が100mol%であって、Fe、Zn、Ni、Cuの合計量をそれぞれFe、ZnO、NiO、CuO換算で100質量部としたとき、
MnがMn換算で0.250質量部以下、CaがCaO換算で0.025質量部以上0.250質量部以下、SiがSiO換算で0.050質量部以下である、NiZn系フェライト。
Fe 2 O 3 equivalent 47.50 mol% or more and 48.60 mol% or less Fe, ZnO equivalent 29.00 mol% or more and 30.10 mol% or less Zn, CuO equivalent 5.50 mol% or more and 6.50 mol% or less Cu , Consists of 14.80 mol% or more and 18.00 mol% or less of Ni in terms of NiO, and the total amount of Fe 2 O 3 , ZnO, NiO and CuO is 100 mol%, and the total amount of Fe, Zn, Ni and Cu is calculated. When 100 parts by mass of Fe 2 O 3 , ZnO, NiO, and CuO are converted, respectively,
NiZn-based Mn is 0.250 parts by mass or less in terms of Mn 3 O 4 , Ca is 0.025 parts by mass or more and 0.250 parts by mass or less in CaO conversion, and Si is 0.050 parts by mass or less in terms of SiO 2 . Ferrite.
請求項1に記載のNiZn系フェライトであって、
キュリー温度Tcが165℃以上であり、複素比透磁率μ25が650以上であり、
複素比透磁率μ25に対する複素比透磁率μmaxの変化率Δμmaxが絶対値で5%以下であり、
複素比透磁率μ25に対する複素比透磁率μminの変化率Δμminが絶対値で20%以下である、NiZn系フェライト。
ただし、複素比透磁率μmaxは、-40℃から150℃までの間における、周波数100kHzの条件で最も高い複素比透磁率μであり、複素比透磁率μminは、-40℃から150℃までの間における、周波数100kHzの条件で最も低い複素比透磁率μである。
また、変化率Δμmax=(μmax-μ25)/μ25 × 100(%)であり、 変化率Δμmin=(μmin-μ25)/μ25 × 100(%)である。 また複素比透磁率μ25は、周波数100kHz、温度25℃における複素比透磁率μである。
The NiZn-based ferrite according to claim 1.
The Curie temperature Tc is 165 ° C. or higher, and the complex relative permeability μ 25 is 650 or higher.
The rate of change Δμ max of the complex relative permeability μ max with respect to the complex relative permeability μ 25 is 5% or less in absolute value.
A NiZn-based ferrite having a change rate Δμmin of the complex relative permeability μ min with respect to the complex relative permeability μ 25 of 20% or less in absolute value.
However, the complex relative permeability μ max is the highest complex relative permeability μ between -40 ° C and 150 ° C under the condition of a frequency of 100 kHz, and the complex relative permeability μ min is -40 ° C to 150 ° C. The complex relative permeability μ is the lowest under the condition of a frequency of 100 kHz.
Further, the rate of change Δμ max = (μ max −μ 25 ) / μ 25 × 100 (%), and the rate of change Δμ min = ( μmin −μ 25 ) / μ 25 × 100 (%). Further, the complex relative magnetic permeability μ 25 is a complex relative magnetic permeability μ at a frequency of 100 kHz and a temperature of 25 ° C.
JP2021046745A 2020-08-28 2021-03-22 Nickel zinc-based ferrite Pending JP2022039923A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020143987 2020-08-28
JP2020143987 2020-08-28

Publications (1)

Publication Number Publication Date
JP2022039923A true JP2022039923A (en) 2022-03-10

Family

ID=80498719

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021046746A Pending JP2022039924A (en) 2020-08-28 2021-03-22 NiZn-BASED FERRITE, MAGNETIC CORE, AND NOISE FILTER USING THE SAME
JP2021046745A Pending JP2022039923A (en) 2020-08-28 2021-03-22 Nickel zinc-based ferrite

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021046746A Pending JP2022039924A (en) 2020-08-28 2021-03-22 NiZn-BASED FERRITE, MAGNETIC CORE, AND NOISE FILTER USING THE SAME

Country Status (1)

Country Link
JP (2) JP2022039924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003118A (en) * 2022-12-30 2023-04-25 北京七星飞行电子有限公司 Preparation method of low-temperature-coefficient nickel-zinc ferrite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925405A (en) * 2022-12-29 2023-04-07 西安锐磁电子科技有限公司 NiCuZn soft magnetic ferrite material with high magnetic permeability and high Curie temperature and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003118A (en) * 2022-12-30 2023-04-25 北京七星飞行电子有限公司 Preparation method of low-temperature-coefficient nickel-zinc ferrite material
CN116003118B (en) * 2022-12-30 2023-11-03 北京七星飞行电子有限公司 Preparation method of low-temperature-coefficient nickel-zinc ferrite material

Also Published As

Publication number Publication date
JP2022039924A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US9984799B2 (en) Ferrite composition and electronic component
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
US10839995B2 (en) Ferrite composition and multilayer electronic component
JP5960904B2 (en) Ferrite sintered body, ferrite core and coil component
US11373789B2 (en) Ferrite sintered body and electronic component using thereof
JP2022039923A (en) Nickel zinc-based ferrite
JP2020123616A (en) Ferrite composition and multilayer electronic component
JP2000252112A (en) Magnetic ceramic composition and inductor part using the same
JP4670435B2 (en) Ferrite sintered body, manufacturing method thereof and coil component
JP2022145508A (en) NiZn-BASED FERRITE
KR20160118974A (en) Ferrite composition and electronic component
KR102362501B1 (en) Ferrite composition and multilayer electronic component
JP5734078B2 (en) Ferrite sintered body and noise filter including the same
WO2013015074A1 (en) Ferrite sintered compact and ferrite core provided with same
JP6558505B2 (en) Ni-based ferrite sintered body, coil component, and manufacturing method of Ni-based ferrite sintered body
CN111484323B (en) Ferrite composition and laminated electronic component
CN114105624A (en) NiZn-based ferrite, magnetic core using same, and noise filter
JP5733995B2 (en) Ferrite sintered body and noise filter including the same
CN115108821A (en) NiZn-based ferrite
JP5952123B2 (en) Ferrite sintered body and noise filter including the same
JP7338183B2 (en) Ni-based ferrite and coil parts using the same
JP6079951B2 (en) Ferrite-based magnetic body, method for producing the same, and electronic component using the ferrite-based magnetic body
JP4436493B2 (en) High frequency low loss ferrite material and ferrite core using the same
JP2023180401A (en) Ferrite composition, ferrite sintered body and electronic component
CN116354715A (en) Zirconia-based setter plate, mnZn ferrite, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240215