JP2022036721A - Creation method for ultrasonic tomographic image - Google Patents

Creation method for ultrasonic tomographic image Download PDF

Info

Publication number
JP2022036721A
JP2022036721A JP2020141075A JP2020141075A JP2022036721A JP 2022036721 A JP2022036721 A JP 2022036721A JP 2020141075 A JP2020141075 A JP 2020141075A JP 2020141075 A JP2020141075 A JP 2020141075A JP 2022036721 A JP2022036721 A JP 2022036721A
Authority
JP
Japan
Prior art keywords
signal
scattering
reflection
amplitude
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020141075A
Other languages
Japanese (ja)
Inventor
元孝 荒川
Mototaka Arakawa
浩 金井
Hiroshi Kanai
翔平 森
Shohei Mori
正憲 山内
Masanori Yamauchi
詠子 大西
Eiko Onishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2020141075A priority Critical patent/JP2022036721A/en
Publication of JP2022036721A publication Critical patent/JP2022036721A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

To provide an ultrasonic image creation method capable of emphasizing visualization of the bone by paying attention to difference between reflection characteristic in the bone and scattering characteristic in muscular tissue.SOLUTION: A reflection characteristic group {RR (θ; z, φ)} from a plane and a scattering characteristic group {RS (θ; z)} from a point are measured in advance. Next, a signal P (x, z) is measured with respect to an object. Amplitude characteristic R (θ; P (x, z)) is calculated with respect to a signal P (x, z). The obtained amplitude characteristic R (θ; P (x, z)) is compared with the reflection characteristic group {RR(θ; z, φ)} from the plane measured in advance and the scattering characteristic group {RS (θ; z)} from the point, so as to determine which of reflection or scattering, the signal is derived from, and an angle φ is identified in the case of reflection. An obtained result is displayed overlapping an ultrasonic tomographic image (a B mode image).SELECTED DRAWING: Figure 7

Description

本発明は、超音波診断装置における超音波断層画像の作成方法に関し、生体内の骨、筋組織、臓器が混在する状況の中で、骨を強調した超音波画像の作成方法に関する。 The present invention relates to a method for creating an ultrasonic tomographic image in an ultrasonic diagnostic apparatus, and to a method for creating an ultrasonic image in which bone is emphasized in a situation where bones, muscle tissues, and organs in a living body are mixed.

硬膜外麻酔は臨床で広く用いられている局所麻酔法の1つである。麻酔針を患者の硬膜外腔へ注射し、持続的に麻酔薬を注入するものである。この麻酔法は、全身麻酔と比較して次の3つの利点がある。1つ目は、下肢、下腹部の手術では、術中のストレス反応を抑制し、免疫能を保持できることである。2つ目は、術後も麻酔薬を持続的に投与することで手術後の痛みを軽減できることである。3つ目は、術後の合併症の発生頻度を低減できることである。したがって、硬膜外麻酔は、術中、術後において患者の負担軽減に大きく貢献できる。 Epidural anesthesia is one of the widely used local anesthesia methods in clinical practice. An anesthetic needle is injected into the epidural space of the patient to continuously inject the anesthetic. This anesthesia method has the following three advantages over general anesthesia. The first is that in surgery on the lower limbs and lower abdomen, the stress response during the operation can be suppressed and the immune system can be maintained. The second is that postoperative pain can be alleviated by continuously administering an anesthetic even after surgery. Third, the frequency of postoperative complications can be reduced. Therefore, epidural anesthesia can greatly contribute to reducing the burden on patients during and after surgery.

硬膜外麻酔を行うためには、麻酔針を穿刺する硬膜外腔の位置を特定し、針を正確に穿刺しなければならない。背中から脊椎の間隙にかけて針を通す必要があるが、硬膜外腔における脊椎間隙は非常に狭くなっており、間隙の特定は医師の経験と触診に依存する。特に、胸椎は間隙が狭く、その位置の特定が困難である。穿刺の補助として医用超音波による画像が用いられているが、一般的な超音波断層像では、穿刺位置を正確に特定できるほどの描出能がない。その原因として超音波が骨表面で鏡面反射すること、および浅部の筋組織の影響が挙げられる。すなわち、この麻酔法には、脊椎の表面構造が複雑なため麻酔針の穿刺位置の特定が難しいという課題がある。 In order to perform epidural anesthesia, the position of the epidural space where the anesthesia needle is punctured must be identified and the needle must be punctured accurately. Needles must be passed from the back to the spinal gap, but the spinal gap in the epidural space is very narrow and the identification of the gap depends on the experience and palpation of the physician. In particular, the thoracic spine has a narrow gap, making it difficult to identify its position. Images by medical ultrasound are used as an aid to puncture, but general ultrasonic tomographic images do not have sufficient depiction ability to accurately identify the puncture position. The causes include specular reflection of ultrasonic waves on the bone surface and the influence of shallow muscle tissue. That is, this anesthesia method has a problem that it is difficult to specify the puncture position of the anesthesia needle because the surface structure of the spine is complicated.

関連する技術として、下記の特許文献1では、超音波の送波方向に交差する面内で生体を相対的に回転させることにより、骨梁方向を判定している。この場合、生体を回転させるため、硬膜外麻酔の手術中にリアルタイムで用いることはできない。 As a related technique, in Patent Document 1 below, the trabecula direction is determined by relatively rotating the living body in a plane intersecting the wave transmission direction of ultrasonic waves. In this case, since the living body is rotated, it cannot be used in real time during the operation of epidural anesthesia.

特許文献2では、複数の周波数成分を用いて画像化することにより、組織と骨の内部を別々に強調した画像を取得している。しかしながら、骨表面における骨の形状を求める際に、骨表面における鏡面反射を考慮しておらず、複雑な構造である胸椎表面の形状を正確に描出することはできない。 In Patent Document 2, an image in which the inside of a tissue and a bone are emphasized separately is obtained by imaging using a plurality of frequency components. However, when determining the shape of the bone on the bone surface, the specular reflection on the bone surface is not taken into consideration, and the shape of the thoracic spine surface, which is a complicated structure, cannot be accurately depicted.

特許文献3には、超音波を用いて骨の形状を特定する方法が開示されている。しかしながら、骨の形状に合わせて複数回超音波を送受信する必要があり、この場合も硬膜外麻酔の手術中にリアルタイムで用いることはできない。 Patent Document 3 discloses a method for identifying the shape of a bone using ultrasonic waves. However, it is necessary to send and receive ultrasonic waves multiple times according to the shape of the bone, and even in this case, it cannot be used in real time during the operation of epidural anesthesia.

特許第3888744号Patent No. 3888744 特許第4713112号Patent No. 4713112 特許第6231547号Patent No. 6231547

W. Kroebel, K.-H. Mahrt, “Recent results of absolute sound velocity measurements in pure water and sea water at atmospheric pressure,” Acustica, Vol. 35, pp. 154-164 (1976).W. Kroebel, K.-H. Mahrt, “Recent results of absolute sound velocity measurements in pure water and sea water at atmospheric pressure,” Acustica, Vol. 35, pp. 154-164 (1976). 橋本,森,荒川,大西,山内,金井,“超音波によるヒト胸椎描出を目指した面構造の反射特性と点構造の散乱特性の差異に関する検討,”2020年日本音響学会春季研究発表会講演論文集, pp. 71-74 (2020).Hashimoto, Mori, Arakawa, Onishi, Yamauchi, Kanai, "Study on Differences in Reflective Characteristics of Surface Structures and Scattering Characteristics of Point Structures Aiming at Visualization of Human Thoracic Vertebrae by Ultrasound," Proceedings of the 2020 Acoustical Society of Japan Spring Meeting Shu, pp. 71-74 (2020).

本発明は、骨における反射特性と筋組織における散乱特性の違いに注目し、骨の描出を強調することが可能な超音波画像作成方法を提供することを目的とする。 It is an object of the present invention to pay attention to the difference between the reflex property in bone and the scattering property in muscle tissue, and to provide an ultrasonic image creating method capable of emphasizing the depiction of bone.

本発明による超音波画像を作成する方法は、
(A)撮像対象物に対し照射した超音波の反射又は散乱に由来する信号P(x, z)を計測する工程と、
(B)前記信号P(x, z)に基づき振幅特性R(θ; P(x, z))を算出する工程と、
(C)振幅特性R(θ; P(x, z))を、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }と比較して、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定する工程と、
(D)前記角度φに基づき、撮像対象物のBモード超音波断層像を補正する工程と、
を含む超音波画像の作成方法である。
The method for creating an ultrasonic image according to the present invention is
(A) The process of measuring the signal P (x, z) derived from the reflection or scattering of ultrasonic waves applied to the object to be imaged, and
(B) The step of calculating the amplitude characteristic R (θ; P (x, z)) based on the signal P (x, z), and
(C) Reflection characteristic group {R R (θ; z, φ) obtained by measuring the reflection signal of the ultrasonic waves irradiating the surface reflector acquired in advance with the amplitude characteristic R (θ; P (x, z)). )} And the scattering characteristic group { RS (θ; z)} obtained by measuring the scattering signal of the ultrasonic waves applied to the point scatterer, the signal P (x, z) is a reflected signal or scattering. The step of identifying whether it is one of the signals, and when it is identified as a reflected signal, the step of identifying the angle φ of the image pickup target, and
(D) A step of correcting a B-mode ultrasonic tomographic image of an imaged object based on the angle φ, and
It is a method of creating an ultrasonic image including.

本発明による超音波画像を作成する方法は、上記の方法であって、前記補正が、前記振幅特性R(θ; P(x, z))において、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }との比較において、正規化相互相関を用いて、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定することを特徴とする、方法である。 The method for creating an ultrasonic image according to the present invention is the above method, and the correction is an ultrasonic wave applied to a surface reflector previously acquired in the amplitude characteristic R (θ; P (x, z)). Reflection characteristic group { R R (θ; z, φ)} obtained by measuring the reflection signal of In comparison with z)}, normalized intercorrelation is used to identify whether the signal P (x, z) is either a reflected signal or a scattered signal, and if identified as a reflected signal, said. It is a method characterized by identifying the angle φ of an object to be imaged.

本発明による超音波画像を作成する方法は、上記の方法であって、前記補正が、前記振幅特性R(θ; P(x, z))において、振幅が最大となる角度θ=θMAXを含む振幅が高い群{θM}での平均振幅と、θMAX から最も離れた角度θを含む、振幅が低い群{θm}での平均振幅の比を求め、前記比を前記Bモード超音波断層像における各画素の画素値に乗じることを特徴とする、方法である。 The method for creating an ultrasonic image according to the present invention is the above method, in which the correction sets an angle θ = θ MAX at which the amplitude is maximum in the amplitude characteristic R (θ; P (x, z)). The ratio of the average amplitude in the group {θ M } with the high amplitude and the average amplitude in the group {θ m } with the low amplitude including the angle θ farthest from θ MAX was obtained, and the above ratio was exceeded in the B mode. It is a method characterized by multiplying the pixel value of each pixel in a sound wave tomographic image.

本発明の超音波画像を作成するシステムは、
(A)撮像対象物に対し照射した超音波の反射又は散乱に由来する信号P(x, z)を計測する計測部と、
(B)前記信号P(x, z)に基づき振幅特性R(θ; P(x, z))を算出する振幅特性取得部と、
(C)振幅特性R(θ; P(x, z))を、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }と比較して、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定する解析部と、
(D)前記角度φに基づき、撮像対象物のBモード超音波断層像を補正する画像処理部と、
を備えるシステムである。
The system for creating an ultrasonic image of the present invention is
(A) A measuring unit that measures the signal P (x, z) derived from the reflection or scattering of ultrasonic waves applied to the object to be imaged, and
(B) An amplitude characteristic acquisition unit that calculates the amplitude characteristic R (θ; P (x, z)) based on the signal P (x, z), and
(C) Reflection characteristic group {R R (θ; z, φ) obtained by measuring the reflection signal of the ultrasonic waves irradiating the surface reflector acquired in advance with the amplitude characteristic R (θ; P (x, z)). )} And the scattering characteristic group { RS (θ; z)} obtained by measuring the scattering signal of the ultrasonic waves applied to the point scatterer, the signal P (x, z) is a reflected signal or scattering. An analysis unit that identifies whether it is one of the signals, and if it is identified as a reflected signal, an analysis unit that identifies the angle φ of the image pickup target.
(D) An image processing unit that corrects a B-mode ultrasonic tomographic image of the object to be imaged based on the angle φ, and an image processing unit.
It is a system equipped with.

本発明の超音波画像を作成するプログラムは、
(A)撮像対象物に対し照射した超音波の反射又は散乱に由来する信号P(x, z)を入力するステップと、
(B)前記信号P(x, z)に基づき振幅特性R(θ; P(x, z))を算出するステップと、
(C)振幅特性R(θ; P(x, z))を、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }と比較して、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定するステップと、
(D)前記角度φに基づき、撮像対象物のBモード超音波断層像を補正するステップと、
をコンピュータに実行させるためのコンピュータプログラムである。
The program for creating an ultrasonic image of the present invention is
(A) The step of inputting the signal P (x, z) derived from the reflection or scattering of the ultrasonic wave applied to the object to be imaged, and
(B) A step of calculating the amplitude characteristic R (θ; P (x, z)) based on the signal P (x, z), and
(C) Reflection characteristic group {R R (θ; z, φ) obtained by measuring the reflection signal of the ultrasonic waves irradiating the surface reflector acquired in advance with the amplitude characteristic R (θ; P (x, z)). )} And the scattering characteristic group { RS (θ; z)} obtained by measuring the scattering signal of the ultrasonic waves applied to the point scatterer, the signal P (x, z) is a reflected signal or scattering. The step of identifying whether it is one of the signals, and if it is identified as a reflected signal, the step of identifying the angle φ of the image pickup object,
(D) A step of correcting a B-mode ultrasonic tomographic image of an imaged object based on the angle φ, and
Is a computer program for making a computer execute.

以上のように、本発明によれば、骨、筋組織、臓器が混在する生体に対して、骨を強調した超音波画像を取得することが可能であり、硬膜外麻酔を行う際の麻酔針の穿刺位置特定の補助となる。 As described above, according to the present invention, it is possible to acquire an ultrasonic image emphasizing bone for a living body in which bone, muscle tissue, and organ are mixed, and anesthesia when performing epidural anesthesia. It helps to identify the puncture position of the needle.

水槽実験の模式図であり、Aは反射特性を計測する場合の模式図、Bは散乱特性を計測する場合の模式図。It is a schematic diagram of a water tank experiment, A is a schematic diagram when measuring reflection characteristics, and B is a schematic diagram when measuring scattering characteristics. アクリルブロックに対するφ =0°のときの反射特性の計測結果であり、AはBモード像、Bは図2Aの破線(x = 20 mm)上の画像形成に用いる素子データの振幅分布、Cは反射特性である。It is the measurement result of the reflection characteristic when φ = 0 ° with respect to the acrylic block, A is the B mode image, B is the amplitude distribution of the element data used for image formation on the broken line (x = 20 mm) in FIG. 2A, and C is. It is a reflection characteristic. アクリルブロックに対して、φを0°から15°まで1°おきに変化させたときの反射特性。Reflection characteristics when φ is changed from 0 ° to 15 ° every 1 ° with respect to the acrylic block. タングステンワイヤに対する散乱特性の計測結果であり、AはBモード像、Bは図4Aの破線(x = 17 mm)上の画像形成に用いる素子データの振幅分布、Cは散乱特性である。It is the measurement result of the scattering characteristic for the tungsten wire, A is the B mode image, B is the amplitude distribution of the element data used for image formation on the broken line (x = 17 mm) in FIG. 4A, and C is the scattering characteristic. 図3におけるφ=7°の反射特性と、角度φが0°から15°までの反射特性との相関値。Correlation value between the reflection characteristic of φ = 7 ° in FIG. 3 and the reflection characteristic of the angle φ from 0 ° to 15 °. A、B、C、Dは、アクリルブロックに対するφ =8°のときの反射特性の計測結果であり、AはBモード像、Bは図6Aの×印の点における反射特性、Cは反射を強調した画像、Dは図6Cと図6Aの白破線上の振幅である。E、F、G、Hは、タングステンワイヤに対する散乱特性の計測結果であり、EはBモード像、Fは図6Eの×印の点における散乱特性、Gは散乱を抑圧した画像、Hは図6Gと図6Eの白破線上の振幅である。A, B, C, and D are the measurement results of the reflection characteristics for the acrylic block when φ = 8 °, A is the B mode image, B is the reflection characteristics at the points marked with x in FIG. 6A, and C is the reflection. The emphasized image, D, is the amplitude on the white dashed lines in FIGS. 6C and 6A. E, F, G, and H are the measurement results of the scattering characteristics for the tungsten wire, E is the B mode image, F is the scattering characteristics at the points marked with x in FIG. 6E, G is the image in which the scattering is suppressed, and H is the figure. 6G and the amplitude on the white dashed line in FIG. 6E. 骨を強調した超音波断層像を求めるためのフロー図Flow chart for obtaining an ultrasonic tomographic image that emphasizes bones

本発明においては、超音波の送受信のために、複数の超音波発生・検出素子(以下、素子と略す)が並んだ超音波アレイプローブを用いる。超音波アレイプローブを超音波診断装置に接続し、複数の素子を用いて超音波を送信し、対象物からの反射・散乱信号を複数の素子を用いて受信する。受信信号の振幅の角度特性を、あらかじめ、面反射体に対して計測した反射特性や点散乱体に対して計測した散乱特性と比較することより、対象物が面反射体であるか点散乱体であるか、また面反射体の場合には、超音波プローブに対する角度φを同定する。 In the present invention, an ultrasonic array probe in which a plurality of ultrasonic generation / detection elements (hereinafter, abbreviated as elements) are arranged is used for transmitting and receiving ultrasonic waves. An ultrasonic array probe is connected to an ultrasonic diagnostic device, ultrasonic waves are transmitted using a plurality of elements, and reflection / scattering signals from an object are received by the plurality of elements. By comparing the angular characteristics of the amplitude of the received signal with the reflection characteristics measured for the surface reflector and the scattering characteristics measured for the point scatterer in advance, whether the object is a surface reflector or a point scatterer. Or, in the case of a surface reflector, identify the angle φ with respect to the ultrasonic probe.

面からの反射特性群{RR(θ;z,φ) }の計測は、アクリル板など平面を有する物質を水中に沈め、超音波プローブに対するアクリル板表面の角度φを変えながら、その表面からの反射信号を計測することにより求めることが可能である。 In the measurement of the reflection characteristic group {R R (θ; z, φ)} from the surface, a flat substance such as an acrylic plate is submerged in water, and the angle φ of the acrylic plate surface with respect to the ultrasonic probe is changed from the surface. It can be obtained by measuring the reflected signal of.

点からの散乱特性群{RS(θ; z) }の計測は、超音波の波長に比べて直径が十分に小さいワイヤを、超音波プローブのエレベーショナル方向と平行に張り、ワイヤからの散乱信号を計測することにより求めることが可能である。 In the measurement of the scattering characteristic group { RS (θ; z)} from a point, a wire whose diameter is sufficiently smaller than the wavelength of the ultrasonic wave is stretched parallel to the elevation direction of the ultrasonic probe, and the scattering from the wire is performed. It can be obtained by measuring the signal.

反射特性群と散乱特性群を計測したときと同じ条件で、対象物からの信号P(x, z)を計測する。 The signal P (x, z) from the object is measured under the same conditions as when the reflection characteristic group and the scattering characteristic group were measured.

送信する超音波ビームのラテラル位置をxm = 0としたとき、(x, z) = (0, zs)の位置にある点散乱体からの散乱波が,xmの位置にある素子に受信されるまでの伝播時間Ts(m)は、超音波プローブから対象物までの音速をcwとして、(1)式で表される。

Figure 2022036721000002
When the lateral position of the ultrasonic beam to be transmitted is x m = 0, the scattered wave from the point scatterer at the position (x, z) = (0, z s ) is sent to the element at the position x m . The propagation time T s (m) until reception is expressed by Eq. (1), where c w is the speed of sound from the ultrasonic probe to the object.
Figure 2022036721000002

信号P(x, z)に対して振幅特性R(θ; P(x, z))を求める手順は、次のとおりである。はじめに、信号P(x, z)に対して、包絡線振幅を求める。対象とする点に対して、式(1)の理想的な遅延時間分布に沿った時刻における振幅を求める。xとzの値から角度θ=tan-1(x/z)より、角度θを求め、R(θ; P(x, z))の値とする。 The procedure for obtaining the amplitude characteristic R (θ; P (x, z)) for the signal P (x, z) is as follows. First, the envelope amplitude is obtained for the signal P (x, z). For the target point, find the amplitude at the time along the ideal delay time distribution in Eq. (1). From the values of x and z, find the angle θ from the angle θ = tan -1 (x / z), and use it as the value of R (θ; P (x, z)).

次に、求めたR(θ; P(x, z))を予め計測した面からの反射特性群{RR(θ; z, φ) }および点からの散乱特性群{RS(θ; z) }と比較する。たとえば、正規化相互相関を用いて比較し、反射であるか散乱であるか、また反射の場合に角度φを同定する。 Next, the reflection characteristic group {R R (θ; z, φ)} from the surface where the obtained R (θ; P (x, z)) was measured in advance and the scattering characteristic group {R S (θ;) from the point. Compare with z)}. For example, normalization cross-correlation is used to compare and identify whether it is reflection or scattering, and in the case of reflection, the angle φ.

得られた結果を超音波断層像(Bモード像)に重ねて表示することにより、Bモード像上で、どの部分が骨であるかを判別する。 By superimposing the obtained result on the ultrasonic tomographic image (B mode image) and displaying it, it is determined which part is the bone on the B mode image.

ここでは、骨を模擬する物質としてアクリルブロックを取り上げて、面からの反射特性群{RR(θ;z,φ) }を計測した例、点散乱体を模擬する物質としてタングステン製ワイヤを取り上げて、点からの散乱特性群{RS(θ; z) }を計測した例について説明する。 Here, an acrylic block is taken up as a substance that imitates bone, an example of measuring the reflection characteristic group { RR (θ; z, φ)} from a surface, and a tungsten wire is taken up as a substance that simulates a point scatterer. Then, an example of measuring the scattering characteristic group {R S (θ; z)} from a point will be described.

図1に水槽実験系の模式図を示す。水槽中に対象物を沈め、超音波リニアアレイプローブを用いて対象物からの受信信号を取得した。図1(a)のように、超音波を反射する対象物として、超音波プローブ表面に対して角度φとなるように設置したアクリルブロックにより骨を模擬した。同様に、図1(b)のように、直径10μmのタングステン製ワイヤを、超音波プローブのエレベーショナル方向(y軸)と平行に張ることで点散乱体を模擬した。 FIG. 1 shows a schematic diagram of the aquarium experimental system. The object was submerged in a water tank, and the received signal from the object was acquired using an ultrasonic linear array probe. As shown in FIG. 1 (a), a bone was simulated by an acrylic block installed so as to have an angle φ with respect to the surface of the ultrasonic probe as an object for reflecting ultrasonic waves. Similarly, as shown in FIG. 1 (b), a point scatterer was simulated by stretching a tungsten wire having a diameter of 10 μm parallel to the elevation direction (y-axis) of the ultrasonic probe.

使用した超音波診断装置は、日立アロカ社製のProsound α10であり、サンプリング周波数40 MHzであった。使用したリニアアレイプローブは、素子数192、素子間隔0.2 mm、有効開口幅19.2 mm、送信超音波の中心周波数7.5 MHzであった。水温は19.0 ℃であり、非特許文献1に記載の方法により水中の音速は1482 m/sと求められた。96素子から発生される複数の球面波により形成される集束ビームから得られる反射・散乱特性を検討した。プローブ表面に対する対象物の深さは30 mmとした。超音波を送信する際は、対象物表面の深さが送信ビームの焦点と一致するように各素子に送信遅延をかけた。送信および受信の際に各素子への振幅の重みづけは行わなかった。 The ultrasonic diagnostic equipment used was Prosound α10 manufactured by Hitachi Aloka, Ltd., and the sampling frequency was 40 MHz. The linear array probe used had a number of elements of 192, an element spacing of 0.2 mm, an effective aperture width of 19.2 mm, and a center frequency of transmitted ultrasonic waves of 7.5 MHz. The water temperature was 19.0 ° C, and the speed of sound in water was determined to be 1482 m / s by the method described in Non-Patent Document 1. The reflection / scattering characteristics obtained from the focused beam formed by multiple spherical waves generated from 96 elements were investigated. The depth of the object with respect to the probe surface was 30 mm. When transmitting ultrasonic waves, a transmission delay was applied to each element so that the depth of the surface of the object coincided with the focal point of the transmission beam. Amplitude was not weighted to each element during transmission and reception.

通常、超音波断層像(Bモード像)の取得の際には、複数の素子を用いて発生される1本の超音波ビームに対する対象物からの反射・散乱信号を、複数の素子で受信する。仮定した音速を用いて、ある点から各素子までの距離に応じた遅延時間差を求め、その遅延時間差が一定になるように遅延時間を調整してから複数の素子で受信した高周波(Radio Frequency: RF)信号を加算し、1つのRF信号を取得するという遅延加算処理が行われる。この計測と処理を超音波ビームの送信位置を変えながら行うことにより、複数の超音波ビームに対するRF信号を得ることができ、RF信号に対して包絡線処理を行うことにより振幅を求め、各位置に対応する輝度分布として表示することでBモード像が得られる。 Normally, when acquiring an ultrasonic tomographic image (B mode image), multiple elements receive reflection / scattering signals from an object for a single ultrasonic beam generated by using multiple elements. .. Using the assumed sound velocity, the delay time difference according to the distance from a certain point to each element is obtained, the delay time is adjusted so that the delay time difference becomes constant, and then the radio frequency received by multiple elements (Radio Frequency:). The delay addition process of adding RF) signals and acquiring one RF signal is performed. By performing this measurement and processing while changing the transmission position of the ultrasonic beam, it is possible to obtain RF signals for multiple ultrasonic beams, and by performing envelope processing on the RF signals, the amplitude is obtained and each position is obtained. A B-mode image can be obtained by displaying as a brightness distribution corresponding to.

本特許では、この遅延加算処理を行う前の各素子で受信したRF信号、いわゆる、素子データを用いる。 In this patent, the RF signal received by each element before this delay addition processing, so-called element data, is used.

アクリルブロックに対して、φ =0°として計測した反射特性の結果を図2に示す。Bモード像を図2A、図2Aの破線(x = 20 mm)上の画像形成に用いる素子データの振幅分布を図2Bに示す。中央の1素子で得られた包絡線信号が最大となる時刻を基準に、式(1)を用いて、各素子において理想遅延時間を計算し(破線)、その時刻での振幅を求めることで反射特性を算出した。求めた反射特性の結果を図2Cに示す。図2Cには、反射特性のシミュレーション値を点線で併せて示す。シミュレーションの方法は非特許文献2に記載の方法に従った。 FIG. 2 shows the results of the reflection characteristics measured with φ = 0 ° for the acrylic block. 2A shows the amplitude distribution of the element data used to form the B-mode image on the broken line (x = 20 mm) of FIGS. 2A and 2A. Using Eq. (1), calculate the ideal delay time for each element (dashed line) based on the time when the envelope signal obtained by the central element becomes maximum, and obtain the amplitude at that time. The reflection characteristics were calculated. The results of the obtained reflection characteristics are shown in FIG. 2C. In FIG. 2C, the simulation values of the reflection characteristics are also shown by dotted lines. The simulation method followed the method described in Non-Patent Document 2.

図2Bには、点線で示す式(1)により計算される散乱による理想的な遅延時間分布よりも早い時間領域に、受信波形の広がりが見られた。また、各受信素子における包絡線振幅が最大となるときの遅延時間分布は、散乱体からの理想的な遅延分布と一致した。 In FIG. 2B, the spread of the received waveform was observed in a time domain earlier than the ideal delay time distribution due to scattering calculated by the equation (1) shown by the dotted line. Further, the delay time distribution when the envelope amplitude in each receiving element is maximized is in agreement with the ideal delay distribution from the scatterer.

図2Cの反射特性の計測結果に対して角度の絶対値が10°よりも大きい領域で、振幅が大きく減少した。反射特性の計測値と理論値の傾向は概ね一致した。 In the region where the absolute value of the angle is larger than 10 ° with respect to the measurement result of the reflection characteristic in FIG. 2C, the amplitude is greatly reduced. The tendency of the measured value of the reflection characteristic and the theoretical value was almost the same.

図3に、超音波プローブ表面に対するアクリルブロックの角度φを変えながら、反射特性を求めた結果を示す。角度φが1°大きくなると、反射特性の振幅がピークとなる角度が2°シフトした。 FIG. 3 shows the results of obtaining the reflection characteristics while changing the angle φ of the acrylic block with respect to the surface of the ultrasonic probe. When the angle φ increased by 1 °, the angle at which the amplitude of the reflection characteristic peaked shifted by 2 °.

図4に、散乱特性の計測結果を示す。図4AはBモード像、図4Bは図4Aの破線(x = 17 mm)上での画像形成に用いられる素子データの振幅分布である。素子データには、式(1)で計算される点散乱体の理想的な遅延時間分布を併せて破線で示した。図4Bの素子データにおいて、理想的な遅延時間分布に沿って信号が受信されていることが確認できた。中央の1素子で得られた包絡線信号が最大となる時刻を基準に、式(1)を用いて、各素子において理想遅延時間を計算し(点線)、その時刻での振幅を求めることで散乱特性を算出した。その結果と、散乱特性のシミュレーション値の結果を図4Cに示す。シミュレーションの方法は非特許文献2に記載の方法に従った。散乱特性の理論値は、角度が0°のときに極大となる放物線となった。 FIG. 4 shows the measurement results of the scattering characteristics. FIG. 4A is a B-mode image, and FIG. 4B is an amplitude distribution of element data used for image formation on the broken line (x = 17 mm) of FIG. 4A. In the element data, the ideal delay time distribution of the point scatterer calculated by Eq. (1) is also shown by a broken line. In the element data of FIG. 4B, it was confirmed that the signal was received along the ideal delay time distribution. Based on the time when the envelope signal obtained by the central element is maximized, the ideal delay time is calculated for each element (dotted line) using Eq. (1), and the amplitude at that time is obtained. The scattering characteristics were calculated. The result and the result of the simulation value of the scattering characteristic are shown in FIG. 4C. The simulation method followed the method described in Non-Patent Document 2. The theoretical value of the scattering characteristic is a parabola that reaches its maximum when the angle is 0 °.

図3における角度φを7°としたときの反射特性に対して角度φが-15°から15°までの反射特性と正規化相互相関処理による整合を行なったときの相関値を図5に示す。このとき、反射特性RR(θ; z, φ)の角度φに対する対称性を利用し、角度φが-15°から-1°までの反射特性は、角度φが1°から15°までの反射特性を用いてRR(θ; z, φ)= RR(-θ; z, -φ)として求めた。また、図4Cに示す散乱特性の測定値との正規化相互相関処理による相関値は0.21であった。この結果、φ=7°のときに、最も相関値が高かった。 FIG. 5 shows the correlation value between the reflection characteristics when the angle φ is 7 ° in FIG. 3 and the reflection characteristics when the angle φ is -15 ° to 15 ° and the matching by the normalized cross-correlation process. .. At this time, using the symmetry of the reflection characteristic R R (θ; z, φ) with respect to the angle φ, the reflection characteristic with the angle φ from -15 ° to -1 ° has the angle φ from 1 ° to 15 °. It was calculated as R R (θ; z, φ) = R R (-θ; z, -φ) using the reflection characteristics. Further, the correlation value by the normalized cross-correlation process with the measured value of the scattering characteristic shown in FIG. 4C was 0.21. As a result, the correlation value was the highest when φ = 7 °.

以上より、散乱特性と反射特性で振幅の角度特性に大きな違いが確認できた。また、角度φが異なる場合において、反射特性の振幅がピークとなる角度に違いがみられた。これらの違いを利用すること、例えば正規化相互相関処理を用いた整合により、反射であるか散乱であるか、また反射の場合に角度φの同定が可能となる。 From the above, it was confirmed that there is a large difference in the angular characteristics of the amplitude between the scattering characteristics and the reflection characteristics. In addition, when the angle φ was different, there was a difference in the angle at which the amplitude of the reflection characteristic peaked. By utilizing these differences, for example, matching using normalized cross-correlation processing, it is possible to identify whether it is reflection or scattering, and in the case of reflection, the angle φ.

実施例1と同様に、水槽実験を行った。図6Aはアクリルブロックに対して、φ =8°として計測したBモード像である。図6Bは、図6Aの×印の点における反射特性である。図6Eはワイヤに対するBモード像である。図6Fは、図6E×印の点における散乱特性である。図6Bと図6Fには、それぞれ反射、散乱のシミュレーション値も併せて示した。図6Bと図6Fにおいて、実験値とシミュレーション値はよく一致した。 A water tank experiment was performed in the same manner as in Example 1. FIG. 6A is a B mode image measured with φ = 8 ° with respect to the acrylic block. FIG. 6B shows the reflection characteristics at the points marked with x in FIG. 6A. FIG. 6E is a B-mode image for the wire. FIG. 6F shows the scattering characteristics at the points marked with FIGS. 6E ×. FIG. 6B and FIG. 6F also show simulation values of reflection and scattering, respectively. In FIGS. 6B and 6F, the experimental values and the simulated values were in good agreement.

図6Bと図6Fにおいて振幅の最大値と最小値の差を比較すると,図6Bの反射特性では大きく、図6Fの散乱特性では小さかった。この反射・散乱の振幅の差を用いて反射波を強調するため、図6Bと図6Fにおいて振幅が最大となる角度θ=θMAXを含む、振幅が高い群{θM}での平均振幅と、θMAX から最も離れた角度θを含む、振幅が低い群{θm}での平均振幅の比をとり、それぞれ図6Aと図6EのBモード像にかけて画像を描出した。その結果を、それぞれ図6C、図6Gに示す。また図6C、図6Gの白破線上の輝度値を図6Aと図6Eの白破線上の輝度値と併せて、それぞれ図6D、図6Hに示す。本手法によって、散乱体輝度に対して反射体輝度を約40 dB強調できた。 Comparing the difference between the maximum value and the minimum value of the amplitude in FIGS. 6B and 6F, the reflection characteristic of FIG. 6B was large and the scattering characteristic of FIG. 6F was small. In order to emphasize the reflected wave using this difference in amplitude between reflection and scattering, the average amplitude in the group {θ M } with high amplitude including the angle θ = θ MAX where the amplitude is maximum in FIGS. 6B and 6F. , The ratio of the average amplitudes in the low-amplitude group {θ m }, including the angle θ farthest from θ MAX , was taken and images were drawn over the B-mode images of FIGS. 6A and 6E, respectively. The results are shown in FIGS. 6C and 6G, respectively. Further, the luminance values on the white dashed lines in FIGS. 6C and 6G are shown in FIGS. 6D and 6H together with the luminance values on the white dashed lines in FIGS. 6A and 6E, respectively. By this method, the reflector brightness could be emphasized by about 40 dB with respect to the scatterer brightness.

以上のように説明した実施例に基づいて、この発明による骨を強調した超音波断層像を求めるための基本的な処理手順を図7に示すフローチャートを参照して以下に説明する。
ステップS1:面からの反射特性群{RR (θ;z,φ) }と点からの散乱特性群{RS(θ; z) }を計測する。
ステップS2:対象物に対して、信号P(x, z)を計測する。
ステップS3:信号P(x, z)に対して振幅特性R(θ; P(x, z))を算出する。
ステップS4:ステップS3で得られた振幅特性R(θ; P(x, z))を、ステップS1で得られた面からの反射特性群{RR(θ; z, φ) }および点からの散乱特性群{RS(θ; z) }と比較し、反射であるか散乱であるか、また反射の場合に角度φを同定する。
ステップS5:ステップS4で得られた結果を超音波断層像(Bモード像)に重ねて表示する。
Based on the examples described above, a basic processing procedure for obtaining an ultrasonic tomographic image with emphasized bone according to the present invention will be described below with reference to the flowchart shown in FIG. 7.
Step S1: Measure the reflection characteristic group {R R (θ; z, φ)} from the surface and the scattering characteristic group {R S (θ; z)} from the point.
Step S2: The signal P (x, z) is measured with respect to the object.
Step S3: The amplitude characteristic R (θ; P (x, z)) is calculated for the signal P (x, z).
Step S4: The amplitude characteristic R (θ; P (x, z)) obtained in step S3 is obtained from the reflection characteristic group {R R (θ; z, φ)} from the surface obtained in step S1 and the points. Compare with the scattering characteristic group { RS (θ; z)} of, and identify whether it is reflection or scattering, and in the case of reflection, the angle φ.
Step S5: The result obtained in step S4 is superimposed and displayed on the ultrasonic tomographic image (B mode image).

硬膜外麻酔を行うためには、麻酔針を穿刺する硬膜外腔の位置を特定し、針を正確に穿刺しなければならない。本発明を用いることにより、生体内の骨、筋組織、臓器が混在する状況の中で、骨を強調した超音波画像の作成することが可能となる。このため、穿刺の補助として用いることが可能となる。 In order to perform epidural anesthesia, the position of the epidural space where the anesthesia needle is punctured must be identified and the needle must be punctured accurately. By using the present invention, it is possible to create an ultrasonic image in which bones are emphasized in a situation where bones, muscle tissues, and organs in a living body coexist. Therefore, it can be used as an aid for puncture.

1 リニアアレイプローブ
2 アクリルブロック
3 水槽
4 水
5 モリブデンワイヤ
1 Linear array probe 2 Acrylic block 3 Water tank 4 Water 5 Molybdenum wire

Claims (5)

超音波画像を作成する方法であって、
(A)撮像対象物に対し照射した超音波の反射又は散乱に由来する信号P(x, z)を計測する工程と、
(B)前記信号P(x, z)に基づき振幅特性R(θ; P(x, z))を算出する工程と、
(C)振幅特性R(θ; P(x, z))を、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }と比較して、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定する工程と、
(D)前記角度φに基づき、撮像対象物のBモード超音波断層像を補正する工程と、
を含む超音波画像の作成方法
It ’s a way to create an ultrasound image.
(A) The process of measuring the signal P (x, z) derived from the reflection or scattering of ultrasonic waves applied to the object to be imaged, and
(B) The step of calculating the amplitude characteristic R (θ; P (x, z)) based on the signal P (x, z), and
(C) Reflection characteristic group {R R (θ; z, φ) obtained by measuring the reflection signal of the ultrasonic waves irradiating the surface reflector acquired in advance with the amplitude characteristic R (θ; P (x, z)). )} And the scattering characteristic group { RS (θ; z)} obtained by measuring the scattering signal of the ultrasonic waves applied to the point scatterer, the signal P (x, z) is a reflected signal or scattering. The step of identifying whether it is one of the signals, and when it is identified as a reflected signal, the step of identifying the angle φ of the image pickup target, and
(D) A step of correcting a B-mode ultrasonic tomographic image of an imaged object based on the angle φ, and
How to create an ultrasound image including
前記補正が、前記振幅特性R(θ; P(x, z))において、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }との比較において、正規化相互相関を用いて、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定することを特徴とする、請求項1に記載の方法。 The correction is the reflection characteristic group {R R (θ; z) obtained by measuring the reflection signal of the ultrasonic wave applied to the surface reflector acquired in advance in the amplitude characteristic R (θ; P (x, z)). , φ)} and the scattering characteristic group { RS (θ; z)} obtained by measuring the scattering signal of the ultrasonic waves applied to the point scatterer, using the normalized intercorrelation, the signal P The first aspect of the present invention is to specify whether (x, z) is either a reflected signal or a scattered signal, and if it is specified as a reflected signal, to identify the angle φ of the image pickup target. The method described. 前記補正が、前記振幅特性R(θ; P(x, z))において、振幅が最大となる角度θ=θMAXを含む振幅が高い群{θM}での平均振幅と、θMAX から最も離れた角度θを含む、振幅が低い群{θm}での平均振幅の比を求め、前記比を前記Bモード超音波断層像における各画素の画素値に乗じることを特徴とする、請求項1に記載の方法。 The correction is the average amplitude in the group {θ M } with high amplitude including the angle θ = θ MAX where the amplitude is maximum in the amplitude characteristic R (θ; P (x, z)), and the most from θ MAX . The claim is characterized in that the ratio of the average amplitude in the low amplitude group {θ m } including the distant angle θ is obtained, and the ratio is multiplied by the pixel value of each pixel in the B-mode ultrasonic tomographic image. The method according to 1. 超音波画像を作成するシステムであって、
(A)撮像対象物に対し照射した超音波の反射又は散乱に由来する信号P(x, z)を計測する計測部と、
(B)前記信号P(x, z)に基づき振幅特性R(θ; P(x, z))を算出する振幅特性取得部と、
(C)振幅特性R(θ; P(x, z))を、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }と比較して、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定する解析部と、
(D)前記角度φに基づき、撮像対象物のBモード超音波断層像を補正する画像処理部と、
を備えるシステム。
A system that creates ultrasonic images
(A) A measuring unit that measures the signal P (x, z) derived from the reflection or scattering of ultrasonic waves applied to the object to be imaged, and
(B) An amplitude characteristic acquisition unit that calculates the amplitude characteristic R (θ; P (x, z)) based on the signal P (x, z), and
(C) Reflection characteristic group {R R (θ; z, φ) obtained by measuring the reflection signal of the ultrasonic waves irradiating the surface reflector acquired in advance with the amplitude characteristic R (θ; P (x, z)). )} And the scattering characteristic group { RS (θ; z)} obtained by measuring the scattering signal of the ultrasonic waves applied to the point scatterer, the signal P (x, z) is a reflected signal or scattering. An analysis unit that identifies whether it is one of the signals, and if it is identified as a reflected signal, an analysis unit that identifies the angle φ of the image pickup target.
(D) An image processing unit that corrects a B-mode ultrasonic tomographic image of the object to be imaged based on the angle φ, and an image processing unit.
A system equipped with.
超音波画像を作成するプログラムであって、
(A)撮像対象物に対し照射した超音波の反射又は散乱に由来する信号P(x, z)を入力するステップと、
(B)前記信号P(x, z)に基づき振幅特性R(θ; P(x, z))を算出するステップと、
(C)振幅特性R(θ; P(x, z))を、予め取得した面反射体に照射した超音波の反射信号を計測して得られる反射特性群{RR(θ; z, φ) }および点散乱体に照射した超音波の散乱信号を計測して得られる散乱特性群{RS(θ; z) }と比較して、前記信号P(x, z)が反射信号または散乱信号のいずれかであるかを特定する、また反射信号と特定された場合、前記撮像対象物の角度φを同定するステップと、
(D)前記角度φに基づき、撮像対象物のBモード超音波断層像を補正するステップと、
をコンピュータに実行させるためのコンピュータプログラム。
A program that creates ultrasound images
(A) The step of inputting the signal P (x, z) derived from the reflection or scattering of the ultrasonic wave applied to the object to be imaged, and
(B) A step of calculating the amplitude characteristic R (θ; P (x, z)) based on the signal P (x, z), and
(C) Reflection characteristic group {R R (θ; z, φ) obtained by measuring the reflection signal of the ultrasonic waves irradiating the surface reflector acquired in advance with the amplitude characteristic R (θ; P (x, z)). )} And the scattering characteristic group { RS (θ; z)} obtained by measuring the scattering signal of the ultrasonic waves applied to the point scatterer, the signal P (x, z) is a reflected signal or scattering. The step of identifying whether it is one of the signals, and if it is identified as a reflected signal, the step of identifying the angle φ of the image pickup object,
(D) A step of correcting a B-mode ultrasonic tomographic image of an imaged object based on the angle φ, and
A computer program that lets your computer run.
JP2020141075A 2020-08-24 2020-08-24 Creation method for ultrasonic tomographic image Pending JP2022036721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020141075A JP2022036721A (en) 2020-08-24 2020-08-24 Creation method for ultrasonic tomographic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020141075A JP2022036721A (en) 2020-08-24 2020-08-24 Creation method for ultrasonic tomographic image

Publications (1)

Publication Number Publication Date
JP2022036721A true JP2022036721A (en) 2022-03-08

Family

ID=80493591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141075A Pending JP2022036721A (en) 2020-08-24 2020-08-24 Creation method for ultrasonic tomographic image

Country Status (1)

Country Link
JP (1) JP2022036721A (en)

Similar Documents

Publication Publication Date Title
CN107613881B (en) Method and system for correcting fat-induced aberrations
US6585649B1 (en) Methods and devices for improving ultrasonic measurements using multiple angle interrogation
US9072493B1 (en) Ultrasonic diagnostic apparatus and elastic evaluation method
US10278670B2 (en) Ultrasound diagnostic apparatus and method of controlling ultrasound diagnostic apparatus
US10959704B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing method
US10271819B2 (en) Computed ultrasound tomography in echo mode (CUTE) for imaging speed of sound using pulse-echo sonography
US9138202B2 (en) Ultrasonic diagnosis apparatus and medical image processing method
US20060079777A1 (en) Ultrasonic image boundary extracting method, ultrasonic image boundary extracting apparatus, and ultrasonic imaging apparatus
JP2010068904A (en) Ultrasonic diagnosing apparatus and image display program
Bell et al. Resolution and brightness characteristics of short-lag spatial coherence (SLSC) images
CN108135579B (en) Ultrasonic diagnostic apparatus and attenuation characteristic measuring method
US8663114B2 (en) Ultrasonic diagnostic apparatus and storage medium
JP3946815B2 (en) Ultrasonic diagnostic equipment
JP2015126955A (en) Ultrasonic diagnostic device and ultrasonic diagnostic method
US8663110B2 (en) Providing an optimal ultrasound image for interventional treatment in a medical system
CN110464460B (en) Method and system for cardiac intervention operation
JP2007517544A5 (en)
WO2018195824A1 (en) Ultrasound imaging device, ultrasound image enhancement method and guided puncture display method
JP2022036721A (en) Creation method for ultrasonic tomographic image
JP2012245092A (en) Ultrasonic diagnostic apparatus
JP6996035B2 (en) Ultrasonic diagnostic device and method for evaluating physical properties of living tissue
CN112074237A (en) Shear wave amplitude reconstruction for tissue elasticity monitoring and display
Yokoyama et al. Discrimination of thoracic spine from muscle based on their difference in ultrasound reflection and scattering characteristics
JP2016027842A (en) Ultrasonic therapy device
Camacho et al. A multi-modal ultrasound breast imaging system