JP2022037494A - Energy supply system, and device and method for controlling the same - Google Patents

Energy supply system, and device and method for controlling the same Download PDF

Info

Publication number
JP2022037494A
JP2022037494A JP2020141662A JP2020141662A JP2022037494A JP 2022037494 A JP2022037494 A JP 2022037494A JP 2020141662 A JP2020141662 A JP 2020141662A JP 2020141662 A JP2020141662 A JP 2020141662A JP 2022037494 A JP2022037494 A JP 2022037494A
Authority
JP
Japan
Prior art keywords
power
amount
storage battery
hydrogen production
profit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020141662A
Other languages
Japanese (ja)
Other versions
JP7481706B2 (en
Inventor
耕佑 原田
Kosuke Harada
孝司 松岡
Koji Matsuoka
洋史 高見
Yoji Takami
康司 佐藤
Yasushi Sato
宏一 小島
Koichi Kojima
浩之 喜久里
Hiroyuki Kikuzato
潤 橋本
Jun Hashimoto
博秀 古谷
Hirohide Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Eneos Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2020141662A priority Critical patent/JP7481706B2/en
Publication of JP2022037494A publication Critical patent/JP2022037494A/en
Application granted granted Critical
Publication of JP7481706B2 publication Critical patent/JP7481706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To surely mitigate the fluctuation of a power transmission amount in an energy supply system.SOLUTION: An energy supply system 1 includes: a regenerative energy power generation device 2 which transmits at least a part of power, generated from regenerative energy, to a power system 16; a storage battery 4 which can be charged with power generated in the regenerative energy power generation device 2 and can transmit at least a part of the charged power to the power system 16; and a control unit 30 which controls the storage battery 4 in a manner that a change rate of the power transmission amount to the power system 16 does not exceed a permissible change rate, and calculates necessary SoC which is necessary to maintain the change rate at the permissible change rate or smaller by the power transmission from the storage battery 4 when the power generation of the regenerative energy power generation device 2 stops and the power transmission amount to the power system 16 falls to zero, so as to control the storage battery 4 to reduce the power transmission amount, when the necessary SoC exceeds the SoC of the present state.SELECTED DRAWING: Figure 1

Description

本発明は、エネルギー供給システムならびにその制御装置および制御方法に関する。 The present invention relates to an energy supply system and a control device and control method thereof.

近年、生成過程での二酸化炭素排出量が少ないエネルギーとして、太陽光、風力、水力、バイオマス、地熱などの再生可能エネルギー(自然エネルギー)が注目されている。また、再生可能エネルギー利用の一環として、再生可能エネルギーを利用して発電した電力を電力系統に送電するエネルギー供給システムが検討されている。 In recent years, renewable energy (natural energy) such as solar power, wind power, hydropower, biomass, and geothermal energy has been attracting attention as energy that emits less carbon dioxide in the production process. Further, as a part of the use of renewable energy, an energy supply system for transmitting the electric power generated by using the renewable energy to the electric power system is being studied.

再生可能エネルギー発電装置の発電量は、気象条件によって大きく変動することが知られている。例えば、太陽光発電装置の場合、日中は発電できるが日没後は発電できない。このため、1日の中で発電量が0から最大まで変動する。また、太陽光発電装置では、天候の変化により数分間から数時間の時間間隔で発電量が変動し得る。また、風力発電装置の場合は、風が吹けば昼夜を問わず発電できる。しかしながら、風の強弱の変化により数秒間から数時間の時間間隔で発電量が変動し得る。 It is known that the amount of power generated by a renewable energy power generation device fluctuates greatly depending on the weather conditions. For example, in the case of a photovoltaic power generation device, it can generate power during the day but not after sunset. Therefore, the amount of power generation fluctuates from 0 to the maximum in one day. Further, in the photovoltaic power generation device, the amount of power generation may fluctuate at time intervals of several minutes to several hours due to changes in the weather. In the case of a wind power generator, it can generate electricity day and night if the wind blows. However, the amount of power generation can fluctuate at time intervals of several seconds to several hours due to changes in wind strength.

再生可能エネルギー発電装置における発電量の変動は、電力系統への送電量の変動につながる。電力系統への送電量が変動すると、電力系統の周波数が不安定になるといった不具合が生じ得る。このため、送配電事業者は、電力系統への送電量の変動幅に制限を設けている。これに対し、例えば特許文献1には、再生可能エネルギー発電装置に蓄電池、水電解槽および燃料電池を組み合わせた電力供給システムが開示されている。このシステムでは、再生可能エネルギーで発電した電力の一部を蓄電池に充電し、また当該電力の他の一部を利用して水電解槽で水素を製造していた。そして、蓄電池の充放電や、水素を用いた燃料電池での発電によって、送電量の変動を緩和していた。 Fluctuations in the amount of power generated by renewable energy power generation equipment lead to fluctuations in the amount of power transmitted to the power system. If the amount of power transmitted to the power system fluctuates, problems such as unstable frequency of the power system may occur. For this reason, the power transmission and distribution business operator sets a limit on the fluctuation range of the amount of power transmitted to the power system. On the other hand, for example, Patent Document 1 discloses a power supply system in which a renewable energy power generation device is combined with a storage battery, a water electrolytic cell, and a fuel cell. In this system, a part of the electric power generated by renewable energy is charged into a storage battery, and the other part of the electric power is used to produce hydrogen in a water electrolytic cell. Then, fluctuations in the amount of power transmitted were mitigated by charging and discharging the storage battery and generating electricity with the fuel cell using hydrogen.

国際公開第2017/013751号International Publication No. 2017/013751

本発明者は、再生可能エネルギー発電装置を用いたエネルギー供給システムについて鋭意検討を重ねた結果、電力系統への送電量の変動をより確実に緩和することが可能な技術を見出した。 As a result of diligent studies on an energy supply system using a renewable energy power generation device, the present inventor has found a technique capable of more reliably mitigating fluctuations in the amount of power transmitted to an electric power system.

本発明はこうした状況に鑑みてなされたものであり、その目的の1つは、再生可能エネルギー発電装置を用いたエネルギー供給システムにおける送電量の変動をより確実に緩和するための技術を提供することにある。 The present invention has been made in view of such a situation, and one of the objects thereof is to provide a technique for more reliably mitigating fluctuations in power transmission amount in an energy supply system using a renewable energy power generation device. It is in.

本発明のある態様は、エネルギー供給システムである。このシステムは、再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統に送電する再生可能エネルギー発電装置と、再生可能エネルギー発電装置が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統に送電可能な蓄電池と、電力系統への送電量の変化率が予め設定される許容変化率を超えないように蓄電池を制御するとともに、再生可能エネルギー発電装置の発電が停止して電力系統への送電量がゼロまで下がる際に蓄電池からの送電によって変化率を許容変化率以下に維持するために必要な蓄電池のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが蓄電池の現状のSoCを上回った場合に送電量が減るように蓄電池を制御する制御部と、を備える。 One aspect of the invention is an energy supply system. This system can charge a rechargeable energy power generation device that transmits at least a part of the power generated by using renewable energy to the power system, and the power generated by the rechargeable energy power generation device, and the charged power. The storage battery that can transmit at least a part of the power to the power system, and the storage battery is controlled so that the rate of change in the amount of power transmitted to the power system does not exceed the preset allowable change rate, and the power generation of the renewable energy power generation device is performed. Calculate the required SoC, which is the SoC (State of Charge) of the storage battery required to maintain the rate of change below the permissible rate of change by transmitting power from the storage battery when the power generation is stopped and the amount of power transmitted to the power system drops to zero. It is provided with a control unit that controls the storage battery so that the transmission amount is reduced when the required SoC exceeds the current SoC of the storage battery.

本発明の他の態様は、再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統に送電する再生可能エネルギー発電装置、および再生可能エネルギー発電装置が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統に送電可能な蓄電池を備えるエネルギー供給システムの制御装置である。この制御装置は、電力系統への送電量の変化率が予め設定される許容変化率を超えないように蓄電池を制御するとともに、再生可能エネルギー発電装置の発電が停止して電力系統への送電量がゼロまで下がる際に蓄電池からの送電によって変化率を許容変化率以下に維持するために必要な蓄電池のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが蓄電池の現状のSoCを上回った場合に送電量が減るように蓄電池を制御する制御部を備える。 Another aspect of the present invention is a renewable energy power generation device that transmits at least a part of the power generated by using the renewable energy to the power system, and the power generated by the renewable energy power generation device can be charged. , A control device for an energy supply system including a storage battery capable of transmitting at least a part of the charged power to the power system. This control device controls the storage battery so that the rate of change in the amount of power transmitted to the power system does not exceed the preset permissible rate of change, and the power generation of the renewable energy power generation device is stopped and the amount of power transmitted to the power system is stopped. The required SoC, which is the SoC (State of Charge) of the storage battery required to maintain the rate of change below the permissible rate of change by power transmission from the storage battery when the value drops to zero, is calculated, and the required SoC is the current SoC of the storage battery. It is equipped with a control unit that controls the storage battery so that the amount of power transmission is reduced when the amount exceeds the above.

本発明の他の態様は、再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統に送電する再生可能エネルギー発電装置、および再生可能エネルギー発電装置が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統に送電可能な蓄電池を備えるエネルギー供給システムの制御方法である。この制御方法は、電力系統への送電量の変化率が予め設定される許容変化率を超えないように蓄電池を制御するとともに、再生可能エネルギー発電装置の発電が停止して電力系統への送電量がゼロまで下がる際に蓄電池からの送電によって変化率を許容変化率以下に維持するために必要な蓄電池のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが蓄電池の現状のSoCを上回った場合に送電量が減るように蓄電池を制御することを含む。 Another aspect of the present invention is a renewable energy power generation device that transmits at least a part of the power generated by using the renewable energy to the power system, and the power generated by the renewable energy power generation device can be charged. It is a control method of an energy supply system including a storage battery capable of transmitting at least a part of charged power to a power system. This control method controls the storage battery so that the rate of change in the amount of power transmitted to the power system does not exceed the preset permissible rate of change, and at the same time, the power generation of the renewable energy power generation device is stopped and the amount of power transmitted to the power system is stopped. The required SoC, which is the SoC (State of Charge) of the storage battery required to maintain the rate of change below the permissible rate of change by power transmission from the storage battery when the value drops to zero, is calculated, and the required SoC is the current SoC of the storage battery. Includes controlling the storage battery so that the amount of power transmitted is reduced when the amount exceeds.

以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。 Any combination of the above components and the conversion of the representations of the present disclosure between methods, devices, systems and the like are also valid aspects of the present disclosure.

本発明によれば、再生可能エネルギー発電装置を用いたエネルギー供給システムにおける送電量の変動をより確実に緩和することができる。 According to the present invention, it is possible to more reliably mitigate fluctuations in the amount of power transmitted in an energy supply system using a renewable energy power generation device.

実施の形態に係るエネルギー供給システムの模式図である。It is a schematic diagram of the energy supply system which concerns on embodiment. 変動安定化制御の一例を示すフローチャートである。It is a flowchart which shows an example of the fluctuation stabilization control. 変動安定化の保証制御を説明するための図である。It is a figure for demonstrating the guarantee control of fluctuation stabilization. 変動安定化の保証制御の一例を示すフローチャートである。It is a flowchart which shows an example of the guarantee control of fluctuation stabilization. 利益比較制御を説明するための図である。It is a figure for demonstrating profit comparison control. 利益比較制御の一例を示すフローチャートである。It is a flowchart which shows an example of profit comparison control. 蓄電池の容量と、水素製造装置の最大消費電力と、月間の利益額との関係を示す図である。It is a figure which shows the relationship between the capacity of a storage battery, the maximum power consumption of a hydrogen production apparatus, and the monthly profit amount.

以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、この用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described with reference to the drawings based on the preferred embodiments. The embodiments are not limited to the invention, but are exemplary, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. In addition, the scale and shape of each part shown in each figure are set for convenience in order to facilitate explanation, and are not limitedly interpreted unless otherwise specified. In addition, when terms such as "first" and "second" are used in the present specification or claims, these terms do not represent any order or importance, and may include one structure and another. It is for distinguishing. In addition, some of the members that are not important for explaining the embodiment in each drawing are omitted and displayed.

図1は、実施の形態に係るエネルギー供給システム1の模式図である。本実施の形態のエネルギー供給システム1は、再生可能エネルギー発電装置2と、蓄電池4と、水素製造装置6と、制御装置8とを備える。 FIG. 1 is a schematic diagram of an energy supply system 1 according to an embodiment. The energy supply system 1 of the present embodiment includes a renewable energy power generation device 2, a storage battery 4, a hydrogen production device 6, and a control device 8.

再生可能エネルギー発電装置2は、再生可能エネルギーを利用して発電する。例えば、再生可能エネルギー発電装置2は、太陽光を利用する太陽光発電装置10や、風力を利用する風力発電装置12等を含む。なお、再生可能エネルギー発電装置2は、地熱発電装置、波力発電装置、温度差発電装置、バイオマス発電装置等の、太陽光や風力以外の再生可能エネルギーを利用する発電装置を含んでもよい。また、再生可能エネルギー発電装置2の数は限定されない。 The renewable energy power generation device 2 uses renewable energy to generate electricity. For example, the renewable energy power generation device 2 includes a solar power generation device 10 that uses sunlight, a wind power generation device 12 that uses wind power, and the like. The renewable energy power generation device 2 may include a power generation device that uses renewable energy other than solar power and wind power, such as a geothermal power generation device, a wave power generation device, a temperature difference power generation device, and a biomass power generation device. Further, the number of renewable energy power generation devices 2 is not limited.

再生可能エネルギー発電装置2は、変圧器(図示せず)等を介して送電線14に接続される。送電線14は、電力系統16に接続される。再生可能エネルギー発電装置2が発電した電力の少なくとも一部は、送電線14を介して電力系統16に送電される。送電線14には、第1電力計18および第2電力計20が接続される。第1電力計18は、再生可能エネルギー発電装置2の発電量Pvreを所定の時間間隔で(例えば1秒毎に)繰り返し計測し、計測値を制御装置8に送る。第2電力計20は、エネルギー供給システム1から電力系統16への送電量Pgridを所定の時間間隔で(例えば1秒毎に)繰り返し計測し、計測値を制御装置8に送る。 The renewable energy power generation device 2 is connected to the transmission line 14 via a transformer (not shown) or the like. The transmission line 14 is connected to the power system 16. At least a part of the electric power generated by the renewable energy power generation device 2 is transmitted to the electric power system 16 via the transmission line 14. A first power meter 18 and a second power meter 20 are connected to the transmission line 14. The first power meter 18 repeatedly measures the power generation amount Pvre of the renewable energy power generation device 2 at predetermined time intervals (for example, every second), and sends the measured value to the control device 8. The second power meter 20 repeatedly measures the transmission amount Pgrid from the energy supply system 1 to the power system 16 at predetermined time intervals (for example, every second), and sends the measured value to the control device 8.

再生可能エネルギー発電装置2は、気象条件等によって発電量Pvreが変動する。発電量Pvreの変動には、数秒間~数十秒間の短期変動、数分間~数十分間の中期変動および数時間以上の長期変動が含まれる。電力系統16への送電量Pgrid全体に占める、再生可能エネルギー発電装置2由来の電力の割合が増大すると、発電量Pvreの変動が電力系統16に与える影響が大きくなる。これに対し、エネルギー供給システム1は、蓄電池4および水素製造装置6の少なくとも一方を用いて再生可能エネルギー発電装置2の発電量Pvreの変動を緩和することで、電力系統16への送電量Pgridの安定化を図る。 The amount of power generated by the renewable energy power generation device 2 varies depending on the weather conditions and the like. Fluctuations in power generation Pvre include short-term fluctuations of several seconds to several tens of seconds, medium-term fluctuations of several minutes to several tens of minutes, and long-term fluctuations of several hours or more. When the ratio of the electric power derived from the renewable energy power generation device 2 to the entire power transmission amount P grid to the power system 16 increases, the influence of the fluctuation of the power generation amount P vre on the power system 16 becomes large. On the other hand, the energy supply system 1 uses at least one of the storage battery 4 and the hydrogen production device 6 to mitigate the fluctuation of the power generation amount P vre of the renewable energy power generation device 2, thereby transmitting the power transmission amount P to the power system 16. Aim to stabilize the grid .

蓄電池4としては、リチウムイオン電池等の公知の蓄電池を用いることができる。蓄電池4は、送電線14を介して再生可能エネルギー発電装置2および電力系統16に接続される。これにより、蓄電池4は、再生可能エネルギー発電装置2が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統16に送電可能である。また、蓄電池4は、充電した電力の少なくとも一部を水素製造装置6に供給することもできる。 As the storage battery 4, a known storage battery such as a lithium ion battery can be used. The storage battery 4 is connected to the renewable energy power generation device 2 and the power system 16 via the transmission line 14. As a result, the storage battery 4 can charge the electric power generated by the renewable energy power generation device 2, and can transmit at least a part of the charged electric power to the electric power system 16. Further, the storage battery 4 can also supply at least a part of the charged electric power to the hydrogen production apparatus 6.

蓄電池4は、PCS22(パワーコンディショナ)を介して送電線14に接続される。PCS22は、交流と直流の変換および電圧の変換、または当該2つの変換のいずれかを行う装置である。したがって、再生可能エネルギー発電装置2で発電された電力は、PCS22で調整された後に蓄電池4に供給される。また、蓄電池4が放電した電力は、PCS22で調整された後に電力系統16あるいは水素製造装置6に供給される。蓄電池4は、残容量を表すSoC(State of Charge)や、充放電時の電流値等を計測するセンサ(図示せず)を有する。蓄電池4は、SoC等を所定の時間間隔で(例えば1秒毎に)繰り返し計測し、計測値を制御装置8に送る。また、蓄電池4は、制御装置8からの指令を受けて蓄電池4の充放電を制御する制御ユニット(図示せず)を有する。 The storage battery 4 is connected to the transmission line 14 via the PCS 22 (power conditioner). The PCS 22 is a device that performs either alternating current and direct current conversion and voltage conversion, or the two conversions. Therefore, the electric power generated by the renewable energy power generation device 2 is supplied to the storage battery 4 after being adjusted by the PCS 22. Further, the electric power discharged from the storage battery 4 is supplied to the electric power system 16 or the hydrogen production apparatus 6 after being adjusted by the PCS 22. The storage battery 4 has a SoC (State of Charge) indicating the remaining capacity, a sensor (not shown) for measuring a current value at the time of charging / discharging, and the like. The storage battery 4 repeatedly measures SoCs and the like at predetermined time intervals (for example, every second), and sends the measured values to the control device 8. Further, the storage battery 4 has a control unit (not shown) that controls charging / discharging of the storage battery 4 in response to a command from the control device 8.

水素製造装置6としては、水電解槽等の公知の水素製造装置を用いることができる。水素製造装置6は、送電線14を介して再生可能エネルギー発電装置2および蓄電池4に接続される。これにより、水素製造装置6は、再生可能エネルギー発電装置2が発電した電力および蓄電池4から放電される電力の少なくとも一方を用いて水素を製造することができる。 As the hydrogen production apparatus 6, a known hydrogen production apparatus such as a water electrolytic cell can be used. The hydrogen production device 6 is connected to the renewable energy power generation device 2 and the storage battery 4 via the transmission line 14. As a result, the hydrogen production device 6 can produce hydrogen using at least one of the electric power generated by the renewable energy power generation device 2 and the electric power discharged from the storage battery 4.

水素製造装置6は、PCS24を介して送電線14に接続される。PCS24は、交流と直流の変換および電圧の変換、または当該2つの変換のいずれかを行う装置である。したがって、再生可能エネルギー発電装置2が発電した電力および蓄電池4が放電した電力は、PCS24で調整された後に水素製造装置6に供給される。また、水素製造装置6は、消費電力量等を計測するセンサ(図示せず)を有する。水素製造装置6は、消費電力量等を所定の時間間隔で(例えば1秒毎に)繰り返し計測し、計測値を制御装置8に送る。水素製造装置6における消費電力量は、水素製造装置6の稼働量、言い換えれば水素製造装置6における水素製造量と相関する。また、水素製造装置6は、制御装置8からの指令を受けて水素製造装置6の稼働を制御する制御ユニット(図示せず)を有する。 The hydrogen production device 6 is connected to the transmission line 14 via the PCS 24. The PCS24 is a device that performs either alternating current and direct current conversion and voltage conversion, or the two conversions. Therefore, the electric power generated by the renewable energy power generation device 2 and the electric power discharged by the storage battery 4 are supplied to the hydrogen production device 6 after being adjusted by the PCS 24. Further, the hydrogen production apparatus 6 has a sensor (not shown) for measuring power consumption and the like. The hydrogen production device 6 repeatedly measures the power consumption and the like at predetermined time intervals (for example, every second), and sends the measured value to the control device 8. The power consumption of the hydrogen production apparatus 6 correlates with the operating amount of the hydrogen production apparatus 6, in other words, the hydrogen production amount of the hydrogen production apparatus 6. Further, the hydrogen production device 6 has a control unit (not shown) that controls the operation of the hydrogen production device 6 in response to a command from the control device 8.

水素製造装置6で製造された水素は、水素利用施設26で消費される。水素利用施設26としては、特に限定されないが、水素ステーション、製油所、化学プラント等が例示される。水素ステーションは、水素を燃料とする燃料電池自動車等に水素を供給する施設である。水素利用施設26が製油所や化学プラントである場合、水素は、水素化精製装置や水素化分解装置等で利用される。水素化精製装置には、処理対象となる基材から硫黄、窒素、酸素等の不純物を除去する装置、基材に水添処理を施す装置等が含まれ得る。水素化分解装置には、例えば重質留分を水素化分解して軽質留分に変換する装置等が含まれる。 The hydrogen produced by the hydrogen production apparatus 6 is consumed by the hydrogen utilization facility 26. The hydrogen utilization facility 26 is not particularly limited, and examples thereof include a hydrogen station, a refinery, and a chemical plant. A hydrogen station is a facility that supplies hydrogen to fuel cell vehicles and the like that use hydrogen as fuel. When the hydrogen utilization facility 26 is a refinery or a chemical plant, hydrogen is used in a hydrorefining apparatus, a hydrocracking apparatus, or the like. The hydrorefining apparatus may include an apparatus for removing impurities such as sulfur, nitrogen, and oxygen from the substrate to be treated, an apparatus for hydrogenating the substrate, and the like. The hydrocracking apparatus includes, for example, an apparatus for hydrocracking a heavy fraction into a light fraction.

本実施の形態において、水素製造装置6で製造された水素は、電力系統16への送電用の発電には利用されない。しかしながら、これに限らず、水素製造装置6で製造された水素を利用して燃料電池等で発電し、得られた電力を電力系統16に送電したり、蓄電池4に充電したりしてもよい。また、水素製造装置6で製造された水素は、メチルシクロヘキサン等の有機ハイドライドや、水素吸蔵合金等の状態で水素利用施設26に供給されてもよい。また、水素製造装置6で製造された水素は、水素利用施設26に供給される前に水素タンクに貯蔵されてもよい。 In the present embodiment, the hydrogen produced by the hydrogen production apparatus 6 is not used for power generation for power transmission to the power system 16. However, the present invention is not limited to this, and hydrogen produced by the hydrogen production apparatus 6 may be used to generate electricity with a fuel cell or the like, and the obtained electric power may be transmitted to the power system 16 or charged to the storage battery 4. .. Further, the hydrogen produced by the hydrogen production apparatus 6 may be supplied to the hydrogen utilization facility 26 in the state of an organic hydride such as methylcyclohexane or a hydrogen storage alloy. Further, the hydrogen produced by the hydrogen production apparatus 6 may be stored in a hydrogen tank before being supplied to the hydrogen utilization facility 26.

蓄電池4の充放電と、水素製造装置6における水素製造とは、制御装置8によって制御される。制御装置8は、記録部28と、制御部30とを有する。図1では、記録部28および制御部30を機能ブロックとして描いている。これらの機能ブロックは、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現される。これらの機能ブロックがハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。 The charging / discharging of the storage battery 4 and the hydrogen production in the hydrogen production device 6 are controlled by the control device 8. The control device 8 has a recording unit 28 and a control unit 30. In FIG. 1, the recording unit 28 and the control unit 30 are drawn as functional blocks. These functional blocks are realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and are realized by a computer program or the like as a software configuration. It is understood by those skilled in the art that these functional blocks can be realized in various forms by combining hardware and software.

記録部28は、第1電力計18から計測値を受領して、再生可能エネルギー発電装置2の発電量Pvreを経時的に記録する。また、記録部28は、第2電力計20から計測値を受領して、電力系統16への送電量Pgridを経時的に記録する。第2電力計20によって計測される送電量Pgridには、再生可能エネルギー発電装置2から直に電力系統16に送電される電力量と、蓄電池4から電力系統16に送電される電力量とが含まれ得る。また、記録部28は、蓄電池4から計測値を受領して、蓄電池4のSoC等を経時的に記録する。また、記録部28は、水素製造装置6から計測値を受領して、水素製造装置6における消費電力量(水素製造量)を経時的に記録する。 The recording unit 28 receives the measured value from the first power meter 18, and records the power generation amount Pvre of the renewable energy power generation device 2 over time. Further, the recording unit 28 receives the measured value from the second power meter 20 and records the power transmission amount P grid to the power system 16 over time. The power transmission amount Pgrid measured by the second power meter 20 includes the amount of power transmitted directly from the renewable energy power generation device 2 to the power system 16 and the amount of power transmitted from the storage battery 4 to the power system 16. Can be included. Further, the recording unit 28 receives the measured value from the storage battery 4 and records the SoC and the like of the storage battery 4 over time. Further, the recording unit 28 receives the measured value from the hydrogen production apparatus 6 and records the power consumption (hydrogen production amount) in the hydrogen production apparatus 6 over time.

制御部30は、記録部28に記録されている各種の情報に基づいて、蓄電池4および水素製造装置6を制御する。例えば、再生可能エネルギー発電装置2の発電量Pvreが急激に増大した際に、再生可能エネルギー発電装置2が発電した電力を充電するよう、または蓄電池4からの放電を抑制するよう制御部30が蓄電池4を制御することで、電力系統16への送電量Pgridの増加を抑制することができる。また、再生可能エネルギー発電装置2の発電量Pvreが急激に減少した際に、蓄えている電力を放電するよう、または充電を抑制するよう制御部30が蓄電池4を制御することで、電力系統16への送電量Pgridの減少を抑制することができる。 The control unit 30 controls the storage battery 4 and the hydrogen production device 6 based on various information recorded in the recording unit 28. For example, when the power generation amount Pvre of the renewable energy power generation device 2 suddenly increases, the control unit 30 charges the power generated by the renewable energy power generation device 2 or suppresses the discharge from the storage battery 4. By controlling the storage battery 4, it is possible to suppress an increase in the amount of power transmitted to the power system 16. Further, when the power generation amount Pvre of the renewable energy power generation device 2 suddenly decreases, the control unit 30 controls the storage battery 4 so as to discharge the stored power or suppress the charging, thereby power system. It is possible to suppress a decrease in the amount of power transmitted to 16.

また、再生可能エネルギー発電装置2の発電量Pvreが急激に増大した際に、消費電力量が増大するよう制御部30が水素製造装置6を制御することで、電力系統16への送電量Pgridの増加を抑制することができる。また、再生可能エネルギー発電装置2の発電量Pvreが急激に減少した際に、消費電力量が減少するよう制御部30が水素製造装置6を制御することで、電力系統16への送電量Pgridの減少を抑制することができる。 Further, when the power generation amount P vre of the renewable energy power generation device 2 suddenly increases, the control unit 30 controls the hydrogen production device 6 so that the power consumption amount increases, so that the power transmission amount P to the power system 16 The increase in grid can be suppressed. Further, when the power generation amount P vre of the renewable energy power generation device 2 suddenly decreases, the control unit 30 controls the hydrogen production device 6 so that the power consumption amount decreases, so that the power transmission amount P to the power system 16 The decrease in grid can be suppressed.

(変動安定化制御)
送配電事業者と発電事業者との契約等において、エネルギー供給システム1には、電力系統16への送電量Pgridの許容変化率ΔPgridが予め設定される。設定された許容変化率ΔPgridは、記録部28に記録される。許容変化率ΔPgridは、送電量Pgridの単位時間当たりの変化量(kW/s)の許容値、つまり1秒間で変化させてよい送電量の最大値である。このため、制御部30は変動安定化制御として、電力系統16への送電量Pgridの変化率(kW/s)が許容変化率ΔPgridを超えないように、蓄電池4および水素製造装置6を制御する。
(Variation stabilization control)
In the contract between the power transmission and distribution business operator and the power generation business operator, the allowable change rate ΔP grid of the transmission amount P grid to the power system 16 is preset in the energy supply system 1. The set allowable change rate ΔP grid is recorded in the recording unit 28. The permissible change rate ΔP grid is a permissible value of the amount of change (kW / s) per unit time of the power transmission amount P grid , that is, the maximum value of the power transmission amount that can be changed in one second. Therefore, the control unit 30 uses the storage battery 4 and the hydrogen production device 6 as fluctuation stabilization control so that the rate of change (kW / s) of the transmission amount P grid to the power system 16 does not exceed the permissible rate of change ΔP grid . Control.

例えば、許容変化率ΔPgridは、エネルギー供給システム1から電力系統16へ送電可能な最大送電量Pgrid,maxに所定の係数Mを乗じて決定される。最大送電量Pgrid,maxおよび係数Mは、送配電事業者と発電事業者との契約等で定められる。一例として、係数Mは1%/60sである。つまり、1分間で最大送電量Pgrid,maxの1%分の変動が許容される。この場合、制御部30は、最大送電量Pgrid,maxの1%を現状の送電量Pgridに加えた値を上限とし、最大送電量Pgrid,maxの1%を現状の送電量Pgridから減じた値を下限とする範囲内に、1分後の送電量Pgridが収まるように(当然、現在から1分後までの間の送電量Pgridも当該範囲内に収まっていなければならない)、電力系統16への送電量Pgridを制御する。 For example, the permissible change rate ΔP grid is determined by multiplying the maximum transmission amount P grid and max that can be transmitted from the energy supply system 1 to the power system 16 by a predetermined coefficient M. The maximum transmission amount P grid, max and the coefficient M are determined by the contract between the power transmission and distribution business operator and the power generation business operator. As an example, the coefficient M is 1% / 60s. That is, a fluctuation of 1% of the maximum transmission amount Pgrid and max is allowed in one minute. In this case, the control unit 30 sets the upper limit of the value obtained by adding 1% of the maximum power transmission amount P grid and max to the current power transmission amount P grid , and 1% of the maximum power transmission amount P grid and max is the current power transmission amount P grid . The power transmission amount P grid after 1 minute must be within the range with the value subtracted from the lower limit as the lower limit (naturally, the power transmission amount P grid from the present to 1 minute later must also be within the range. ), The amount of power transmitted to the power system 16 Pgrid is controlled.

図2は、変動安定化制御の一例を示すフローチャートである。このフローは、制御部30によって所定のタイミングで繰り返し実行される。変動安定化制御の一例において、まず制御部30は、時間t(現在)における再生可能エネルギー発電装置2の発電量Pvre(t)を記録部28から取得する(S101)。そして、制御部30は、発電量Pvre(t)が、時間tの直前に記録された時間t-1の発電量Pvre(t-1)よりも増加したか判断する(S102)。 FIG. 2 is a flowchart showing an example of fluctuation stabilization control. This flow is repeatedly executed by the control unit 30 at a predetermined timing. In an example of fluctuation stabilization control, first, the control unit 30 acquires the power generation amount P vre (t) of the renewable energy power generation device 2 at time t (current) from the recording unit 28 (S101). Then, the control unit 30 determines whether the power generation amount P vre (t) has increased more than the power generation amount P vre (t-1) at the time t-1 recorded immediately before the time t (S102).

発電量Pvre(t)が増加した場合(S102のY)、制御部30は、発電量Pvre(t)と発電量Pvre(t-1)の差がしきい値を超えるか判断する(S103)。当該しきい値は、許容変化率ΔPgridに対応する発電変化量であり、記録部28に予め記録されている。発電量Pvre(t)と発電量Pvre(t-1)との差がしきい値を超える場合(S103のY)、制御部30は、時間tにおける送電量Pgrid(t)の増加抑制処理を実行して(S104)、本ルーチンを終了する。 When the power generation amount P vre (t) increases (Y in S102), the control unit 30 determines whether the difference between the power generation amount P vre (t) and the power generation amount P vre (t-1) exceeds the threshold value. (S103). The threshold value is a power generation change amount corresponding to the permissible change rate ΔP grid , and is recorded in advance in the recording unit 28. When the difference between the power generation amount P vre (t) and the power generation amount P vre (t-1) exceeds the threshold value (Y in S103), the control unit 30 increases the transmission amount P grid (t) in time t. Suppression processing is executed (S104), and this routine is terminated.

増加抑制処理において、制御部30は、蓄電池4への充電電力増加指令、蓄電池4への放電電力減少指令および水素製造装置6への水素製造増加指令の少なくとも一つを実施する。充電電力増加指令には、充電を開始させることも含まれる。放電電力減少指令には、放電を停止させることも含まれる。水素製造増加指令には、停止中の水素製造装置6を稼働させることも含まれる。これにより、時間t-1から時間tにかけての送電量Pgridの変化率、つまり送電量Pgrid(t-1)と送電量Pgrid(t)との差を許容変化率ΔPgrid以下とすることができる。 In the increase suppression process, the control unit 30 implements at least one of a charge power increase command to the storage battery 4, a discharge power decrease command to the storage battery 4, and a hydrogen production increase command to the hydrogen production device 6. The charge power increase command also includes starting charging. The discharge power reduction command also includes stopping the discharge. The hydrogen production increase command also includes operating the stopped hydrogen production apparatus 6. As a result, the rate of change of the transmitted amount P grid from time t-1 to time t, that is, the difference between the transmitted amount P grid (t-1) and the transmitted amount P grid (t) is set to be equal to or less than the allowable change rate ΔP grid . be able to.

発電量Pvre(t)と発電量Pvre(t-1)との差がしきい値以下である場合(S103のN)、制御部30は、増加抑制処理を実行することなく本ルーチンを終了する。この場合、蓄電池4の充放電電力および水素製造装置6における水素製造量が時間tと時間t-1とで同一であるため、電力系統16への送電量Pgrid(t)は、発電量Pvre(t)と発電量Pvre(t-1)の差分だけ増加し得る。 When the difference between the power generation amount P vre (t) and the power generation amount P vre (t-1) is equal to or less than the threshold value (N in S103), the control unit 30 executes this routine without executing the increase suppression process. finish. In this case, since the charge / discharge power of the storage battery 4 and the hydrogen production amount in the hydrogen production device 6 are the same at the time t and the time t-1, the power transmission amount P grid (t) to the power system 16 is the power generation amount P. It can be increased by the difference between vre (t) and the amount of power generation P vre (t-1).

発電量Pvre(t)が発電量Pvre(t-1)よりも増加していない場合(S102のN)、制御部30は、発電量Pvre(t)が発電量Pvre(t-1)よりも減少したか判断する(S105)。発電量Pvre(t)が減少した場合(S105のY)、制御部30は、発電量Pvre(t)と発電量Pvre(t-1)との差がしきい値を超えるか判断する(S106)。発電量Pvre(t)と発電量Pvre(t-1)との差がしきい値を超える場合(S106のY)、制御部30は、送電量Pgrid(t)の減少抑制処理を実行して(S107)、本ルーチンを終了する。 When the power generation amount P vre (t) is not larger than the power generation amount P vre (t-1) (N in S102), the control unit 30 has the power generation amount P vre (t) as the power generation amount P vre (t-). It is determined whether the amount has decreased from 1) (S105). When the power generation amount P vre (t) decreases (Y in S105), the control unit 30 determines whether the difference between the power generation amount P vre (t) and the power generation amount P vre (t-1) exceeds the threshold value. (S106). When the difference between the power generation amount P vre (t) and the power generation amount P vre (t-1) exceeds the threshold value (Y in S106), the control unit 30 performs a reduction suppressing process of the power transmission amount P grid (t). Execute (S107) to end this routine.

減少抑制処理において、制御部30は、蓄電池4への放電電力増加指令、蓄電池4への充電電力減少指令および水素製造装置6への水素製造減少指令の少なくとも一つを実施する。放電電力増加指令には、放電を開始させることも含まれる。充電電力減少指令には、充電を停止させることも含まれる。水素製造減少指令には、水素製造装置6の稼働を停止させることも含まれる。これにより、時間t-1から時間tにかけての送電量Pgridの変化率を許容変化率ΔPgrid以下とすることができる。 In the reduction suppression process, the control unit 30 executes at least one of a discharge power increase command to the storage battery 4, a charge power reduction command to the storage battery 4, and a hydrogen production reduction command to the hydrogen production device 6. The discharge power increase command also includes initiating discharge. The charge power reduction command also includes stopping charging. The hydrogen production reduction directive also includes stopping the operation of the hydrogen production apparatus 6. Thereby, the rate of change of the transmitted amount P grid from the time t-1 to the time t can be set to be equal to or less than the allowable change rate ΔP grid .

発電量Pvre(t)と発電量Pvre(t-1)との差がしきい値以下である場合(S106のN)、制御部30は、減少抑制処理を実行することなく本ルーチンを終了する。この場合、蓄電池4の充放電電力および水素製造装置6における水素製造量が時間tと時間t-1とで同一であるため、電力系統16への送電量Pgrid(t)は、発電量Pvre(t)と発電量Pvre(t-1)の差分だけ減少し得る。 When the difference between the power generation amount P vre (t) and the power generation amount P vre (t-1) is equal to or less than the threshold value (N in S106), the control unit 30 executes this routine without executing the reduction suppression process. finish. In this case, since the charge / discharge power of the storage battery 4 and the hydrogen production amount in the hydrogen production device 6 are the same at the time t and the time t-1, the power transmission amount P grid (t) to the power system 16 is the power generation amount P. It can be reduced by the difference between vre (t) and the amount of power generation P vre (t-1).

発電量Pvre(t)が発電量Pvre(t-1)よりも減少していない場合(S105のN)、制御部30は、発電量Pvre(t)がゼロであるか判断する(S108)。発電量Pvre(t)がゼロでない場合(S108のN)、制御部30は、増加抑制処理も減少抑制処理も実施することなく、本ルーチンを終了する。発電量Pvre(t)がゼロである場合(S108のY)、制御部30は、時間t-1における送電量Pgrid(t-1)が許容変化率ΔPgrid以下であるか、つまり許容される単位時間当たりの最大変化量に相当する送電量以下であるか判断する(S109)。送電量Pgridが許容変化率ΔPgrid以下である場合(S109のY)、制御部30は、増加抑制処理も減少抑制処理も実施することなく、本ルーチンを終了する。送電量Pgrid(t-1)が許容変化率ΔPgrid以下でない場合(S109のN)、制御部30は、送電量Pgrid(t)の減少抑制処理を実行して(S110)、本ルーチンを終了する。 When the power generation amount P vre (t) is not smaller than the power generation amount P vre (t-1) (N in S105), the control unit 30 determines whether the power generation amount P vre (t) is zero (N). S108). When the power generation amount P vre (t) is not zero (N in S108), the control unit 30 ends this routine without executing the increase suppression process or the decrease suppression process. When the power generation amount P vre (t) is zero (Y in S108), the control unit 30 determines whether the power transmission amount P grid (t-1) at time t-1 is equal to or less than the permissible change rate ΔP grid , that is, permissible. It is determined whether the transmission amount is equal to or less than the maximum change amount per unit time (S109). When the power transmission amount P grid is equal to or less than the permissible change rate ΔP grid (Y in S109), the control unit 30 ends this routine without performing the increase suppression process or the decrease suppression process. When the power transmission amount P grid (t-1) is not equal to or less than the permissible change rate ΔP grid (N in S109), the control unit 30 executes a reduction suppression process of the power transmission amount P grid (t) (S110), and this routine To finish.

なお、変動安定化制御のフローは上述のものに限定されない。例えば、発電量Pvre(t-1)と送電量Pgrid(t-1)との差分電力Presを算出し、PresおよびΔPgridのうち小さい方の値と-ΔPgridとを比較し、大きい方の値を送電量Pgrid(t-1)に加算して送電量Pgrid(t)を算出する制御であってもよい。これにより、差分電力Presの絶対値が許容変化率ΔPgrid未満である場合には差分電力Presだけ送電量Pgrid(t)を増減させ、差分電力Presの絶対値が許容変化率ΔPgrid以上である場合には許容変化率ΔPgridだけ送電量Pgrid(t)を増減させることができる。また、上述の制御に蓄電池4のSoCを考慮した制御を加えてもよい。 The flow of fluctuation stabilization control is not limited to the above. For example, the difference power Pres between the power generation amount P vre (t-1) and the transmission amount P grid (t-1) is calculated, and the smaller value of Pres and ΔP grid is compared with −ΔP grid . , The control may be such that the larger value is added to the transmission amount P grid (t-1) to calculate the transmission amount P grid (t). As a result, when the absolute value of the differential power Press is less than the allowable change rate ΔP grid, the transmission amount P grid ( t ) is increased or decreased by the differential power Press , and the absolute value of the differential power Press is the allowable change rate ΔP. When it is greater than or equal to the grid , the transmission amount P grid (t) can be increased or decreased by the permissible change rate ΔP grid . Further, the control in consideration of the SoC of the storage battery 4 may be added to the above-mentioned control.

(変動安定化の保証制御)
また、制御部30は、送電量Pgridの変化率が許容変化率ΔPgridを超えることをより確実に回避するために、以下に説明する変動安定化の保証制御を実行する。図3は、変動安定化の保証制御を説明するための図である。この制御は、再生可能エネルギー発電装置2における発電が突然停止したとき、送電量Pgridが0に到達するまで、蓄電池4からの放電によって送電量Pgridの減少率を許容変化率ΔPgrid以下に抑えることができるように、送電量Pgridと蓄電池4のSoCとのバランスを調整する制御である。変動安定化の保証制御は、主として再生可能エネルギー発電装置2の発電中に実行される。
(Guaranteed control of fluctuation stabilization)
Further, the control unit 30 executes the guarantee control of fluctuation stabilization described below in order to more reliably prevent the rate of change of the transmission amount P grid from exceeding the permissible rate of change ΔP grid . FIG. 3 is a diagram for explaining guaranteed control of fluctuation stabilization. In this control, when the power generation in the renewable energy power generation device 2 suddenly stops, the reduction rate of the power transmission amount P grid is reduced to the permissible change rate ΔP grid or less by discharging from the storage battery 4 until the power transmission amount P grid reaches 0. It is a control that adjusts the balance between the power transmission amount P grid and the SoC of the storage battery 4 so that it can be suppressed. Guarantee control of fluctuation stabilization is mainly performed during power generation of the renewable energy power generation device 2.

保証制御において、まず制御部30は、記録部28に記録された現状の送電量Pgrid,0に応じた必要SoC(SoCrequired)を算出する。必要SoCとは、再生可能エネルギー発電装置2の発電が停止して電力系統16への送電量Pgridが現状の量からゼロまで下がる際に、蓄電池4からの送電によって送電量Pgridの変化率を許容変化率ΔPgrid以下に維持するために必要な蓄電池4のSoCである。 In the guaranteed control, the control unit 30 first calculates the required SoC (SoC required ) according to the current power transmission amount Pgrid, 0 recorded in the recording unit 28. The required SoC is the rate of change of the power transmission amount P grid due to the power transmission from the storage battery 4 when the power generation of the renewable energy power generation device 2 is stopped and the power transmission amount P grid to the power system 16 drops from the current amount to zero. Is the SoC of the storage battery 4 required to maintain the permissible change rate of ΔP grid or less.

図3に示すように、再生可能エネルギー発電装置2の発電が停止する直前の送電量Pgrid,0から、許容変化率ΔPgrid(つまり許容される変化の最大値)で送電量Pgridを徐々に減少させていった際、T秒後に送電量Pgridが0に到達するとする。送電量Pgridの漸減は、蓄電池4の放電によって送電量Pgridを賄うことで実現される。 As shown in FIG. 3, the transmission amount P grid is gradually increased from the transmission amount P grid, 0 immediately before the power generation of the renewable energy power generation device 2 is stopped, at the allowable change rate ΔP grid (that is, the maximum value of the allowable change). It is assumed that the transmission amount P grid reaches 0 after T seconds. The gradual decrease of the power transmission amount P grid is realized by covering the power transmission amount P grid by discharging the storage battery 4.

t秒(t≦T)後の送電量Pgrid(t)は、数式(1)に基づいて算出される。

Figure 2022037494000002
The power transmission amount P grid (t) after t seconds (t ≦ T) is calculated based on the mathematical formula (1).
Figure 2022037494000002

数式(1)に、時間Tと、時間Tにおける送電量Pgrid(T)=0とを代入することで、時間Tは数式(2)のように表される。

Figure 2022037494000003
By substituting the time T and the transmission amount Pgrid (T) = 0 at the time T into the formula (1), the time T is expressed as the formula (2).
Figure 2022037494000003

また、再生可能エネルギー発電装置2の発電停止から時間Tまでの蓄電池4からの放電量Qは、数式(2)を用いて数式(3)のように表される。

Figure 2022037494000004
Further, the discharge amount Q from the storage battery 4 from the power generation stop of the renewable energy power generation device 2 to the time T is expressed by the mathematical formula (3) using the mathematical formula (2).
Figure 2022037494000004

蓄電池4の容量をCBT(kWh)とすると、発電停止直前の送電量Pgrid,0に対する必要SoCは、数式(4)のように表される。蓄電池4の容量をCBT、最大送電量Pgrid,maxおよび数式(4)は、予め記録部28に記録されている。

Figure 2022037494000005
Assuming that the capacity of the storage battery 4 is CBT (kWh), the required SoC for the transmission amount Pgrid , 0 immediately before the power generation is stopped is expressed by the formula (4). The capacity of the storage battery 4 is CBT, the maximum power transmission amount Pgrid , max and the mathematical formula (4) are recorded in advance in the recording unit 28.
Figure 2022037494000005

例えば、蓄電池4の容量CBTが21kWh、最大送電量Pgrid,maxが18kW、係数Mが1%/60s、許容変化率ΔPgridが0.003kW/s(18×0.01/60=18/6000=0.003)であるとき、必要SoCは、Pgrid,0 /453.6となる。したがって、制御部30は、記録部28に記録されている情報を用いて、発電停止直前の送電量Pgrid,0に応じた必要SoC、言い換えれば現状の送電量Pgridに応じた必要SoCを算出することができる。例えば、発電停止直前の送電量Pgrid,0が18kWである場合、必要SoCは約71.4%である。 For example, the capacity CBT of the storage battery 4 is 21kWh , the maximum transmission amount P grid, max is 18kW, the coefficient M is 1% / 60s, and the permissible change rate ΔP grid is 0.003kW / s (18 × 0.01 / 60 = 18). When / 6000 = 0.003), the required SoC is Pgrid , 0 2 / 453.6. Therefore, the control unit 30 uses the information recorded in the recording unit 28 to obtain the required SoC according to the power transmission amount P grid immediately before the power generation is stopped, in other words, the required SoC according to the current power transmission amount P grid . Can be calculated. For example, when the power transmission amount Pgrid, 0 immediately before the power generation is stopped is 18 kW, the required SoC is about 71.4%.

なお、必要SoCは、所定のマージン定数Nを含む値であってもよい。つまり、必要Socは、SoCrequired=(Q/3600CBT)+Nで表すことができる。式(4)は、マージン定数Nがゼロの場合に相当する。マージン定数Nは、設計者による実験やシミュレーションに基づき適宜設定することが可能であり、例えば1~5%である。 The required SoC may be a value including a predetermined margin constant N. That is, the required Sec can be represented by SoC required = (Q / 3600C BT ) + N. Equation (4) corresponds to the case where the margin constant N is zero. The margin constant N can be appropriately set based on experiments and simulations by the designer, and is, for example, 1 to 5%.

そして制御部30は、必要SoCが蓄電池4の現状のSoCを上回った場合に、送電量Pgridの変化率が許容変化率ΔPgrid以下となる範囲で、送電量Pgridが減るように蓄電池4および水素製造装置6を制御する。制御部30は、送電量Pgridの低減処理として、蓄電池4への充電電力増加指令、蓄電池4への放電電力減少指令および水素製造装置6への水素製造増加指令の少なくとも1つを実施する。これにより、送電量Pgridを減少させることができるため、必要SoCを現状のSoC以下に下げることができる。 Then, the control unit 30 reduces the power transmission amount P grid so that the change rate of the power transmission amount P grid is equal to or less than the permissible change rate ΔP grid when the required SoC exceeds the current SoC of the storage battery 4. And control the hydrogen production device 6. The control unit 30 implements at least one of a charge power increase command to the storage battery 4, a discharge power decrease command to the storage battery 4, and a hydrogen production increase command to the hydrogen production device 6 as a process of reducing the transmission amount P grid . As a result, the power transmission amount P grid can be reduced, so that the required SoC can be reduced to the current SoC or less.

必要SoCが現状のSoC以下となるように送電量Pgridを調整することで、再生可能エネルギー発電装置2の発電が突然停止した場合に(このときの送電量Pgridが発電停止直前の送電量Pgrid,0となる)、蓄電池4からの放電のみで送電量Pgridの変化率を許容変化率ΔPgrid以下に維持しながら、送電量Pgridを現状の量からゼロまで下げることができる。つまり、蓄電池4のみで変動安定化制御を実現することができる。したがって、送電量Pgridの変動安定化を保証することができる。 By adjusting the power transmission amount P grid so that the required SoC is less than the current SoC, when the power generation of the renewable energy power generation device 2 suddenly stops (the power transmission amount P grid at this time is the power transmission amount immediately before the power generation stop). The power transmission amount P grid can be reduced from the current amount to zero while maintaining the rate of change of the power transmission amount P grid at the permissible change rate ΔP grid or less only by discharging from the storage battery 4 (P grid, 0 ). That is, fluctuation stabilization control can be realized only with the storage battery 4. Therefore, it is possible to guarantee the fluctuation stabilization of the power transmission amount P grid .

なお、蓄電池4への充電によって送電量Pgridを減少させる場合、蓄電池4のSoCが増加し得る。この場合は、送電量Pgridの減少とSoCの増加との相乗作用によって、必要SoCを現状のSoC以下にすることができる。また、制御部30は、変動安定化制御と保証制御とを並行して実行することができる。2つの制御において実行しようとする制御内容が相反する場合には、保証制御に基づく送電量Pgridの調整が優先して実行される。なお、保証制御は、送電量Pgridの変化率を許容変化率ΔPgrid以下に保ちながら送電量Pgridを減少させる制御である。このため、保証制御は、広義には変動安定化制御の一部と解釈することもできる。また、変動安定化制御および保証制御は、エネルギー供給システム1が水素製造装置6を有しない場合であっても、蓄電池4の充放電によって実現することができる。 When the transmission amount P grid is reduced by charging the storage battery 4, the SoC of the storage battery 4 may increase. In this case, the required SoC can be reduced to the current SoC or less by the synergistic effect of the decrease in the transmission amount P grid and the increase in the SoC. Further, the control unit 30 can execute the fluctuation stabilization control and the guarantee control in parallel. When the control contents to be executed in the two controls conflict with each other, the adjustment of the transmission amount Pgrid based on the guaranteed control is preferentially executed. The guaranteed control is a control that reduces the power transmission amount P grid while keeping the rate of change of the power transmission amount P grid below the permissible change rate ΔP grid . Therefore, the guaranteed control can be interpreted as a part of the fluctuation stabilization control in a broad sense. Further, fluctuation stabilization control and guaranteed control can be realized by charging / discharging the storage battery 4 even when the energy supply system 1 does not have the hydrogen production device 6.

図4は、変動安定化の保証制御の一例を示すフローチャートである。このフローは、制御部30によって所定のタイミングで繰り返し実行される。変動安定化の保証制御の一例において、まず制御部30は、記録部28に記録されている現状の送電量Pgridを取得し、必要SoCを算出する(S201)。そして、制御部30は、記録部28に記録された現状のSoCを取得し、必要SoCが現状のSoCを上回るか判断する(S202)。 FIG. 4 is a flowchart showing an example of guaranteed control of fluctuation stabilization. This flow is repeatedly executed by the control unit 30 at a predetermined timing. In an example of guaranteed control of fluctuation stabilization, first, the control unit 30 acquires the current power transmission amount Pgrid recorded in the recording unit 28 and calculates the required SoC (S201). Then, the control unit 30 acquires the current SoC recorded in the recording unit 28, and determines whether the required SoC exceeds the current SoC (S202).

必要SoCが現状のSoCを上回る場合(S202のY)、制御部30は、送電量Pgridの低減処理を実行して(S203)、本ルーチンを終了する。必要SoCが現状のSoC以下である場合(S202のN)、制御部30は、低減処理を実行することなく本ルーチンを終了する。 When the required SoC exceeds the current SoC (Y in S202), the control unit 30 executes the transmission amount P grid reduction process (S203), and ends this routine. When the required SoC is less than or equal to the current SoC (N in S202), the control unit 30 terminates this routine without executing the reduction process.

(利益比較制御)
制御部30は、変動安定化制御および保証制御とともに、以下に説明する利益比較制御を実行する。図5は、利益比較制御を説明するための図である。利益比較制御において、制御部30は、予め設定される電力価格および水素価格に基づいて、蓄電池4および水素製造装置6を制御する。また、本実施の形態の制御部30は、電力価格および水素価格に加え、蓄電池4の充放電にともなう電力損失(充放電効率)、および水素製造装置6の水素製造効率(電力消費量あたりの水素製造量であり水素製造原単位ともいう)に基づいて、蓄電池4および水素製造装置6を制御する。
(Profit comparison control)
The control unit 30 executes the profit comparison control described below together with the fluctuation stabilization control and the guarantee control. FIG. 5 is a diagram for explaining profit comparison control. In the profit comparison control, the control unit 30 controls the storage battery 4 and the hydrogen production device 6 based on the preset electric power price and hydrogen price. Further, in the control unit 30 of the present embodiment, in addition to the electric power price and the hydrogen price, the electric power loss (charge / discharge efficiency) due to the charge / discharge of the storage battery 4 and the hydrogen production efficiency (per electric power consumption) of the hydrogen production apparatus 6 The storage battery 4 and the hydrogen production apparatus 6 are controlled based on the amount of hydrogen produced and also referred to as a hydrogen production intensity).

電力価格は、例えば市場価格であり、30分毎の取引価格(スポット価格)が前日に決まる。水素価格は、例えば水素ステーションでの水素の売価であり、各事業者により設定される。また、水素価格は、水素市場が確立された場合には、市場価格であってもよい。蓄電池4の充放電にともなう電力損失は、蓄電池4やPCS22の特性に応じて定まる。水素製造装置6の水素製造効率は、水素製造装置6やPCS24の特性に応じて定まる。電力価格、水素価格、電力損失および水素製造効率は、記録部28に予め記録される。電力価格や水素価格は、電気通信回線等を通じて提供されてもよい。 The electric power price is, for example, a market price, and the transaction price (spot price) every 30 minutes is determined the day before. The hydrogen price is, for example, the selling price of hydrogen at a hydrogen station, and is set by each business operator. Further, the hydrogen price may be the market price when the hydrogen market is established. The power loss associated with the charging and discharging of the storage battery 4 is determined according to the characteristics of the storage battery 4 and the PCS 22. The hydrogen production efficiency of the hydrogen production apparatus 6 is determined according to the characteristics of the hydrogen production apparatus 6 and the PCS24. The electric power price, hydrogen price, electric power loss and hydrogen production efficiency are recorded in advance in the recording unit 28. The electric power price and the hydrogen price may be provided through a telecommunication line or the like.

再生可能エネルギー発電装置2で発電した電力を電力系統16に送電すると、電力価格に応じた利益が得られる。一方、再生可能エネルギー発電装置2で発電した電力を用いて水素製造装置6で水素を製造すると、水素価格および水素製造効率に応じた利益が得られる。電力系統16への送電により得られる利益(送電利益)が、同量の電力で水素を製造した場合に得られる利益(水素製造利益)を上回る場合は電力系統16への送電を優先し、水素製造利益が送電利益を上回る場合は水素の製造を優先することで、エネルギー供給システム1の収益性を高めることができる。 When the electric power generated by the renewable energy power generation device 2 is transmitted to the electric power system 16, a profit corresponding to the electric power price can be obtained. On the other hand, when hydrogen is produced by the hydrogen production apparatus 6 using the electric power generated by the renewable energy power generation apparatus 2, a profit corresponding to the hydrogen price and the hydrogen production efficiency can be obtained. If the profit obtained by transmitting power to the power system 16 (transmission profit) exceeds the profit obtained when hydrogen is produced with the same amount of power (hydrogen production profit), power transmission to the power system 16 is prioritized and hydrogen is used. If the production profit exceeds the transmission profit, the profitability of the energy supply system 1 can be enhanced by giving priority to the production of hydrogen.

また、再生可能エネルギー発電装置2で発電した電力を蓄電池4に充電し、充電した電力を送電あるいは水素製造に割り振ることで、収益性のさらなる向上を図り得る。一方で、蓄電池4の充放電は電力損失をともなう。このため、電力損失分の減益を考慮しながら蓄電池4に充電した電力の供給先を切り替えることで、エネルギー供給システム1の収益性をより向上させることができる。なお、利益比較制御で実行しようとする制御内容が変動安定化制御または保証制御おいて実行しようとする制御内容と相反する場合には、変動安定化制御または保証制御に基づく制御が優先して実行される。利益比較制御は、利益比較の結果に基づいて変動安定化制御の制御アルゴリズム(電力の供給先の優先度)を切り替える制御と捉えることもできる。 Further, by charging the storage battery 4 with the electric power generated by the renewable energy power generation device 2 and allocating the charged electric power to power transmission or hydrogen production, profitability can be further improved. On the other hand, charging / discharging of the storage battery 4 is accompanied by power loss. Therefore, the profitability of the energy supply system 1 can be further improved by switching the supply destination of the electric power charged in the storage battery 4 while considering the decrease in the profit due to the electric power loss. If the control content to be executed in the profit comparison control conflicts with the control content to be executed in the fluctuation stabilization control or the guarantee control, the control based on the fluctuation stabilization control or the guarantee control is preferentially executed. Will be done. The profit comparison control can also be regarded as a control for switching the control algorithm (priority of the power supply destination) of the fluctuation stabilization control based on the result of the profit comparison.

本実施の形態では、第1利益額EP1、第2利益額EP2、第3利益額HP3および第4利益額HP4が予め設定されて記録部28に記録される。第1利益額EP1は、少なくとも電力価格に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4非経由で電力系統16に送電した場合の利益額である。第2利益額EP2は、少なくとも電力価格および電力損失に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4経由で電力系統16に送電した場合の利益額である。第3利益額HP3は、少なくとも水素価格および水素製造効率に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4非経由で水素製造装置6に供給して水素を製造した場合の利益額である。第4利益額HP4は、少なくとも水素価格、水素製造効率および電力損失に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4経由で水素製造装置6に供給して水素を製造した場合の利益額である。 In the present embodiment, the first profit amount EP1, the second profit amount EP2, the third profit amount HP3, and the fourth profit amount HP4 are preset and recorded in the recording unit 28. The first profit amount EP1 is a profit amount when the unit power generated by the renewable energy power generation device 2 is transmitted to the power system 16 without the storage battery 4, which is determined at least based on the power price. The second profit amount EP2 is a profit amount when the unit power generated by the renewable energy power generation device 2 is transmitted to the power system 16 via the storage battery 4, which is determined at least based on the power price and the power loss. The third profit amount HP3 is a case where hydrogen is produced by supplying the unit power generated by the renewable energy power generation device 2 to the hydrogen production device 6 without the storage battery 4, which is determined at least based on the hydrogen price and the hydrogen production efficiency. The amount of profit. The fourth profit amount HP4 produced hydrogen by supplying the unit power generated by the renewable energy power generation device 2 to the hydrogen production device 6 via the storage battery 4, which is determined at least based on the hydrogen price, hydrogen production efficiency and power loss. The amount of profit in the case.

上述のように、一例としての電力価格は、30分毎に価格が変動する。したがって、第1利益額EP1および第2利益額EP2は、所定の時間間隔で繰り返し更新される。一方、水素価格は、電力価格に比べて価格の変動頻度が少なく、例えば数週間~数ヶ月の頻度で変動する。また、電力損失は、蓄電池4やPCS22に固有のものであり、実質的に変動しない。また、水素製造効率は、水素製造装置6やPCS24に固有のものであり、実質的に変動しない。したがって、第3利益額HP3は水素価格の改定時と水素製造装置6およびPCS24の少なくとも一方の換装時に更新され、第4利益額HP4は水素価格の改定時と蓄電池4、PCS22、水素製造装置6およびPCS24の少なくとも1つの換装時に更新されるものの、制御の一例においては、第3利益額HP3および第4利益額HP4を固定値と捉えることができる。よって、各利益額の大小関係は、電力価格の変動にともなって変化する。なお、当然に第1利益額EP1は第2利益額EP2よりも高く、第3利益額HP3は第4利益額HP4よりも高い。 As described above, the price of electric power as an example fluctuates every 30 minutes. Therefore, the first profit amount EP1 and the second profit amount EP2 are repeatedly updated at predetermined time intervals. On the other hand, the hydrogen price fluctuates less frequently than the electric power price, and fluctuates at a frequency of several weeks to several months, for example. Further, the power loss is inherent in the storage battery 4 and the PCS 22, and does not substantially fluctuate. Further, the hydrogen production efficiency is peculiar to the hydrogen production apparatus 6 and the PCS 24, and does not substantially fluctuate. Therefore, the third profit amount HP3 is updated when the hydrogen price is revised and when at least one of the hydrogen production device 6 and the PCS24 is replaced, and the fourth profit amount HP4 is updated when the hydrogen price is revised and the storage battery 4, PCS22, and the hydrogen production device 6 are replaced. And, although it is updated at the time of at least one replacement of the PCS24, in one example of control, the third profit amount HP3 and the fourth profit amount HP4 can be regarded as fixed values. Therefore, the magnitude relationship of each profit amount changes with the fluctuation of the electric power price. As a matter of course, the first profit amount EP1 is higher than the second profit amount EP2, and the third profit amount HP3 is higher than the fourth profit amount HP4.

図5に示すように、第1利益額EP1および第2利益額EP2が第3利益額HP3よりも高い区分Aの場合、制御部30は、第1目標状態に近づくように蓄電池4および水素製造装置6を制御する。第1目標状態は、蓄電池4非経由での再生可能エネルギー発電装置2から電力系統16への送電量Pgridである直送電量α1が蓄電池4への電力供給量α2および水素製造装置6への電力供給量α3よりも多く、且つ蓄電池4への電力供給量α2が水素製造装置6への電力供給量α3よりも多い状態である。 As shown in FIG. 5, in the case of the category A in which the first profit amount EP1 and the second profit amount EP2 are higher than the third profit amount HP3, the control unit 30 produces the storage battery 4 and hydrogen so as to approach the first target state. It controls the device 6. In the first target state, the direct power transmission amount α1, which is the power transmission amount Pgrid from the renewable energy power generation device 2 to the power system 16 without going through the storage battery 4, is the power supply amount α2 to the storage battery 4 and the power to the hydrogen production device 6. The power supply amount α2 to the storage battery 4 is larger than the power supply amount α3, and the power supply amount α2 to the storage battery 4 is larger than the power supply amount α3 to the hydrogen production apparatus 6.

つまり、区分Aでは、再生可能エネルギー発電装置2から電力系統16への直送電が最も収益性が高い。このため、直送電量α1を蓄電池4および水素製造装置6への電力供給量α2,α3よりも多くすることで、収益性を高めることができる。また、区分Aでは、蓄電池4の充放電による電力損失をともなう売電で得られる利益(EP2)が、当該電力損失をともなわない水素製造で得られる利益(HP3)よりも高い。このため、水素製造装置6への電力供給量α3よりも蓄電池4への電力供給量α2を多くすることで、収益性の向上につなげることができる。蓄電池4に充電された電力は、直送電量α1が最大送電量Pgrid,max未満であるとき、電力系統16に送電される。 That is, in Category A, the direct transmission from the renewable energy power generation device 2 to the power system 16 is the most profitable. Therefore, profitability can be improved by increasing the direct transmission amount α1 to be larger than the power supply amounts α2 and α3 to the storage battery 4 and the hydrogen production apparatus 6. Further, in Category A, the profit (EP2) obtained by selling power with power loss due to charging / discharging of the storage battery 4 is higher than the profit (HP3) obtained by hydrogen production without the power loss. Therefore, by increasing the power supply amount α2 to the storage battery 4 rather than the power supply amount α3 to the hydrogen production apparatus 6, it is possible to improve the profitability. The electric power charged in the storage battery 4 is transmitted to the power system 16 when the direct transmission amount α1 is less than the maximum transmission amount P grid, max .

制御部30は、充電電力を増加(充電の開始を含む)させるよう蓄電池4を制御することで、電力供給量α2を増加させることができる。また、充電電力を減少(充電の停止を含む)させるよう蓄電池4を制御することで、電力供給量α2を減少させることができる。また、制御部30は、水素製造量を増加(水素製造の開始を含む)させるよう水素製造装置6を制御することで、電力供給量α3を増加させることができる。また、水素製造量を減少(水素製造の停止を含む)させるよう水素製造装置6を制御することで、電力供給量α3を減少させることができる。また、制御部30は、電力供給量α2および電力供給量α3の少なくとも一方を増減させることによって、直送電量α1を増減させることができる。 The control unit 30 can increase the power supply amount α2 by controlling the storage battery 4 so as to increase the charging power (including the start of charging). Further, by controlling the storage battery 4 so as to reduce the charging power (including the stop of charging), the power supply amount α2 can be reduced. Further, the control unit 30 can increase the power supply amount α3 by controlling the hydrogen production apparatus 6 so as to increase the hydrogen production amount (including the start of hydrogen production). Further, by controlling the hydrogen production apparatus 6 so as to reduce the hydrogen production amount (including the stoppage of hydrogen production), the power supply amount α3 can be reduced. Further, the control unit 30 can increase or decrease the direct transmission amount α1 by increasing or decreasing at least one of the electric power supply amount α2 and the electric power supply amount α3.

理想的には、再生可能エネルギー発電装置2の発電量Pvreのうち直送電量α1が占める割合が100%に近づくように制御される。そして、発電量Pvreが最大送電量Pgrid,max超えて余剰電力が生じたとき、この余剰電力が水素製造装置6よりも蓄電池4に優先的に供給される。ただし、上述した変動安定化制御および保証制御が利益比較制御よりも優先されるため、発電量Pvreが急増した場合には、直送電量α1が最大送電量Pgrid,max未満であっても、直送電量α1の変化率が許容変化率ΔPgridを満たすように蓄電池4への電力供給量α2が増加され得る。また、再生可能エネルギー発電装置2の発電量Pvreが急減した場合には、電力供給量α2が低減され得る。また必要に応じて蓄電池4から電力系統16に送電され得る。 Ideally, the ratio of the direct transmission amount α1 to the power generation amount Pvre of the renewable energy power generation device 2 is controlled to approach 100%. Then, when the power generation amount P vre exceeds the maximum power transmission amount P grid, max and surplus power is generated, this surplus power is preferentially supplied to the storage battery 4 over the hydrogen production apparatus 6. However, since the fluctuation stabilization control and the guarantee control described above are prioritized over the profit comparison control, when the power generation amount P vre increases sharply, even if the direct power transmission amount α1 is less than the maximum power transmission amount Pgrid , max . The power supply amount α2 to the storage battery 4 can be increased so that the rate of change of the direct power transmission amount α1 satisfies the permissible change rate ΔP grid . Further, when the power generation amount Pvre of the renewable energy power generation device 2 suddenly decreases, the power supply amount α2 can be reduced. Further, it may be transmitted from the storage battery 4 to the power system 16 as needed.

例えば制御部30は、時間t(現在)における再生可能エネルギー発電装置2の発電量Pvre(t)が時間t-1における送電量Pgrid(t-1)よりも大きいとき、最大送電量Pgrid,maxを超えない範囲で、時間tにおける送電量Pgrid(t)、つまり直送電量α1を増加させる。発電量Pvre(t)が送電量Pgrid(t-1)よりも小さいとき、直送電量α1を減少させる。制御部30が電力供給量α2,α3を変化させなければ、発電量Pvre(t)と送電量Pgrid(t-1)との差分が、そのまま直送電量α1の増加量あるいは減少量となる。 For example, when the power generation amount P vre (t) of the renewable energy power generation device 2 at time t (current) is larger than the power transmission amount P grid (t-1) at time t-1, the control unit 30 has a maximum power transmission amount P. The power transmission amount P grid (t) at time t, that is, the direct power transmission amount α1 is increased within the range not exceeding the grid and max . When the power generation amount P vre (t) is smaller than the power transmission amount P grid (t-1), the direct power transmission amount α1 is reduced. If the control unit 30 does not change the power supply amounts α2 and α3, the difference between the power generation amount P vre (t) and the transmission amount P grid (t-1) becomes the increase or decrease amount of the direct transmission amount α1 as it is. ..

また、発電量Pvre(t)が最大送電量Pgrid,maxを超えて余剰電力が生じた場合、制御部30は、蓄電池4への電力供給量α2を増加させる。余剰電力が減った場合は、それに応じて電力供給量α2を減少させる。また、一例として水素製造装置6への電力供給量α3はゼロとする。ただし、蓄電池4のSoCは、所定のしきい値以下に維持しておくことが望ましい。これは、蓄電池4の空き容量に余裕を持たせて、余剰電力の吸収漏れを極力減らすためである。このため、蓄電池4のSoCが当該しきい値を超える場合、制御部30は、水素製造装置6への電力供給量α3を増加させ得る。 Further, when the power generation amount P vre (t) exceeds the maximum power transmission amount P grid, max and surplus power is generated, the control unit 30 increases the power supply amount α2 to the storage battery 4. When the surplus power is reduced, the power supply amount α2 is reduced accordingly. Further, as an example, the power supply amount α3 to the hydrogen production apparatus 6 is set to zero. However, it is desirable to keep the SoC of the storage battery 4 below a predetermined threshold value. This is to allow a margin in the free capacity of the storage battery 4 and reduce absorption leakage of surplus power as much as possible. Therefore, when the SoC of the storage battery 4 exceeds the threshold value, the control unit 30 can increase the power supply amount α3 to the hydrogen production device 6.

なお、余剰電力が生じていない状況で、再生可能エネルギー発電装置2で発電した電力の一部を蓄電池4に供給する制御を実施してもよい。この場合、蓄電池4のSoCがしきい値を超える際は、電力供給量α3の増加と直送電量α1の増加との組み合わせによってSoCの増加を抑制してもよい。一例としては、直送電量α1の増加が電力供給量α3の増加よりも先に実施される。 In a situation where no surplus electric power is generated, control may be performed to supply a part of the electric power generated by the renewable energy power generation device 2 to the storage battery 4. In this case, when the SoC of the storage battery 4 exceeds the threshold value, the increase in the SoC may be suppressed by combining the increase in the power supply amount α3 and the increase in the direct transmission amount α1. As an example, the increase in the direct transmission amount α1 is carried out before the increase in the power supply amount α3.

第1利益額EP1が第3利益額HP3よりも高く第2利益額EP2が第3利益額HP3よりも低い区分Bの場合、制御部30は、第2目標状態に近づくように蓄電池4および水素製造装置6を制御する。第2目標状態は、直送電量α1が蓄電池4および水素製造装置6への電力供給量α2,α3よりも多く、且つ水素製造装置6への電力供給量α3が蓄電池4への電力供給量α2よりも多い状態である。 When the first profit amount EP1 is higher than the third profit amount HP3 and the second profit amount EP2 is lower than the third profit amount HP3, the control unit 30 sets the storage battery 4 and hydrogen so as to approach the second target state. Controls the manufacturing apparatus 6. In the second target state, the direct transmission amount α1 is larger than the power supply amount α2 and α3 to the storage battery 4 and the hydrogen production device 6, and the power supply amount α3 to the hydrogen production device 6 is from the power supply amount α2 to the storage battery 4. There are many states.

つまり、区分Bでは、再生可能エネルギー発電装置2から電力系統16への直送電が最も収益性が高い。このため、直送電量α1を蓄電池4および水素製造装置6への電力供給量α2,α3よりも多くすることで、収益性を高めることができる。また、区分Bでは、蓄電池4の充放電による電力損失をともなわない水素製造で得られる利益(HP3)が、当該電力損失をともなう売電で得られる利益(EP2)よりも高い。このため、蓄電池4への電力供給量α2よりも水素製造装置6への電力供給量α3を多くすることで、収益性を高めることができる。蓄電池4に充電された電力は、直送電量α1が最大送電量Pgrid,max未満であるとき、電力系統16に送電される。 That is, in Category B, the direct transmission from the renewable energy power generation device 2 to the power system 16 is the most profitable. Therefore, profitability can be improved by increasing the direct transmission amount α1 to be larger than the power supply amounts α2 and α3 to the storage battery 4 and the hydrogen production apparatus 6. Further, in Category B, the profit (HP3) obtained by hydrogen production without power loss due to charging / discharging of the storage battery 4 is higher than the profit (EP2) obtained by selling power with the power loss. Therefore, profitability can be improved by increasing the power supply amount α3 to the hydrogen production apparatus 6 rather than the power supply amount α2 to the storage battery 4. The electric power charged in the storage battery 4 is transmitted to the power system 16 when the direct transmission amount α1 is less than the maximum transmission amount P grid, max .

理想的には、再生可能エネルギー発電装置2の発電量Pvreのうち直送電量α1が占める割合が100%に近づくように制御される。そして、再生可能エネルギー発電装置2の発電量Pvreが最大送電量Pgrid,maxを超えて余剰電力が生じたとき、この余剰電力が蓄電池4よりも水素製造装置6に優先的に供給される。ただし、上述した変動安定化制御および保証制御が優先される点は、区分Aにおける制御と同様である。 Ideally, the ratio of the direct transmission amount α1 to the power generation amount Pvre of the renewable energy power generation device 2 is controlled to approach 100%. Then, when the power generation amount P vre of the renewable energy power generation device 2 exceeds the maximum power transmission amount P grid, max and surplus power is generated, this surplus power is preferentially supplied to the hydrogen production device 6 over the storage battery 4. .. However, the point that the above-mentioned fluctuation stabilization control and guarantee control are prioritized is the same as the control in Category A.

例えば制御部30は、発電量Pvre(t)が送電量Pgrid(t-1)よりも大きいとき、最大送電量Pgrid,maxを超えない範囲で、時間tの直送電量α1を増加させる。発電量Pvre(t)が送電量Pgrid(t-1)よりも小さいとき、時間tの直送電量α1を減少させる。また、発電量Pvre(t)が最大送電量Pgrid,maxを超えて余剰電力が生じた場合、制御部30は、水素製造装置6への電力供給量α3を増加させる。余剰電力が減った場合は、それに応じて電力供給量α3を減少させる。また、一例として蓄電池4への電力供給量α2は、変動安定化制御および保証制御で許容される限りにおいてゼロとする。SoCを維持する制御は、区分Aの場合と同様であるが、一例としては電力供給量α3の増加が直送電量α1の増加よりも先に実施される。 For example, when the power generation amount P vre (t) is larger than the power transmission amount P grid (t-1), the control unit 30 increases the direct power transmission amount α1 at time t within a range not exceeding the maximum power transmission amount P grid, max . .. When the power generation amount P vre (t) is smaller than the power transmission amount P grid (t-1), the direct power transmission amount α1 at time t is reduced. Further, when the power generation amount P vre (t) exceeds the maximum power transmission amount P grid, max and surplus power is generated, the control unit 30 increases the power supply amount α3 to the hydrogen production apparatus 6. When the surplus power is reduced, the power supply amount α3 is reduced accordingly. Further, as an example, the power supply amount α2 to the storage battery 4 is set to zero as long as it is permitted by the fluctuation stabilization control and the guarantee control. The control for maintaining the SoC is the same as in the case of the category A, but as an example, the increase in the power supply amount α3 is performed before the increase in the direct transmission amount α1.

第3利益額HP3が第1利益額EP1よりも高く第4利益額HP4が第1利益額EP1よりも低い区分Cの場合、制御部30は、第3目標状態に近づくように蓄電池4および水素製造装置6を制御する。第3目標状態は、水素製造装置6への電力供給量α3が直送電量α1および蓄電池4への電力供給量α2よりも多く、且つ直送電量α1が蓄電池4への電力供給量α2よりも多い状態である。 When the third profit amount HP3 is higher than the first profit amount EP1 and the fourth profit amount HP4 is lower than the first profit amount EP1, the control unit 30 sets the storage battery 4 and hydrogen so as to approach the third target state. Controls the manufacturing apparatus 6. The third target state is a state in which the electric power supply amount α3 to the hydrogen production apparatus 6 is larger than the direct transmission amount α1 and the electric power supply amount α2 to the storage battery 4, and the direct transmission amount α1 is larger than the electric power supply amount α2 to the storage battery 4. Is.

つまり、区分Cでは、再生可能エネルギー発電装置2から水素製造装置6へ直に給電して水素製造することが最も収益性が高い。このため、水素製造装置6への電力供給量α3を直送電量α1および蓄電池4への電力供給量α2よりも多くすることで、収益性を高めることができる。また、区分Cでは、蓄電池4の充放電による電力損失をともなわない売電で得られる利益(EP1)が、当該電力損失をともなう水素製造で得られる利益(HP4)よりも高い。このため、蓄電池4への電力供給量α2よりも直送電量α1を多くすることで、収益性を高めることができる。蓄電池4に充電された電力は、水素製造装置6の水素製造に必要な電力が再生可能エネルギー発電装置2の発電量Pvreでは足りないとき、水素製造装置6に供給される。 That is, in Category C, it is most profitable to directly supply power from the renewable energy power generation device 2 to the hydrogen production device 6 to produce hydrogen. Therefore, profitability can be improved by increasing the electric power supply amount α3 to the hydrogen production apparatus 6 to be larger than the direct transmission amount α1 and the electric power supply amount α2 to the storage battery 4. Further, in Category C, the profit (EP1) obtained by selling power without power loss due to charging / discharging of the storage battery 4 is higher than the profit (HP4) obtained by hydrogen production with the power loss. Therefore, profitability can be improved by increasing the direct transmission amount α1 rather than the power supply amount α2 to the storage battery 4. The electric power charged in the storage battery 4 is supplied to the hydrogen production apparatus 6 when the electric power required for hydrogen production of the hydrogen production apparatus 6 is insufficient in the power generation amount P vre of the renewable energy power generation apparatus 2.

理想的には、再生可能エネルギー発電装置2の発電量Pvreのうち電力供給量α3が占める割合が100%に近づくように制御される。そして、再生可能エネルギー発電装置2の発電量Pvreが、水素製造装置6における上限量の水素製造に必要な最大電力供給量α3maxを超えて余剰電力が生じたとき、この余剰電力が蓄電池4よりも電力系統16に優先的に供給される。ただし、上述した変動安定化制御および保証制御が優先される点は、区分A,Bにおける制御と同様である。 Ideally, the ratio of the power supply amount α3 to the power generation amount Pvre of the renewable energy power generation device 2 is controlled to approach 100%. Then, when the power generation amount Pvre of the renewable energy power generation device 2 exceeds the maximum power supply amount α3 max required for the upper limit amount of hydrogen production in the hydrogen production device 6, this surplus power is used as the storage battery 4. It is preferentially supplied to the power system 16 rather than. However, the point that the above-mentioned fluctuation stabilization control and guarantee control are prioritized is the same as the control in categories A and B.

例えば制御部30は、発電量Pvre(t)が時間t-1における水素製造装置6への電力供給量α3よりも大きいとき、時間tの電力供給量α3を増加させる。発電量Pvre(t)が時間t-1の電力供給量α3よりも小さいとき、時間tの電力供給量α3を減少させる。また、発電量Pvre(t)が最大電力供給量α3maxを超えて余剰電力が生じた場合、制御部30は、蓄電池4への電力供給量α2を減少させることで直送電量α1を増加させる。余剰電力が減った場合は、それに応じて直送電量α1が自ずと減少する。一例として蓄電池4への電力供給量α2は、変動安定化制御および保証制御で許容される限りにおいてゼロとする。SoCを維持する制御は、区分A,Bの場合と同様であるが、一例としては直送電量α1の増加が電力供給量α3の増加よりも先に実施される。 For example, when the power generation amount P vre (t) is larger than the power supply amount α3 to the hydrogen production apparatus 6 at the time t-1, the control unit 30 increases the power supply amount α3 at the time t. When the power generation amount P vre (t) is smaller than the power supply amount α3 at the time t-1, the power supply amount α3 at the time t is reduced. Further, when the power generation amount P vre (t) exceeds the maximum power supply amount α3 max and surplus power is generated, the control unit 30 increases the direct power transmission amount α1 by reducing the power supply amount α2 to the storage battery 4. .. When the surplus power decreases, the direct transmission amount α1 naturally decreases accordingly. As an example, the power supply amount α2 to the storage battery 4 is set to zero as long as it is permitted by the fluctuation stabilization control and the guarantee control. The control for maintaining the SoC is the same as in the case of the categories A and B, but as an example, the increase in the direct transmission amount α1 is carried out before the increase in the power supply amount α3.

第3利益額HP3および第4利益額HP4が第1利益額EP1よりも高い区分Dの場合、制御部30は、第4目標状態に近づくように蓄電池4および水素製造装置6を制御する。第4目標状態は、水素製造装置6への電力供給量α3が直送電量α1および蓄電池4への電力供給量α2よりも多く、且つ蓄電池4への電力供給量α2が直送電量α1よりも多い状態である。 When the third profit amount HP3 and the fourth profit amount HP4 are higher than the first profit amount EP1, the control unit 30 controls the storage battery 4 and the hydrogen production device 6 so as to approach the fourth target state. The fourth target state is a state in which the electric power supply amount α3 to the hydrogen production apparatus 6 is larger than the direct transmission amount α1 and the electric power supply amount α2 to the storage battery 4, and the electric power supply amount α2 to the storage battery 4 is larger than the direct transmission amount α1. Is.

つまり、区分Dでは、再生可能エネルギー発電装置2から水素製造装置6へ直に給電して水素製造することが最も収益性が高い。このため、水素製造装置6への電力供給量α3を直送電量α1および蓄電池4への電力供給量α2よりも多くすることで、収益性を高めることができる。また、区分Dでは、蓄電池4の充放電による電力損失をともなう水素製造で得られる利益(HP4)が、当該電力損失をともなわない売電で得られる利益(EP1)よりも高い。このため、直送電量α1よりも蓄電池4への電力供給量α2を多くすることで、収益性の向上につなげることができる。蓄電池4に充電された電力は、水素製造装置6の水素製造に必要な電力が再生可能エネルギー発電装置2の発電量Pvreでは足りないとき、水素製造装置6に供給される。 That is, in Category D, it is most profitable to directly supply power from the renewable energy power generation device 2 to the hydrogen production device 6 to produce hydrogen. Therefore, profitability can be improved by increasing the electric power supply amount α3 to the hydrogen production apparatus 6 to be larger than the direct transmission amount α1 and the electric power supply amount α2 to the storage battery 4. Further, in the category D, the profit (HP4) obtained by hydrogen production accompanied by the power loss due to the charging / discharging of the storage battery 4 is higher than the profit (EP1) obtained by selling the power without the power loss. Therefore, by increasing the power supply amount α2 to the storage battery 4 rather than the direct power transmission amount α1, it is possible to improve the profitability. The electric power charged in the storage battery 4 is supplied to the hydrogen production apparatus 6 when the electric power required for hydrogen production of the hydrogen production apparatus 6 is insufficient in the power generation amount P vre of the renewable energy power generation apparatus 2.

理想的には、再生可能エネルギー発電装置2の発電量Pvreのうち電力供給量α3が占める割合が100%に近づくように制御される。そして、再生可能エネルギー発電装置2の発電量Pvreが電力供給量α3maxを超えて余剰電力が生じたとき、この余剰電力が電力系統16よりも蓄電池4に優先的に供給される。ただし、上述した変動安定化制御および保証制御が優先される点は、区分A~Cにおける制御と同様である。 Ideally, the ratio of the power supply amount α3 to the power generation amount Pvre of the renewable energy power generation device 2 is controlled to approach 100%. Then, when the power generation amount P vre of the renewable energy power generation device 2 exceeds the power supply amount α3 max and surplus power is generated, this surplus power is preferentially supplied to the storage battery 4 over the power system 16. However, the point that the above-mentioned fluctuation stabilization control and guarantee control are prioritized is the same as the control in the categories A to C.

例えば制御部30は、発電量Pvre(t)が時間t-1の電力供給量α3よりも大きいとき、時間tの電力供給量α3を増加させる。発電量Pvre(t)が時間t-1の電力供給量α3よりも小さいとき、時間tの電力供給量α3を減少させる。また、発電量Pvre(t)が最大電力供給量α3maxを超えて余剰電力が生じた場合、制御部30は、蓄電池4への電力供給量α2を増加させる。これにより直送電量α1は減少する。余剰電力が減った場合は、それに応じて電力供給量α2を減少させる。一例として直送電量α1はゼロとする。SoCを維持する制御は、区分A~Cの場合と同様であるが、一例としては電力供給量α3の増加が直送電量α1の増加よりも先に実施される。 For example, when the power generation amount P vre (t) is larger than the power supply amount α3 at the time t-1, the control unit 30 increases the power supply amount α3 at the time t. When the power generation amount P vre (t) is smaller than the power supply amount α3 at the time t-1, the power supply amount α3 at the time t is reduced. Further, when the power generation amount P vre (t) exceeds the maximum power supply amount α3 max and surplus power is generated, the control unit 30 increases the power supply amount α2 to the storage battery 4. As a result, the direct transmission amount α1 is reduced. When the surplus power is reduced, the power supply amount α2 is reduced accordingly. As an example, the direct transmission amount α1 is set to zero. The control for maintaining the SoC is the same as in the case of the categories A to C, but as an example, the increase in the power supply amount α3 is performed before the increase in the direct transmission amount α1.

なお、第2利益額EP2と第3利益額HP3とが同額の場合(EP2=HP3)、制御部30は、区分Aの制御および区分Bの制御のいずれか一方を実行する。同様に、第1利益額EP1と第3利益額HP3とが同額の場合(EP1=HP3)、制御部30は、区分Bの制御および区分Cの制御のいずれか一方を実行する。なお、第1利益額EP1と第3利益額HP3とが同額の場合は、第2利益額EP2と第4利益額HP4も同額になる(EP2=HP4)。また、第1利益額EP1と第4利益額HP4とが同額の場合(EP1=HP4)、制御部30は、区分Cの制御および区分Dの制御のいずれか一方を実行する。 When the second profit amount EP2 and the third profit amount HP3 are the same amount (EP2 = HP3), the control unit 30 executes either the control of the category A or the control of the category B. Similarly, when the first profit amount EP1 and the third profit amount HP3 are the same amount (EP1 = HP3), the control unit 30 executes either the control of the category B or the control of the category C. If the first profit amount EP1 and the third profit amount HP3 are the same amount, the second profit amount EP2 and the fourth profit amount HP4 are also the same amount (EP2 = HP4). When the first profit amount EP1 and the fourth profit amount HP4 are the same amount (EP1 = HP4), the control unit 30 executes either the control of the category C or the control of the category D.

図6は、利益比較制御の一例を示すフローチャートである。このフローは、制御部30によって所定のタイミングで繰り返し実行される。また、以下に説明する例では、第2利益額EP2と第3利益額HP3とが同額の場合、制御部30は区分Aの制御を実行する。また、第1利益額EP1と第3利益額HP3とが同額の場合、制御部30は区分Bの制御を実行する。また、第1利益額EP1と第4利益額HP4とが同額の場合、制御部30は区分Cの制御を実行する。 FIG. 6 is a flowchart showing an example of profit comparison control. This flow is repeatedly executed by the control unit 30 at a predetermined timing. Further, in the example described below, when the second profit amount EP2 and the third profit amount HP3 are the same amount, the control unit 30 executes the control of the category A. Further, when the first profit amount EP1 and the third profit amount HP3 are the same amount, the control unit 30 executes the control of the category B. Further, when the first profit amount EP1 and the fourth profit amount HP4 are the same amount, the control unit 30 executes the control of the category C.

利益比較制御の一例において、まず制御部30は、第1利益額EP1~第4利益額HP4を記録部28から取得する(S301)。そして、制御部30は、第1利益額EP1が第3利益額HP3よりも高く、第2利益額EP2が第3利益額HP3以上であるか判断する(S302)。ステップS302の判断条件を満たす場合(S302のY)、制御部30は、第1目標状態に近づけるように蓄電池4および水素製造装置6を制御し(S303)、本ルーチンを終了する。 In an example of profit comparison control, first, the control unit 30 acquires the first profit amount EP1 to the fourth profit amount HP4 from the recording unit 28 (S301). Then, the control unit 30 determines whether the first profit amount EP1 is higher than the third profit amount HP3 and the second profit amount EP2 is equal to or higher than the third profit amount HP3 (S302). When the determination condition of step S302 is satisfied (Y in S302), the control unit 30 controls the storage battery 4 and the hydrogen production device 6 so as to approach the first target state (S303), and ends this routine.

ステップS302の判断条件を満たさない場合(S302のN)、制御部30は、第1利益額EP1が第3利益額HP3以上であり、第2利益額EP2が第3利益額HP3よりも低いか判断する(S304)。ステップS304の判断条件を満たす場合(S304のY)、制御部30は、第2目標状態に近づけるように蓄電池4および水素製造装置6を制御し(S305)、本ルーチンを終了する。 When the determination condition of step S302 is not satisfied (N in S302), the control unit 30 determines whether the first profit amount EP1 is equal to or higher than the third profit amount HP3 and the second profit amount EP2 is lower than the third profit amount HP3. Judgment (S304). When the determination condition of step S304 is satisfied (Y in S304), the control unit 30 controls the storage battery 4 and the hydrogen production device 6 so as to approach the second target state (S305), and ends this routine.

ステップS304の判断条件を満たさない場合(S304のN)、制御部30は、第3利益額HP3が第1利益額EP1よりも高く、第4利益額HP4が第1利益額EP1以下であるか判断する(S306)。ステップS306の判断条件を満たす場合(S306のY)、制御部30は、第3目標状態に近づけるように蓄電池4および水素製造装置6を制御し(S307)、本ルーチンを終了する。 When the determination condition of step S304 is not satisfied (N in S304), the control unit 30 determines whether the third profit amount HP3 is higher than the first profit amount EP1 and the fourth profit amount HP4 is equal to or less than the first profit amount EP1. Judgment (S306). When the determination condition of step S306 is satisfied (Y in S306), the control unit 30 controls the storage battery 4 and the hydrogen production device 6 so as to approach the third target state (S307), and ends this routine.

ステップS306の判断条件を満たさない場合(S306のN)、この場合は第3利益額HP3および第4利益額HP4が第1利益額EP1よりも高いことを意味するため、制御部30は、第4目標状態に近づけるように蓄電池4および水素製造装置6を制御し(S308)、本ルーチンを終了する。 When the determination condition of step S306 is not satisfied (N in S306), in this case, it means that the third profit amount HP3 and the fourth profit amount HP4 are higher than the first profit amount EP1, so that the control unit 30 is the first. 4 The storage battery 4 and the hydrogen production device 6 are controlled so as to approach the target state (S308), and this routine is terminated.

図7は、蓄電池4の容量と、水素製造装置6の最大消費電力と、月間の利益額との関係を示す図である。図7において、蓄電池4の容量(蓄電池4のサイズともいう)と水素製造装置6の最大消費電力(水素製造装置6のサイズともいう)との各組み合わせのマスに表示される数字は、その組み合わせで得られる利益額である。水素製造装置6の最大消費電力は、水素製造装置6が単位時間当たりに消費する最大電力量を意味し、水素製造量の規模を表す。 FIG. 7 is a diagram showing the relationship between the capacity of the storage battery 4, the maximum power consumption of the hydrogen production apparatus 6, and the monthly profit amount. In FIG. 7, the numbers displayed in the cells of each combination of the capacity of the storage battery 4 (also referred to as the size of the storage battery 4) and the maximum power consumption of the hydrogen production device 6 (also referred to as the size of the hydrogen production device 6) are the combinations. It is the amount of profit obtained in. The maximum power consumption of the hydrogen production apparatus 6 means the maximum amount of electric power consumed by the hydrogen production apparatus 6 per unit time, and represents the scale of the hydrogen production amount.

本発明者は、蓄電池4の容量と水素製造装置6の最大消費電力とを変数として、変動安定化制御、変動安定化の保証制御および利益比較制御を実行した際に得られる月間の利益額をシミュレーションにより算出した。その結果、図7に示すように、蓄電池4の容量と水素製造装置6の最大消費電力との組み合わせによって月間の利益額が変化することを突き止めた。また、所定の組み合わせ、具体的には蓄電池35kW×水素製造装置15kWにおいて、利益額が最大になることを突き止めた。また、図7において白抜きのマス(利益額のないマス)に対応する組み合わせでは、変動安定化制御の要件である許容変化率ΔPgridを満たすことができなかった。したがって、蓄電池4の容量および水素製造装置6の最大消費電力の組み合わせを少なくとも許容変化率ΔPgridに応じて定めることで、電力系統16への送電量Pgridの変動を許容変化率ΔPgrid以下に抑えながら、収益性の最大化を図ることが可能である。 The present inventor uses the capacity of the storage battery 4 and the maximum power consumption of the hydrogen production device 6 as variables, and determines the monthly profit amount obtained when the fluctuation stabilization control, the fluctuation stabilization guarantee control, and the profit comparison control are executed. Calculated by simulation. As a result, as shown in FIG. 7, it was found that the monthly profit amount changes depending on the combination of the capacity of the storage battery 4 and the maximum power consumption of the hydrogen production apparatus 6. In addition, it was found that the profit amount is maximized in a predetermined combination, specifically, a storage battery 35 kW × a hydrogen production device 15 kW. Further, in FIG. 7, the combination corresponding to the white square (the square having no profit amount) could not satisfy the permissible change rate ΔP grid , which is a requirement for fluctuation stabilization control. Therefore, by determining the combination of the capacity of the storage battery 4 and the maximum power consumption of the hydrogen production apparatus 6 at least according to the permissible change rate ΔP grid , the fluctuation of the transmission amount P grid to the power system 16 is set to be equal to or less than the permissible change rate ΔP grid . It is possible to maximize profitability while suppressing it.

以上説明したように、本実施の形態に係るエネルギー供給システム1は、再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統16に送電する再生可能エネルギー発電装置2と、再生可能エネルギー発電装置2が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統16に送電可能な蓄電池4と、蓄電池4の充放電を制御する制御部30とを備える。制御部30は、電力系統16への送電量Pgridの変化率が予め設定される許容変化率ΔPgridを超えないように蓄電池4を制御する。また、制御部30は、蓄電池4の必要SoC(State of Charge)を算出する。必要SoCは、再生可能エネルギー発電装置2の発電が停止して電力系統16への送電量Pgridが現状の量からゼロまで下がる際に、蓄電池4からの送電によって送電量Pgridの変化率を許容変化率ΔPgrid以下に維持するために必要なSoCである。そして、制御部30は、当該必要SoCが蓄電池4の現状のSoCを上回った場合に、送電量Pgridが減るように蓄電池4を制御する。 As described above, the energy supply system 1 according to the present embodiment includes a renewable energy power generation device 2 that transmits at least a part of the power generated by using the renewable energy to the power system 16, and a renewable energy. A storage battery 4 capable of charging the power generated by the power generation device 2 and transmitting at least a part of the charged power to the power system 16 and a control unit 30 for controlling charging / discharging of the storage battery 4 are provided. The control unit 30 controls the storage battery 4 so that the rate of change of the transmission amount P grid to the power system 16 does not exceed the preset allowable change rate ΔP grid . Further, the control unit 30 calculates the required SoC (State of Charge) of the storage battery 4. The required SoC is the rate of change of the power transmission amount P grid by the power transmission from the storage battery 4 when the power generation of the renewable energy power generation device 2 is stopped and the power transmission amount P grid to the power system 16 drops from the current amount to zero. This is the SoC required to maintain the permissible rate of change below ΔP grid . Then, the control unit 30 controls the storage battery 4 so that the power transmission amount P grid is reduced when the required SoC exceeds the current SoC of the storage battery 4.

このように、必要SoCが現状のSoCを超えないように送電量Pgridを調整することで、再生可能エネルギー発電装置2の発電が突然停止しても、蓄電池4からの放電のみによって送電量Pgridの変化率を許容変化率ΔPgrid以下に抑えることができる。よって、エネルギー供給システム1における送電量Pgridの変動をより確実に緩和することができる。また、送電量Pgridの変動安定化の保証は、送電量Pgridを維持しつつ、つまり必要SoCを変化させずに、現状のSoCを必要SoC以上に増加させることによっても実現し得る。しかしながら、この場合は蓄電池4の大容量化が必要になってエネルギー供給システム1のコスト増につながり得る。これに対し、送電量Pgridを減らして必要SoCを小さくすることで、蓄電池4の大容量化を避けながら、蓄電池4によって送電量Pgridの変動安定化を保証することができる。よって、本実施の形態によれば、エネルギー供給システム1の製造コストの増加を抑制することができる。 In this way, by adjusting the power transmission amount P grid so that the required SoC does not exceed the current SoC, even if the power generation of the renewable energy power generation device 2 suddenly stops, the power transmission amount P is only discharged from the storage battery 4. The rate of change of grid can be suppressed to be equal to or less than the allowable rate of change ΔP grid . Therefore, it is possible to more reliably mitigate the fluctuation of the power transmission amount P grid in the energy supply system 1. In addition, the guarantee of the fluctuation stabilization of the power transmission amount P grid can also be realized by increasing the current SoC to the required SoC or more while maintaining the power transmission amount P grid , that is, without changing the required SoC. However, in this case, it is necessary to increase the capacity of the storage battery 4, which may lead to an increase in the cost of the energy supply system 1. On the other hand, by reducing the power transmission amount P grid and reducing the required SoC, it is possible to guarantee the fluctuation stabilization of the power transmission amount P grid by the storage battery 4 while avoiding the increase in the capacity of the storage battery 4. Therefore, according to the present embodiment, it is possible to suppress an increase in the manufacturing cost of the energy supply system 1.

また、本実施の形態のエネルギー供給システム1は、再生可能エネルギー発電装置2が発電した電力および蓄電池4から放電される電力の少なくとも一方を用いて水素を製造する水素製造装置6を備える。そして制御部30は、送電量Pgridの変化率が許容変化率ΔPgridを超えないように蓄電池4および水素製造装置6を制御するとともに、必要SoCが現状のSoCを上回った場合に、送電量Pgridが減るように蓄電池4および水素製造装置6を制御する。 Further, the energy supply system 1 of the present embodiment includes a hydrogen production device 6 that produces hydrogen using at least one of the electric power generated by the renewable energy power generation device 2 and the electric power discharged from the storage battery 4. Then, the control unit 30 controls the storage battery 4 and the hydrogen production device 6 so that the rate of change of the transmission amount P grid does not exceed the allowable change rate ΔP grid , and when the required SoC exceeds the current SoC, the transmission amount The storage battery 4 and the hydrogen production device 6 are controlled so that the P grid is reduced.

このように、蓄電池4と水素製造装置6を組み合わせて送電量Pgridを調整することで、蓄電池4のみを用いる場合に比べて、より簡単に送電量Pgridの変動を緩和することができる。また、再生可能エネルギー発電装置2の規模に対して送電線14や地域間連系線の太さが不十分である場合等、再生可能エネルギー発電装置2の最大発電量と電力系統16へ送電可能な最大送電量Pgrid,maxとに大きな差があっても、それによって生じる余剰電力を水素製造装置6で消費することができる。このため、エネルギー供給システム1と電力系統16との組み合わせの自由度を高めることができる。また、エネルギー供給システム1からの送電量Pgridが最大送電量Pgrid,maxを超えないようにすることを、より確実あるいはより簡単に実現することができる。 In this way, by adjusting the power transmission amount P grid by combining the storage battery 4 and the hydrogen production device 6, it is possible to more easily mitigate the fluctuation of the power transmission amount P grid as compared with the case where only the storage battery 4 is used. Further, when the thickness of the transmission line 14 or the interregional interconnection line is insufficient for the scale of the renewable energy power generation device 2, the maximum power generation amount of the renewable energy power generation device 2 and the power system 16 can be transmitted. Even if there is a large difference between the maximum power transmission amount Pgrid and max , the surplus power generated by the difference can be consumed by the hydrogen production apparatus 6. Therefore, the degree of freedom in combining the energy supply system 1 and the power system 16 can be increased. Further, it is possible to more reliably or more easily realize that the power transmission amount P grid from the energy supply system 1 does not exceed the maximum power transmission amount P grid, max .

また、制御部30は、予め設定される電力価格および水素価格に基づいて、蓄電池4および水素製造装置6を制御する。このような制御により、電力系統16への送電と水素製造装置6における水素製造とでより高い利益が得られる方により多くの電力を供給することができ、エネルギー供給システム1の収益性を高めることができる。 Further, the control unit 30 controls the storage battery 4 and the hydrogen production device 6 based on the preset electric power price and hydrogen price. By such control, more electric power can be supplied to those who can obtain higher profits in power transmission to the electric power system 16 and hydrogen production in the hydrogen production apparatus 6, and the profitability of the energy supply system 1 can be enhanced. Can be done.

一例として、少なくとも電力価格に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4非経由で電力系統16に送電した場合の利益額を第1利益額EP1とする。また、少なくとも電力価格および蓄電池4の充放電にともなう電力損失に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4経由で電力系統16に送電した場合の利益額を第2利益額EP2とする。また、少なくとも水素価格および水素製造装置6の水素製造効率に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4非経由で水素製造装置6に供給して水素を製造した場合の利益額を第3利益額HP3とする。また、少なくとも水素価格、水素製造効率および電力損失に基づいて定まる、再生可能エネルギー発電装置2で発電した単位電力を蓄電池4経由で水素製造装置6に供給して水素を製造した場合の利益額を第4利益額HP4とする。第1利益額EP1は第2利益額EP2よりも高く、第3利益額HP3は第4利益額HP4よりも高い。 As an example, the first profit amount EP1 is the profit amount when the unit power generated by the renewable energy power generation device 2 is transmitted to the power system 16 without passing through the storage battery 4, which is determined at least based on the power price. In addition, the second profit is the amount of profit when the unit power generated by the renewable energy power generation device 2 is transmitted to the power system 16 via the storage battery 4, which is determined at least based on the power price and the power loss due to the charging / discharging of the storage battery 4. The amount is EP2. Further, when hydrogen is produced by supplying the unit power generated by the renewable energy power generation device 2 to the hydrogen production device 6 without passing through the storage battery 4, which is determined at least based on the hydrogen price and the hydrogen production efficiency of the hydrogen production device 6. Let the profit amount be the third profit amount HP3. In addition, the amount of profit when hydrogen is produced by supplying the unit power generated by the renewable energy power generation device 2 to the hydrogen production device 6 via the storage battery 4, which is determined at least based on the hydrogen price, hydrogen production efficiency, and power loss. The fourth profit amount is HP4. The first profit amount EP1 is higher than the second profit amount EP2, and the third profit amount HP3 is higher than the fourth profit amount HP4.

この場合において、制御部30は、第1利益額EP1および第2利益額EP2が第3利益額HP3よりも高い場合、蓄電池4非経由での再生可能エネルギー発電装置2から電力系統16への送電量Pgridである直送電量α1が蓄電池4および水素製造装置6への電力供給量α2,α3よりも多く、且つ蓄電池4への電力供給量α2が水素製造装置6への電力供給量α3よりも多い第1目標状態に近づくように蓄電池4および水素製造装置6を制御する。また、制御部30は、第1利益額EP1が第3利益額HP3よりも高く第2利益額EP2が第3利益額HP3よりも低い場合、直送電量α1が蓄電池4および水素製造装置6への電力供給量α2,α3よりも多く、且つ水素製造装置6への電力供給量α3が蓄電池4への電力供給量α2よりも多い第2目標状態に近づくように蓄電池4および水素製造装置6を制御する。 In this case, when the first profit amount EP1 and the second profit amount EP2 are higher than the third profit amount HP3, the control unit 30 transmits power from the renewable energy power generation device 2 to the power system 16 without the storage battery 4. The direct power transmission amount α1 which is the amount P grid is larger than the power supply amount α2 and α3 to the storage battery 4 and the hydrogen production device 6, and the power supply amount α2 to the storage battery 4 is larger than the power supply amount α3 to the hydrogen production device 6. The storage battery 4 and the hydrogen production device 6 are controlled so as to approach a large number of first target states. Further, in the control unit 30, when the first profit amount EP1 is higher than the third profit amount HP3 and the second profit amount EP2 is lower than the third profit amount HP3, the direct transmission amount α1 is sent to the storage battery 4 and the hydrogen production device 6. The storage battery 4 and the hydrogen production device 6 are controlled so as to approach the second target state in which the power supply amount α2 is larger than the power supply amounts α2 and α3 and the power supply amount α3 to the hydrogen production device 6 is larger than the power supply amount α2 to the storage battery 4. do.

また、制御部30は、第3利益額HP3が第1利益額EP1よりも高く第4利益額HP4が第1利益額EP1よりも低い場合、水素製造装置6への電力供給量α3が直送電量α1および蓄電池4への電力供給量α2よりも多く、且つ直送電量α1が蓄電池4への電力供給量α2よりも多い第3目標状態に近づくように蓄電池4および水素製造装置6を制御する。また、制御部30は、第3利益額HP3および第4利益額HP4が第1利益額EP1よりも高い場合、水素製造装置6への電力供給量α3が直送電量α1および蓄電池4への電力供給量α2よりも多く、且つ蓄電池4への電力供給量α2が直送電量α1よりも多い第4目標状態に近づくように蓄電池4および水素製造装置6を制御する。 Further, in the control unit 30, when the third profit amount HP3 is higher than the first profit amount EP1 and the fourth profit amount HP4 is lower than the first profit amount EP1, the power supply amount α3 to the hydrogen production apparatus 6 is the direct transmission amount. The storage battery 4 and the hydrogen production device 6 are controlled so as to approach a third target state in which the amount of power supplied to α1 and the storage battery 4 is larger than the amount of power supply α2 and the amount of direct transmission α1 is larger than the amount of power supplied to the storage battery 4 α2. Further, when the third profit amount HP3 and the fourth profit amount HP4 are higher than the first profit amount EP1, the control unit 30 supplies the electric power supply amount α3 to the hydrogen production apparatus 6 to the direct transmission amount α1 and the storage battery 4. The storage battery 4 and the hydrogen production apparatus 6 are controlled so as to approach the fourth target state in which the amount α2 is larger than the amount α2 and the power supply amount α2 to the storage battery 4 is larger than the direct transmission amount α1.

また、本実施の形態では、蓄電池4の容量および水素製造装置6の最大消費電力の組み合わせが許容変化率ΔPgridに応じて定められる。これにより、送電量Pgridの変動を抑制しながら、エネルギー供給システム1の収益性をより高めることができる。 Further, in the present embodiment, the combination of the capacity of the storage battery 4 and the maximum power consumption of the hydrogen production apparatus 6 is determined according to the allowable change rate ΔP grid . As a result, the profitability of the energy supply system 1 can be further enhanced while suppressing fluctuations in the power transmission amount P grid .

以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本発明の態様として有効である。 The embodiments of the present invention have been described in detail above. The above-described embodiment merely shows a specific example in carrying out the present invention. The contents of the embodiments do not limit the technical scope of the present invention, and many design changes such as changes, additions, and deletions of components are made without departing from the ideas of the invention defined in the claims. Is possible. The new embodiment with the design change has the effects of the combined embodiment and the modification. In the above-described embodiment, the contents that can be changed in design are emphasized by adding notations such as "in the present embodiment" and "in the present embodiment". Design changes are allowed even if there is no content. Any combination of the above components is also effective as an aspect of the present invention.

実施の形態は、以下に記載する項目によって特定されてもよい。
[項目1]
再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統(16)に送電する再生可能エネルギー発電装置(2)、および再生可能エネルギー発電装置(2)が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統(16)に送電可能な蓄電池(4)を備えるエネルギー供給システム(1)の制御装置(8)であって、
電力系統(16)への送電量(Pgrid)の変化率が予め設定される許容変化率(ΔPgrid)を超えないように蓄電池(4)を制御するとともに、再生可能エネルギー発電装置(2)の発電が停止して電力系統(16)への送電量(Pgrid)がゼロまで下がる際に蓄電池(4)からの送電によって変化率を許容変化率(ΔPgrid)以下に維持するために必要な蓄電池(4)のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが蓄電池(4)の現状のSoCを上回った場合に送電量(Pgrid)が減るように蓄電池(4)を制御する制御部(30)を備える、
エネルギー供給システム(1)の制御装置(8)。
[項目2]
再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統(16)に送電する再生可能エネルギー発電装置(2)、および再生可能エネルギー発電装置(2)が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統(16)に送電可能な蓄電池(4)を備えるエネルギー供給システム(1)の制御方法であって、
電力系統(16)への送電量(Pgrid)の変化率が予め設定される許容変化率(ΔPgrid)を超えないように蓄電池(4)を制御するとともに、再生可能エネルギー発電装置(2)の発電が停止して電力系統(16)への送電量(Pgrid)がゼロまで下がる際に蓄電池(4)からの送電によって変化率を許容変化率(ΔPgrid)以下に維持するために必要な蓄電池(4)のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが蓄電池(4)の現状のSoCを上回った場合に送電量(Pgrid)が減るように蓄電池(4)を制御することを含む、
エネルギー供給システム(1)の制御方法。
The embodiments may be specified by the items described below.
[Item 1]
It is possible to charge the power generated by the renewable energy power generation device (2) and the renewable energy power generation device (2), which transmit at least a part of the power generated by using the renewable energy to the power system (16). At the same time, it is a control device (8) of an energy supply system (1) provided with a storage battery (4) capable of transmitting at least a part of the charged power to the power system (16).
The storage battery (4) is controlled so that the rate of change of the amount of power transmitted to the power system (16) does not exceed the preset allowable rate of change (ΔP grid ) , and the renewable energy power generation device (2). Necessary to maintain the rate of change below the permissible rate of change (ΔP grid ) by power transmission from the storage battery (4) when the power generation of the power system (16) is stopped and the amount of power transmitted to the power system (16) drops to zero. The required SoC, which is the SoC (State of Charge) of the storage battery (4), is calculated, and the power transmission amount ( Pgrid ) is reduced when the required SoC exceeds the current SoC of the storage battery (4). ) Is provided with a control unit (30).
The control device (8) of the energy supply system (1).
[Item 2]
It is possible to charge the power generated by the renewable energy power generation device (2) and the renewable energy power generation device (2), which transmit at least a part of the power generated by using the renewable energy to the power system (16). At the same time, it is a control method of an energy supply system (1) including a storage battery (4) capable of transmitting at least a part of the charged power to the power system (16).
The storage battery (4) is controlled so that the rate of change of the amount of power transmitted to the power system (16) does not exceed the preset allowable rate of change (ΔP grid ) , and the renewable energy power generation device (2). Necessary to maintain the rate of change below the permissible rate of change (ΔP grid ) by power transmission from the storage battery (4) when the power generation of the power system (16) is stopped and the amount of power transmitted to the power system (16) drops to zero. The required SoC, which is the SoC (State of Charge) of the storage battery (4), is calculated, and the power transmission amount ( Pgrid ) is reduced when the required SoC exceeds the current SoC of the storage battery (4). ), Including controlling
Control method of energy supply system (1).

1 エネルギー供給システム、 2 再生可能エネルギー発電装置、 4 蓄電池、 6 水素製造装置、 8 制御装置、 16 電力系統、 28 記録部、 30 制御部。 1 Energy supply system, 2 Renewable energy power generation device, 4 Storage battery, 6 Hydrogen production device, 8 Control device, 16 Power system, 28 Recording unit, 30 Control unit.

Claims (7)

再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統に送電する再生可能エネルギー発電装置と、
前記再生可能エネルギー発電装置が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統に送電可能な蓄電池と、
電力系統への送電量の変化率が予め設定される許容変化率を超えないように前記蓄電池を制御するとともに、前記再生可能エネルギー発電装置の発電が停止して電力系統への送電量がゼロまで下がる際に前記蓄電池からの送電によって前記変化率を前記許容変化率以下に維持するために必要な前記蓄電池のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが前記蓄電池の現状のSoCを上回った場合に前記送電量が減るように前記蓄電池を制御する制御部と、を備える、
エネルギー供給システム。
Renewable energy power generators that transmit at least part of the power generated using renewable energy to the power grid,
A storage battery capable of charging the electric power generated by the renewable energy power generation device and transmitting at least a part of the charged electric power to the electric power system.
The storage battery is controlled so that the rate of change in the amount of power transmitted to the power system does not exceed a preset allowable change rate, and the power generation of the renewable energy power generation device is stopped until the amount of power transmitted to the power system is zero. The required SoC, which is the SoC (State of Charge) of the storage battery required to maintain the rate of change below the permissible rate of change by power transmission from the storage battery when the battery is lowered, is calculated, and the required SoC is the current state of the storage battery. A control unit that controls the storage battery so that the amount of power transmission is reduced when the amount exceeds the SoC of the above.
Energy supply system.
前記再生可能エネルギー発電装置が発電した電力および前記蓄電池から放電される電力の少なくとも一方を用いて水素を製造する水素製造装置を備え、
前記制御部は、前記送電量の変化率が前記許容変化率を超えないように前記蓄電池および前記水素製造装置を制御するとともに、前記必要SoCが現状のSoCを上回った場合に前記送電量が減るように前記蓄電池および前記水素製造装置を制御する、
請求項1に記載のエネルギー供給システム。
A hydrogen production device for producing hydrogen using at least one of the electric power generated by the renewable energy power generation device and the electric power discharged from the storage battery is provided.
The control unit controls the storage battery and the hydrogen production device so that the rate of change of the power transmission amount does not exceed the allowable change rate, and reduces the power transmission amount when the required SoC exceeds the current SoC. To control the storage battery and the hydrogen production device,
The energy supply system according to claim 1.
前記制御部は、予め設定される電力価格および水素価格に基づいて、前記蓄電池および前記水素製造装置を制御する、
請求項2に記載のエネルギー供給システム。
The control unit controls the storage battery and the hydrogen production device based on the preset electric power price and hydrogen price.
The energy supply system according to claim 2.
少なくとも前記電力価格に基づいて定まる、前記再生可能エネルギー発電装置で発電した単位電力を蓄電池非経由で電力系統に送電した場合の利益額を第1利益額とし、
少なくとも前記電力価格および前記蓄電池の充放電にともなう電力損失に基づいて定まる、前記再生可能エネルギー発電装置で発電した単位電力を蓄電池経由で電力系統に送電した場合の利益額を第2利益額とし、
少なくとも前記水素価格および前記水素製造装置の水素製造効率に基づいて定まる、前記再生可能エネルギー発電装置で発電した単位電力を蓄電池非経由で前記水素製造装置に供給して水素を製造した場合の利益額を第3利益額とし、
少なくとも前記水素価格、前記水素製造効率および前記電力損失に基づいて定まる、前記再生可能エネルギー発電装置で発電した単位電力を蓄電池経由で前記水素製造装置に供給して水素を製造した場合の利益額を第4利益額とするとき、
前記第1利益額は前記第2利益額よりも高く、前記第3利益額は前記第4利益額よりも高く、
前記制御部は、
前記第1利益額および前記第2利益額が前記第3利益額よりも高い場合、蓄電池非経由での前記再生可能エネルギー発電装置から電力系統への送電量である直送電量が前記蓄電池および前記水素製造装置への電力供給量よりも多く、且つ前記蓄電池への電力供給量が前記水素製造装置への電力供給量よりも多い第1目標状態に近づくように前記蓄電池および前記水素製造装置を制御し、
前記第1利益額が前記第3利益額よりも高く前記第2利益額が前記第3利益額よりも低い場合、前記直送電量が前記蓄電池および前記水素製造装置への電力供給量よりも多く、且つ前記水素製造装置への電力供給量が前記蓄電池への電力供給量よりも多い第2目標状態に近づくように前記蓄電池および前記水素製造装置を制御し、
前記第3利益額が前記第1利益額よりも高く前記第4利益額が前記第1利益額よりも低い場合、前記水素製造装置への電力供給量が前記直送電量および前記蓄電池への電力供給量よりも多く、且つ前記直送電量が前記蓄電池への電力供給量よりも多い第3目標状態に近づくように前記蓄電池および前記水素製造装置を制御し、
前記第3利益額および前記第4利益額が前記第1利益額よりも高い場合、前記水素製造装置への電力供給量が前記直送電量および前記蓄電池への電力供給量よりも多く、且つ前記蓄電池への電力供給量が前記直送電量よりも多い第4目標状態に近づくように前記蓄電池および前記水素製造装置を制御する、
請求項3に記載のエネルギー供給システム。
The first profit amount is the profit amount when the unit power generated by the renewable energy power generation device is transmitted to the power system without the storage battery, which is determined based on at least the power price.
The second profit amount is the profit amount when the unit power generated by the renewable energy power generation device is transmitted to the power system via the storage battery, which is determined based on at least the power price and the power loss due to the charging / discharging of the storage battery.
The amount of profit when hydrogen is produced by supplying the unit power generated by the renewable energy power generation device to the hydrogen production device without using a storage battery, which is determined based on at least the hydrogen price and the hydrogen production efficiency of the hydrogen production device. Is the third profit amount
At least the amount of profit when hydrogen is produced by supplying the unit power generated by the renewable energy power generation device to the hydrogen production device via a storage battery, which is determined based on the hydrogen price, the hydrogen production efficiency and the power loss. When making the fourth profit amount,
The first profit amount is higher than the second profit amount, the third profit amount is higher than the fourth profit amount, and so on.
The control unit
When the first profit amount and the second profit amount are higher than the third profit amount, the direct transmission amount which is the transmission amount from the renewable energy power generation device to the electric power system without the storage battery is the storage battery and the hydrogen. The storage battery and the hydrogen production device are controlled so as to approach the first target state in which the power supply amount to the storage battery is larger than the power supply amount to the production device and the power supply amount to the hydrogen production device is larger than the power supply amount to the hydrogen production device. ,
When the first profit amount is higher than the third profit amount and the second profit amount is lower than the third profit amount, the direct transmission amount is larger than the power supply amount to the storage battery and the hydrogen production apparatus. Moreover, the storage battery and the hydrogen production device are controlled so that the amount of power supplied to the hydrogen production device approaches the second target state in which the amount of power supply to the storage battery is larger than the amount of power supply to the storage battery.
When the third profit amount is higher than the first profit amount and the fourth profit amount is lower than the first profit amount, the power supply amount to the hydrogen production apparatus is the direct transmission amount and the power supply to the storage battery. The storage battery and the hydrogen production apparatus are controlled so as to approach a third target state in which the amount of direct power transmission is greater than the amount and the amount of direct power transmission is greater than the amount of power supplied to the storage battery.
When the third profit amount and the fourth profit amount are higher than the first profit amount, the amount of power supplied to the hydrogen production apparatus is larger than the amount of direct transmission and the amount of power supplied to the storage battery, and the storage battery The storage battery and the hydrogen production apparatus are controlled so that the amount of power supplied to the battery approaches the fourth target state in which the amount of power supplied to the direct power is larger than the amount of direct power transmission.
The energy supply system according to claim 3.
前記蓄電池の容量および前記水素製造装置の最大消費電力の組み合わせは、前記許容変化率に応じて定められる、
請求項2乃至4のいずれか1項に記載のエネルギー供給システム。
The combination of the capacity of the storage battery and the maximum power consumption of the hydrogen production apparatus is determined according to the permissible rate of change.
The energy supply system according to any one of claims 2 to 4.
再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統に送電する再生可能エネルギー発電装置、および前記再生可能エネルギー発電装置が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統に送電可能な蓄電池を備えるエネルギー供給システムの制御装置であって、
電力系統への送電量の変化率が予め設定される許容変化率を超えないように前記蓄電池を制御するとともに、前記再生可能エネルギー発電装置の発電が停止して電力系統への送電量がゼロまで下がる際に前記蓄電池からの送電によって前記変化率を前記許容変化率以下に維持するために必要な前記蓄電池のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが前記蓄電池の現状のSoCを上回った場合に前記送電量が減るように前記蓄電池を制御する制御部を備える、
エネルギー供給システムの制御装置。
A renewable energy power generation device that transmits at least a part of the power generated by using renewable energy to the power system, and at least one of the charged power that can be charged with the power generated by the renewable energy power generation device. It is a control device for an energy supply system equipped with a storage battery that can transmit power to the power system.
The storage battery is controlled so that the rate of change in the amount of power transmitted to the power system does not exceed a preset allowable change rate, and the power generation of the renewable energy power generation device is stopped until the amount of power transmitted to the power system is zero. The required SoC, which is the SoC (State of Charge) of the storage battery required to maintain the rate of change below the permissible rate of change by power transmission from the storage battery when the battery is lowered, is calculated, and the required SoC is the current state of the storage battery. A control unit that controls the storage battery so that the amount of power transmitted is reduced when the amount of power exceeds the above SoC.
Control device for energy supply system.
再生可能エネルギーを利用して発電した電力の少なくとも一部を電力系統に送電する再生可能エネルギー発電装置、および前記再生可能エネルギー発電装置が発電した電力を充電可能であるとともに、充電した電力の少なくとも一部を電力系統に送電可能な蓄電池を備えるエネルギー供給システムの制御方法であって、
電力系統への送電量の変化率が予め設定される許容変化率を超えないように前記蓄電池を制御するとともに、前記再生可能エネルギー発電装置の発電が停止して電力系統への送電量がゼロまで下がる際に前記蓄電池からの送電によって前記変化率を前記許容変化率以下に維持するために必要な前記蓄電池のSoC(State of Charge)である必要SoCを算出し、当該必要SoCが前記蓄電池の現状のSoCを上回った場合に前記送電量が減るように前記蓄電池を制御することを含む、
エネルギー供給システムの制御方法。
A renewable energy power generation device that transmits at least a part of the power generated by using renewable energy to the power system, and at least one of the charged power that can be charged with the power generated by the renewable energy power generation device. It is a control method of an energy supply system equipped with a storage battery that can transmit power to the power system.
The storage battery is controlled so that the rate of change in the amount of power transmitted to the power system does not exceed a preset allowable change rate, and the power generation of the renewable energy power generation device is stopped until the amount of power transmitted to the power system is zero. The required SoC, which is the SoC (State of Charge) of the storage battery required to maintain the rate of change below the permissible rate of change by power transmission from the storage battery when the battery is lowered, is calculated, and the required SoC is the current state of the storage battery. Including controlling the storage battery so that the transmission amount is reduced when the SoC is exceeded.
How to control the energy supply system.
JP2020141662A 2020-08-25 2020-08-25 ENERGY SUPPLY SYSTEM, CONTROL DEVICE FOR ENERGY SUPPLY SYSTEM, AND CONTROL METHOD FOR ENERGY SUPPLY SYSTEM Active JP7481706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020141662A JP7481706B2 (en) 2020-08-25 2020-08-25 ENERGY SUPPLY SYSTEM, CONTROL DEVICE FOR ENERGY SUPPLY SYSTEM, AND CONTROL METHOD FOR ENERGY SUPPLY SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020141662A JP7481706B2 (en) 2020-08-25 2020-08-25 ENERGY SUPPLY SYSTEM, CONTROL DEVICE FOR ENERGY SUPPLY SYSTEM, AND CONTROL METHOD FOR ENERGY SUPPLY SYSTEM

Publications (2)

Publication Number Publication Date
JP2022037494A true JP2022037494A (en) 2022-03-09
JP7481706B2 JP7481706B2 (en) 2024-05-13

Family

ID=80494663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141662A Active JP7481706B2 (en) 2020-08-25 2020-08-25 ENERGY SUPPLY SYSTEM, CONTROL DEVICE FOR ENERGY SUPPLY SYSTEM, AND CONTROL METHOD FOR ENERGY SUPPLY SYSTEM

Country Status (1)

Country Link
JP (1) JP7481706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042782A1 (en) * 2022-08-24 2024-02-29 株式会社Ihi Power control device, hydrogen production system, and hydrogen production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100198420A1 (en) 2009-02-03 2010-08-05 Optisolar, Inc. Dynamic management of power production in a power system subject to weather-related factors
JP6397688B2 (en) 2014-08-07 2018-09-26 株式会社東芝 Storage battery control device and storage battery control method
JP6055968B2 (en) 2015-02-20 2017-01-11 エクセルギー・パワー・システムズ株式会社 Power system
WO2017013751A1 (en) 2015-07-21 2017-01-26 株式会社 東芝 Power supply system, control device, and power supply method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042782A1 (en) * 2022-08-24 2024-02-29 株式会社Ihi Power control device, hydrogen production system, and hydrogen production method

Also Published As

Publication number Publication date
JP7481706B2 (en) 2024-05-13

Similar Documents

Publication Publication Date Title
Moradi et al. Operational strategy optimization in an optimal sized smart microgrid
US9184626B2 (en) Photovoltaic system and power supply system
JP2016111871A (en) Power supply system
US10693304B2 (en) Energy storage system with improved operating time and operation method thereof
CN111555366B (en) Multi-time scale-based microgrid three-layer energy optimization management method
CN109245134B (en) Hybrid energy storage scheduling method and system based on virtual fuzzy adaptive control algorithm
CN111327064A (en) Micro-grid frequency control method considering load voltage static characteristics
CN111244946B (en) Method and device for regulating and controlling power generation and utilization resources of self-contained power plant
CN113572180B (en) Energy storage system power regulation and control method based on lightning stroke probability
JP7481706B2 (en) ENERGY SUPPLY SYSTEM, CONTROL DEVICE FOR ENERGY SUPPLY SYSTEM, AND CONTROL METHOD FOR ENERGY SUPPLY SYSTEM
JP2017225273A (en) Power supply system and control method for the same
Elkholy et al. A resilient and intelligent multi-objective energy management for a hydrogen-battery hybrid energy storage system based on MFO technique
JP6705319B2 (en) Integrated control device, integrated control system, integrated control method, and integrated control program
US10038322B2 (en) Systems and methods for controlling performance parameters of an energy storage device
WO2022054442A1 (en) Power regulation method and power regulation device
CN114188980B (en) Transparent micro-grid group economic operation domain generation method considering energy storage device
JPWO2010038666A1 (en) Control method of interconnection system
CN114944657A (en) MILP model-based hydrogen-electricity coupling system operation mode optimization method
JP2022077667A (en) Hydrogen manufacturing system
WO2018078812A1 (en) Voltage adjustment system and method for controlling same
WO2022054441A1 (en) Power adjustment method and power adjustment device
KR20160082861A (en) System and Method for Controlling Ramp Rate of New Renewable Generator Using Plurality of Energy Storage System
WO2023042590A1 (en) Information processing device, hydrogen producing system, power supplying system, operation plan creation method, and computer program
JP7416041B2 (en) Operation plan creation device, operation plan creation method, and operation plan creation program
CN117077368B (en) Comprehensive energy system crowd target planning method considering industrial comprehensive demand response

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240418

R150 Certificate of patent or registration of utility model

Ref document number: 7481706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150