JP2022039175A - Antenna and radio communication device - Google Patents

Antenna and radio communication device Download PDF

Info

Publication number
JP2022039175A
JP2022039175A JP2020144067A JP2020144067A JP2022039175A JP 2022039175 A JP2022039175 A JP 2022039175A JP 2020144067 A JP2020144067 A JP 2020144067A JP 2020144067 A JP2020144067 A JP 2020144067A JP 2022039175 A JP2022039175 A JP 2022039175A
Authority
JP
Japan
Prior art keywords
conductor
opening
antenna
opposing
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020144067A
Other languages
Japanese (ja)
Other versions
JP7184436B2 (en
Inventor
辰也 松浦
Tatsuya Matsuura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
NEC Platforms Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Platforms Ltd filed Critical NEC Platforms Ltd
Priority to JP2020144067A priority Critical patent/JP7184436B2/en
Publication of JP2022039175A publication Critical patent/JP2022039175A/en
Application granted granted Critical
Publication of JP7184436B2 publication Critical patent/JP7184436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

To provide an antenna etc. operated at a plurality of arbitrary frequencies and capable of individually controlling an operating frequency.SOLUTION: An antenna 10 includes: a GND plate 1 having an opening formed inside; a first split part 31 composed of two opposite conductors 311, 312 which are arranged inside the opening in a manner to face each other with a predetermined gap, and two connection conductors 313, 314 which connect each of the two opposite conductors to the outer periphery of the opening; a second split part 32 composed of two opposite conductors 321, 322 which are arranged inside the opening in a manner to face each other with a predetermined gap, and two connection conductors 323, 324 which connect each of the two opposite conductors to the outer periphery of the opening; and a power supply conductor 4 connected to one side of the opening. The antenna can be operated at a plurality of operating frequencies.SELECTED DRAWING: Figure 1

Description

本発明はアンテナおよび無線通信装置に関する。 The present invention relates to an antenna and a wireless communication device.

近年の無線機器においては小型化の進展速度が著しく、無線機器内部のプリント基板も高密度実装となり、無線機器に搭載するアンテナについても、より柔軟に種々の位置に配置することができ、かつ、さらなる小型化の確保が強く望まれるようになってきている。 In recent years, the progress of miniaturization of wireless devices has been remarkable, the printed circuit boards inside the wireless devices have become high-density mounting, and the antennas mounted on the wireless devices can be more flexibly placed at various positions. There is a strong demand for further miniaturization.

以下に、アンテナ装置に関連する現状の技術について、図面を参照して説明する。図18は特許文献1に示すアンテナ装置100の構成を示す図である。小型アンテナは、GND板101の内部の自由な位置に配置可能である。GND板101の外周のいずれの辺とも接しないように開口部102(図20では開口部1020~1022)をGND板101の内部に形成する。開口部102の内部にスプリット部103を配置する。開口部102の一辺に給電導体104の一端を接続し、給電導体104の他端は給電部105に接続する。給電部105は、給電導体104を介して交流電力を給電する。こうして並列スプリットリング共振器106が構成される。 The current technology related to the antenna device will be described below with reference to the drawings. FIG. 18 is a diagram showing the configuration of the antenna device 100 shown in Patent Document 1. The small antenna can be arranged at any position inside the GND plate 101. An opening 102 (openings 1020 to 1022 in FIG. 20) is formed inside the GND plate 101 so as not to touch any side of the outer circumference of the GND plate 101. The split portion 103 is arranged inside the opening 102. One end of the feeding conductor 104 is connected to one side of the opening 102, and the other end of the feeding conductor 104 is connected to the feeding portion 105. The feeding unit 105 supplies AC power via the feeding conductor 104. In this way, the parallel split ring resonator 106 is configured.

図19は図18の並列スプリットリング共振器106を拡大した図である。図19を参照して図18のスプリット部103の詳細な構成を説明する。GND板101に形成した開口部102の内部に、第1のスプリット部導体1031と第2のスプリット部導体1032を互いに離して対向するように配置する。第1のスプリット部導体1031は、第3のスプリット部導体1033を介して開口部102の1辺に接続される。同様に第2のスプリット部導体1032は、第4のスプリット部導体1034を介して開口部102の他の1辺に接続される。こうして、スプリット部103が構成されている。さらに、第3のスプリット部導体1033および第4のスプリット部導体1034と平行に配置した給電導体104の一端を開口部102の1辺と接続し、他端を給電部105と接続する。給電部105は、給電導体104等を介して、スプリット部103に交流電力を給電する。 FIG. 19 is an enlarged view of the parallel split ring resonator 106 of FIG. A detailed configuration of the split portion 103 of FIG. 18 will be described with reference to FIG. Inside the opening 102 formed in the GND plate 101, the first split portion conductor 1031 and the second split portion conductor 1032 are arranged so as to be separated from each other and face each other. The first split portion conductor 1031 is connected to one side of the opening 102 via the third split portion conductor 1033. Similarly, the second split portion conductor 1032 is connected to the other side of the opening 102 via the fourth split portion conductor 1034. In this way, the split portion 103 is configured. Further, one end of the feeding conductor 104 arranged in parallel with the third split portion conductor 1033 and the fourth split portion conductor 1034 is connected to one side of the opening 102, and the other end is connected to the feeding portion 105. The power feeding unit 105 supplies AC power to the split unit 103 via the power feeding conductor 104 and the like.

図20は図18及び図19で示したアンテナの動作周波数における電流の流れを模式的に表わした図である。図20では、電流の流れを点線の矢印で示している。電流Iは、給電導体104と、第3のスプリット部導体1033と、第1のスプリット部導体1031と、第2のスプリット部導体1032と、第4のスプリット部導体1034と、開口部102の外周の一部(開口部1021)で構成されるループ状の経路を流れる。電流Iは、第3のスプリット部導体1033と、第1のスプリット部導体1031と、第2のスプリット部導体1032と、第4のスプリット部導体1034と、給電導体104とは反対側の開口部112の外周の一部(開口部1022)で構成されるループ状の経路を流れる。この電流IおよびIは、波源として電磁波を放射する。 FIG. 20 is a diagram schematically showing the current flow at the operating frequency of the antenna shown in FIGS. 18 and 19. In FIG. 20, the current flow is indicated by a dotted arrow. The current I 1 is the feeding conductor 104, the third split conductor 1033, the first split conductor 1031, the second split conductor 1032, the fourth split conductor 1034, and the opening 102. It flows through a loop-shaped path composed of a part of the outer circumference (opening 1021). The current I 2 is the opening of the third split conductor 1033, the first split conductor 1031, the second split conductor 1032, the fourth split conductor 1034, and the feed conductor 104 on the opposite side. It flows through a loop-shaped path composed of a part of the outer periphery of the portion 112 (opening 1022). The currents I 1 and I 2 radiate an electromagnetic wave as a wave source.

図21は、図18及び図19で示した並列スプリットリング共振器の等価回路を示す回路図である。
等価回路は、電流Iが流れる経路で等価的に構成されるコイル部分L1と、電流Iが流れる経路で等価的に構成されるコイル部L2と、第1のスプリット部導体1031と第2のスプリット部導体1032で等価的に構成されるコンデンサ部Cとで構成される。つまり、等価回路は、等価的に直列共振回路を2つ並列に接続した構成(図21参照)となる。この共振回路の共振周波数により、本例に示すアンテナの動作周波数が決定される。
FIG. 21 is a circuit diagram showing an equivalent circuit of the parallel split ring resonator shown in FIGS. 18 and 19.
The equivalent circuit consists of a coil portion L1 equivalently configured in the path through which the current I 1 flows, a coil portion L2 equivalently configured in the path through which the current I 2 flows, and a first split portion conductor 1031 and a second. It is composed of a capacitor portion C equivalently configured by the split portion conductor 1032. That is, the equivalent circuit has a configuration in which two series resonant circuits are equivalently connected in parallel (see FIG. 21). The operating frequency of the antenna shown in this example is determined by the resonance frequency of this resonance circuit.

図22は、図18及び図19に示したアンテナのインピーダンス特性を示す。これはスミスチャートを用いて周波数に対するインピーダンスの軌跡を示した図である。インピーダンスの軌跡がスミスチャートの中心に最接近する点、または中心を通る水平線と交差する点がアンテナの動作周波数である。 FIG. 22 shows the impedance characteristics of the antennas shown in FIGS. 18 and 19. This is a diagram showing the trajectory of impedance with respect to frequency using a Smith chart. The point where the impedance locus is closest to the center of the Smith chart or the point where it intersects the horizon passing through the center is the operating frequency of the antenna.

図23は、図18及び図19に示したアンテナのリターンロス特性を示す。リターンロスとは図22に示したインピーダンス特性と全く同じ測定をするもので、単にチャート(図表)が異なるだけである。インピーダンスが50Ωに近ければ近い程小さな値になる様に作られた図表である。つまり、図22のスミスチャートでインピーダンスの軌跡が中心に近付くほど図23においてリターンロスは小さくなり、リターンロスが小さい値である程アンテナの特性が良くなる事を示す。また、図22においてリンターンロスの谷の部分にあたる周波数をアンテナの共振周波数と呼び、アンテナとして動作している周波数を示している。アンテナが良好に動作するためには、一般的にアンテナが動作する周波数においてリターンロスが-5dB以下であることが望ましい。本例で示すアンテナは、図23に矢印で示されている共振周波数において、リターンロスが-5dB以下であり良好なアンテナとして動作することが分かる。 FIG. 23 shows the return loss characteristics of the antennas shown in FIGS. 18 and 19. The return loss is a measurement that is exactly the same as the impedance characteristic shown in FIG. 22, only the chart (chart) is different. It is a chart made so that the closer the impedance is to 50Ω, the smaller the value. That is, in the Smith chart of FIG. 22, the closer the impedance locus is to the center, the smaller the return loss in FIG. 23, and the smaller the return loss, the better the antenna characteristics. Further, in FIG. 22, the frequency corresponding to the valley portion of the Lintern loss is called the resonance frequency of the antenna, and shows the frequency operating as the antenna. In order for the antenna to operate well, it is generally desirable that the return loss is -5 dB or less at the frequency at which the antenna operates. It can be seen that the antenna shown in this example operates as a good antenna with a return loss of −5 dB or less at the resonance frequency indicated by the arrow in FIG. 23.

特許第6548271号公報Japanese Patent No. 6548271

しかし、図18及び図19で示したアンテナは単一の周波数で動作するアンテナであり、複数の任意の周波数で動作し、かつ動作周波数を個別に制御することができない。
今日の無線機器は著しく小型化し、無線機器内部の基板も高密度実装となっている。そのため、内蔵するアンテナも図18及び図19に示す従来技術のアンテナのように柔軟にさまざまな位置に配置でき、かつ小型のものが要求されるが、同時に今日の無線機器は複数の無線通信規格に対応することが多く、アンテナも複数の周波数帯に対応する必要がある。
However, the antennas shown in FIGS. 18 and 19 are antennas that operate at a single frequency, operate at a plurality of arbitrary frequencies, and cannot individually control the operating frequencies.
Today's wireless devices have become significantly smaller, and the boards inside the wireless devices are also mounted at high density. Therefore, the built-in antenna can be flexibly arranged at various positions like the conventional antennas shown in FIGS. 18 and 19, and a small one is required. At the same time, today's wireless devices have a plurality of wireless communication standards. In many cases, the antenna also needs to support multiple frequency bands.

本発明は、このような問題点を解決するためになされたものであり、複数の任意の周波数で動作し、かつ動作周波数を個別に制御可能なアンテナを提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide an antenna that operates at a plurality of arbitrary frequencies and can individually control the operating frequency.

本開示の一態様にかかるアンテナは、内部に開口部が形成されたGND板と、
前記開口部の内部に互いに対向するように所定の間隔を空けて配置した2つの対向導体、及び当該2つの対向導体それぞれと前記開口部の外周を接続する2つの接続導体で構成された第1のスプリット部と、
前記開口部の内部に互いに対向するように所定の間隔を空けて配置した2つの対向導体、及び当該2つの対向導体それぞれと前記開口部の外周を接続する2つの接続導体で構成された第2のスプリット部と、
前記開口部の一辺と接続される給電導体と、を備え、複数の動作周波数で動作可能なことを特徴とする。
The antenna according to one aspect of the present disclosure includes a GND plate having an opening formed inside and a GND plate.
A first composed of two opposing conductors arranged inside the opening at predetermined intervals so as to face each other, and two connecting conductors connecting each of the two opposing conductors to the outer periphery of the opening. Split part and
A second composed of two opposing conductors arranged inside the opening at predetermined intervals so as to face each other, and two connecting conductors connecting each of the two opposing conductors to the outer periphery of the opening. Split part and
It is characterized by having a feeding conductor connected to one side of the opening and being able to operate at a plurality of operating frequencies.

本開示の一態様にかかる無線通信装置は、上記のアンテナを備える。 The wireless communication device according to one aspect of the present disclosure includes the above-mentioned antenna.

本発明により、複数の任意の周波数で動作し、かつ動作周波数を個別に制御可能なアンテナ等を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an antenna or the like that operates at a plurality of arbitrary frequencies and can individually control the operating frequency.

実施の形態1にかかるアンテナの構成を示す図である。It is a figure which shows the structure of the antenna which concerns on Embodiment 1. FIG. 実施の形態1にかかるアンテナの多共振並列スプリットリング共振器6の部分を拡大した図である。It is an enlarged view of the part of the multi-resonant parallel split ring resonator 6 of the antenna which concerns on Embodiment 1. FIG. 実施の形態1にかかるアンテナの、第1の動作周波数における電流の流れを模式的に表した図である。It is a figure which schematically represented the flow of the electric current in the 1st operating frequency of the antenna which concerns on Embodiment 1. FIG. 実施の形態1にかかるアンテナの、第2の動作周波数における電流の流れを模式的に表した図である。It is a figure which schematically represented the flow of the electric current in the 2nd operating frequency of the antenna which concerns on Embodiment 1. FIG. 実施の形態1にかかるアンテナの、第1の動作周波数における等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit in the 1st operating frequency of the antenna which concerns on Embodiment 1. FIG. 実施の形態1にかかるアンテナの、第2の動作周波数における等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit in the 2nd operating frequency of the antenna which concerns on Embodiment 1. FIG. 実施の形態1にかかるアンテナのインピーダンス特性を示す図である。It is a figure which shows the impedance characteristic of the antenna which concerns on Embodiment 1. FIG. 実施の形態1にかかるアンテナのリターンロス特性を示す図である。It is a figure which shows the return loss characteristic of the antenna which concerns on Embodiment 1. FIG. 実施の形態2によるアンテナの多共振並列スプリットリング共振器の部分を拡大した図である。It is an enlarged view of the part of the multi-resonant parallel split ring resonator of the antenna by Embodiment 2. FIG. 実施の形態2にかかるアンテナの第1の動作周波数における電流の流れを模式的に表わした図である。It is a figure which schematically represented the flow of the electric current in the 1st operating frequency of the antenna which concerns on Embodiment 2. FIG. 実施の形態2にかかるアンテナの第2の動作周波数における電流の流れを模式的に表わした図である。It is a figure which schematically represented the flow of the electric current in the 2nd operating frequency of the antenna which concerns on Embodiment 2. FIG. 実施の形態2にかかるアンテナの第3の動作周波数における電流の流れを模式的に表わした図である。It is a figure which schematically represented the flow of the electric current in the 3rd operating frequency of the antenna which concerns on Embodiment 2. FIG. 実施の形態2にかかるアンテナの第1の動作周波数における等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit in the 1st operating frequency of the antenna which concerns on Embodiment 2. FIG. 実施の形態2にかかるアンテナの第2の動作周波数における等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit in the 2nd operating frequency of the antenna which concerns on Embodiment 2. FIG. 実施の形態2にかかるアンテナの第3の動作周波数における等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit in the 3rd operating frequency of the antenna which concerns on Embodiment 2. FIG. 実施の形態2にかかるアンテナのインピーダンス特性を示す図である。It is a figure which shows the impedance characteristic of the antenna which concerns on Embodiment 2. 実施の形態2にかかるアンテナのリターンロス特性を示す図である。It is a figure which shows the return loss characteristic of the antenna which concerns on Embodiment 2. FIG. 特許文献1に示される、アンテナ装置の構成を示す図である。It is a figure which shows the structure of the antenna device shown in Patent Document 1. FIG. 図18の並列スプリットリング共振器を拡大した図である。It is an enlarged view of the parallel split ring resonator of FIG. 図18及び図19で示したアンテナの動作周波数における電流の流れを模式的に表わした図である。It is a figure which schematically represented the current flow at the operating frequency of the antenna shown in FIGS. 18 and 19. 図18及び図19で示した並列スプリットリング共振器の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the parallel split ring resonator shown in FIGS. 18 and 19. 図18及び図19に示したアンテナのインピーダンス特性の一例を示すスミスチャートである。It is a Smith chart which shows an example of the impedance characteristic of the antenna shown in FIGS. 18 and 19. 図18及び図19に示したアンテナのリターンロス特性の一例を示す特性図である。It is a characteristic diagram which shows an example of the return loss characteristic of the antenna shown in FIG. 18 and FIG.

実施の形態1
以下、図面を参照して本発明の実施の形態にかかるアンテナおよび無線通信装置について説明する。以下では、アンテナについて主に説明するが、無線信号を送受信するアンテナを備えた可搬型の無線通信装置に、本発明によるアンテナを搭載するようにしてもよい。
Embodiment 1
Hereinafter, the antenna and the wireless communication device according to the embodiment of the present invention will be described with reference to the drawings. Hereinafter, the antenna will be mainly described, but the antenna according to the present invention may be mounted on a portable wireless communication device provided with an antenna for transmitting and receiving radio signals.

図1は、実施の形態1にかかるアンテナ10の構成を示す図である。従来構成例である図18との変更点は、GND板1の外周のいずれの辺とも接しないように配置した開口部2の内部に、第1のスプリット部31と第2のスプリット部32を配置して、多共振並列スプリットリング共振器6を構成していることである。こうすることで、小型アンテナは、GND板1の内部の自由な位置に配置可能である。図1に示すように、GND板1の外周のいずれの辺とも接しないように開口部2をGND板1の内部に形成する。開口部2の内部に第1のスプリット部31と第2のスプリット部32を配置する。給電導体4の一端を開口部2の一辺に接続し、給電導体4の他端を給電部5に接続する。給電部5は、給電導体4等を介して、第1のスプリット部31と第2のスプリット部32等に交流電力を給電する。こうして多共振並列スプリットリング共振器6が構成される。 FIG. 1 is a diagram showing a configuration of an antenna 10 according to the first embodiment. The change from FIG. 18 which is a conventional configuration example is that the first split portion 31 and the second split portion 32 are provided inside the opening 2 arranged so as not to contact any side of the outer periphery of the GND plate 1. It is arranged to form a multi-resonant parallel split ring resonator 6. By doing so, the small antenna can be arranged at any position inside the GND plate 1. As shown in FIG. 1, an opening 2 is formed inside the GND plate 1 so as not to contact any side of the outer circumference of the GND plate 1. The first split portion 31 and the second split portion 32 are arranged inside the opening 2. One end of the feeding conductor 4 is connected to one side of the opening 2, and the other end of the feeding conductor 4 is connected to the feeding portion 5. The power feeding unit 5 supplies AC power to the first split unit 31 and the second split unit 32 and the like via the power feeding conductor 4 and the like. In this way, the multi-resonant parallel split ring resonator 6 is configured.

図2は図1の本発明の実施の形態1にかかるアンテナの多共振並列スプリットリング共振器6を拡大した図である。
GND板1の内部に形成した開口部2(図2では、開口部20~23)の内部には、第1のスプリット部31において、対向導体311と対向導体312を互いに対向するように配置する。対向導体311と開口部2の外周の一辺を接続するように接続導体313を配置する。対向導体312と開口部2の外周の一辺を接続するように接続導体314を配置する。こうすることで、対向導体311と接続導体313とにより形成されたT字形の導体が開口部2の一辺に接続されて形成され、対向導体312と接続導体314とにより形成されたT字形の導体が開口部2の当該一辺に対向する一辺に接続されて形成される。
FIG. 2 is an enlarged view of the multi-resonant parallel split ring resonator 6 of the antenna according to the first embodiment of the present invention of FIG.
Inside the opening 2 (openings 20 to 23 in FIG. 2) formed inside the GND plate 1, the facing conductors 311 and the facing conductors 312 are arranged so as to face each other in the first split portion 31. .. The connecting conductor 313 is arranged so as to connect the opposed conductor 311 and one side of the outer periphery of the opening 2. The connecting conductor 314 is arranged so as to connect the facing conductor 312 and one side of the outer circumference of the opening 2. By doing so, the T-shaped conductor formed by the opposing conductor 311 and the connecting conductor 313 is connected to one side of the opening 2 to be formed, and the T-shaped conductor formed by the opposing conductor 312 and the connecting conductor 314 is formed. Is formed by being connected to one side of the opening 2 facing the one side.

同様に開口部2の内部に、対向導体311とは所定の間隔(空間)をあけて、対向導体321を配置する。さらに対向導体312とは所定の間隔をあけて、対向導体322を配置する。対向導体321と開口部2の一辺を接続するように接続導体323を配置する。こうして、対向導体321と対向導体322は、所定の距離をあけて、互いに対向して配置される。対向導体322と開口部2の一辺を接続するように接続導体324を配置する。こうすることで、対向導体321と接続導体323とにより形成されたT字形の導体が開口部2の一辺に接続されて形成され、対向導体322と接続導体324とにより形成されたT字形の導体が開口部2の当該一辺に対向する一辺に接続されて形成される。 Similarly, inside the opening 2, the opposing conductor 321 is arranged at a predetermined distance (space) from the opposing conductor 311. Further, the opposing conductor 322 is arranged at a predetermined distance from the opposing conductor 312. The connecting conductor 323 is arranged so as to connect the facing conductor 321 and one side of the opening 2. In this way, the opposing conductor 321 and the opposing conductor 322 are arranged so as to face each other with a predetermined distance. The connecting conductor 324 is arranged so as to connect the facing conductor 322 and one side of the opening 2. By doing so, the T-shaped conductor formed by the opposing conductor 321 and the connecting conductor 323 is connected to one side of the opening 2 to be formed, and the T-shaped conductor formed by the opposing conductor 322 and the connecting conductor 324 is formed. Is formed by being connected to one side of the opening 2 facing the one side.

給電導体4の一端は、開口部2の一辺と接続され、給電導体4の他端は給電部5と接続される。給電部5は、給電導体4等を介して交流電力を第1のスプリット部31及び第2のスプリット部32に給電する。 One end of the feeding conductor 4 is connected to one side of the opening 2, and the other end of the feeding conductor 4 is connected to the feeding portion 5. The power feeding unit 5 supplies AC power to the first split unit 31 and the second split unit 32 via the power feeding conductor 4 and the like.

図3は図1及び図2で示した本実施の形態にかかるアンテナの、第1の動作周波数における電流の流れを模式的に表した図である。電流I11および電流I12で示す点線の経路でループ状の経路に電流が流れる。電流I11は、実際には対向導体311と対向導体312と接続導体313と接続導体314を通る経路と、対向導体321と対向導体322と接続導体323と接続導体324を通る経路に分岐して流れるが、模式的に合成電流I11として表している。 FIG. 3 is a diagram schematically showing the current flow at the first operating frequency of the antenna according to the present embodiment shown in FIGS. 1 and 2. A current flows in a loop-shaped path along the dotted line path indicated by the current I 11 and the current I 12 . The current I 11 actually branches into a path passing through the opposing conductor 311 and the opposing conductor 312, the connecting conductor 313 and the connecting conductor 314, and a path passing through the opposing conductor 321 and the opposing conductor 322 and the connecting conductor 323 and the connecting conductor 324. Although it flows, it is schematically represented as a combined current I 11 .

同様に、電流I12も、実際には対向導体311と対向導体312と接続導体313と接続導体314を通る経路と、対向導体321と対向導体322と接続導体323と接続導体324を通る経路に分岐して電流が流れるが、模式的に合成電流I12として表している。第1の動作周波数では、この電流I11と電流I12は波源として電磁波を放射する。こうして、第1の動作周波数で動作するアンテナとして機能する。 Similarly, the current I 12 is also actually in the path through the opposing conductor 311 and the opposing conductor 312, the connecting conductor 313 and the connecting conductor 314, and the path through the opposed conductor 321 and the opposed conductor 322 and the connecting conductor 323 and the connecting conductor 324. Although the current is branched and flows, it is schematically represented as a combined current I 12 . At the first operating frequency, the current I 11 and the current I 12 radiate an electromagnetic wave as a wave source. In this way, it functions as an antenna that operates at the first operating frequency.

図4は図1及び図2で示したアンテナの、第2の動作周波数における電流の流れを模式的に表した図である。電流Iは、対向導体311と対向導体312と接続導体313と接続導体314と、対向導体321と対向導体322と接続導体323と接続導体324と、開口部2の外周の一部(開口部22の外周部の一部)で構成されるループ状の経路を流れる。この電流Iは波源として第2の動作周波数の電磁波を放射する。こうして、第2の動作周波数で動作するアンテナとして機能する。 FIG. 4 is a diagram schematically showing the current flow at the second operating frequency of the antennas shown in FIGS. 1 and 2. The current I 2 is a part of the outer periphery (opening) of the facing conductor 311 and the facing conductor 312, the connecting conductor 313 and the connecting conductor 314, the facing conductor 321 and the facing conductor 322, the connecting conductor 323 and the connecting conductor 324, and the opening 2. It flows through a loop-shaped path composed of a part of the outer peripheral portion of 22). This current I 2 radiates an electromagnetic wave having a second operating frequency as a wave source. In this way, it functions as an antenna that operates at the second operating frequency.

図5は本実施の形態にかかるアンテナの、第1の動作周波数における等価回路を示す回路図である。第1の動作周波数における等価回路は、電流I11が流れる経路で等価的に構成されるコイル部L11と、電流I12が流れる経路で等価的に構成されるコイル部L12と、対向導体311と対向導体312で等価的に構成されるコンデンサ部C1と対向導体321と対向導体322で等価的に構成されるコンデンサ部C2とで構成される。つまり、直列共振回路を2つ並列に接続した等価回路が構成される。 FIG. 5 is a circuit diagram showing an equivalent circuit at the first operating frequency of the antenna according to the present embodiment. The equivalent circuit at the first operating frequency includes a coil portion L11 equivalently configured by the path through which the current I 11 flows, a coil portion L12 equivalently configured by the path through which the current I 12 flows, and an opposed conductor 311. It is composed of a capacitor portion C1 equivalently configured by the opposing conductor 312, and a capacitor portion C2 equivalently composed of the opposing conductor 321 and the opposing conductor 322. That is, an equivalent circuit in which two series resonant circuits are connected in parallel is constructed.

この共振回路の共振周波数により、本実施の形態に示すアンテナの第1の動作周波数が決定される。したがって、開口部を形成する際に開口部2の大きさを変化させて電流I11および電流I12が流れる経路の長さを変えることで等価的に構成されるコイル部L11及びL12のインダクタンスを変化させて第1の動作周波数を調整することが可能である。 The resonance frequency of this resonance circuit determines the first operating frequency of the antenna shown in the present embodiment. Therefore, the inductance of the coil portions L11 and L12, which are equivalently configured by changing the size of the opening 2 when forming the opening and changing the length of the path through which the current I 11 and the current I 12 flow, are obtained. It is possible to adjust the first operating frequency by changing it.

また、対向導体311および対向導体312の長さ(図3の対向導体311の長手方向の長さLと対向導体312の長手方向の長さL)、および対向導体321と対向導体322との長さ(図3の対向導体321の長さLと対向導体322の長さL)を変えることで、等価的に構成されるコンデンサ部C1及びC2のキャパシタンスを変化させて第1の動作周波数を調整することが可能である。 Further, the lengths of the opposing conductors 311 and the opposing conductors 312 (the longitudinal length L of the opposing conductors 311 and the longitudinal length L of the opposing conductors 312 in FIG. 3), and the lengths of the opposing conductors 321 and the opposing conductors 322. By changing (the length L of the opposite conductor 321 and the length L of the opposite conductor 322 in FIG. 3), the capacitances of the capacitor portions C1 and C2 which are equivalently configured are changed to adjust the first operating frequency. It is possible to do.

さらに、対向導体311と対向導体312の間隔(図3の対向導体311と対向導体312との間隔I)、および対向導体321と対向導体322の間隔(図3の対向導体321と対向導体322との間隔I)を変えて、等価的に構成されるコンデンサ部のキャパシタンスを変化させることでも、第1の動作周波数を調整することが可能である。 Further, the distance between the opposing conductor 311 and the opposing conductor 312 (distance I between the opposing conductor 311 and the opposing conductor 312 in FIG. 3) and the distance between the opposing conductor 321 and the opposing conductor 322 (the distance between the opposing conductor 321 and the opposing conductor 322 in FIG. 3). It is also possible to adjust the first operating frequency by changing the interval I) of the above and changing the capacitance of the equivalently configured capacitor portion.

なお、図3の対向導体311の長手方向の長さ(横方向の長さ)Lと対向導体312の長手方向の長さ(横方向の長さ)Lは、同一とする。同様に、図3の対向導体321の長さLと対向導体322の長さLも同一にする。このように、2組の対向導体の長さLを同一にすることで、良好なアンテナ性能を得ることができる。 The length L in the longitudinal direction (length in the lateral direction) L of the opposing conductor 311 in FIG. 3 and the length L in the longitudinal direction (length in the lateral direction) L of the opposing conductor 312 are the same. Similarly, the length L of the opposed conductor 321 in FIG. 3 and the length L of the opposed conductor 322 are also made the same. By making the lengths L of the two sets of opposing conductors the same in this way, good antenna performance can be obtained.

また、図2のループ経路Oとループ経路Oを同一の長さにする。すなわち、第1のスプリット部31の2つの接続導体313,314と、2つの対向導体311,312と、開口部21の外周の一部と、給電導体4の一部とによって形成される第1のループ経路O(図2では破線矢印Oで示す)と、第2のスプリット部32の2つの接続導体323、324と、2つの対向導体321,322と、開口部23の外周の一部とによって形成される第2のループ経路O(図2では破線矢印Oで示す)は、同じ長さとする。これにより、より良好なアンテナ性能を得ることができる。また、第1のスプリット部31の2つの接続導体313,314の長さと、第2のスプリット部32の2つの接続導体323、324の長さをすべて同一となるようにしてもよい。 Further, the loop path O 1 and the loop path O 2 in FIG. 2 have the same length. That is, the first formed by the two connecting conductors 313, 314 of the first split portion 31, the two opposing conductors 311, 312, a part of the outer periphery of the opening 21, and a part of the feeding conductor 4. Loop path O 1 (indicated by dashed arrow O 1 in FIG. 2), two connecting conductors 323 and 324 of the second split portion 32, two opposed conductors 321 and 322, and one of the outer circumferences of the opening 23. The second loop path O 2 (indicated by the dashed arrow O 2 in FIG. 2) formed by the portions has the same length. This makes it possible to obtain better antenna performance. Further, the lengths of the two connecting conductors 313 and 314 of the first split portion 31 and the lengths of the two connecting conductors 323 and 324 of the second split portion 32 may all be the same.

図6は本実施の形態にかかるアンテナの、第2の動作周波数における等価回路を示す回路図である。図6に示すように等価回路は、電流Iが流れる経路で等価的に構成されるコイル部分L2と、対向導体311と対向導体312で等価的に構成されるコンデンサ部C1と、対向導体321と対向導体322で等価的に構成されるコンデンサ部C2と、で構成される。つまり、等価回路は、直列共振回路により構成される。この共振回路の共振周波数により、本実施の形態にかかるアンテナの第2の動作周波数が決定される。 FIG. 6 is a circuit diagram showing an equivalent circuit at a second operating frequency of the antenna according to the present embodiment. As shown in FIG. 6, the equivalent circuit includes a coil portion L2 equivalently configured by a path through which a current I 2 flows, a capacitor portion C1 equivalently composed of an opposing conductor 311 and an opposing conductor 312, and an opposing conductor 321. It is composed of a capacitor portion C2 equivalently configured by the facing conductor 322 and the capacitor portion C2. That is, the equivalent circuit is composed of a series resonant circuit. The resonance frequency of this resonance circuit determines the second operating frequency of the antenna according to the present embodiment.

したがって、対向導体311と対向導体312と接続導体313と接続導体314で構成される経路と、対向導体321と対向導体322と接続導体323と接続導体324で構成される経路の間隔(図4では破線矢印Sで示す)を変化させることで電流Iが流れる経路の長さを変えることができる。すなわち、第1のスプリット部31と第2のスプリット部32との間隔を変化させることで、電流Iが流れる経路の長さを変えることができる。それにより、図6に示す等価的に構成されるコイル部L2のインダクタンスを変化させて第2の動作周波数を調整することが可能である。 Therefore, the distance between the path composed of the opposing conductor 311, the opposing conductor 312, the connecting conductor 313, and the connecting conductor 314, and the path composed of the opposing conductor 321 and the opposing conductor 322, the connecting conductor 323, and the connecting conductor 324 (in FIG. 4). By changing (indicated by the broken line arrow S), the length of the path through which the current I 2 flows can be changed. That is, by changing the distance between the first split portion 31 and the second split portion 32, the length of the path through which the current I 2 flows can be changed. Thereby, it is possible to adjust the second operating frequency by changing the inductance of the coil portion L2 having the equivalent configuration shown in FIG.

また、第1の動作周波数と同様に、対向導体311と対向導体312の長さ(図4では破線矢印Lで示す)、および対向導体321と対向導体322の長さ(図4では破線矢印Lで示す)を変えることで、図6に示す等価的に構成されるコンデンサ部C1及びC2のキャパシタンスを変化させることができる。これにより、第2の動作周波数を調整することが可能である。 Further, similarly to the first operating frequency, the lengths of the opposing conductor 311 and the opposing conductor 312 (indicated by the dashed arrow L in FIG. 4), and the lengths of the opposing conductor 321 and the opposing conductor 322 (the dashed arrow L in FIG. 4). By changing (shown by), the capacitances of the equivalently configured capacitor portions C1 and C2 shown in FIG. 6 can be changed. This makes it possible to adjust the second operating frequency.

さらに、対向導体311と対向導体312との間隔(図3の対向導体311と対向導体312との間隔I)、および対向導体321と対向導体322の間隔(図3の対向導体321と対向導体322との間隔I)を変えて、等価的に構成されるコンデンサ部C1及びC2のキャパシタンスを変化させることもできる。これにより、第1の動作周波数と同様に第2の動作周波数を調整することが可能である。 Further, the distance between the opposed conductor 311 and the opposed conductor 312 (distance I between the opposed conductor 311 and the opposed conductor 312 in FIG. 3) and the distance between the opposed conductor 321 and the opposed conductor 322 (the distance between the opposed conductor 321 and the opposed conductor 322 in FIG. 3). It is also possible to change the capacitances of the capacitor portions C1 and C2 which are equivalently configured by changing the interval I). This makes it possible to adjust the second operating frequency as well as the first operating frequency.

また、給電導体4と、図1における第1のスプリット部31および第2のスプリット部32とは反対側の開口部2の外周の一部(図2の開口部20の外周の一部)で構成される経路(電流I11と電流I12がいずれも流れない経路)は、等価的に給電導体4を短絡する。これにより、本実施の形態にかかるアンテナの第1の動作周波数におけるインピーダンスの軌跡を50Ωに近づけるインピーダンス整合素子の働きをしている。 Further, a part of the outer periphery of the feeding conductor 4 and the opening 2 on the opposite side of the first split portion 31 and the second split portion 32 in FIG. 1 (a part of the outer circumference of the opening 20 in FIG. 2). The configured path (the path in which neither the current I 11 nor the current I 12 flows) equivalently short-circuits the feeding conductor 4. This acts as an impedance matching element that brings the impedance trajectory at the first operating frequency of the antenna according to the present embodiment close to 50Ω.

図7は本実施の形態にかかるアンテナのインピーダンス特性を示す図である。インピーダンスの軌跡と中心を通る水平線とが交差する点および、インピーダンスの軌跡がスミスチャートの中心に接近する点がそれぞれ第1の動作周波数および第2の動作周波数である。 FIG. 7 is a diagram showing the impedance characteristics of the antenna according to the present embodiment. The points where the impedance locus and the horizon passing through the center intersect and the points where the impedance locus approaches the center of the Smith chart are the first operating frequency and the second operating frequency, respectively.

図8は本実施の形態にかかるアンテナのリターンロス特性を示す図である。第1の動作周波数および第2の動作周波数において、リターンロスが-15dB以下であり良好なアンテナとして動作することが分かる。前述したように、2組の対向導体の長さLを同一にし、かつ、2組のループ経路O、Oを同じにすることで、良好なリターンロス特性が得られる。 FIG. 8 is a diagram showing the return loss characteristics of the antenna according to the present embodiment. It can be seen that the return loss is -15 dB or less at the first operating frequency and the second operating frequency, and the antenna operates as a good antenna. As described above, good return loss characteristics can be obtained by making the lengths L of the two sets of opposing conductors the same and making the two sets of loop paths O1 and O2 the same.

以上説明した本実施形態にかかるアンテナによれば、複数の任意の周波数で動作可能で、かつ動作周波数を個別に調整可能とすることができる。 According to the antenna according to the present embodiment described above, it is possible to operate at a plurality of arbitrary frequencies and to individually adjust the operating frequencies.

実施の形態2
図9は実施の形態2にかかるアンテナの多共振並列スプリットリング共振器の部分を拡大した図である。図1及び図2に示す実施例との相違点は、開口部2の内部に、第1のスプリット部31および第2のスプリット部32に加えて、第3のスプリット部33を有することである。すなわち、第3のスプリット部33では、対向導体331と対向導体332を互いに対向するように配置する。対向導体331と開口部2の一辺を接続するように接続導体333を配置する。対向導体332と開口部2の一辺を接続するように接続導体334を配置する。こうすることで、対向導体331と接続導体333とにより形成されたT字形の導体が開口部2の一辺に接続されて形成され、対向導体332と接続導体334とにより形成されたT字形の導体が開口部2の当該一辺に対向する一辺に接続されて形成される。
Embodiment 2
FIG. 9 is an enlarged view of a portion of the multi-resonant parallel split ring resonator of the antenna according to the second embodiment. The difference from the embodiment shown in FIGS. 1 and 2 is that the opening 2 has a third split portion 33 in addition to the first split portion 31 and the second split portion 32. .. That is, in the third split portion 33, the opposing conductor 331 and the opposing conductor 332 are arranged so as to face each other. The connecting conductor 333 is arranged so as to connect the facing conductor 331 and one side of the opening 2. The connecting conductor 334 is arranged so as to connect the facing conductor 332 and one side of the opening 2. By doing so, the T-shaped conductor formed by the opposing conductor 331 and the connecting conductor 333 is connected to one side of the opening 2 to be formed, and the T-shaped conductor formed by the opposing conductor 332 and the connecting conductor 334 is formed. Is formed by being connected to one side of the opening 2 facing the one side.

図10は図9で示した本実施の形態にかかるアンテナの第1の動作周波数における電流の流れを模式的に表わした図である。電流I11および電流I12で示す点線の経路でループ状の経路に電流が流れる。電流I11は対向導体311と対向導体312と接続導体313と接続導体314を通る経路と、対向導体321と対向導体322と接続導体323と接続導体324を通る経路と、対向導体331と対向導体332と接続導体333と接続導体334を通る経路とに分岐して電流が流れるが、模式的に合成電流I11として表している。 FIG. 10 is a diagram schematically showing the current flow at the first operating frequency of the antenna according to the present embodiment shown in FIG. 9. A current flows in a loop-shaped path along the dotted line path indicated by the current I 11 and the current I 12 . The current I 11 is a path passing through the opposing conductor 311 and the opposing conductor 312, the connecting conductor 313 and the connecting conductor 314, a path passing through the opposing conductor 321 and the opposing conductor 322, the connecting conductor 323 and the connecting conductor 324, and the opposing conductor 331 and the opposing conductor. The current flows by branching to the path passing through the 332, the connecting conductor 333, and the connecting conductor 334, and is schematically represented as the combined current I 11 .

同様に、電流I12も対向導体311と、対向導体312と、接続導体313と、接続導体314を通る経路と、対向導体321と、対向導体322と、接続導体323と、接続導体324を通る経路と、対向導体331と、対向導体332と、接続導体333と、接続導体334を通る経路に分岐して電流が流れるが、模式的に合成電流I12として表している。 Similarly, the current I 12 also passes through the counter conductor 311 and the counter conductor 312, the connecting conductor 313, the path through the connecting conductor 314, the counter conductor 321 and the counter conductor 322, the connecting conductor 323, and the connecting conductor 324. The path, the opposing conductor 331, the opposing conductor 332, the connecting conductor 333, and the connecting conductor 334 branching to the path through which the current flows, are schematically represented as the combined current I 12 .

第1の動作周波数では、この電流I11と電流I12は、波源として第1の動作周波数の電磁波を放射する。こうして、第1の動作周波数で動作するアンテナとして機能する。 At the first operating frequency, the current I 11 and the current I 12 radiate an electromagnetic wave having the first operating frequency as a wave source. In this way, it functions as an antenna that operates at the first operating frequency.

図11は図9で示した本実施形態にかかるアンテナの第2の動作周波数における電流の流れを模式的に表わした図である。電流Iは、対向導体311と対向導体312と接続導体313と接続導体314と、対向導体331と対向導体332と接続導体333と接続導体334と、開口部2の外周の一部(開口部22および開口部23の外周の一部)で構成されるループ状の経路を流れる。この電流Iは波源として第2の動作周波数の電磁波を放射する。こうして、第2の動作周波数で動作するアンテナとして機能する。 FIG. 11 is a diagram schematically showing the current flow at the second operating frequency of the antenna according to the present embodiment shown in FIG. The current I 2 is a part of the outer periphery (opening) of the facing conductor 311 and the facing conductor 312, the connecting conductor 313 and the connecting conductor 314, the facing conductor 331, the facing conductor 332, the connecting conductor 333 and the connecting conductor 334, and the opening 2. It flows through a loop-shaped path composed of 22 and a part of the outer periphery of the opening 23). This current I 2 radiates an electromagnetic wave having a second operating frequency as a wave source. In this way, it functions as an antenna that operates at the second operating frequency.

さらに、図12は図9で示した本実施形態にかかるアンテナの第3の動作周波数における電流の流れを模式的に表わした図である。対向導体311と対向導体312と接続導体313と接続導体314と、対向導体321と対向導体322と接続導体323と接続導体324と、開口部2の外周の一部(開口部22の外周の一部)で構成されるループ状の経路に電流I31が流れる。対向導体321と対向導体322と接続導体323と接続導体324と、対向導体331と対向導体332と接続導体333と接続導体334と、開口部2の外周の一部(開口部23の外周の一部)で構成されるループ状の経路に電流I32が流れる。この電流I31と電流I32は波源として第3の動作周波数の電磁波を放射する。こうして、第3の動作周波数で動作するアンテナとして機能する。 Further, FIG. 12 is a diagram schematically showing the current flow at the third operating frequency of the antenna according to the present embodiment shown in FIG. Opposing conductor 311 and opposing conductor 312, connecting conductor 313 and connecting conductor 314, opposing conductor 321 and opposing conductor 322, connecting conductor 323 and connecting conductor 324, and a part of the outer circumference of the opening 2 (one of the outer circumferences of the opening 22). The current I 31 flows through the loop-shaped path composed of the parts). Opposing conductor 321 and opposing conductor 322, connecting conductor 323 and connecting conductor 324, opposing conductor 331, opposing conductor 332, connecting conductor 333 and connecting conductor 334, and a part of the outer circumference of the opening 2 (one of the outer circumferences of the opening 23). The current I 32 flows through the loop-shaped path composed of the parts). The current I 31 and the current I 32 radiate an electromagnetic wave having a third operating frequency as a wave source. In this way, it functions as an antenna that operates at the third operating frequency.

図13は本実施形態にかかるアンテナの第1の動作周波数における等価回路を示す回路図である。等価的に実施の形態1にかかるアンテナの第1の動作周波数における等価回路(図5)に、対向導体331と対向導体332と接続導体333と接続導体334で等価的に構成されるC3が追加された(すなわち、C1、C2,C3が並列に接続される)回路となっている。 FIG. 13 is a circuit diagram showing an equivalent circuit at the first operating frequency of the antenna according to the present embodiment. Equivalently added to the equivalent circuit (FIG. 5) at the first operating frequency of the antenna according to the first embodiment is C3, which is equivalently composed of the opposed conductor 331, the opposed conductor 332, the connecting conductor 333, and the connecting conductor 334. (That is, C1, C2, and C3 are connected in parallel).

図14は本実施形態にかかるアンテナの第2の動作周波数における回路図を等価的に示している。こちらも等価的に実施の形態1にかかるアンテナの第2の動作周波数における等価回路(図6)に、対向導体331と対向導体332と接続導体333と接続導体334で等価的に構成されるC3が追加された(すなわち、C1、C2,C3が直列に接続される)回路となっている。 FIG. 14 equivalently shows a circuit diagram at the second operating frequency of the antenna according to the present embodiment. C3, which is also equivalently configured by the equivalent circuit (FIG. 6) at the second operating frequency of the antenna according to the first embodiment, is equivalently composed of the opposed conductor 331, the opposed conductor 332, the connecting conductor 333, and the connecting conductor 334. Is added (that is, C1, C2, and C3 are connected in series).

図15は本実施形態にかかるアンテナの第3の動作周波数における回路図を等価的に示している。等価回路は、電流I31が流れる経路で等価的に構成されるコイル部分L31と、対向導体311と対向導体312で等価的に構成されるコンデンサ部C1と、対向導体321と対向導体322で等価的に構成されるコンデンサ部C2とで構成した直列共振回路と、電流I32が流れる経路で等価的に構成されるコイル部L32と、対向導体321と対向導体322で等価的に構成されるコンデンサ部C2と、対向導体331と対向導体332で等価的に構成されるコンデンサ部C3とで構成した直列共振回路を、並列に接続した回路となる。この共振回路の共振周波数により、本実施形態にかかるアンテナの第3の動作周波数が決定される。 FIG. 15 equivalently shows a circuit diagram at a third operating frequency of the antenna according to the present embodiment. The equivalent circuit is equivalent to the coil portion L31 equivalently configured by the path through which the current I 31 flows, the capacitor portion C1 equivalently composed of the opposed conductor 311 and the opposed conductor 312, and the opposed conductor 321 and the opposed conductor 322. A series resonance circuit composed of a capacitor unit C2, a coil unit L32 equivalently configured by a path through which a current I 32 flows, and a capacitor equivalently composed of a counter conductor 321 and a counter conductor 322. It is a circuit in which a series resonance circuit composed of a portion C2 and a capacitor portion C3 equivalently composed of the facing conductor 331 and the facing conductor 332 is connected in parallel. The resonance frequency of this resonance circuit determines the third operating frequency of the antenna according to the present embodiment.

図16に本実施形態にかかるアンテナのインピーダンス特性を示す。インピーダンスの軌跡と中心を通る水平線とが交差する点およびインピーダンスの軌跡がスミスチャートの中心に接近する点がそれぞれ第1の動作周波数、第2の動作周波数、第3の動作周波数である。 FIG. 16 shows the impedance characteristics of the antenna according to the present embodiment. The points where the impedance locus and the horizontal line passing through the center intersect and the points where the impedance locus approaches the center of the Smith chart are the first operating frequency, the second operating frequency, and the third operating frequency, respectively.

図17に本実施形態にかかるアンテナのリターンロス特性を示す。第1の動作周波数、第2の動作周波数、および第3の周波数において、リターンロスが-5dB以下であり良好なアンテナとして動作することが分かる。 FIG. 17 shows the return loss characteristics of the antenna according to the present embodiment. It can be seen that the return loss is -5 dB or less at the first operating frequency, the second operating frequency, and the third operating frequency, and the antenna operates as a good antenna.

以上説明した本実施形態のアンテナによれば、複数の任意の周波数で動作可能で、かつ動作周波数を個別に調整可能とすることができる。 According to the antenna of the present embodiment described above, it is possible to operate at a plurality of arbitrary frequencies, and the operating frequencies can be individually adjusted.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記した実施の形態では、2つ又は3つのスプリット部を開口部内に形成したが、4つ以上のスプリット部を開口部の内部に形成してもよい。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. For example, in the above embodiment, two or three split portions are formed in the opening, but four or more split portions may be formed inside the opening.

1 GND板
2 開口部
4 給電導体
10 アンテナ
20 開口部
21 開口部
22 開口部
23 開口部
31 第1のスプリット部
311 対向導体
312 対向導体
313 接続導体
314 接続導体
32 第2のスプリット部
321 対向導体
322 対向導体
323 接続導体
324 接続導体
33 第3のスプリット部
331 対向導体
332 対向導体
333 接続導体
334 接続導体
1 GND plate 2 Opening 4 Feeding conductor 10 Antenna 20 Opening 21 Opening 22 Opening 23 Opening 31 First split part 311 Opposing conductor 312 Opposing conductor 313 Connecting conductor 314 Connecting conductor 32 Second split part 321 Opposing conductor 322 Opposing conductor 323 Connecting conductor 324 Connecting conductor 33 Third split part 331 Opposing conductor 332 Opposing conductor 333 Connecting conductor 334 Connecting conductor

Claims (10)

内部に開口部が形成されたGND板と、
前記開口部の内部に互いに対向するように所定の間隔を空けて配置した2つの対向導体、及び当該2つの対向導体それぞれと前記開口部の外周を接続する2つの接続導体で構成された第1のスプリット部と、
前記開口部の内部に互いに対向するように所定の間隔を空けて配置した2つの対向導体、及び当該2つの対向導体それぞれと前記開口部の外周を接続する2つの接続導体で構成された第2のスプリット部と、
前記開口部の一辺と接続される給電導体と、を備え、複数の動作周波数で動作可能なことを特徴とする、アンテナ。
A GND plate with an opening formed inside,
A first composed of two opposing conductors arranged inside the opening at predetermined intervals so as to face each other, and two connecting conductors connecting each of the two opposing conductors to the outer periphery of the opening. Split part and
A second composed of two opposing conductors arranged inside the opening at predetermined intervals so as to face each other, and two connecting conductors connecting each of the two opposing conductors to the outer periphery of the opening. Split part and
An antenna comprising a feeding conductor connected to one side of the opening and capable of operating at a plurality of operating frequencies.
前記第1のスプリット部の前記2つの対向導体の長さと、前記第2のスプリット部の前記2つの対向導体の長さは、同一である、請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the lengths of the two opposing conductors of the first split portion and the lengths of the two opposing conductors of the second split portion are the same. 前記第1のスプリット部の前記2つの接続導体と、前記第1のスプリット部の前記2つの対向導体と、前記開口部の外周の一部と、前記給電導体の一部とによって形成される第1のループ経路と、前記第2のスプリット部の前記2つの接続導体と、前記第2のスプリット部の前記2つの対向導体と、前記開口部の外周の一部とによって形成される第2のループ経路は、同じ長さである、請求項1又は2に記載のアンテナ。 A first formed by the two connecting conductors of the first split portion, the two opposing conductors of the first split portion, a part of the outer circumference of the opening, and a part of the feeding conductor. A second loop path formed by the loop path 1, the two connecting conductors of the second split portion, the two opposing conductors of the second split portion, and a portion of the outer circumference of the opening. The antenna according to claim 1 or 2, wherein the loop path has the same length. 前記第1のスプリット部と第2のスプリット部との間隔を変えることで動作周波数をそれぞれ個別に調整可能なことを特徴とする請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the operating frequency can be individually adjusted by changing the distance between the first split portion and the second split portion. 前記第1のスプリット部を構成する互いに対向するように配置された対向導体の長さ又は、
前記第1のスプリット部を構成する互いに対向するように配置された対向導体の長さを変えることで複数の動作周波数を調整可能なことを特徴とする請求項1に記載のアンテナ。
The length of the opposing conductors arranged so as to face each other constituting the first split portion, or
The antenna according to claim 1, wherein a plurality of operating frequencies can be adjusted by changing the lengths of the opposing conductors arranged so as to face each other constituting the first split portion.
前記第1のスプリット部を構成する互いに対向するように配置された対向導体の間隔を変えることで複数の動作周波数を調整可能なことを特徴とする請求項1に記載のアンテナ。 The antenna according to claim 1, wherein a plurality of operating frequencies can be adjusted by changing the spacing between the opposing conductors arranged so as to face each other constituting the first split portion. 前記開口部の大きさを変えることで、複数の動作周波数を調整可能なことを特徴とする請求項1に記載のアンテナ。 The antenna according to claim 1, wherein a plurality of operating frequencies can be adjusted by changing the size of the opening. 前記給電導体と、前記第1のスプリット部および前記第2のスプリット部とは反対側の開口部の外周の一部で構成される経路は、等価的に給電導体を短絡する、請求項1に記載のアンテナ。 According to claim 1, the path composed of the feeding conductor and a part of the outer periphery of the opening on the opposite side of the first split portion and the second split portion equivalently short-circuits the feeding conductor. Described antenna. 前記開口部の内部に互いに対向するように所定の間隔を空けて配置した2つの対向導体、及び当該2つの対向導体それぞれと前記開口部の外周を接続する2つの接続導体で構成されたスプリット部を更に複数備え、複数の動作周波数で動作可能なことを特徴とする、請求項1に記載のアンテナ。 A split portion composed of two opposing conductors arranged inside the opening at predetermined intervals so as to face each other, and two connecting conductors connecting each of the two opposing conductors to the outer periphery of the opening. The antenna according to claim 1, further comprising a plurality of antennas and capable of operating at a plurality of operating frequencies. 請求項1~9のいずれか一項に記載のアンテナを備えた無線通信装置。 A wireless communication device provided with the antenna according to any one of claims 1 to 9.
JP2020144067A 2020-08-28 2020-08-28 Antennas and radio communication equipment Active JP7184436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020144067A JP7184436B2 (en) 2020-08-28 2020-08-28 Antennas and radio communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020144067A JP7184436B2 (en) 2020-08-28 2020-08-28 Antennas and radio communication equipment

Publications (2)

Publication Number Publication Date
JP2022039175A true JP2022039175A (en) 2022-03-10
JP7184436B2 JP7184436B2 (en) 2022-12-06

Family

ID=80498333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020144067A Active JP7184436B2 (en) 2020-08-28 2020-08-28 Antennas and radio communication equipment

Country Status (1)

Country Link
JP (1) JP7184436B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112195A1 (en) * 2001-12-18 2003-06-19 Wei-Li Cheng Multifrequency antenna with a slot-type conductor and a strip-shaped conductor
WO2013118484A1 (en) * 2012-02-07 2013-08-15 日本電気株式会社 Slot antenna
JP2016063449A (en) * 2014-09-19 2016-04-25 Necプラットフォームズ株式会社 Antenna and radio communication equipment
JP2016131319A (en) * 2015-01-14 2016-07-21 Necプラットフォームズ株式会社 Antenna structure
JP6548271B2 (en) * 2017-02-06 2019-07-24 Necプラットフォームズ株式会社 Antenna device and wireless device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112195A1 (en) * 2001-12-18 2003-06-19 Wei-Li Cheng Multifrequency antenna with a slot-type conductor and a strip-shaped conductor
WO2013118484A1 (en) * 2012-02-07 2013-08-15 日本電気株式会社 Slot antenna
JP2016063449A (en) * 2014-09-19 2016-04-25 Necプラットフォームズ株式会社 Antenna and radio communication equipment
US20170294952A1 (en) * 2014-09-19 2017-10-12 Nec Platforms, Ltd. Antenna and wireless communication apparatus
JP2016131319A (en) * 2015-01-14 2016-07-21 Necプラットフォームズ株式会社 Antenna structure
JP6548271B2 (en) * 2017-02-06 2019-07-24 Necプラットフォームズ株式会社 Antenna device and wireless device

Also Published As

Publication number Publication date
JP7184436B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP3660623B2 (en) Antenna device
US9190733B2 (en) Antenna with multiple coupled regions
JP6465109B2 (en) Multi-antenna and radio apparatus including the same
KR100414634B1 (en) Surface-mounted antenna and wireless device incorporating the same
US7119749B2 (en) Antenna and radio communication apparatus
JP4205758B2 (en) Directional variable antenna
EP1845586A1 (en) Antenna device and wireless communication apparatus using same
US20080231526A1 (en) Antenna Assembly and Wireless Unit Employing It
KR101188465B1 (en) Antenna apparatus, and associated methodology, for a multi-band radio device
JP2002319811A (en) Plural resonance antenna
KR20040067932A (en) Electronic equipment and antenna mounting printed-circuit board
JPWO2004109850A1 (en) Frequency variable antenna and communication device having the same
JP2001284954A (en) Surface mount antenna, frequency control and setting method for dual resonance therefor and communication equipment provided with surface mount antenna
KR20110121792A (en) Mimo antenna apparatus
JP2009111999A (en) Multiband antenna
KR20050085045A (en) Chip antenna, chip antenna unit and radio communication device using them
KR20120046805A (en) Mimo antenna apparatus
JP2014165683A (en) Antenna and electronic device
JP2006197072A (en) Flexible antenna
JP6014071B2 (en) Communication device and antenna device
US11251531B2 (en) Antenna device and radio apparatus
KR101926549B1 (en) Antenna apparatus
WO2018163695A1 (en) Multiband antenna and wireless communication device
JP2022039175A (en) Antenna and radio communication device
KR101776263B1 (en) Metamaterial antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221117

R151 Written notification of patent or utility model registration

Ref document number: 7184436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151