JP2022039628A - 非接触充電システム - Google Patents

非接触充電システム Download PDF

Info

Publication number
JP2022039628A
JP2022039628A JP2020144759A JP2020144759A JP2022039628A JP 2022039628 A JP2022039628 A JP 2022039628A JP 2020144759 A JP2020144759 A JP 2020144759A JP 2020144759 A JP2020144759 A JP 2020144759A JP 2022039628 A JP2022039628 A JP 2022039628A
Authority
JP
Japan
Prior art keywords
power
coil
inverter
relay
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020144759A
Other languages
English (en)
Inventor
大輔 鈴木
Daisuke Suzuki
義信 杉山
Yoshinobu Sugiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2020144759A priority Critical patent/JP2022039628A/ja
Publication of JP2022039628A publication Critical patent/JP2022039628A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】中継装置を備える非接触充電システムであって、中継コイルと受電コイルの間の相互インダクタンスが大きく変動する場合であっても、インバータの出力の過電流、過電圧を防止することが可能な非接触充電システムを提供する。【解決手段】この非接触充電システムは、電源から給電される電力を送電コイルで送電する送電装置と、送電コイルにより送電される電力を受電コイルで受電する受電装置と、送電装置と受電装置の間に配置され送電コイルから受電コイルに送電される電力を中継コイルで中継する中継装置と、制御装置とを備える。送電装置は、インバータの出力側に並列に接続され、導通か非導通かを切り替えることが可能なキャパシタを含んでいる。制御装置は、中継コイルと受電コイルの間の相互インダクタンスが相当程度大きいことを検出した場合に、キャパシタを非導通とする。【選択図】図1

Description

本発明は、バッテリを電源と非接触で充電する非接触充電システムに関する。
非接触充電システムにおいて、電力を非接触で受電する受電装置は、一般にバッテリを備える車両、ドローン等の移動体に搭載される。一方で、電源から給電される電力を送電する送電装置は、一般に地面、路面、床面等に定置され、1つの送電装置が多数の移動体を対象として充電を行う場合が考えられる。
従って、送電装置のコイル(送電コイル)に対する受電装置のコイル(受電コイル)の位置(以下単に「受電コイルの位置」とも称する。)は、充電を行う都度変動する。受電コイルの位置が変動すると、コイル間の相互インダクタンス及び結合係数が変動し、延いては送電装置に含まれるインバータの入力インピーダンスが変動することとなる。これにより、インバータ出力の過電流、過電圧を引き起こし、充電が正常に行えなくなる虞がある。またインバータ出力の力率が低下し、電力の伝送効率が低下する虞がある。
このような受電コイルの位置の変動に伴う充電効率の低下が課題となっており、これまで充電効率を改善するための様々な技術が提案されている。
特許文献1には、広い結合係数の変動範囲に対してインバータの出力力率を向上させることができる非接触充電システムが開示されている。この非接触充電システムでは、送電装置の共振回路に並列に接続される容量性リアクタンス調整部と、直列に接続されるインダクタを備えている。結合係数が大きくなるに従って、共振回路の端子間の容量性リアクタンスと、インバータと容量性リアクタンス調整部との間の誘導性リアクタンスの差を小さくすることで、インバータ出力の力率を向上させることができる。
特開2019-193431号公報
昨今、送電装置と受電装置との間に、送電される電力を中継する中継装置を備える非接触充電システムが注目されている。中継装置を備えることで、送電距離の拡大や充電効率の向上、延いては送電装置及び受電装置の小型化が可能となる。
しかしながら、中継装置を備える非接触充電システムでは、コイル間の距離が小さくなるために、受電コイルの位置の変動に伴う中継コイルと受電コイルの間の相互インダクタンス(以下「中継/受電間相互インダクタンス」とも称する。)の変動が大きく、インバータの入力インピーダンスの変動が大きくなる。このような大きな変動に対して、従来技術は十分ではなく、インバータ出力の過電流、過電圧が依然として課題となっている。
本発明は、上述の課題を鑑みてなされたもので、中継装置を備える非接触充電システムであって、受電コイルの位置が変動し中継/受電間相互インダクタンスが大きく変動する場合であっても、インバータの出力の過電流、過電圧を防止することが可能な非接触充電システムを提供することを目的とする。
本発明に係る非接触充電システムは、バッテリを電源と非接触で充電する非接触充電システムであって、送電装置と、受電装置と、中継装置と、制御装置とを備える。
送電装置は、電源から給電される電力を送電コイルで送電する装置である。送電装置は、直流電力を交流電力に変換するインバータと、キャパシタとを含んでいる。キャパシタは、インバータの出力側に並列に接続され、導通か非導通かを切り替えることが可能である。
受電装置は、送電コイルにより送電される電力を受電コイルで受電する装置である。中継装置は、送電装置と受電装置の間に配置され、送電コイルから受電コイルに送電される電力を中継コイルで中継する装置である。
制御装置は、中継コイルと受電コイルとの間の相互インダクタンスが相当程度大きいことを検出した場合に、キャパシタの接続をオフにする。
本発明によれば、中継/受電間相互インダクタンスが相当程度大きいことを検出した場合には、インバータの出力側に並列に接続されるキャパシタが非導通となる。これにより、インバータの入力インピーダンス(以下単に「入力インピーダンス」とも称する。)を大きく調整することができる。従って、受電装置の位置が変動することに伴う入力インピーダンスの大きな変動を抑制し、延いてはインバータ出力の過電流、過電圧を防止することができる。
本実施の形態に係る非接触充電システムの構成を説明するための回路図である。 図1に示す制御装置140の処理を示すフローチャートである。 図1に示す制御装置140の処理を示すフローチャートである。 中継コイルと受電コイルとの間の距離が最小となるときに、インバータ電流及びインバータ電圧について、SW1をオンとした場合とSW1をオフとした場合の比較を示すグラフである。 本実施の形態に係る非接触充電システムの変形例1の構成を説明するための回路図である。 本実施の形態に係る非接触充電システムの変形例2の構成を説明するための回路図である。
以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施形態において各要素の個数、数量、量、範囲などの数に言及した場合、特に明示した場合や原理的に明らかにその数が特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造などは、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
1.構成例
図1は、本実施の形態に係る非接触充電システム10の構成を説明するための回路図である。非接触充電システム10は、送電装置100と、中継装置200と、受電装置300と、電源400と、バッテリ500とを含んでいる。
送電装置100及び電源400は、典型的には、地面、路面、床面等に定置される。受電装置300及びバッテリ500は、典型的には、充電対象となる移動体に搭載されている。
図1には、1つの受電装置300及びバッテリ500が示されているが、充電対象となる移動体が複数ある場合には、それぞれの移動体に図1に示す受電装置300及びバッテリ500が搭載される。この場合に、受電装置を備える位置が異なる複数の移動体を充電するときや、移動体を充電する位置が刻々異なるとき等において、受電コイルの位置が変動することとなる。
送電装置100、中継装置200、及び受電装置300の各装置に含まれるコイルが互いに磁界共振することにより、受電装置300は、中継装置200を介して、送電装置100から非接触で電力を受電する。
電源400は、送電装置100と接続し、送電装置100に電力を給電する。電源400は、例えば電圧100V、周波数50Hzの商用電源である。バッテリ500は、受電装置300と接続し、受電装置300から電力が充電される。バッテリ500は、例えばリチウムイオン電池やニッケル水素電池等の二次電池を含む再充電可能な直流電源である。
送電装置100は、送電コイル部101と、インピーダンス調整部102と、ACDC変換部110と、インバータ120とを備えている。ACDC変換部110と、インバータ120と、インピーダンス調整部102と、送電コイル部101とはそれぞれ縦続接続するように構成されている。
ACDC変換部110は、電源400から供給される交流電力を整流及び変圧し、インバータ120へ直流電力を出力する。ACDC変換部110は、例えばダイオード及びコンデンサを含んだ整流回路と、半導体スイッチング素子(IGBTやMOSFET等)を含んだ昇降圧回路により構成される。ACDC変換部110は、後述する制御装置140により半導体スイッチング素子が制御されることで、出力電圧、駆動、及び停止の制御が行われる。
インバータ120は、ACDC変換部110から出力される直流電力を所定周波数の交流電力に変換し、送電コイル部101へ交流電力を出力する。
インバータ120は、出力する交流電力の周波数が、後述する受電コイル部301の共振周波数と一致するように直流電力を変換する。インバータ120が出力する交流電力の周波数は、例えば、85kHz程度の高周波である。以下、インバータ120が出力する交流電力の周波数(受電コイル部301の共振周波数)を「f」で表す。
インバータ120は、例えば複数の半導体スイッチング素子及び帰還ダイオードを含む単相フルブリッジ回路により構成される。インバータ120は、後述する制御装置140によりパルス幅変調(PWM;Pulse Width Modulation)制御が行われることで、直流電力を共振周波数fの交流電力に変換する。またインバータ120は、制御装置140により、駆動及び停止の制御が行われる。
送電コイル部101は、送電コイルL1とキャパシタC1により構成される共振回路である。図1では、送電コイルL1とキャパシタC1を直列に接続する直列共振回路が示されているが、送電コイルL1とキャパシタC1を並列に接続する並列共振回路であっても良い。
送電コイル部101は、共振周波数がfとなるように構成されている。送電コイル部101は、インバータ120から共振周波数fで出力される電力によって、後述する中継コイル部201と磁界共振し、中継コイル部201に電力を送電する。
インピーダンス調整部102は、インダクタLFと、キャパシタCF1により構成されている。インダクタLFはインバータ120の出力側に直列に接続される。キャパシタCF1はインバータ120の出力側に並列に接続される。
インピーダンス調整部102は、さらにスイッチSW1を含んでいる。スイッチSW1のオンオフを切り替えることで、キャパシタCF1の導通状態を切り替えることができる。つまり、スイッチSW1がオンのとき、キャパシタCF1は導通となり、スイッチSW1がオフのとき、キャパシタCF1は非導通となる。
インピーダンス調整部102は、制御装置140によりスイッチSW1のオンオフの切り替え制御が行われることで、インバータ120の入力インピーダンスを調整する。制御装置140によるスイッチSW1のオンオフの切り替え制御の詳細については後述する。
送電装置100には、いくつかのセンサが備えられている。センサ141は、電流センサでインバータの出力電流を検出する。センサ142は、電流センサでACDC変換部110の出力電流を検出する。センサ143は、電圧センサでインバータ120の入力電圧を検出する。
インピーダンス調整部102と、ACDC変換部110と、インバータ120と、送電装置100に備える各センサは、制御装置140と接続している。また制御装置140は、通信装置150と接続している。
制御装置140は、送電装置100に備える各センサの検出値の情報と、通信装置150から取得する情報を入力とし、これらの情報に基づいてインピーダンス調整部102、ACDC変換部110,及びインバータ120に対する制御信号を生成し出力する。これにより、入力インピーダンスの調整、ACDC変換部110及びインバータ120の出力電力の制御を行い、延いてはバッテリ500の充電電力を調整する。また制御装置140は、取得する各センサの検出値の情報及び制御信号の情報を通信装置150に出力する。
制御装置140は、メモリと、プロセッサとを備えている。メモリはデータを一時的に記録するRAM(Random Access Memory)と、プロセッサで実行可能な制御プログラムや制御プログラムに関する種々のデータを保存するROM(Read Only Memory)とを含んでいる。制御装置140が入力する情報は、メモリに記憶される。プロセッサは、制御プログラムやデータをメモリから読み出して実行し、読み出される情報に基づいて制御信号を生成する。
通信装置150は、後述する通信装置250及び通信装置350と情報を互いに通信することができるように構成されている。通信装置150は、制御装置140から取得する情報を、通信装置250及び通信装置350へ出力し、通信装置250及び通信装置350から取得する情報を、制御装置140へ出力する。
制御装置140及び通信装置150は、図1に示されるように、送電装置100に備えられる。あるいは、送電装置100の外部に備えられ、無線で入出力の通信を行うように構成されていても良い。
中継装置200は、中継コイル部201を備えている。中継装置200は、送電装置100と受電装置300との間に配置される。
中継コイル部201は、中継コイルL2とキャパシタC2により構成される共振回路である。図1では、中継コイルL2とキャパシタC2を直列に接続する直列共振回路が示されているが、中継コイルL2とキャパシタC2を並列に接続する並列共振回路であっても良い。
中継コイル部201は、共振周波数がfとなるように構成されている。中継コイル部201は、送電コイル部101から共振周波数fで送電される電力によって、送電コイル部101及び受電コイル部301と磁界共振し、送電コイル部101から電力を受電して受電コイル部301に電力を送電する。つまり、中継コイル部201は、送電コイル部101から受電コイル部301に送電される電力を中継する。
中継装置200には、センサ241が備えられている。センサ241は、電流センサで中継コイルL2に流れる電流を検出する。センサ241は、検出装置240と接続している。また検出装置240は、通信装置250と接続している。
検出装置240は、センサ241の検出値の情報を通信装置250に出力する。通信装置250は、前述するように、通信装置150及び通信装置350と情報を互いに通信することができるように構成されている。通信装置250は、検出装置240から取得する情報を、通信装置150及び通信装置350へ出力し、通信装置150及び通信装置350から取得する情報を、検出装置240へ出力する。
検出装置240及び通信装置250は、図1に示されるように、中継装置200に備えられる。あるいは、中継装置200の外部に備えられ、無線で入出力の通信を行うように構成されていても良い。
受電装置300は、受電コイル部301と、フィルタ部310と、整流部320とを備えている。受電コイル部301と、フィルタ部310と、整流部320とはそれぞれ縦続接続するように構成されている。
受電コイル部301は、受電コイルL3とキャパシタC3により構成される共振回路である。図1では、受電コイルL3とキャパシタC3を直列に接続する直列共振回路が示されているが、受電コイルL3とキャパシタC3を並列に接続する並列共振回路であっても良い。
受電コイル部301は、中継コイル部201から共振周波数fで送電される電力によって、中継コイル部201と磁界共振し、中継コイル部201から電力を受電する。
フィルタ部310は、受電コイル部301が受電する電力の電磁ノイズを低減する。フィルタ部310は、例えばインダクタとキャパシタにより構成されるローパスフィルタである。
整流部320は、受電コイル部301が受電する電力を平滑化された直流電力に変換して出力する。整流部320から出力される直流電力がバッテリ500の充電電力となる。整流部320は、例えば複数のダイオードによる単相全波整流回路と、平滑化コンデンサにより構成される。
受電装置300には、いくつかのセンサが備えられている。センサ341は、電流センサで受電コイルL3に流れる電流を検出する。センサ342は、電流センサで整流部320の出力電流を検出する。センサ343は、電圧センサでバッテリ500の電圧を検出する。
受電装置300に備える各センサは、制御装置340と接続している。また制御装置340は、通信装置350と接続している。
制御装置340は、受電装置300に備える各センサの検出値の情報と、通信装置350から取得する情報を入力とし、これらの情報に基づいてバッテリ500の充電電力や、充電電力の指令値(充電電力指令値)を算出し出力する。また制御装置340は、取得する各センサの検出値の情報及び算出した値を通信装置350に出力する。
制御装置340の構成は、制御装置140と同等である。制御装置340が入力する情報は制御装置340のメモリに記憶され、制御装置340のプロセッサは、制御プログラムやデータをメモリから読み出して実行し、読み出される情報に基づいて充電電力や充電電力の指令値を算出する。
通信装置350は、前述するように、通信装置150及び通信装置250と情報を互いに通信することができるように構成されている。通信装置350は、制御装置340から取得する情報を、通信装置150及び通信装置250へ出力し、通信装置150及び通信装置250から取得する情報を、制御装置340へ出力する。
通信装置150、通信装置250、及び通信装置350により、制御装置140、検出装置240、及び制御装置340の間で共有される情報は、送電装置100の各センサの検出値及び制御装置140の制御信号の情報と、センサ241の検出値の情報と、受電装置300の各センサの検出値及び制御装置340の出力の情報である。さらに、その他の非接触充電システム10の情報を含んでいる。
その他の非接触充電システム10の情報とは、送電装置100、中継装置200、及び受電装置300の情報(各装置に含まれる回路素子のパラメータや充電対象となる移動体の構成情報等)、各装置の故障等により充電が継続できないことを通知するエラー情報、通信装置が図示されていない情報伝達路を通じて取得する非接触充電システムに関する情報等である。
2.機能
2-1.入力インピーダンスの調整
本実施の形態に係る非接触充電システム10は、制御装置140が、スイッチSW1のオンオフを切り替えることで、インバータ120の入力インピーダンスを調整する。
制御装置140によるスイッチSW1のオンオフの切り替えは、中継/受電間相互インダクタンスが相当程度大きいことを検出した場合に、スイッチSW1をオフ(キャパシタCF1を非導通)とするように行われる。逆に、中継/受電間相互インダクタンスが相当程度大きいことが検出されない場合は、スイッチSW1はオン(キャパシタCF1を導通)となる。
また、中継/受電間相互インダクタンスが相当程度大きいか否かの検出は、インバータ120の出力電流に基づいて行われる。中継/受電間相互インダクタンスが増加すると、インバータ120の入力インピーダンスは減少し、インバータ120の出力電流が増加する。従って、インバータ120の出力電流が所定の値を超過しているか否かを判定することで、中継/受電間相互インダクタンスが相当程度大きいか否かを検出する。
このようにインバータ120の出力電流に基づいて検出を行うことは、中継/受電間相互インダクタンスを常時算出するための新たな構成を要せず、コスト低減の効果がある。
キャパシタCF1を非導通とすることにより、インピーダンス調整部のキャパシタンスが減少し、延いてはインバータ120の入力インピーダンスを増加させることができる。このとき、キャパシタCF1を非導通とすることはキャパシタンスの変動量が大きいため、インバータ120の入力インピーダンスは大きく増加する。
従って本実施の形態に係る非接触充電システム10は、キャパシタCF1を非導通とすることで、中継/受電間相互インダクタンスが増加することに伴う入力インピーダンスの減少を抑えることができる。特に、受電コイルL3の位置が変動し中継/受電間相互インダクタンスが大きく変動する場合であっても、入力インピーダンスの大きな減少を抑制することができる。
2-2.送電装置に対する制御装置の処理
スイッチSW1のオンオフの切り替えを含む送電装置100に対する制御は、制御装置140により行われる。以下、制御装置140の処理について説明する。
図2及び図3は、制御装置140の処理を示すフローチャートである。図2及び図3に示すA、B、C、Dは、図2と図3の間で対応しており、図2及び図3は1つのフローチャートを示している。制御装置140は、非接触充電システム10が充電を開始したとき、図2及び図3に示される処理を実行する。例えば、電源400と送電装置100が、充電ケーブルで接続されたときである。なお処理を開始するとき、スイッチSW1はオンである。
ステップS110において、制御装置140は、充電対象及び充電情報の照合を行う。
充電対象の照合とは、充電対象とする移動体の情報から、移動体が充電対象として適しているか否かを判断するものである。例えば、移動体の規格が、非接触充電システム10が想定する規格と合致しているか否かを照合する。
充電情報の照合とは、バッテリ500の充電状態やバッテリ500の充電電力指令値等、充電を開始するために必要な情報を取得するものである。
ステップS110の処理の後、処理はステップS120に進む。
ステップS120において、制御装置140は、インバータ120の駆動周波数を最小値に設定する。ステップS120の処理の後、処理はステップS130に進む。
ステップS130において、制御装置140は、インバータ120の出力電圧を最小値に設定する。ステップS130の処理の後、処理はステップS140に進む。
ステップS140において、制御装置140は、充電電力指令値が0より大きい値であるか否かを判定する。つまり、バッテリ500の充電を行う必要があるか否かを判定する。充電を行う必要がある場合(ステップS140;Yes)、処理はステップS
150に進む。充電を行う必要が無い場合(ステップS140;No)、処理を終了する。
ステップS150において、制御装置140は、設定された駆動周波数及び出力電圧となるように、ACDC変換部110及びインバータ120を駆動する。ステップS150の処理の後、処理はステップS160に進む。
ステップS160において、制御装置140は、送電装置100に備える各センサから各部の電圧及び電流を検出する。制御装置140は、更に通信装置150を介して、エラー情報と、バッテリ500の充電情報を取得し、情報の更新を行う。充電情報には、制御装置340により算出されるバッテリ500の充電電力及び充電電力指令値が含まれる。ステップS160の処理の後、処理はステップS170に進む。
ステップS170において、制御装置140は、エラーが発生していないか判定する。エラーが発生していない場合(ステップS170;Yes)、処理はステップS180に進む。エラーが発生している場合(ステップS170;No)、処理を終了する。
ステップS180において、制御装置140は、各部の電圧及び電流の値が許容値であるか否かを判定する。ここで、許容値とは、プログラムにあらかじめ与えられる所定の値を超過しない値である。各部の電圧及び電流の値が許容値である場合(ステップS180;Yes)、処理はステップS190に進む。各部の電圧及び電流の値が許容値でない場合(ステップS180;No)、処理はステップS181に進む。
ステップS181において、制御装置140は、インバータ120の出力電流が許容値であるか否かを判定する。前述するように、インバータ120の出力電流が許容値でない(所定の値を超過する)ことは、中継/受電間相互インダクタンスが相当程度大きいことを示す。
インバータ120の出力電流が許容値である(中継/受電間相互インダクタンスが相当程度大きくない)場合(ステップS181;Yes)、処理はステップS211に進む。インバータ120の出力電流が許容値でない(中継/受電間相互インダクタンスが相当程度大きい)場合(ステップS181;No)、処理はステップS182に進む。
ステップS182において、制御装置140は、ACDC変換部110と、インバータ120を停止する。つまり、充電を一時的に停止させる。ステップS182の処理の後、処理はステップS183に進む。
ステップS183において、制御装置140は、スイッチSW1をオフにする。つまり、キャパシタCF1を非導通とする。ステップS183の処理の後、処理はステップ140に戻り充電を再開する。
ステップS190において、制御装置140は、充電電力指令値と充電電力を比較し、充電電力指令値に対して実際の充電電力が乖離しているか否かを判定する。つまり、実際の充電電力が十分であるか否かを判定する。充電電力が十分でない場合(ステップS190;Yes)、処理はステップS200に進む。充電電力が十分である場合(ステップS190;No)、処理はステップS140に戻り処理を継続する。
ステップS200において、制御装置140は、インバータ120の出力電圧の設定値を増加させる。これにより、充電電力を増加させる。ステップS200の処理の後、処理はステップS210に進む。
ステップS210において、制御装置140は、インバータの出力電圧の設定値がインバータの最大出力電圧以下であるか否かを判定する。最大出力電圧以下である場合(ステップS210;Yes)、処理はステップS140に戻り処理を継続する。最大出力電圧以下でない場合(ステップS210;No)、処理はステップS211に進む。
ステップS211において、制御装置140は、インバータの駆動周波数を増加させる。ステップS211の処理の後、処理はステップS212に進む。
ステップS212において、制御装置140は、インバータの駆動周波数が許容値であるか否かを判定する。インバータの駆動周波数が許容値である場合(ステップS212;Yes)、処理はステップS130に戻り処理を継続する。インバータの駆動周波数が許容値でない場合(ステップS212;No)、つまり充電電力指令値となるように充電電力を与えることができない場合、処理はステップS213に進む。
ステップS213において、制御装置140は、充電電力指令値を減少させるように制御装置340に対して要求する。ステップS213の処理の後、処理はステップS120に戻り処理を継続する。
3.効果
以上説明したように、本実施の形態に係る非接触充電システム10は、中継/受電間相互インダクタンスが相当程度大きいことが検出される場合に、キャパシタCF1を非導通とする。これにより、受電コイルL3の位置の変動により、中継/受電間相互インダクタンスが大きく増加する場合であっても、インバータ120の入力インピーダンスの大きな減少を抑制することができ、インバータ120の出力の過電流、過電圧を防止することができる。また、インバータ120の出力の力率の低下を抑制することができる。
図4は、中継コイルL2と受電コイルL3との間の距離が、非接触充電システム10が想定する環境の中で最小となるときに、インバータの出力の電流(インバータ電流)及びインバータの出力の電圧(インバータ電圧)について、SW1をオンとした場合とSW1をオフとした場合の比較を示すグラフである。つまり、中継/受電間相互インダクタンスが最も大きくなるときの比較である。
図4に示されるように、SW1をオフ(キャパシタCF1を非導通)とすることで、インバータ電流及びインバータ電圧の両方を低減できることがわかる。
4.本実施の形態に係る非接触充電システムの変形例
本実施の形態に係る非接触充電システム10は、以下のように変形した態様を採用しても良い。
4-1.変形例1
インピーダンス調整部102は、導通状態を切り替えることが可能な複数のキャパシタにより構成されていても良い。図5は、変形例1に係る非接触充電システム10の構成を説明するための回路図である。
図5に示されるように、インピーダンス調整部102は、インダクタLFと、2つのキャパシタCF1及びCF2により構成されている。インピーダンス調整部102は、スイッチSW1及びSW2を含んでおり、スイッチSW1及びSW2それぞれのオンオフを切り替えることにより、キャパシタCF1及びCF2それぞれの導通状態を切り替えることができる。
図5では、インピーダンス調整部102は、スイッチSW1及びSW2により導通状態を切り替えることが可能な2つのキャパシタCF1及びCF2により構成されているが、さらに多くの導通状態を切り替えることが可能なキャパシタにより構成されていても良い。
4-2.変形例2
インダクタLFは、導通か短絡かを切り替えることができるように構成されていても良い。図6は、変形例2に係る非接触充電システム10の構成を説明するための回路図である。
図6に示されるように、インダクタLFにはスイッチSW3が接続されており、スイッチSW3のオンオフを切り替えることにより、インダクタLFを導通するか短絡するかを切り替えることができる。
4-3.効果
このように変形した態様を採用することにより、インピーダンス調整部102において各スイッチのオンオフ状態の組み合わせを多様に切り替えることで、インバータ120の入力インピーダンスをより多様に調整することができる。これにより、インバータ120の出力の電流を多様に調整することができ、インバータ120の過電流、過電圧の防止のロバスト性を高めることができる。
10 非接触充電システム
100 送電装置
101 送電コイル部
102 インピーダンス調整部
120 インバータ
140 制御装置
150 通信装置
200 中継装置
201 中継コイル部
240 検出装置
250 通信装置
300 受電装置
301 受電コイル部
310 フィルタ部
320 整流部
340 制御装置
350 通信装置
400 電源
500 バッテリ
CF1 キャパシタ
SW1 スイッチ

Claims (1)

  1. バッテリを電源と非接触で充電する非接触充電システムであって、
    前記電源から給電される電力を送電コイルで送電する送電装置であって、
    直流電力を交流電力に変換するインバータと、
    前記インバータの出力側に並列に接続され、導通か非導通かを切り替えることが可能なキャパシタと、
    を含む送電装置と、
    前記送電コイルにより送電される電力を受電コイルで受電する受電装置と、
    前記送電装置と前記受電装置の間に配置され、前記送電コイルから前記受電コイルに送電される電力を中継コイルで中継する中継装置と、
    前記中継コイルと前記受電コイルとの間の相互インダクタンスが相当程度大きいことを検出した場合に、前記キャパシタを非導通とする制御装置と、
    を備える
    ことを特徴とする非接触充電システム。
JP2020144759A 2020-08-28 2020-08-28 非接触充電システム Pending JP2022039628A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020144759A JP2022039628A (ja) 2020-08-28 2020-08-28 非接触充電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020144759A JP2022039628A (ja) 2020-08-28 2020-08-28 非接触充電システム

Publications (1)

Publication Number Publication Date
JP2022039628A true JP2022039628A (ja) 2022-03-10

Family

ID=80499153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020144759A Pending JP2022039628A (ja) 2020-08-28 2020-08-28 非接触充電システム

Country Status (1)

Country Link
JP (1) JP2022039628A (ja)

Similar Documents

Publication Publication Date Title
US20170187243A1 (en) Contactless Electric Power Transmission Device and Electric Power Transfer System
US10076966B2 (en) Contactless power transmission device, contactless power reception device, and contactless power transmission system
EP3157118B1 (en) Power-transmitting device and contactless power-supplying system
WO2015182335A1 (ja) 非接触給電システム、受電装置及び送電装置
KR20140018373A (ko) 비접촉 수전 장치 및 이를 구비한 차량, 비접촉 송전 장치, 및 비접촉 전력 전송 시스템
CN109391043B (zh) 无线电力接收设备
JP6904280B2 (ja) 非接触給電装置
US11303157B2 (en) Power transmitting device and power receiving device
KR20180087166A (ko) 송전 장치 및 전력 전송 시스템
JP7003708B2 (ja) 非接触給電装置
JP6176547B2 (ja) 非接触給電装置及び非接触給電装置の始動方法
JP6927113B2 (ja) 非接触給電装置
US20210175009A1 (en) Wireless Power Transmission with Current-Limiting Coil
KR101996966B1 (ko) 무전전력전송 시스템 및 이의 구동 방법.
WO2020203689A1 (ja) 送電装置および無線電力伝送システム
JP2022039628A (ja) 非接触充電システム
JP6269570B2 (ja) 非接触送電装置
JP7021007B2 (ja) 非接触受電装置
JP6981212B2 (ja) 非接触送電装置及び電力伝送システム
US20180123399A1 (en) Inductive power transfer
JP6911594B2 (ja) 非接触電力伝送システム
JP2022049475A (ja) 非接触充電システム
JP6372444B2 (ja) 非接触送電装置
CN110875639A (zh) 电力传输装置、电力接收装置和电力传输装置的控制方法
JP7373776B2 (ja) 受電装置、移動体、および無線電力伝送システム