JP2022038751A - Image processing apparatus, image processing method and program - Google Patents

Image processing apparatus, image processing method and program Download PDF

Info

Publication number
JP2022038751A
JP2022038751A JP2020143388A JP2020143388A JP2022038751A JP 2022038751 A JP2022038751 A JP 2022038751A JP 2020143388 A JP2020143388 A JP 2020143388A JP 2020143388 A JP2020143388 A JP 2020143388A JP 2022038751 A JP2022038751 A JP 2022038751A
Authority
JP
Japan
Prior art keywords
region
point
image information
fundus image
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020143388A
Other languages
Japanese (ja)
Inventor
一将 田中
Kazumasa Tanaka
寿雲 堀江
Juun Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2020143388A priority Critical patent/JP2022038751A/en
Publication of JP2022038751A publication Critical patent/JP2022038751A/en
Pending legal-status Critical Current

Links

Images

Abstract

To highly accurately detect a disease.SOLUTION: An image processing apparatus comprises: setting means which sets a two-dimensional coordinate system based on a first coordinate axis with a yellow spot and nipple as a reference in first ocular fundus image information and second ocular fundus image information of right and left eyes of a subject; specification means which specifies a first point or region in the first ocular fundus image information, a second point or region symmetrical to the first coordinate axis and a third point or region corresponding to a relative relation between the yellow spot and nipple and the first point or region in the second ocular fundus image information; and determination means which determines a characteristic value about the first point or region on the basis of a value about the first point or region in the first ocular fundus image information, a value about a second point or region in the first ocular fundus image information and a value about a third point or region in the second ocular fundus image information.SELECTED DRAWING: Figure 5

Description

本明細書の開示は、画像処理装置、画像処理方法、およびプログラムに関する。 The disclosure of this specification relates to an image processing apparatus, an image processing method, and a program.

医師が眼科疾患を診断するために、眼科写真を取得する眼底カメラなどの眼科装置が広く普及している。また、光干渉断層撮影法(Optical Coherence Tomography、以下、OCTという)を用いた装置(以下、OCT装置という)により、測定対象の断層画像を非侵襲で取得することができることが知られている。OCT装置を用いて、被験者のOCT画像と健常者あるいは正常眼データベースのOCT画像の乖離度を評価して、被験者の眼科疾患を見つける診断が行われている。 In order for doctors to diagnose ophthalmic diseases, ophthalmologic devices such as fundus cameras that acquire ophthalmologic photographs are widely used. Further, it is known that a tomographic image to be measured can be obtained non-invasively by an apparatus (hereinafter referred to as an OCT apparatus) using an optical coherence tomography (hereinafter referred to as OCT). Using an OCT device, the degree of discrepancy between the OCT image of the subject and the OCT image of a healthy person or a normal eye database is evaluated, and a diagnosis is made to find the ophthalmic disease of the subject.

ここで、緑内障が進行すると網膜の厚さ(層厚)が小さくなることが知られており、OCT画像で層厚を評価することで緑内障を検出することができる。特許文献1には、標準的な眼(正常眼等)における層厚の多数の計測値の統計値に基づいて得た標準層厚に対する、対応位置における層厚値の変位を演算する技術が開示されている。また、特許文献1には、中心窩を通る横軸に対して互いに対称な位置の上記変位同士を比較する技術が開示されている。 Here, it is known that the thickness (layer thickness) of the retina decreases as glaucoma progresses, and glaucoma can be detected by evaluating the layer thickness with an OCT image. Patent Document 1 discloses a technique for calculating the displacement of the layer thickness value at the corresponding position with respect to the standard layer thickness obtained based on the statistical values of a large number of measured values of the layer thickness in a standard eye (normal eye, etc.). Has been done. Further, Patent Document 1 discloses a technique for comparing the displacements at positions symmetrical with respect to the horizontal axis passing through the fovea centralis.

特開2009-89792号公報Japanese Unexamined Patent Publication No. 2009-89792

正常眼データベースと比較して疾患を検出する方法は、個人差によって正常値から外れていた場合、健常時においても疾患だと誤判定されてしまう場合がある。例えば、近視などによって眼軸長が長い場合、一般的に網膜厚が薄くなる傾向があるため、健常眼であっても緑内障と誤判定されてしまう可能性がある。また、正常眼データベースを用いる方法は、正常眼データベースを生成あるいは入手するためにコストが多くかかってしまうという課題がある。また、層厚の上下対称性を評価する解析方法には、層厚が上下ともに同程度に小さくなった場合、緑内障の進行を見落としてしまうという課題がある。 If the method of detecting the disease in comparison with the normal eye database deviates from the normal value due to individual differences, it may be erroneously determined to be the disease even in normal health. For example, when the axial length is long due to myopia or the like, the retina thickness generally tends to be thin, so that even a healthy eye may be erroneously determined as glaucoma. Further, the method using the normal eye database has a problem that it costs a lot to generate or obtain the normal eye database. Further, the analysis method for evaluating the vertical symmetry of the layer thickness has a problem that the progression of glaucoma is overlooked when the layer thickness becomes as small as the upper and lower layers.

そこで、本明細書の開示の目的の一つは、疾患を高精度に検出することである。 Therefore, one of the purposes of the disclosure of the present specification is to detect a disease with high accuracy.

本明細書の開示の一実施態様に係る画像処理装置は、
被検者の左右眼の第1の眼底画像情報及び第2の眼底画像情報において、黄斑および乳頭を基準とした第1の座標軸を基にした2次元座標系を設定する設定手段と、
前記第1の眼底画像情報における第1の点または領域と前記第1の座標軸に対して対称な第2の点または領域と、前記第2の眼底画像情報における前記第1の点または領域と黄斑および乳頭との相対関係が対応する第3の点または領域とを特定する特定手段と、
前記第1の眼底画像情報における前記第1の点または領域に関する値と、前記第1の眼底画像情報における前記第2の点または領域に関する値と、前記第2の眼底画像情報における前記第3の点または領域に関する値とに基づいて、前記第1の点または領域に関する特性値を決定する決定手段と、を有する。
The image processing apparatus according to one embodiment of the disclosure of the present specification is
A setting means for setting a two-dimensional coordinate system based on the first coordinate axis based on the macula and the nipple in the first fundus image information and the second fundus image information of the subject's left and right eyes.
The first point or region in the first fundus image information, the second point or region symmetrical with respect to the first coordinate axis, and the first point or region in the second fundus image information and the macula. And the specific means of identifying the third point or region to which the relative relationship with the nipple corresponds.
The value regarding the first point or region in the first fundus image information, the value regarding the second point or region in the first fundus image information, and the third in the second fundus image information. It has a determination means for determining a characteristic value with respect to the first point or region based on the value with respect to the point or region.

本明細書の開示の少なくとも一実施形態によれば、疾患を高精度に検出することができる。 According to at least one embodiment of the disclosure herein, the disease can be detected with high accuracy.

第1の実施形態に係る画像処理装置の全体構成の一例を概略的に示す。An example of the overall configuration of the image processing apparatus according to the first embodiment is schematically shown. 第1の実施形態に係る画像処理の動作のフローチャートの一例を示す。An example of a flowchart of the operation of image processing according to the first embodiment is shown. 第1の実施形態に係る対称性マップ生成処理のフローチャートの一例を示す。An example of the flowchart of the symmetry map generation process according to the first embodiment is shown. 第1の実施形態に係る幾何補正処理の過程の例を示す。An example of the process of the geometric correction processing according to the first embodiment is shown. 第1の実施形態に係る対称性マップの生成過程の例を示す。An example of the process of generating the symmetry map according to the first embodiment is shown. 第1の実施形態に係る対称性マップの効果の一例を示す。An example of the effect of the symmetry map according to the first embodiment is shown. 第2の実施形態に係る対称性マップ生成処理のフローチャートの一例を示す。An example of the flowchart of the symmetry map generation process according to the second embodiment is shown. 第2の実施形態に係る対称性マップ生成過程の概略図を示す。The schematic diagram of the symmetry map generation process which concerns on 2nd Embodiment is shown. 変形例に係る層厚プロファイルの例を示す。An example of the layer thickness profile according to the modification is shown.

以下、図面を参照して本発明を実施するための例示的な実施の形態を詳細に説明する。図面において、同一であるか又は機能的に類似している要素を示すために図面間で同じ参照符号を用いる。なお、各図面において説明上重要ではない構成要素、部材、処理の一部は省略して記載されている場合がある。 Hereinafter, exemplary embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used between the drawings to indicate elements that are the same or functionally similar. In each drawing, some of the components, members, and processes that are not important for explanation may be omitted.

また、本明細書では、OCT、眼底カメラ、走査型レーザ検眼鏡(SLO)など各撮影技術(モダリティ)で取得される眼底の画像をまとめて「眼底画像」と呼ぶこととする。さらに、本明細書においては、被検体の深さ方向をZ方向とし、Z方向に垂直な方向をX方向とし、Z方向とX方向に垂直な方向をY方向とする。 Further, in the present specification, images of the fundus acquired by each imaging technique (modality) such as OCT, fundus camera, and scanning laser ophthalmoscope (SLO) are collectively referred to as “fundus image”. Further, in the present specification, the depth direction of the subject is the Z direction, the direction perpendicular to the Z direction is the X direction, and the direction perpendicular to the Z direction and the X direction is the Y direction.

本実施形態について、図1乃至図9を参照しながら説明する。本実施形態に係る画像処理装置100は、図1に例示するように、入力部101と、制御部102と、表示部103と、操作部104と、記憶部105とを含んで構成される。 This embodiment will be described with reference to FIGS. 1 to 9. As illustrated in FIG. 1, the image processing apparatus 100 according to the present embodiment includes an input unit 101, a control unit 102, a display unit 103, an operation unit 104, and a storage unit 105.

入力部101は、例えばUSB(Universal Serial Bus)ケーブル等を用いたインタフェースであり、OCT装置などの眼科機器からデータを入力して制御部102へ出力する。また、入力部101は、制御部102に接続されたサーバ等の不図示の外部装置から画像を含む各種データを入力してもよい。ここで、制御部102と不図示の外部装置はインターネット等の任意のネットワークを介して接続されていてもよい。また、入力部101は、記憶部105に記憶された各種データを入力してもよい。 The input unit 101 is an interface using, for example, a USB (Universal Serial Bus) cable, and inputs data from an ophthalmic device such as an OCT device and outputs the data to the control unit 102. Further, the input unit 101 may input various data including images from an external device (not shown) such as a server connected to the control unit 102. Here, the control unit 102 and an external device (not shown) may be connected via an arbitrary network such as the Internet. Further, the input unit 101 may input various data stored in the storage unit 105.

制御部102は、入力されたデータに対して記憶部105に格納されているプログラムを実行し、結果を表示部103へ出力する。ここで、制御部102は、OCT装置100の内蔵(内部)のコンピュータであってもよいし、OCT装置100が通信可能に接続された別体(外部)のコンピュータであってもよい。また、制御部102は、例えば、パーソナルコンピュータであってもよく、デスクトップPCや、ノート型PC、タブレット型PC(携帯型の情報端末)が用いられてもよい。このとき、制御部102と眼科機器の通信接続は、有線通信による接続であってもよいし、無線通信による接続であってもよい。なお、プロセッサーは、CPU(Central Processing Unit)であってよい。また、プロセッサーは、例えば、MPU(Micro Processing Unit)、GPU(Graphical Processing Unit)やFPGA(Field-Programmable Gate Array)等であってもよい。 The control unit 102 executes a program stored in the storage unit 105 for the input data, and outputs the result to the display unit 103. Here, the control unit 102 may be a built-in (internal) computer of the OCT device 100, or may be a separate (external) computer to which the OCT device 100 is communicably connected. Further, the control unit 102 may be, for example, a personal computer, or a desktop PC, a notebook PC, or a tablet PC (portable information terminal) may be used. At this time, the communication connection between the control unit 102 and the ophthalmic device may be a connection by wire communication or a connection by wireless communication. The processor may be a CPU (Central Processing Unit). Further, the processor may be, for example, an MPU (Micro Processing Unit), a GPU (Graphical Processing Unit), an FPGA (Field-Programmable Gate Array), or the like.

表示部103は、ディスプレイ等であり、制御部102から入力されるデータに基づいて検者へ情報を表示する。例えば、表示部103は、被検眼に関する患者情報や各種画像、眼科疾患に関する推定結果等を表示することができる。 The display unit 103 is a display or the like, and displays information to the examiner based on the data input from the control unit 102. For example, the display unit 103 can display patient information regarding the eye to be inspected, various images, estimation results regarding ophthalmic diseases, and the like.

操作部104はマウスやキーボード、あるいはタッチパネルなどであり、検者の操作によって指示された処理を制御部102へ入力することができる。 The operation unit 104 is a mouse, a keyboard, a touch panel, or the like, and can input the process instructed by the operation of the examiner to the control unit 102.

記憶部105は、オペレーティングシステム(OS)、周辺機器のデバイスドライバ、後述する処理等を行うためのプログラムを含む各種アプリケーションソフトを実現するためのプログラムを格納する。また、各種演算に必要なデータが保存されている。 The storage unit 105 stores a program for realizing various application software including an operating system (OS), a device driver of a peripheral device, and a program for performing processing described later. In addition, data necessary for various operations is stored.

以下、第1の実施形態および第2の実施形態を説明する。第1の実施形態は、単一時間に取得された画像に基づいて眼科診断のための処理を行う。第2の実施形態は、異なる複数の時間に取得された画像に基づいて眼科診断のための処理を行う。 Hereinafter, the first embodiment and the second embodiment will be described. The first embodiment performs a process for ophthalmic diagnosis based on an image acquired in a single time. The second embodiment performs a process for ophthalmologic diagnosis based on images acquired at a plurality of different times.

[第1の実施形態]
図2のフローチャートを参照しながら、第1の実施形態に係る画像処理をステップごとに説明する。特に、眼底のOCT画像を用いて緑内障に関する推定を行う場合を例にして説明する。
[First Embodiment]
The image processing according to the first embodiment will be described step by step with reference to the flowchart of FIG. In particular, the case of estimating glaucoma using the OCT image of the fundus will be described as an example.

[ステップS1:画像入力]
入力部101は、OCT装置で取得された眼底の断層画像(OCT画像)データを入力する(ステップS1)。この断層画像データは、複数のBスキャン位置で撮影されたものを含み、これにより、入力部101は被検眼の眼底に関する3次元データを取得することができる。ここで、Aスキャンとは、被検眼の一点から断層の情報を取得することをいい、Aスキャンを任意の横断方向(主走査方向)において複数回行うことで被検眼Eの当該横断方向と深さ方向の二次元の断層の情報を取得することをBスキャンという。本実施例では、同一患者に対して、右眼と左眼の両方の断層画像を入力する。右眼と左眼で眼軸長に差がある場合は、これを補正する処理を行ってもよい。
[Step S1: Image input]
The input unit 101 inputs tomographic image (OCT image) data of the fundus acquired by the OCT device (step S1). This tomographic image data includes those taken at a plurality of B scan positions, whereby the input unit 101 can acquire three-dimensional data regarding the fundus of the eye to be inspected. Here, the A scan means to acquire tomographic information from one point of the eye to be inspected, and by performing the A scan a plurality of times in an arbitrary crossing direction (main scanning direction), the crossing direction and the depth of the eye to be inspected E are obtained. Acquiring information on a two-dimensional fault in the vertical direction is called B scan. In this example, tomographic images of both the right eye and the left eye are input to the same patient. If there is a difference in axial length between the right eye and the left eye, processing may be performed to correct this.

入力部101はケーブルによって眼科機器と接続されており、ケーブルを通して画像が入力される。また、別の場所で撮影された画像が、通信ネットワークなどを通して入力部101へ入力されてもよい。入力部101は、入力された画像を制御部102へ出力する。 The input unit 101 is connected to an ophthalmic device by a cable, and an image is input through the cable. Further, an image taken at another place may be input to the input unit 101 through a communication network or the like. The input unit 101 outputs the input image to the control unit 102.

また、入力部101は、眼底カメラで撮影された眼底写真や、SLO光学系を用いて撮影された眼底正面画像(SLO画像)など、他の撮影技術で取得された画像やデータも入力し得る。 Further, the input unit 101 can also input images and data acquired by other photographing techniques, such as a fundus photograph taken by a fundus camera and a frontal view of the fundus image (SLO image) taken by using an SLO optical system. ..

また、入力部101は、被検眼に関する患者の識別番号、眼軸長、年齢、視力、人種、病歴、および強度近視の該非の少なくとも1つを含む等の患者データも併せて入力することができる。入力部101は、これらの画像やデータも不図示の外部装置から入力してもよい。なお、制御部102は、入力部101が入力したカルテの画像からテキストマイニング技術などを用いて患者データを抽出してもよい。 The input unit 101 may also input patient data such as a patient identification number for the eye to be inspected, an axial length, age, visual acuity, race, medical history, and at least one of the non-severe myopia. can. The input unit 101 may also input these images and data from an external device (not shown). The control unit 102 may extract patient data from the image of the medical record input by the input unit 101 by using a text mining technique or the like.

[ステップS2:画像処理]
制御部102は、入力部100から入力された画像を処理して、表示部103へ出力する画像を生成する(ステップS2)。本実施形態に係る画像処理の例を、図3のフローチャートを用いて説明する。
[Step S2: Image processing]
The control unit 102 processes the image input from the input unit 100 and generates an image to be output to the display unit 103 (step S2). An example of image processing according to this embodiment will be described with reference to the flowchart of FIG.

[ステップS21:厚みマップ生成]
制御部102は、断層画像データを用いて厚みマップを生成する(ステップS21)。厚みマップとは、被検眼の深さ方向(Z方向)に垂直なXY平面における各XY位置に対して、網膜内の解剖学的に定められる観察対象層の厚み(層厚)を輝度値等で表したマップ(マップ画像)であり、層厚マップとも言う。観察対象層の一例は、神経繊維層(NFL)、神経節細胞層(GCL)、内網状層(IPL)の3層であり、この層厚を積算することで厚みマップを生成することができる。また、神経線維層(NFL)のみの厚さから厚みマップを生成してもよいし、任意の層の層厚に基づいて厚みマップを生成してよい。厚みマップは、各XY位置の層厚をグレースケールの輝度値に変換して表すことができる。また、厚みマップは、各XY位置の層厚を疑似カラースケールの輝度値に変換して表したものであってもよい。また、入力されたOCTデータに対して、マップの見やすさや処理の負荷を鑑みて画素サイズを変更してもよい。
[Step S21: Thickness map generation]
The control unit 102 generates a thickness map using the tomographic image data (step S21). The thickness map is the thickness (layer thickness) of the anatomically determined observation target layer in the retina for each XY position in the XY plane perpendicular to the depth direction (Z direction) of the eye to be inspected, such as a brightness value. It is a map (map image) represented by, and is also called a layer thickness map. An example of the observation target layer is a nerve fiber layer (NFL), a ganglion cell layer (GCL), and an inner plexiform layer (IPL), and a thickness map can be generated by integrating these layer thicknesses. .. Further, the thickness map may be generated from the thickness of only the nerve fiber layer (NFL), or the thickness map may be generated based on the layer thickness of any layer. The thickness map can be represented by converting the layer thickness at each XY position into a grayscale luminance value. Further, the thickness map may be represented by converting the layer thickness at each XY position into a luminance value of a pseudo color scale. Further, the pixel size of the input OCT data may be changed in consideration of the visibility of the map and the processing load.

具体的には、制御部102は、入力された断層画像についてセグメンテーション処理を行い、被検眼の断層における層構造を抽出し、各層構造の厚みを算出する。なお、セグメンテーション処理の手法及び厚みの算出方法は、公知の任意の手法を用いてよい。制御部102は、観察対象層について算出した厚みを用いて、被検眼の厚みマップを生成する。このように得られる左眼と右眼の厚みマップは、被検者の左右一対の眼底画像情報、つまり第1の眼底画像情報および第2の眼底画像情報の一例である。また、制御部102は、このように画像情報を取得する画像情報取得手段の一例である。 Specifically, the control unit 102 performs segmentation processing on the input tomographic image, extracts the layer structure in the tomographic area of the eye to be inspected, and calculates the thickness of each layer structure. As the method of segmentation processing and the method of calculating the thickness, any known method may be used. The control unit 102 generates a thickness map of the eye to be inspected using the thickness calculated for the observation target layer. The thickness map of the left eye and the right eye thus obtained is an example of a pair of left and right fundus image information of the subject, that is, the first fundus image information and the second fundus image information. Further, the control unit 102 is an example of the image information acquisition means for acquiring the image information in this way.

[ステップS22:補正処理]
次に、制御部102は、厚みマップに対して補正処理を行う。補正処理の例を、以下で説明する。
[Step S22: Correction process]
Next, the control unit 102 performs correction processing on the thickness map. An example of the correction process will be described below.

補正処理の一例は、厚みマップの不適切な箇所の輝度値を補正する処理(エラー補正処理)である。例えば、層のセグメンテーション処理でエラーが生じた場合、その位置の厚みは特異的な値となり、厚みマップ上で白飛びあるいは黒つぶれとして表される。制御部102は、厚みマップにおいて特異的な値を有する、そのような不適切な箇所の輝度値を、例えば周辺の平均的な値に置換する処理を行う。あるいは、制御部102は、そのような不適切な箇所を厚みマップから除去してもよい。また、制御部102は、視神経乳頭部(以下、単に「乳頭部」とも呼ぶ)内など、診断に不要と考えられる領域の輝度値を同様に置換してもよいし、その領域をマップから除去してもよい。 An example of the correction process is a process (error correction process) for correcting the luminance value of an inappropriate portion of the thickness map. For example, if an error occurs in the layer segmentation process, the thickness at that position becomes a specific value and is represented as overexposure or underexposure on the thickness map. The control unit 102 performs a process of replacing the luminance value of such an inappropriate portion having a specific value in the thickness map with, for example, an average value of the periphery. Alternatively, the control unit 102 may remove such an inappropriate portion from the thickness map. Further, the control unit 102 may similarly replace the luminance value of a region considered unnecessary for diagnosis, such as the inside of the optic nerve papilla (hereinafter, also simply referred to as “papillary head”), or remove the region from the map. You may.

また、入力部101から入力された画像データの画質が低く、診断に用いるのに不適切であると判断された場合、制御部102は、再撮影を促すメッセージを表示部103へ表示させることができる。この判断は検者(ユーザ)が目視で判断してもよい。また、画像の明るさやセグメンテーションの成功率などに基いたルールベースによる自動判定を行ってもよいし、機械学習による画質判定を行ってもよい。 Further, when it is determined that the image quality of the image data input from the input unit 101 is low and inappropriate for use in diagnosis, the control unit 102 may display a message prompting re-shooting on the display unit 103. can. This judgment may be made visually by the examiner (user). Further, automatic determination based on rules based on image brightness, success rate of segmentation, etc. may be performed, or image quality determination by machine learning may be performed.

補正処理の他の一例は、厚みマップを生成する際に、被検眼の眼軸長データに基づいて、層厚の値を補正する処理である。ここで、被検眼の眼軸長データは、ステップS1において取得されてもよいし、検者から入力されてもよい。正常眼データベースと比べて被検眼の眼軸長が長い場合、網膜が引き伸ばされることで層厚全体が薄くなる影響がある。そのため、制御部102は、眼軸長に応じた層厚の影響を低減するように厚みマップを補正することができる。なお、眼軸長に応じた層厚の補正は公知の任意の手法を用いて行われてよい。このような補正によって、病変により層厚が薄くなっている場合と健常時から層厚が薄くなっている場合とを識別することができる。また、眼軸長が異なるとスキャン角度に対する眼底の撮影範囲が変わるため、制御部102は、厚みマップのスケールを補正する処理を行ってもよい。また、患者が強度近視である場合は眼軸長が長くなっている傾向がある。そのため、患者が強度近視である場合には、制御部102は厚みマップについて同様の補正を行ってもよい。なお、被検眼の眼軸長や強度近視の該非に関しては、入力された患者データに基づいて判断されてよい。 Another example of the correction process is a process of correcting the layer thickness value based on the axial length data of the eye to be inspected when the thickness map is generated. Here, the axial length data of the eye to be inspected may be acquired in step S1 or may be input by the examiner. When the axial length of the eye to be examined is longer than that of the normal eye database, the retina is stretched, which has the effect of thinning the entire layer thickness. Therefore, the control unit 102 can correct the thickness map so as to reduce the influence of the layer thickness according to the axial length. The layer thickness may be corrected according to the axial length by using any known method. By such correction, it is possible to distinguish between the case where the layer thickness is thinned due to the lesion and the case where the layer thickness is thinned from normal. Further, since the photographing range of the fundus with respect to the scan angle changes when the axial length is different, the control unit 102 may perform a process of correcting the scale of the thickness map. Also, when the patient has severe myopia, the axial length tends to be long. Therefore, if the patient has severe myopia, the control unit 102 may make similar corrections to the thickness map. The axial length of the eye to be inspected and the non-existence of severe myopia may be determined based on the input patient data.

補正処理の他の一例は、厚みマップを幾何学的に補正する処理(幾何補正処理)である。幾何補正処理の例を、図4(a)及び図4(b)を用いて説明する。ここで、図4(a)は幾何補正処理前の厚みマップの一例を示し、図4(b)は幾何補正処理後の厚みマップの一例を示す。 Another example of the correction process is a process of geometrically correcting the thickness map (geometric correction process). An example of the geometric correction process will be described with reference to FIGS. 4 (a) and 4 (b). Here, FIG. 4A shows an example of a thickness map before the geometric correction process, and FIG. 4B shows an example of a thickness map after the geometric correction process.

幾何補正処理として、制御部102は、例えば記憶部105に記憶された厚みマップに関する基準情報を参照しながら、生成された厚みマップに対して、拡縮(拡大あるいは縮小)、回転、平行移動といった、幾何学的な補正処理を行う。この補正処理は、アフィン変換を用いて行ってもよい。 As a geometric correction process, the control unit 102 refers to, for example, reference information about the thickness map stored in the storage unit 105, and expands / contracts (enlarges or reduces), rotates, and translates the generated thickness map. Perform geometric correction processing. This correction process may be performed using an affine transformation.

記憶部105に記憶された基準情報の一例は、黄斑の中心位置、乳頭部の中心位置、ならびに図4(a)及び図4(b)における点線で示すような画像中の黄斑部Aから乳頭部Bまでの距離および角度である。なお、黄斑部Aから乳頭部Bまでの角度としては、例えば、画像の水平方向(横方向)に対する黄斑部Aと乳頭部Bとを結ぶ線の角度であってよい。 An example of the reference information stored in the storage unit 105 is the center position of the macula, the center position of the papilla, and the macula to the papilla in the image as shown by the dotted lines in FIGS. 4 (a) and 4 (b). The distance and angle to part B. The angle from the macula A to the nipple B may be, for example, the angle of the line connecting the macula A and the nipple B with respect to the horizontal direction (horizontal direction) of the image.

具体的には、まず、制御部102は、黄斑部Aの中心位置が厚みマップの中心に来るように、厚みマップを平行移動する。なお、黄斑部Aの中心位置情報は断層画像や厚みマップ等を解析して取得することができる。また、厚みマップを表示部103に表示して、検者が操作部104を用いて黄斑の中心位置を選択してもよい。次に、図4(a)内の点線で示す黄斑部Aと乳頭部Bとを結ぶ線が基準の長さおよび角度(水平)になるように、厚みマップの拡縮および回転の調整を行う。ここでの基準の長さは任意に設定され得るが、一例として黄斑部(A)から乳頭部(B)までの距離が4500μm相当となるように設定し、画像の拡縮処理を行ってもよい。このような調整により、図4(b)に示すような厚みマップを取得することができる。なお。幾何補正処理で画素値が無くなった縁の箇所には、例えば周辺の画素値の平均値を画素値として用いることができる。また、縁が十分埋まるように画像全体を切り抜く処理を行ってもよい。また、アスペクト比の補正を行ってもよい。 Specifically, first, the control unit 102 translates the thickness map so that the center position of the macula portion A comes to the center of the thickness map. The center position information of the macula A can be obtained by analyzing a tomographic image, a thickness map, or the like. Further, the thickness map may be displayed on the display unit 103, and the examiner may select the center position of the macula using the operation unit 104. Next, the expansion / contraction and rotation of the thickness map are adjusted so that the line connecting the macula A and the papilla B shown by the dotted line in FIG. 4A has the reference length and angle (horizontal). The reference length here can be set arbitrarily, but as an example, the distance from the macula (A) to the papilla (B) may be set to be equivalent to 4500 μm, and the image may be scaled. .. By such adjustment, the thickness map as shown in FIG. 4B can be obtained. note that. For example, the average value of the peripheral pixel values can be used as the pixel value at the edge portion where the pixel value is lost by the geometric correction process. Further, a process of cutting out the entire image may be performed so that the edges are sufficiently filled. Further, the aspect ratio may be corrected.

制御部102は、これらの補正処理を組み合わせて実施してもよい。 The control unit 102 may perform these correction processes in combination.

[ステップS23:対称性マップ生成]
次に、制御部102は、厚みマップを用いて、被検眼に関する対称性を示す対称性マップを生成する(S23)。以下、図5(a)及び図5(b)を用いて、対称性マップの生成方法の一例を説明する。図5(a)は、被検者の右眼の断層画像から得られた厚みマップの一例であり、図5(b)は同一被検者の左眼の断層画像から得られた厚みマップである。なお、図5(a)及び図5(b)では、被検眼の対称性に関する基準として、厚みマップの水平方向に延びる中央線H1、H2、垂直方向に延びる中央線V1、V2が一点鎖線で示されている。本実施形態では、中央線H1、H2、V1、V2は、厚みマップにおける黄斑の中心を基準として定めている。すなわち、水平方向に延びる中央線H1、H2は、黄斑部および乳頭部を基準として第1の眼底画像情報および第2の眼底画像情報に設定された、被検眼の対称性の基準となる第1の座標軸の一例である。また、垂直方向に延びる中央線V1、V2は、第1の座標軸と垂直な第2の座標軸の一例である。第1の座標軸と第2の座標軸から、2次元座標系が設定される。制御部102は、このように2次元座標系を設定する座標系設定手段の一例である。なお、被検眼の対称性に関する基準となる第1の座標軸および第2の座標軸(中央線H1、H2、V1、V2)は、これに限られず、被検眼の対称性を確保できる対象を基準として定められてよい。
[Step S23: Symmetry map generation]
Next, the control unit 102 uses the thickness map to generate a symmetry map showing symmetry with respect to the eye to be inspected (S23). Hereinafter, an example of a method for generating a symmetry map will be described with reference to FIGS. 5 (a) and 5 (b). FIG. 5A is an example of a thickness map obtained from a tomographic image of the right eye of a subject, and FIG. 5B is a thickness map obtained from a tomographic image of the left eye of the same subject. be. In FIGS. 5A and 5B, the central lines H1 and H2 extending in the horizontal direction and the central lines V1 and V2 extending in the vertical direction of the thickness map are single-point chain lines as criteria for the symmetry of the eye to be examined. It is shown. In this embodiment, the center lines H1, H2, V1, and V2 are defined with reference to the center of the macula in the thickness map. That is, the central lines H1 and H2 extending in the horizontal direction are the first standards of symmetry of the eye to be inspected, which are set in the first fundus image information and the second fundus image information with respect to the macula and the papilla. This is an example of the coordinate axes of. Further, the central lines V1 and V2 extending in the vertical direction are examples of the second coordinate axis perpendicular to the first coordinate axis. A two-dimensional coordinate system is set from the first coordinate axis and the second coordinate axis. The control unit 102 is an example of the coordinate system setting means for setting the two-dimensional coordinate system in this way. The first coordinate axis and the second coordinate axes (center lines H1, H2, V1, V2) that are the criteria for the symmetry of the eye to be inspected are not limited to these, and the object that can secure the symmetry of the eye to be inspected is used as a reference. It may be determined.

本実施例の対称性マップは、図5(a)の厚みマップ内の注目画素P1と、図5(a)および(b)に示される画素P2、P3、P4におけるそれぞれの輝度値I1、I2、I3、I4から生成される。P2は、厚みマップの水平方向の中央線H1に対してP1と上下対称な位置の画素である。P3は、図5(b)のマップ内で、P1に該当する位置と垂直方向の中央線V2に対して左右対称な位置(黄斑部・乳頭部との相対関係がP1と対応する位置の一例)の画素である。P4は、P3と厚みマップの水平方向の中央線H2に対して上下対称な位置の画素である。I1、I2、I3、I4は、それぞれ周辺画素の輝度値の平均値としてもよい。つまり、注目画素P1は第1の眼底画像情報の上記座標系における第1の点の一例であり、その周辺画素が第1の領域の一例である。制御部102は、このように点または領域を指定する、点または領域指定手段の一例である。本実施形態の一例では、厚みマップ内の各点が第1の点または領域として順次指定される。また、検者によって特定の点または領域が指定されてもよい。また、P2、P3、P4ならびにそれらの周辺画素は、それぞれ第2の点または領域、第3の点または領域、第4の点または領域の一例である。制御部102は、このように対称点または領域を特定する対象位置特定手段の一例である。また、厚みマップのP1、P2、P3における輝度値はそれぞれ、第1の眼底画像情報における第1の点または領域に関する値、第1の眼底画像情報における第2の点または領域に関する値、第2の眼底画像情報における第3の点または領域に関する値の一例である。また、制御部102は、第1から第3の点または領域に関連する値を取得する情報取得手段の一例である。 The symmetry map of this embodiment has the luminance values I1 and I2 of the pixel P1 of interest in the thickness map of FIG. 5A and the pixels P2, P3, and P4 shown in FIGS. 5A and 5B, respectively. , I3, I4. P2 is a pixel at a position vertically symmetrical with respect to P1 with respect to the horizontal center line H1 of the thickness map. P3 is an example of a position in the map of FIG. 5B that is symmetrical to the position corresponding to P1 and the center line V2 in the vertical direction (the relative relationship between the macula and the papilla corresponds to P1). ) Pixel. P4 is a pixel at a position vertically symmetrical with respect to P3 and the horizontal center line H2 of the thickness map. I1, I2, I3, and I4 may be the average value of the luminance values of the peripheral pixels, respectively. That is, the pixel of interest P1 is an example of the first point in the coordinate system of the first fundus image information, and the peripheral pixels thereof are an example of the first region. The control unit 102 is an example of a point or area designating means for designating a point or area in this way. In one example of this embodiment, each point in the thickness map is sequentially designated as a first point or region. In addition, a specific point or area may be specified by the examiner. Further, P2, P3, P4 and their peripheral pixels are examples of a second point or region, a third point or region, and a fourth point or region, respectively. The control unit 102 is an example of the target position specifying means for specifying the point of symmetry or the region in this way. Further, the luminance values at P1, P2, and P3 of the thickness map are the values relating to the first point or region in the first fundus image information, the values relating to the second point or region in the first fundus image information, and the second. It is an example of the value regarding the third point or region in the fundus image information of. Further, the control unit 102 is an example of information acquisition means for acquiring values related to the first to third points or regions.

対称性マップの生成方法の一例は、まず、I1に対する他の3点の輝度値の比R12=I1/I2、R13=I1/I3、R14=I1/I4をそれぞれ計算する。次に、これらの比の最小値RM1=Min(R12,R13,R14)を選択する。次に、式(1)のように対数変換を行うことで特性値IS1を決定する。 As an example of the method of generating the symmetry map, first, the ratios of the luminance values of the other three points to I1 are calculated as R12 = I1 / I2, R13 = I1 / I3, and R14 = I1 / I4, respectively. Next, the minimum value of these ratios, RM1 = Min (R12, R13, R14) is selected. Next, the characteristic value IS1 is determined by performing logarithmic conversion as in the equation (1).

IS1=A×Log10(RM1)+B・・・(1)
ここでAは、対称性マップを見やすくするように階調のレンジを調整するための係数である。Bはオフセットであり、例えば中間の輝度値とすることができる。例えば対称性マップを8ビット(256階調)のデータで生成する場合、一例としてA=30、B=128と設定することができる。特に緑内障では網膜厚が薄くなっている領域に着目する必要がある。そこで、式(1)のように対数変換を行うことで、比の小さい箇所をより敏感に強調することができる。この処理を厚みマップ内の各画素に対して行うことによって、対称性マップを生成する。対称性マップは、上記のように決定された特性値と、指定された点または領域の座標値に基づいて生成される特性マップの一例である。
IS1 = A × Log10 (RM1) + B ... (1)
Here, A is a coefficient for adjusting the gradation range so that the symmetry map is easy to see. B is an offset and can be, for example, an intermediate luminance value. For example, when a symmetry map is generated with 8-bit (256 gradations) data, A = 30 and B = 128 can be set as an example. Especially in glaucoma, it is necessary to pay attention to the area where the retina thickness is thin. Therefore, by performing logarithmic conversion as in Eq. (1), it is possible to emphasize the part with a small ratio more sensitively. By performing this process for each pixel in the thickness map, a symmetry map is generated. The symmetry map is an example of a characteristic map generated based on the characteristic value determined as described above and the coordinate value of the specified point or region.

また、特性値IS1はI1、I2、I3のみに基づいて決定してもよく、RM1=Min(R12,R13)とすることで上下と左右の対称性を併せて評価することができる。このように、制御部102は、第1の眼底画像情報における第1の点または領域に関する値と、第1の眼底画像情報における第2の点または領域に関する値と、第2の眼底画像情報における第3の点または領域に関する値とに基づいて、第1の点または領域に関する特性値を決定する決定手段の一例である。またこのように、決定手段は、第1の点または領域に関する値と第2の点または領域に関する値とを比較して得た第1の比較結果と、第1の点または領域に関する値と第3の点または領域に関する値とを比較して得た第2の比較結果とを比較して得た第3の比較結果を、特性値として決定する。 Further, the characteristic value IS1 may be determined based only on I1, I2, and I3, and by setting RM1 = Min (R12, R13), the vertical and horizontal symmetry can be evaluated together. As described above, the control unit 102 has the value regarding the first point or region in the first fundus image information, the value regarding the second point or region in the first fundus image information, and the second fundus image information. It is an example of a determination means for determining a characteristic value for a first point or region based on a value for a third point or region. Further, as described above, the determining means is the first comparison result obtained by comparing the value relating to the first point or region with the value relating to the second point or region, and the value relating to the first point or region and the first. The third comparison result obtained by comparing with the second comparison result obtained by comparing with the value relating to the point or region of 3 is determined as a characteristic value.

幾何補正処理で画素値が無くなった縁の箇所は、式(1)の演算を行わずに、例えば中間輝度値あるいは近くの画素の輝度値に基づいた輝度値で埋めることができる。また、撮影画像の回転バラツキの統計データに基づいて厚みマップの縁の領域を周辺から何画素までかを一律に定義し、この縁の領域内で厚みマップの輝度値がゼロの画素を対称性マップでは中間輝度値に置き換えてもよい。縁に黄斑部や経乳頭などが含まれている場合、これらの部位については対称性マップ上では中間輝度値で表示してもよいし、輝度値をゼロなどにして表示してもよい。 The edge portion where the pixel value is lost by the geometric correction process can be filled with, for example, an intermediate luminance value or a luminance value based on the luminance value of a nearby pixel without performing the calculation of the equation (1). In addition, based on the statistical data of the rotation variation of the captured image, the edge area of the thickness map is uniformly defined from the periphery to the number of pixels, and the pixels with zero brightness value of the thickness map within this edge area are symmetrical. In the map, it may be replaced with an intermediate brightness value. When the macula or transpapillary head is included in the edge, these parts may be displayed with an intermediate luminance value on the symmetry map, or may be displayed with the luminance value set to zero or the like.

また、制御部102は、上記で輝度値の比を計算する前に、厚みマップに対して平滑化する処理を施してもよい。平滑化処理は、移動平均フィルタ処理、ガウシアンフィルタ処理、あるいはメディアンフィルタ処理などによって行うことができる。平滑化処理を施すことによって、厚みマップごとの位置ずれや回転ずれによる影響を低減することができる。フィルタのサイズや強さは、厚みマップ内の血管の太さに基づいて決定してもよい。また、画素数を減らす処理を行ってもよい。 Further, the control unit 102 may perform a process of smoothing the thickness map before calculating the ratio of the luminance values. The smoothing process can be performed by a moving average filter process, a Gaussian filter process, a median filter process, or the like. By performing the smoothing process, it is possible to reduce the influence of the position shift and the rotation shift for each thickness map. The size and strength of the filter may be determined based on the thickness of the blood vessels in the thickness map. Further, a process of reducing the number of pixels may be performed.

また、黄斑部や乳頭部境界は厚みマップの値が周囲に比べて急峻に小さくなることから、位置ずれの影響を受けやすい。そこで、これらの位置ずれの影響を受けやすい領域をマスクする処理を行ってもよい。また、これらの領域にのみ上記のような平滑化処理を施してもよい。 In addition, the macula and the border of the papilla are susceptible to misalignment because the value on the thickness map becomes steeper than the surrounding area. Therefore, a process of masking a region susceptible to these misalignments may be performed. Further, the smoothing treatment as described above may be applied only to these regions.

また、このように上下と左右の両方の対称性を併せて評価することによる効果を、図6を用いて説明する。図6の各行の(a)、(b)、(c)、(d)において、左側の列は右眼のマップであり、右側の列は左眼のマップである。 Further, the effect of evaluating both the vertical and horizontal symmetries in this way will be described with reference to FIG. In (a), (b), (c), and (d) of each row of FIG. 6, the left column is the map of the right eye and the right column is the map of the left eye.

図6(a)は、厚みマップを模式的に示したものである。黒塗りの楕円領域E1、E2、E3は、緑内障によって、ドットパターンで示す背景領域よりも厚みが小さくなっている(薄い)ことを示している。また、E1、E2、E3の厚みは互いに同じ値である。E2は、E1と上下対称な位置に分布している。また、E3は、左眼において、E2と左右対称な位置に分布している。 FIG. 6A schematically shows a thickness map. The black-painted elliptical regions E1, E2, and E3 indicate that the thickness is smaller (thinner) than the background region indicated by the dot pattern due to glaucoma. Further, the thicknesses of E1, E2, and E3 have the same value. E2 is distributed at a position vertically symmetrical with E1. Further, E3 is distributed at a position symmetrical to E2 in the left eye.

図6(b)は上下のみの対称性を評価した、上下対称性マップである。上下対称性マップは、図5(a)のP1における輝度値IUD1ならびにP2における輝度値IUD2を、上記のI1、I2を用いて
IUD1=A×Log10(I1/I2)+B・・・(2)
IUD2=A×Log10(I2/I1)+B・・・(3)
とする処理を、厚みマップ内の各画素に対して行うことで生成されるマップである。
FIG. 6B is a vertical symmetry map in which the symmetry of only the vertical is evaluated. In the vertical symmetry map, the luminance value IUD1 at P1 and the luminance value IUD2 at P2 in FIG. 5A are set to IUD1 = A × Log10 (I1 / I2) + B ... (2) using the above I1 and I2.
IUD2 = A × Log10 (I2 / I1) + B ... (3)
It is a map generated by performing the processing of the above for each pixel in the thickness map.

図6(a)の左眼で、厚みが小さい領域が下半分のみにあったため、図6(b)のように、上半分は輝度値が周囲よりも大きく、下半分は輝度値が周囲よりも小さい、上下対称性マップが得られる。一方、E1とE2は上下対称な位置に分布していたため、これらの位置の比は周囲と同じとなり、図6(b)の右眼の上下対称性マップには構造が見られない。このように、上下対称性マップのみでは、上下でほぼ対称に緑内障が進行した場合、緑内障であることを見落としてしまう可能性がある。 In the left eye of FIG. 6 (a), the area where the thickness was small was only in the lower half, so that the upper half had a higher luminance value than the surroundings and the lower half had a higher luminance value than the surroundings, as shown in FIG. 6 (b). A small, vertical symmetry map is obtained. On the other hand, since E1 and E2 were distributed in vertically symmetrical positions, the ratio of these positions was the same as that of the surroundings, and no structure was seen in the vertically symmetrical map of the right eye in FIG. 6 (b). As described above, if glaucoma progresses almost symmetrically in the vertical direction only with the vertical symmetry map, it may be overlooked that it is glaucoma.

図6(c)は左右の対称性を評価した、左右対称性マップである。左右対称性マップは、図5(a)のP1における輝度値ILR1ならびにP3における輝度値ILR3を、上記のI1、I3を用いて
ILR1=A×Log10(I1/I3)+B・・・(4)
ILR3=A×Log10(I3/I1)+B・・・(5)
とする処理を、厚みマップ内の各画素に対して行うことによって生成されるマップである。
FIG. 6C is a left-right symmetry map in which left-right symmetry is evaluated. In the left-right symmetry map, the luminance value ILR1 at P1 and the luminance value ILR3 at P3 in FIG. 5 (a) are set to ILR1 = A × Log10 (I1 / I3) + B ... (4) using the above I1 and I3.
ILR3 = A × Log10 (I3 / I1) + B ... (5)
It is a map generated by performing the processing of the above for each pixel in the thickness map.

図6(a)の上半分は右眼の方が左眼よりも厚みが小さく、下半分は右眼と左眼で共に周囲よりも厚みが小さく互いに同じ厚みであったため、図6(c)のように、左眼の上半分は輝度値が周囲よりも小さく、右眼の上半分は輝度値が周囲よりも大きい、左右対称性マップが得られる。 The upper half of FIG. 6 (a) was thinner than the left eye in the right eye, and the lower half was thinner than the surroundings in both the right eye and the left eye and had the same thickness. As shown above, a left-right symmetry map is obtained in which the brightness value of the upper half of the left eye is smaller than that of the surroundings and the brightness value of the upper half of the right eye is larger than that of the surroundings.

一方、E2とE3は左右対称な位置に分布していたため、これらの位置の比は周囲と同じとなり、図6(c)の右眼と左眼の左右対称性マップの下半分には構造が見られない。このように、左右対称性マップでは、右眼と左眼でほぼ対称に緑内障が進行した場合、緑内障であることを見落としてしまう可能性がある。 On the other hand, since E2 and E3 were distributed in symmetrical positions, the ratio of these positions was the same as that of the surroundings, and the structure was formed in the lower half of the left-right eye and left-eye symmetry map in FIG. 6 (c). can not see. Thus, in the left-right symmetry map, if glaucoma progresses almost symmetrically between the right eye and the left eye, it may be overlooked as glaucoma.

また、図6(b)の上下対称性マップと図6(c)の左右対称性マップを個別に両方見た場合は、E2の領域が周囲と同じ輝度値となり、薄い箇所として抽出されていない。この場合、緑内障が進んでいることを見落としてしまう可能性がある。 Further, when both the vertical symmetry map of FIG. 6 (b) and the horizontal symmetry map of FIG. 6 (c) are viewed individually, the region of E2 has the same luminance value as the surroundings and is not extracted as a thin portion. .. In this case, it may be overlooked that glaucoma is progressing.

図6(d)は上記の方法で生成した、本実施形態に係る対称性マップである。この対称性マップではE2の領域が薄いことを抽出できている。本実施形態に係る対称性マップは、上下と左右に加えて上下かつ左右対称となる対角位置も参照し、これらの最小値を取ることで、より多くの条件から注目画素が他の領域と比べて薄くないかの情報を取得できている。より多くの条件を参照することで、従来のDeviation Mapにより近いマップを得ることができる。さらに、厚みマップで正常眼データベースと比較する方法には、以下の2つの課題がある。一つ目は、緑内障の正常眼データベースの比較マップは正常範囲よりも薄い部分にのみ反応するように作られていることが一般的なので、元々の層厚が厚い場合、多少薄くなってきても正常範囲に収まってしまい、初期の緑内障が検出できない、という課題である。もう一つは、乳頭中心から見た中大血管・神経線維束の走行方向が個人毎に異なるため、層厚の厚い部分が他の人とは異なると健常眼でも擬陽性として検出されてしまう、という課題である。これらの課題は、本実施形態によって改善することができる。また、一つのマップで対称性を表現できるので、上下対称性マップや左右対称性マップを個別に表示させるよりも、異常個所をより簡便に示すことができる。RM1=Min(R12,R13)として対称性マップを生成した場合は、上記のように図6(a)のE2の領域が薄いことを見落としてしまう可能性がある。 FIG. 6D is a symmetry map according to the present embodiment generated by the above method. In this symmetry map, it is possible to extract that the region of E2 is thin. The symmetry map according to the present embodiment refers to the diagonal positions that are vertically and horizontally symmetrical in addition to the vertical and horizontal directions, and by taking these minimum values, the pixel of interest can be compared with other regions from more conditions. I have been able to obtain information on whether it is not as thin as it is. By referring to more conditions, a map closer to the conventional Deviation Map can be obtained. Furthermore, the method of comparing the thickness map with the normal eye database has the following two problems. First, the comparison map of the normal eye database for glaucoma is generally designed to respond only to areas thinner than the normal range, so if the original layer thickness is thick, it may become slightly thinner. The problem is that the initial glaucoma cannot be detected because it falls within the normal range. The other is that the running direction of medium and large blood vessels and nerve fiber bundles seen from the center of the nipple differs from individual to individual, so if the thick part is different from other people, it will be detected as false positive even in healthy eyes. Is the issue. These problems can be improved by the present embodiment. Moreover, since the symmetry can be expressed by one map, the abnormal part can be shown more easily than displaying the vertical symmetry map and the left-right symmetry map individually. When the symmetry map is generated with RM1 = Min (R12, R13), it may be overlooked that the region of E2 in FIG. 6A is thin as described above.

また、対称性は疑似カラースケールに変換してもよい。このことによって、非対称な特徴領域を見やすくすることができる。 Also, the symmetry may be converted to a pseudo color scale. This makes it easier to see the asymmetric feature area.

さらに、対称性マップの輝度値の分布に基づいて、症状の有無や病期を定量評価してもよい。対称性マップの輝度値の分布として、例えば標準偏差を用いることができる。健常者の対称性マップはほぼ均一な輝度値であるため、標準偏差は小さい。一方、緑内障が進んで非対称な構造ができると、標準偏差は大きくなる。症状の有無や病期を判定するための標準偏差の閾値は、ルールベースにより判定してもよいし、患者データから機械学習モデルを生成して決定してもよい。 Furthermore, the presence or absence of symptoms and the stage may be quantitatively evaluated based on the distribution of the luminance values of the symmetry map. For example, a standard deviation can be used as the distribution of the luminance values of the symmetry map. Since the symmetry map of a healthy person has almost uniform luminance values, the standard deviation is small. On the other hand, as glaucoma progresses and an asymmetric structure is formed, the standard deviation increases. The threshold value of the standard deviation for determining the presence or absence of symptoms and the stage may be determined by a rule base, or a machine learning model may be generated from patient data to determine the threshold value.

緑内障の初期症状である前視野緑内障では、このように部分的に層厚の小さい領域が発生する。前視野緑内障は自覚症状が無いことも多いため、対称性マップによる観察でこのような症状を検出することができる。一方、緑内障が進行すると網膜が全体的に薄くなることが知られている。このため、厚みマップから網膜が全体的に薄くなっている場合は、緑内障である可能性を表示部103で示唆してもよい。 In anterior visual field glaucoma, which is an early symptom of glaucoma, such a region with a small layer thickness is partially generated. Since anterior visual field glaucoma often has no subjective symptoms, such symptoms can be detected by observation with a symmetry map. On the other hand, it is known that as glaucoma progresses, the retina becomes thinner overall. Therefore, if the retina is thinned as a whole from the thickness map, the display unit 103 may suggest the possibility of glaucoma.

[ステップS3:対称性マップ表示]
制御部102は、このようにして生成された対称性マップを表示部103へ表示させる。厚みマップなども一緒に表示させてもよい。対称性マップおよび厚みマップを表示部103へ表示させる時は、ステップS22で行った幾何補正処理などを元に戻してから表示してもよい。検者は、対称性の崩れをもとに緑内障であるか否かや、緑内障の進行度(病期)の診断を行うことができる。また、網膜厚の対称性の局所的な崩れから、加齢黄斑変性の診断を同様に実施することができる。対称性を示す標準偏差を、対称性マップと一緒に表示してもよい。対称性マップは、撮影中に表示する撮影画面に表示してもよいし、撮影後に撮影結果や解析結果を表示するレポート画面に表示してもよい。また、これらの両方に表示してもよい。
[Step S3: Display symmetry map]
The control unit 102 causes the display unit 103 to display the symmetry map generated in this way. A thickness map or the like may be displayed together. When displaying the symmetry map and the thickness map on the display unit 103, the geometric correction process performed in step S22 may be restored and then displayed. The examiner can diagnose whether or not glaucoma is present and the degree of progression (stage) of glaucoma based on the symmetry breaking. In addition, the diagnosis of age-related macular degeneration can be similarly performed from the local collapse of the symmetry of the retinal film thickness. The standard deviation for symmetry may be displayed with the symmetry map. The symmetry map may be displayed on a shooting screen displayed during shooting, or may be displayed on a report screen displaying shooting results and analysis results after shooting. Further, it may be displayed on both of them.

対称性マップを、眼底写真、SLO画像、OCTのEn-face画像、OCTアンギオグラフィ(OCTA)画像の少なくとも一つと重ねて表示してもよい。なお、OCTのEn-Face画像は、OCTで取得したデータ(3次元のOCTデータ)について、撮影対象の深さ方向における少なくとも一部の範囲のデータを用いて生成された正面画像であってよい。また、OCTA画像は、2組以上のOCTデータより得られるモーションコントラストデータから生成され、血流の動きを測定する正面画像(OCTAのEn-Face画像)であってよい。モーションコントラストデータは、例えば、2枚の断層画像又はこれに対応する干渉信号間の脱相関値、分散値、又は最大値を最小値で割った値(最大値/最小値)として求めることができ、公知の任意の方法により求められてよい。このとき、2枚の断層画像は、例えば、被検眼の同一領域(同一位置)において測定光が複数回走査されるように制御して得ることができる。対称性マップをこれらの画像と重ねて表示することで、症状が出ている部位を分かりやすく示すことができる。この際、ステップS22で行った幾何補正処理などを元に戻してから重ねる処理を行ってもよい。 The symmetry map may be superimposed on at least one of a fundus photograph, an SLO image, an OCT En-face image, and an OCT angiography (OCTA) image. The En-Face image of the OCT may be a front image generated by using the data (three-dimensional OCT data) acquired by the OCT in at least a part of the depth direction of the imaging target. .. Further, the OCTA image may be a frontal image (OCTA En-Face image) that is generated from motion contrast data obtained from two or more sets of OCT data and measures the movement of blood flow. The motion contrast data can be obtained, for example, as a decorrelation value, a variance value, or a maximum value divided by a minimum value (maximum value / minimum value) between two tomographic images or corresponding interference signals. , Can be determined by any known method. At this time, the two tomographic images can be obtained, for example, by controlling the measurement light to be scanned a plurality of times in the same region (same position) of the eye to be inspected. By displaying the symmetry map on top of these images, it is possible to clearly show the site where the symptoms are occurring. At this time, the geometric correction processing performed in step S22 may be restored and then the processing may be performed.

このように対称性マップを生成することで、正常眼データベースを用いずに、また全体的な網膜厚の個人差に依らずに、診断を行うことが可能となる。 By generating the symmetry map in this way, it is possible to make a diagnosis without using a normal eye database and without depending on individual differences in the overall retinal thickness.

[第1の実施形態の変形例]
制御部102は、生成した対称性マップを用いて機械学習モデルによる推定を行ってもよい。対称性マップと健常者あるいは緑内障の病期などを紐づけて学習させることで、機械学習モデルを生成することができる。機械学習モデルを生成する際は、厚みマップも入力画像として用いてもよい。制御部102は、学習結果と被験者の対称性マップの少なくとも一方を、表示部103へ表示させる。
[Modified example of the first embodiment]
The control unit 102 may perform estimation by a machine learning model using the generated symmetry map. A machine learning model can be generated by associating a symmetry map with a healthy person or the stage of glaucoma. When generating a machine learning model, a thickness map may also be used as an input image. The control unit 102 causes the display unit 103 to display at least one of the learning result and the symmetry map of the subject.

また、上記の例では厚みマップをR1、R2、R3の最小値RM1=Min(R1,R2,R3)を用いて生成していたが、代えてI2、I3、I4の平均値IMを計算し、RM1=I1/IMとして式(1)から対称性マップを生成してもよい。また、対数変換を行わず、RM1の値をP1における輝度値として、対称性マップを生成してもよい。また、輝度値の比を取るのではなく、差分をとることで対称性マップを生成してもよい。ただし差分で評価する場合は全体的な網膜厚の個人差の影響を受けるため、その際は眼軸長や視力などのデータから、全体的な網膜厚の影響を補正してもよい。 Further, in the above example, the thickness map was generated using the minimum value RM1 = Min (R1, R2, R3) of R1, R2, R3, but instead, the average value IM of I2, I3, I4 was calculated. , RM1 = I1 / IM, and a symmetry map may be generated from the equation (1). Further, a symmetry map may be generated by using the value of RM1 as the luminance value in P1 without performing logarithmic transformation. Further, the symmetry map may be generated by taking the difference instead of taking the ratio of the luminance values. However, when the evaluation is based on the difference, it is affected by individual differences in the overall net thickness. In that case, the influence of the overall net thickness may be corrected from the data such as the axial length and visual acuity.

上記の例では黄斑と乳頭部を含むOCTデータから対称性マップを生成したが、乳頭部を略中心にスキャンされたOCTデータから対称性マップを生成してもよい。このことで乳頭部周辺に変化が出る疾病の検出精度が向上する効果がある。このとき、別途取得されたOCTデータや眼底写真などの情報から黄斑部・中心部の位置情報を抽出することで、上下対称性を評価するための水平方向の中心軸を設定しても良い。またこのとき、左右対称性を評価するための垂直方向の中心軸を、乳頭部中心を通るように設定してもよい。 In the above example, the symmetry map is generated from the OCT data including the macula and the papilla, but the symmetry map may be generated from the OCT data scanned around the papilla. This has the effect of improving the detection accuracy of diseases in which changes occur around the nipple. At this time, the horizontal central axis for evaluating the vertical symmetry may be set by extracting the positional information of the macula and the central portion from the separately acquired information such as the OCT data and the fundus photograph. At this time, the central axis in the vertical direction for evaluating the left-right symmetry may be set so as to pass through the center of the papilla.

[第2の実施形態]
眼科疾患に関する予後を予測するため、同一被検眼で異なる時間に撮影された複数の眼底画像(時系列データ)から、疾患の進行を高精度に検出することが求められる。そこで、本実施形態に係る画像処理装置は、時系列データから対称性マップを生成することで、正常眼データベースを用いずに疾患の進行を検出するためのデータを提示する。本実施形態に係る画像処理装置は、図1と同様の構成を持つため、同じ参照符号を用いて説明を省略する。また、本実施形態に係る画像処理装置は、図2と同様のフローチャートの処理を行うため、同じ参照符号を用いて説明する。以下、第1実施形態との違いを中心に本実施形態に係る制御部102について説明する。
[Second Embodiment]
In order to predict the prognosis of an ophthalmic disease, it is required to detect the progression of the disease with high accuracy from a plurality of fundus images (time series data) taken at different times with the same eye to be inspected. Therefore, the image processing apparatus according to the present embodiment presents data for detecting the progression of the disease without using the normal eye database by generating a symmetry map from the time series data. Since the image processing apparatus according to the present embodiment has the same configuration as that of FIG. 1, the same reference numerals are used and the description thereof will be omitted. Further, since the image processing apparatus according to the present embodiment processes the same flowchart as in FIG. 2, it will be described with reference to the same reference numerals. Hereinafter, the control unit 102 according to the present embodiment will be described with a focus on the differences from the first embodiment.

[ステップS1:画像入力]
本実施形態に係る入力部101は、同一被検眼に対して異なる時間に撮影された複数の眼底画像を入力する(ステップS1)。入力部101が入力した複数の眼底画像は、制御部102へ出力される。
[Step S1: Image input]
The input unit 101 according to the present embodiment inputs a plurality of fundus images taken at different times for the same eye to be inspected (step S1). The plurality of fundus images input by the input unit 101 are output to the control unit 102.

例えば、過去に撮影された少なくとも1つの3次元の断層画像が、通信ネットワークなどを通して既存のデータベースから入力部101へ入力される。併せて、新たに撮影された断層画像が、OCT装置からケーブルなどを通して入力部101へ入力される。これらの断層画像が、制御部102へ出力される。なお、過去の断層画像は、予め記憶部105に記憶しておき、記憶部105から制御部102に入力してもよい。 For example, at least one three-dimensional tomographic image taken in the past is input to the input unit 101 from an existing database through a communication network or the like. At the same time, the newly captured tomographic image is input from the OCT device to the input unit 101 through a cable or the like. These tomographic images are output to the control unit 102. The past tomographic image may be stored in the storage unit 105 in advance and input from the storage unit 105 to the control unit 102.

また、入力部101は、第1の実施形態と同様に、眼底写真や、SLO画像、En-Face画像、OCTA画像、患者データ等も取得することができる。 Further, the input unit 101 can also acquire a fundus photograph, an SLO image, an En-Face image, an OCTA image, patient data, and the like, as in the first embodiment.

[ステップS2:画像処理]
本実施形態に係る制御部102は、異なる時間に撮影された同一被検眼の眼底画像を比較して、対称性マップを生成する。(ステップS2)。対称性マップ生成の例を、図7のフローチャートならびに図8の概略図を用いて説明する。
[Step S2: Image processing]
The control unit 102 according to the present embodiment compares the fundus images of the same eye to be inspected taken at different times to generate a symmetry map. (Step S2). An example of symmetry map generation will be described with reference to the flowchart of FIG. 7 and the schematic diagram of FIG.

まず、制御部102は、新しく撮影された断層画像(第1のOCT画像801)から第1の厚みマップ811を生成し、過去に撮影された断層画像(第2のOCT画像802)から第2の厚みマップ812を生成する(ステップS31)。厚みマップは、第1の実施形態と同様の方法で生成される。例として、第2の厚みマップは健常時のデータや、取得した中で最も古い時間のデータを用いて生成される。このように得られる第1の厚みマップ811と第2の厚みマップ812は、被検者の一対の異なる時間における眼底画像情報、つまり第1の眼底画像情報および第2の眼底画像情報の一例である。また、制御部102は、このように画像情報を取得する画像情報取得手段の一例である。 First, the control unit 102 generates the first thickness map 811 from the newly captured tomographic image (first OCT image 801), and the second from the previously captured tomographic image (second OCT image 802). The thickness map 812 of is generated (step S31). The thickness map is generated in the same manner as in the first embodiment. As an example, the second thickness map is generated using normal data and the oldest acquired time data. The first thickness map 811 and the second thickness map 812 obtained in this way are examples of the fundus image information of the subject at different times, that is, the first fundus image information and the second fundus image information. be. Further, the control unit 102 is an example of the image information acquisition means for acquiring the image information in this way.

次に、制御部102は、第1の厚みマップ811および第2の厚みマップ812に対して補正処理を行う(ステップS32)。 Next, the control unit 102 performs correction processing on the first thickness map 811 and the second thickness map 812 (step S32).

本実施形態の補正処理の一例は、幾何補正処理を含む。制御部102は第1の実施形態と同様に、記憶部105に記憶された基準情報を参照しながら、第1の厚みマップ811および第2の厚みマップ812に対して、拡縮(拡大あるいは縮小)、回転、平行移動といった、幾何学的な補正処理を行う。なお、基準情報は、第1の実施形態と同様に一律に設定してもよいし、最も古い時間に撮影された断層画像から生成された厚みマップの黄斑部Aから乳頭部Bまでの距離、角度、ならびに黄斑部Aおよび乳頭部Bの位置としてもよい。この場合、基準情報を参照しながら、他の時間に撮影された断層画像から生成された厚みマップを補正する。また、基準情報の取得に用いる画像は、最も古いものに限らず、任意の時間に撮影された画像であってよい。 An example of the correction process of the present embodiment includes a geometric correction process. Similar to the first embodiment, the control unit 102 scales (enlarges or reduces) the first thickness map 811 and the second thickness map 812 while referring to the reference information stored in the storage unit 105. , Rotation, translation, and other geometric correction processes. The reference information may be set uniformly as in the first embodiment, or the distance from the macula A to the papilla B of the thickness map generated from the tomographic image taken at the oldest time. It may be the angle and the position of the macula A and the papilla B. In this case, the thickness map generated from the tomographic images taken at other times is corrected with reference to the reference information. Further, the image used for acquiring the reference information is not limited to the oldest one, and may be an image taken at an arbitrary time.

また、本実施形態の補正処理の一例は、厚みマップを平滑化する処理を含むことができる。平滑化処理によって、異なる時間に撮影された断層画像同士の位置ずれや回転ずれの影響を低減することができる。また、黄斑部や乳頭部境界などの位置ずれの影響を受けやすい領域をマスクする処理を行ってもよい。さらに、補正処理は、不適切箇所の輝度値の補正や眼軸長に応じた補正等、その他の画像処理を含んでもよい。 Further, an example of the correction process of the present embodiment can include a process of smoothing the thickness map. The smoothing process can reduce the effects of misalignment and rotational misalignment between tomographic images taken at different times. In addition, a process of masking a region susceptible to misalignment, such as the macula or the border of the nipple, may be performed. Further, the correction processing may include other image processing such as correction of the luminance value of the inappropriate portion and correction according to the axial length.

本実施形態の一例では、対称性マップは、図8の第1の厚みマップ内の注目画素P1と、さらに第1の厚みマップおよび第2の厚みマップ内のP2、P3、P4におけるそれぞれの輝度値I1、I2、I3、I4から生成される。P2は、厚みマップの水平方向の中央線に対してP1と上下対称な位置の画素である。P3は、第2の厚みマップにおいてP1に該当する位置の画素である。P4は、P3と厚みマップの水平方向の中央線に対して上下対称な位置の画素である。I1、I2、I3、I4は、それぞれ周辺画素の輝度値の平均値としてもよい。つまり、注目画素P1は第1の眼底画像情報の上記座標系における第1の点の一例であり、その周辺画素が第1の領域の一例である。制御部102は、このように点または領域を指定する、点または領域指定手段の一例である。本実施形態の一例では、厚みマップ内の各点が第1の点または領域として制御部102によって順次指定される。また、検者によって特定の点または領域が第1の点または領域として指定されてもよい。また、P2、P3、P4ならびにそれらの周辺画素は、それぞれ第2の点または領域、第3の点または領域、第4の点または領域の一例である。制御部102は、このように第2の点または領域、第3の点または領域、第4の点または領域を特定する、対象位置特定手段の一例である。また、厚みマップのP1、P2、P3における輝度値は、それぞれ、第1の眼底画像情報における第1の点または領域に関する値、第1の眼底画像情報における第2の点または領域に関する値、第2の眼底画像情報における第3の点または領域に関する値の一例である。また、制御部102は、第1から第3の点または領域に関連する値を取得する情報取得手段の一例である。 In one example of the present embodiment, the symmetry map is the luminance of the pixel P1 of interest in the first thickness map of FIG. 8, and the luminance of each of P2, P3, and P4 in the first thickness map and the second thickness map. Generated from the values I1, I2, I3, I4. P2 is a pixel at a position vertically symmetrical to P1 with respect to the horizontal center line of the thickness map. P3 is a pixel at a position corresponding to P1 in the second thickness map. P4 is a pixel whose position is vertically symmetrical with respect to the horizontal center line of P3 and the thickness map. I1, I2, I3, and I4 may be the average value of the luminance values of the peripheral pixels, respectively. That is, the pixel of interest P1 is an example of the first point in the coordinate system of the first fundus image information, and the peripheral pixels thereof are an example of the first region. The control unit 102 is an example of a point or area designating means for designating a point or area in this way. In an example of this embodiment, each point in the thickness map is sequentially designated as a first point or region by the control unit 102. Further, a specific point or area may be designated as a first point or area by the examiner. Further, P2, P3, P4 and their peripheral pixels are examples of a second point or region, a third point or region, and a fourth point or region, respectively. The control unit 102 is an example of the target position specifying means for specifying the second point or region, the third point or region, and the fourth point or region in this way. Further, the luminance values at P1, P2, and P3 of the thickness map are the values relating to the first point or region in the first fundus image information, the values relating to the second point or region in the first fundus image information, and the first. It is an example of the value regarding the third point or region in the fundus image information of 2. Further, the control unit 102 is an example of information acquisition means for acquiring values related to the first to third points or regions.

対称性マップの生成方法の一例は、まず、I1に対する他の3点の輝度値の比R12=I1/I2、R13=I1/I3、R14=I1/I4をそれぞれ計算する。次に、これらの比の最小値RM1=Min(R12,R13,R14)を選択する。次に、式(1)のように対数変換を行うことで特性値IS1を決定する。この処理を厚みマップ内の各画素に対して行うことによって、対称性マップが生成される。対称性マップは、上記のように決定された特性値と、指定された点または領域の座標値に基づいて生成される特性マップの一例である。 As an example of the method of generating the symmetry map, first, the ratios of the luminance values of the other three points to I1 are calculated as R12 = I1 / I2, R13 = I1 / I3, and R14 = I1 / I4, respectively. Next, the minimum value of these ratios, RM1 = Min (R12, R13, R14) is selected. Next, the characteristic value IS1 is determined by performing logarithmic conversion as in the equation (1). By performing this process for each pixel in the thickness map, a symmetry map is generated. The symmetry map is an example of a characteristic map generated based on the characteristic value determined as described above and the coordinate value of the specified point or region.

また、特性値IS1は、I1、I2、I3に基づいて決定してもよい。このとき、RM1=Min(R12,R13)とすることで、現時点の厚みマップの上下対称性と、現時点の厚みマップの輝度値と過去の厚みマップの輝度値とを比べることで得られる対称性との2つの対称性を併せて評価することができる。このように、制御部102は、第1の眼底画像情報における第1の点または領域に関する値と、第1の眼底画像情報における第2の点または領域に関する値と、第2の眼底画像情報における第3の点または領域に関する値とに基づいて、第1の点または領域に関する特性値を決定する決定手段の一例である。またこのように、決定手段は、第1の点または領域に関する値と第2の点または領域に関する値とを比較して得た第1の比較結果と、第1の点または領域に関する値と第3の点または領域に関する値とを比較して得た第2の比較結果とを比較して得た第3の比較結果を、特性値として決定する。 Further, the characteristic value IS1 may be determined based on I1, I2, and I3. At this time, by setting RM1 = Min (R12, R13), the vertical symmetry of the current thickness map and the symmetry obtained by comparing the luminance value of the current thickness map with the luminance value of the past thickness map. The two symmetries of and can be evaluated together. As described above, the control unit 102 has the value regarding the first point or region in the first fundus image information, the value regarding the second point or region in the first fundus image information, and the second fundus image information. It is an example of a determination means for determining a characteristic value for a first point or region based on a value for a third point or region. Further, as described above, the determining means is the first comparison result obtained by comparing the value relating to the first point or region with the value relating to the second point or region, and the value relating to the first point or region and the first. The third comparison result obtained by comparing with the second comparison result obtained by comparing with the value relating to the point or region of 3 is determined as a characteristic value.

また、過去に撮影された複数の断層画像のそれぞれから厚みマップを生成し、最も古い時間の厚みマップに対して式(1)で説明した演算をすることで、複数の対称性マップを生成してもよい。これにより、制御部102は、相関マップの時系列データを生成することができる。また、式(1)の演算で参照する対象は最も古い時間に撮影された画像から得られる厚みマップに限らず、別の時間の画像から得られる厚みマップや、健常時の画像から得られる厚みマップであってもよい。 In addition, a thickness map is generated from each of the plurality of tomographic images taken in the past, and a plurality of symmetry maps are generated by performing the calculation described in the equation (1) on the thickness map of the oldest time. You may. As a result, the control unit 102 can generate time-series data of the correlation map. Further, the object referred to in the calculation of the equation (1) is not limited to the thickness map obtained from the image taken at the oldest time, but also the thickness map obtained from the image at another time and the thickness obtained from the normal image. It may be a map.

[ステップS3:対称性マップ表示]
制御部102は、このようにして生成された対称性マップを表示部103へ表示させる。この対称性マップを観察することで、その時点の上下対称性に加えて、過去と比べた疾病の進行の評価を行うことができる。
[Step S3: Display symmetry map]
The control unit 102 causes the display unit 103 to display the symmetry map generated in this way. By observing this symmetry map, it is possible to evaluate the progression of the disease compared to the past, in addition to the vertical symmetry at that time.

[第2の実施形態の変形例]
制御部102は、機械学習モデルによって対称性マップの時間変化から症状の有無やその確率を推定し、結果を表示部103へ出力してもよい。また、所定の未来時に症状がどのくらい進行しているかを推定し、その結果を表示部103へ出力してもよい。機械学習の過程で、学習モデルが注意を払った箇所を示す注意マップ(ヒートマップ)を生成し、注意マップの時系列データを表示部103に表示してもよい。
[Modified example of the second embodiment]
The control unit 102 may estimate the presence or absence of a symptom and its probability from the time change of the symmetry map by a machine learning model, and output the result to the display unit 103. Further, it is possible to estimate how much the symptom has progressed in a predetermined future and output the result to the display unit 103. In the process of machine learning, a caution map (heat map) showing the points where the learning model paid attention may be generated, and the time series data of the caution map may be displayed on the display unit 103.

[変形例1]
本変形例1では、制御部102は、対称性マップ生成(あるいは特性値の決定)の可否を判定する。
[Modification 1]
In the present modification 1, the control unit 102 determines whether or not the symmetry map can be generated (or the characteristic value is determined).

入力部101から取得可能な断層画像データが左右眼のうち片方しか存在しない場合(例えば、第1の眼底画像情報は存在するが、第2の眼底画像情報が存在しない場合)、制御部102は対称性マップ生成が「不可」と判定する。また、左右眼の断層画像データが存在する場合においても左右でスキャンパターン(位置、画角、間隔など)が異なっている場合は、制御部102は対称性マップ生成が「不可」と判定する。 When the tomographic image data that can be acquired from the input unit 101 exists in only one of the left and right eyes (for example, when the first fundus image information exists but the second fundus image information does not exist), the control unit 102 It is judged that the symmetry map generation is "impossible". Further, even when the tomographic image data of the left and right eyes are present, if the scan patterns (position, angle of view, spacing, etc.) are different on the left and right, the control unit 102 determines that the symmetry map generation is "impossible".

また、入力部101から取得可能な断層画像データに左右眼両方のデータが存在する場合においても、制御部102によってデータの品質がよくないと判定された場合(例えば、第1の眼底画像情報と第2の眼底画像情報とのうち少なくとも一つの品質がよくない場合)、制御部102は対称性マップ生成が「不可」と判定する。ここで言うデータの品質がよくない例としては、「画像が暗い」、「断層画像のセグメンテーションが大きく失敗している」、「黄斑部あるいは乳頭部が写っていない」「データに欠損部が存在する」などが挙げられる。データの品質は断層画像データを評価して行っても良いし、生成された対称性マップを評価して行ってもよい。 Further, even when the tomographic image data that can be acquired from the input unit 101 includes data for both the left and right eyes, if the control unit 102 determines that the quality of the data is not good (for example, with the first fundus image information). (When the quality of at least one of the second fundus image information is not good), the control unit 102 determines that the symmetry map generation is "impossible". Examples of poor data quality here are "dark image", "major failure in segmentation of tomographic image", "no macular or papilla", and "missing data". To do "and so on. The quality of the data may be evaluated by evaluating the tomographic image data or by evaluating the generated symmetry map.

これらによって、制御部102は、対称性マップ生成を「不可」と判定した場合、対称性マップ生成が不可であることを表示部103に表示させる。このとき、制御部102は、左右眼のデータが入力されたものの品質がよくない場合は、対称性マップを生成・表示した上で、品質がよくない旨を表示させてもよい。 As a result, when the control unit 102 determines that the symmetry map generation is "impossible", the control unit 102 causes the display unit 103 to display that the symmetry map generation is impossible. At this time, if the data of the left and right eyes is input but the quality is not good, the control unit 102 may generate and display the symmetry map and then display that the quality is not good.

また、制御部102は、データが存在しなかった方の眼あるいはスキャンパターンなど、対称性マップ生成に必要なデータの撮影を行うことを促すメッセージを表示部102に表示させてもよい。すなわち、制御部102は、特性値の決定の可否を判定して得た結果に基づいて、第1の眼底画像情報と第2の眼底画像情報とのうち少なくとも一つの取得を行うことを促すメッセージを表示部102に表示させてもよい。このとき、メッセージ表示方法として、例えば検者が対称性マップ生成に必要なデータの撮影を行うことを承諾した場合は「OK」ボタンを押すような、ポップアウト形式でもよい。検者がこれを承諾した場合、制御部102はデータ撮影の準備を行い、対称性マップ生成に必要なデータを取得する。 Further, the control unit 102 may display a message on the display unit 102 prompting the user to take a picture of the data necessary for generating the symmetry map, such as the eye or the scan pattern in which the data does not exist. That is, a message urging the control unit 102 to acquire at least one of the first fundus image information and the second fundus image information based on the result obtained by determining whether or not the characteristic value can be determined. May be displayed on the display unit 102. At this time, as a message display method, a pop-out format may be used, for example, when the examiner consents to capture the data necessary for generating the symmetry map, the "OK" button is pressed. If the examiner approves this, the control unit 102 prepares for data capture and acquires the data necessary for generating the symmetry map.

[変形例2]
本変形例2では、入力部101から取得される断層画像データが左右眼そろっており、なおかつ対称性マップ生成に使用可能なデータが複数ある場合に、対称性マップ生成に用いるデータを検者または制御部102が選択するステップを備える。
[Modification 2]
In this modification 2, when the tomographic image data acquired from the input unit 101 is aligned with the left and right eyes and there are a plurality of data that can be used for symmetry map generation, the examiner or the examiner or the data used for symmetry map generation is used. A step selected by the control unit 102 is provided.

検者が対称性マップ生成に用いる画像データを選択する例では、表示部103に候補となる画像データならびにそのデータに関する情報を表示させる。データに関する情報は、例えば撮影時間や品質評価値などである。データの品質評価値は、画像の明るさ、セグメンテーションの成功率、信号対雑音比(SNR)などによって設定される。検者は、表示された画像データおよび情報を見ながら、操作部104を用いて対称性マップ生成に用いるデータを選択する。 In the example in which the examiner selects the image data to be used for generating the symmetry map, the display unit 103 is made to display the candidate image data and the information related to the data. Information about the data is, for example, a shooting time or a quality evaluation value. The data quality evaluation value is set by the brightness of the image, the success rate of segmentation, the signal-to-noise ratio (SNR), and the like. The examiner selects the data to be used for the symmetry map generation by using the operation unit 104 while looking at the displayed image data and information.

制御部102が対称性マップ生成に用いる画像データを選択する例では、制御部102は撮影時間や品質評価値などに基づいて、データを選択する。撮影時間に基づかせる例として、撮影時間が最も新しいものや、左右眼データの撮影時間が最も近いものを選択候補とすることができる。品質評価値は、画像の明るさ、セグメンテーションの成功率、信号対雑音比(SNR)などによって設定され、これが優れているものを選択候補とすることができる。 In the example in which the control unit 102 selects the image data to be used for generating the symmetry map, the control unit 102 selects the data based on the shooting time, the quality evaluation value, and the like. As an example based on the shooting time, the one with the latest shooting time or the one with the closest shooting time of the left and right eye data can be selected as a selection candidate. The quality evaluation value is set by the brightness of the image, the success rate of segmentation, the signal-to-noise ratio (SNR), and the like, and those having excellent ones can be selected as selection candidates.

制御部102は、このように選択された断層画像データを用いて、対称性マップを生成する。 The control unit 102 generates a symmetry map using the tomographic image data selected in this way.

[変形例3]
上述の実施形態及び変形例で生成された対称性マップは、他の関連する画像やマップと組み合わせて表示部103に表示される。このことによって、その位置における対称性の情報と、血管走行状態や層厚などの他の情報とを対応させて認識しやすくなる。この場合、対称性マップは、生成時に施した幾何補正を、元に戻してから表示してもよい。
[Modification 3]
The symmetry map generated in the above-described embodiment and modification is displayed on the display unit 103 in combination with other related images or maps. This makes it easier to recognize the information on the symmetry at that position in correspondence with other information such as the blood vessel running state and the layer thickness. In this case, the symmetry map may be displayed after the geometric correction applied at the time of generation is restored.

本変形例の一例では、対称性マップと、他の関連する画像やマップとが、並べて表示される。例えば、SLO画像、En-face画像、OCTA画像、断層画像、厚みマップの少なくとも1つと、対称性マップとを並べて表示してもよい。この時、対応する撮影範囲を四角枠や線などのマークで示してもよい。 In one example of this variant, the symmetry map and other related images and maps are displayed side by side. For example, at least one of an SLO image, an En-face image, an OCTA image, a tomographic image, and a thickness map may be displayed side by side with a symmetry map. At this time, the corresponding shooting range may be indicated by a mark such as a square frame or a line.

また、対称性マップは、他の関連する画像やマップと重畳して表示部103に表示してもよい。例えば、SLO画像、En-face画像、OCTA画像、厚みマップの少なくとも1つと、対称性マップとを重畳して表示してもよい。この場合、各画像あるいはマップの重畳比率を検者が操作部104で指定するために、制御部102は重畳比率調整手段を備えていてもよい。 Further, the symmetry map may be displayed on the display unit 103 by superimposing it on another related image or map. For example, at least one of the SLO image, the En-face image, the OCTA image, and the thickness map may be superimposed and displayed on the symmetry map. In this case, the control unit 102 may include a superimposition ratio adjusting means in order for the examiner to specify the superimposition ratio of each image or map by the operation unit 104.

[その他の変形例]
上述の実施形態及び変形例では、OCTで取得される厚みマップから対称性マップを生成して緑内障の診断を行う例を説明したが、実施形態はこれに限らない。
[Other variants]
In the above-described embodiment and modification, an example in which a symmetry map is generated from a thickness map acquired by OCT to diagnose glaucoma has been described, but the embodiment is not limited to this.

例えば、厚みマップから対称性マップを生成し、加齢黄斑変性(AMD)のような網膜変形を起こす疾病を診断してもよい。 For example, a symmetry map may be generated from the thickness map to diagnose diseases that cause retinal deformity such as age-related macular degeneration (AMD).

また、眼底写真、蛍光単色の眼底正面画像、SLO画像から同様に対称性マップを生成し、糖尿病網膜症や緑内障のように、明暗や色差について対称性の崩れが現れる疾病を診断してもよい。また、SLO画像に代えてOCT画像から得られるEn-face画像を用いてもよい。 In addition, a symmetry map may be similarly generated from a fundus photograph, a fluorescent monochromatic frontal image of the fundus, and an SLO image to diagnose a disease such as diabetic retinopathy and glaucoma in which a loss of symmetry appears in terms of light and shade and color difference. .. Further, instead of the SLO image, an En-face image obtained from the OCT image may be used.

また、OCTA画像から血管密度マップを取得し、その対称性マップを同様に生成してもよい。この対称性マップを用いて、糖尿病網膜症など血管密度に症状が現れる疾病を診断しても良い。 Alternatively, a blood vessel density map may be obtained from the OCTA image and a symmetry map thereof may be generated in the same manner. This symmetry map may be used to diagnose diseases such as diabetic retinopathy that have symptoms in vascular density.

また、Swept Source OCT(SS-OCT)などで取得されたOCT画像から脈絡膜のEn-face画像を生成し、血管走行パターンの対称性を評価することで中心性漿液性脈絡網膜症などの診断を行ってもよい。 In addition, an En-face image of the choroid is generated from an OCT image acquired by Swept Source OCT (SS-OCT) and the like, and the symmetry of the vascular running pattern is evaluated to diagnose central serous chorioretinosis. You may go.

また、図9の(a)(b)のように左右眼の断層画像を取得し、図9の(c)(d)のような一次元網膜厚プロファイルや網膜トポロジー形状の上下左右対称性を評価してもよい。例えば、ある地点P1に対して、上下対称な位置P2、反対側の眼のP1に該当する位置P3、P3と上下対称な位置P4に対して第1の実施形態と同様の処理を行ってもよい。つまり、P1の厚さに対してP2、P3、P4それぞれの厚さの比R12、R13、R14をとり、RM1=Min(R12,R13,R14)をプロットすることで、一次元での対称性マップ(図9(e))を生成することができる。その上で、加齢黄斑変性や緑内障などの診断を行ってもよい。 In addition, tomographic images of the left and right eyes are acquired as shown in FIGS. 9 (a) and 9 (b), and the one-dimensional network film thickness profile and the vertical-left-right symmetry of the retinal topology shape as shown in FIGS. 9 (c) and 9 (d) are obtained. You may evaluate it. For example, even if the same processing as in the first embodiment is performed on the vertically symmetrical position P2 with respect to a certain point P1, the vertically symmetrical position P3, and the vertically symmetrical position P4 with P1 of the opposite eye. good. That is, one-dimensional symmetry is obtained by plotting RM1 = Min (R12, R13, R14) by taking the ratios R12, R13, and R14 of the thicknesses of P2, P3, and P4 to the thickness of P1. A map (FIG. 9 (e)) can be generated. Then, the diagnosis of age-related macular degeneration and glaucoma may be made.

また、眼底カメラで得られる眼底写真、SLO画像、蛍光単色の眼底正面画像、En-face画像、OCTA画像、層厚マップ、の少なくとも2つを演算して得られた画像情報から、対称性マップを生成してもよい。画像情報の一例は重畳画像であり、一例として、眼底写真と層厚マップの重畳画像から対称性マップを生成してもよい。 Further, the symmetry map is obtained from the image information obtained by calculating at least two of the fundus photograph, the SLO image, the fluorescent monochromatic frontal image of the fundus, the En-face image, the OCTA image, and the layer thickness map obtained by the fundus camera. May be generated. One example of the image information is a superimposed image, and as an example, a symmetry map may be generated from the superimposed image of the fundus photograph and the layer thickness map.

なお、本発明はこれらの実施形態に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。 Needless to say, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.

また、本発明は、以下の処理を実行することによっても実現される。即ち、本発明は、上述した様々な実施形態及び変形例の1以上の機能を実現するソフトウェア(プログラム)を、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理でも実現可能である。コンピュータは、1つ又は複数のプロセッサー若しくは回路を有し、コンピュータ実行可能命令を読み出し実行するために、分離した複数のコンピュータ又は分離した複数のプロセッサー若しくは回路のネットワークを含みうる。 The present invention is also realized by executing the following processing. That is, the present invention supplies software (program) that realizes one or more functions of the various embodiments and modifications described above to a system or device via a network or storage medium, and the computer of the system or device ( Alternatively, it can also be realized by a process in which a CPU, MPU, etc.) reads and executes a program. A computer may have one or more processors or circuits and may include multiple separate computers or a network of separate processors or circuits for reading and executing computer-executable instructions.

このとき、プロセッサー又は回路は、中央演算処理装置(CPU)、マイクロプロセッシングユニット(MPU)、グラフィクスプロセッシングユニット(GPU)、特定用途向け集積回路(ASIC)、又はフィールドプログラマブルゲートウェイ(FPGA)を含みうる。また、プロセッサー又は回路は、デジタルシグナルプロセッサ(DSP)、データフロープロセッサ(DFP)、又はニューラルプロセッシングユニット(NPU)を含みうる。

At this time, the processor or circuit may include a central processing unit (CPU), a microprocessing unit (MPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), or a field programmable gateway (FPGA). Also, the processor or circuit may include a digital signal processor (DSP), a data flow processor (DFP), or a neural processing unit (NPU).

Claims (10)

被検者の左右眼の第1の眼底画像情報及び第2の眼底画像情報において、黄斑および乳頭を基準とした第1の座標軸を基にした2次元座標系を設定する設定手段と、
前記第1の眼底画像情報における第1の点または領域と前記第1の座標軸に対して対称な第2の点または領域と、前記第2の眼底画像情報における前記第1の点または領域と黄斑および乳頭との相対関係が対応する第3の点または領域とを特定する特定手段と、
前記第1の眼底画像情報における前記第1の点または領域に関する値と、前記第1の眼底画像情報における前記第2の点または領域に関する値と、前記第2の眼底画像情報における前記第3の点または領域に関する値とに基づいて、前記第1の点または領域に関する特性値を決定する決定手段と、
を有する画像処理装置。
A setting means for setting a two-dimensional coordinate system based on the first coordinate axis based on the macula and the nipple in the first fundus image information and the second fundus image information of the subject's left and right eyes.
The first point or region in the first fundus image information, the second point or region symmetrical with respect to the first coordinate axis, and the first point or region in the second fundus image information and the macula. And the specific means of identifying the third point or region to which the relative relationship with the nipple corresponds.
The value regarding the first point or region in the first fundus image information, the value regarding the second point or region in the first fundus image information, and the third in the second fundus image information. A determination means for determining the characteristic value for the first point or region based on the value for the point or region, and
Image processing device with.
異なる時間に被検眼を撮影して得た第1の眼底画像情報及び第2の眼底画像情報において、黄斑および乳頭を基準とした第1の座標軸を基にした2次元座標系を設定する設定手段と、
前記第1の眼底画像情報における第1の点または領域と前記第1の座標軸に対して対称な第2の点または領域と、前記第2の眼底画像情報における前記第1の点または領域と黄斑および乳頭との相対関係が対応する第3の点または領域とを特定する特定手段と、
前記第1の眼底画像情報における前記第1の点または領域に関する値と、前記第1の眼底画像情報における前記第2の点または領域に関する値と、前記第2の眼底画像情報における前記第3の点または領域に関する値とに基づいて、前記第1の点または領域に関する特性値を決定する決定手段と、
を有する画像処理装置。
A setting means for setting a two-dimensional coordinate system based on the first coordinate axis with respect to the macula and the papilla in the first fundus image information and the second fundus image information obtained by photographing the eye to be inspected at different times. When,
The first point or region in the first fundus image information, the second point or region symmetrical with respect to the first coordinate axis, and the first point or region in the second fundus image information and the macula. And the specific means of identifying the third point or region to which the relative relationship with the nipple corresponds.
The value regarding the first point or region in the first fundus image information, the value regarding the second point or region in the first fundus image information, and the third in the second fundus image information. A determination means for determining the characteristic value for the first point or region based on the value for the point or region, and
Image processing device with.
前記眼底画像情報は、眼底カメラ、SLO、OCTの少なくとも1つから得られる、カラー、蛍光単色の眼底正面画像、En-face画像、OCTA画像、層厚マップ、網膜トポロジー、又はこれらの少なくとも2つを演算して得られた画像情報である請求項1又は2に記載の画像処理装置。 The fundus image information is a color, fluorescent monochromatic frontal fundus image, En-face image, OCTA image, layer thickness map, retinal topology, or at least two of these, obtained from at least one of the fundus camera, SLO, and OCT. The image processing apparatus according to claim 1 or 2, which is the image information obtained by calculating. 前記特定手段は、前記第2の眼底画像情報における前記第3の点または領域と前記第1の座標軸に対して対称な第4の点または領域を特定するとともに、
前記決定手段は、前記第1の眼底画像情報における前記第1の点または領域に関する値と、前記第1の眼底画像情報における前記第2の点または領域に関する値と、前記第2の眼底画像情報における前記第3の点または領域に関する値と、前記第4の点または領域に関する値とに基づいて、前記第1の点または領域に関する特性値を決定する請求項1乃至3のいずれか1項に記載の画像処理装置。
The specifying means identifies the third point or region in the second fundus image information and the fourth point or region symmetrical with respect to the first coordinate axis, and also identifies the fourth point or region.
The determining means includes a value related to the first point or region in the first fundus image information, a value related to the second point or region in the first fundus image information, and the second fundus image information. In any one of claims 1 to 3, the characteristic value relating to the first point or region is determined based on the value relating to the third point or region and the value relating to the fourth point or region. The image processing device described.
前記決定された特性値と前記第1の点または領域の座標値に基づいて特性マップを生成する請求項1乃至4のいずれか1項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 4, wherein a characteristic map is generated based on the determined characteristic value and the coordinate value of the first point or region. 前記特性値の決定の可否を判定して得た結果に基づいて、第1の眼底画像情報と第2の眼底画像情報とのうち少なくとも一つの取得を行うことを促すメッセージを表示部に表示させる制御手段を更に備える請求項1乃至5のいずれか1項に記載の画像処理装置。 Based on the result obtained by determining whether or not the characteristic value can be determined, a message prompting the acquisition of at least one of the first fundus image information and the second fundus image information is displayed on the display unit. The image processing apparatus according to any one of claims 1 to 5, further comprising a control means. 前記決定手段は、前記第1の点または領域に関する値と前記第2の点または領域に関する値とを比較して得た第1の比較結果と、前記第1の点または領域に関する値と前記第3の点または領域に関する値とを比較して得た第2の比較結果とを比較して得た第3の比較結果を、前記特性値として決定する請求項1乃至6のいずれか1項に記載の画像処理装置。 The determining means includes a first comparison result obtained by comparing a value relating to the first point or region and a value relating to the second point or region, a value relating to the first point or region, and the first. In any one of claims 1 to 6, the third comparison result obtained by comparing with the second comparison result obtained by comparing with the value relating to the point or region of 3 is determined as the characteristic value. The image processing device described. 被検者の左右眼の第1の眼底画像情報及び第2の眼底画像情報において、黄斑および乳頭を基準とした第1の座標軸を基にした2次元座標系を設定する工程と、
前記第1の眼底画像情報における第1の点または領域と前記第1の座標軸に対して対称な第2の点または領域と、前記第2の眼底画像情報における前記第1の点または領域と黄斑および乳頭との相対関係が対応する第3の点または領域とを特定する工程と、
前記第1の眼底画像情報における前記第1の点または領域に関する値と、前記第1の眼底画像情報における前記第2の点または領域に関する値と、前記第2の眼底画像情報における前記第3の点または領域に関する値とに基づいて、前記第1の点または領域に関する特性値を決定する工程と、
を有する画像処理方法。
A step of setting a two-dimensional coordinate system based on the first coordinate axis based on the macula and the nipple in the first fundus image information and the second fundus image information of the subject's left and right eyes, and
The first point or region in the first fundus image information, the second point or region symmetrical with respect to the first coordinate axis, and the first point or region in the second fundus image information and the macula. And the step of identifying the third point or region to which the relative relationship with the nipple corresponds.
The value regarding the first point or region in the first fundus image information, the value regarding the second point or region in the first fundus image information, and the third in the second fundus image information. The step of determining the characteristic value for the first point or region based on the value for the point or region, and
Image processing method having.
異なる時間に被検眼を撮影して得た第1の眼底画像情報及び第2の眼底画像情報において、黄斑および乳頭を基準とした第1の座標軸を基にした2次元座標系を設定する工程と、
前記第1の眼底画像情報における第1の点または領域と前記第1の座標軸に対して対称な第2の点または領域と、前記第2の眼底画像情報における前記第1の点または領域と黄斑および乳頭との相対関係が対応する第3の点または領域とを特定する工程と、
前記第1の眼底画像情報における前記第1の点または領域に関する値と、前記第1の眼底画像情報における前記第2の点または領域に関する値と、前記第2の眼底画像情報における前記第3の点または領域に関する値とに基づいて、前記第1の点または領域に関する特性値を決定する工程と、
を有する画像処理方法。
A step of setting a two-dimensional coordinate system based on the first coordinate axis based on the macula and the papilla in the first fundus image information and the second fundus image information obtained by photographing the eye to be inspected at different times. ,
The first point or region in the first fundus image information, the second point or region symmetrical with respect to the first coordinate axis, and the first point or region in the second fundus image information and the macula. And the step of identifying the third point or region to which the relative relationship with the nipple corresponds.
The value regarding the first point or region in the first fundus image information, the value regarding the second point or region in the first fundus image information, and the third in the second fundus image information. The step of determining the characteristic value for the first point or region based on the value for the point or region, and
Image processing method having.
請求項8又は9に記載の画像処理方法の各工程をコンピュータに実行させるプログラム。

A program that causes a computer to execute each step of the image processing method according to claim 8 or 9.

JP2020143388A 2020-08-27 2020-08-27 Image processing apparatus, image processing method and program Pending JP2022038751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020143388A JP2022038751A (en) 2020-08-27 2020-08-27 Image processing apparatus, image processing method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020143388A JP2022038751A (en) 2020-08-27 2020-08-27 Image processing apparatus, image processing method and program

Publications (1)

Publication Number Publication Date
JP2022038751A true JP2022038751A (en) 2022-03-10

Family

ID=80498067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020143388A Pending JP2022038751A (en) 2020-08-27 2020-08-27 Image processing apparatus, image processing method and program

Country Status (1)

Country Link
JP (1) JP2022038751A (en)

Similar Documents

Publication Publication Date Title
US20210104313A1 (en) Medical image processing apparatus, medical image processing method and computer-readable medium
US20210224997A1 (en) Image processing apparatus, image processing method and computer-readable medium
US10383511B2 (en) Image processing apparatus, image processing method, and program
JP2020093076A (en) Medical image processing device, learned model, medical image processing method and program
JP5698465B2 (en) Ophthalmic apparatus, display control method, and program
JP5955163B2 (en) Image processing apparatus and image processing method
US8687863B2 (en) Image processing apparatus, control method thereof and computer program
US20110137157A1 (en) Image processing apparatus and image processing method
US11922601B2 (en) Medical image processing apparatus, medical image processing method and computer-readable medium
JP2020103880A (en) Image processing device, image processing method, and program
CN114207736A (en) Information processing apparatus, information processing method, information processing system, and program
JP7413147B2 (en) Image processing device, image processing method, and program
GB2614130A (en) Medical image processing apparatus, medical image processing system, learned model, learning apparatus, medical image processing method, and program
JP2016002380A (en) Image processing system, operation method for the same, and program
WO2020183791A1 (en) Image processing device and image processing method
JP7332463B2 (en) Control device, optical coherence tomography device, control method for optical coherence tomography device, and program
JP2023016933A (en) Ophthalmologic apparatus, control method of ophthalmologic apparatus, and program
JP2022155690A (en) Image processing device, image processing method, and program
JP7362403B2 (en) Image processing device and image processing method
JP2018046959A (en) Ophthalmologic photographing apparatus
JP2018046958A (en) Ophthalmologic photographing apparatus and ophthalmologic image processing apparatus
JP7194136B2 (en) OPHTHALMOLOGICAL APPARATUS, OPHTHALMOLOGICAL APPARATUS CONTROL METHOD, AND PROGRAM
JP7005382B2 (en) Information processing equipment, information processing methods and programs
JP2022038751A (en) Image processing apparatus, image processing method and program
JP2022033290A (en) Information processing device, information processing method, and program

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230803

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311