JP2022036538A - Insulating member for battery made of polyphenylene sulfide resin composition and manufacturing method - Google Patents
Insulating member for battery made of polyphenylene sulfide resin composition and manufacturing method Download PDFInfo
- Publication number
- JP2022036538A JP2022036538A JP2020140802A JP2020140802A JP2022036538A JP 2022036538 A JP2022036538 A JP 2022036538A JP 2020140802 A JP2020140802 A JP 2020140802A JP 2020140802 A JP2020140802 A JP 2020140802A JP 2022036538 A JP2022036538 A JP 2022036538A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- insulating member
- resin composition
- weight
- preferable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004734 Polyphenylene sulfide Substances 0.000 title claims abstract description 136
- 229920000069 polyphenylene sulfide Polymers 0.000 title claims abstract description 136
- 239000011342 resin composition Substances 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 229920005989 resin Polymers 0.000 claims abstract description 107
- 239000011347 resin Substances 0.000 claims abstract description 107
- -1 organosilane compound Chemical class 0.000 claims abstract description 89
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000009864 tensile test Methods 0.000 claims abstract description 37
- 238000001746 injection moulding Methods 0.000 claims abstract description 35
- 238000012360 testing method Methods 0.000 claims abstract description 26
- 238000007654 immersion Methods 0.000 claims abstract description 21
- 239000007864 aqueous solution Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 65
- 229920000098 polyolefin Polymers 0.000 claims description 33
- 229910000077 silane Inorganic materials 0.000 claims description 27
- 239000000155 melt Substances 0.000 claims description 16
- 238000005227 gel permeation chromatography Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 14
- 150000001336 alkenes Chemical class 0.000 claims description 13
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 11
- 238000010828 elution Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 3
- 239000000243 solution Substances 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 45
- 229910001868 water Inorganic materials 0.000 description 41
- 229910052783 alkali metal Inorganic materials 0.000 description 33
- 238000004898 kneading Methods 0.000 description 33
- 150000001875 compounds Chemical class 0.000 description 23
- 238000000465 moulding Methods 0.000 description 22
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 150000001491 aromatic compounds Chemical class 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 229920001577 copolymer Polymers 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 239000000178 monomer Substances 0.000 description 14
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 13
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 12
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 229920000647 polyepoxide Polymers 0.000 description 11
- 239000003381 stabilizer Substances 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000010306 acid treatment Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002798 polar solvent Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 0 CC*(c1cc(C)ccc1*)Sc1ccc(C(C)(C)*)cc1 Chemical compound CC*(c1cc(C)ccc1*)Sc1ccc(C(C)(C)*)cc1 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 239000011256 inorganic filler Substances 0.000 description 6
- 229910003475 inorganic filler Inorganic materials 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 5
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- 150000004715 keto acids Chemical class 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 238000007385 chemical modification Methods 0.000 description 3
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- ATCRIUVQKHMXSH-UHFFFAOYSA-N 2,4-dichlorobenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C=C1Cl ATCRIUVQKHMXSH-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000004018 acid anhydride group Chemical group 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 2
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 229910001382 calcium hypophosphite Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 150000002903 organophosphorus compounds Chemical class 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 229910001380 potassium hypophosphite Inorganic materials 0.000 description 2
- CRGPNLUFHHUKCM-UHFFFAOYSA-M potassium phosphinate Chemical compound [K+].[O-]P=O CRGPNLUFHHUKCM-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 2
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- JITSWUFGPFIMFG-UHFFFAOYSA-N 1,1,2,2,4-pentachlorobutane Chemical compound ClCCC(Cl)(Cl)C(Cl)Cl JITSWUFGPFIMFG-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- JHBKHLUZVFWLAG-UHFFFAOYSA-N 1,2,4,5-tetrachlorobenzene Chemical compound ClC1=CC(Cl)=C(Cl)C=C1Cl JHBKHLUZVFWLAG-UHFFFAOYSA-N 0.000 description 1
- XKEFYDZQGKAQCN-UHFFFAOYSA-N 1,3,5-trichlorobenzene Chemical compound ClC1=CC(Cl)=CC(Cl)=C1 XKEFYDZQGKAQCN-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SWJPEBQEEAHIGZ-UHFFFAOYSA-N 1,4-dibromobenzene Chemical compound BrC1=CC=C(Br)C=C1 SWJPEBQEEAHIGZ-UHFFFAOYSA-N 0.000 description 1
- UTGSRNVBAFCOEU-UHFFFAOYSA-N 1,4-dichloro-2,5-dimethylbenzene Chemical group CC1=CC(Cl)=C(C)C=C1Cl UTGSRNVBAFCOEU-UHFFFAOYSA-N 0.000 description 1
- QKMNFFSBZRGHDJ-UHFFFAOYSA-N 1,4-dichloro-2-methoxybenzene Chemical compound COC1=CC(Cl)=CC=C1Cl QKMNFFSBZRGHDJ-UHFFFAOYSA-N 0.000 description 1
- KFAKZJUYBOYVKA-UHFFFAOYSA-N 1,4-dichloro-2-methylbenzene Chemical compound CC1=CC(Cl)=CC=C1Cl KFAKZJUYBOYVKA-UHFFFAOYSA-N 0.000 description 1
- LFMWZTSOMGDDJU-UHFFFAOYSA-N 1,4-diiodobenzene Chemical compound IC1=CC=C(I)C=C1 LFMWZTSOMGDDJU-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- QVTQYSFCFOGITD-UHFFFAOYSA-N 2,5-dichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC=C1Cl QVTQYSFCFOGITD-UHFFFAOYSA-N 0.000 description 1
- MRUDNSFOFOQZDA-UHFFFAOYSA-N 2,6-dichlorobenzoic acid Chemical compound OC(=O)C1=C(Cl)C=CC=C1Cl MRUDNSFOFOQZDA-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- HQURVGSRQBOZEX-UHFFFAOYSA-N 3,5-diamino-2-hydroxybenzoic acid Chemical compound NC1=CC(N)=C(O)C(C(O)=O)=C1 HQURVGSRQBOZEX-UHFFFAOYSA-N 0.000 description 1
- CXKCZFDUOYMOOP-UHFFFAOYSA-N 3,5-dichlorobenzoic acid Chemical compound OC(=O)C1=CC(Cl)=CC(Cl)=C1 CXKCZFDUOYMOOP-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- LVACOMKKELLCHJ-UHFFFAOYSA-N 3-trimethoxysilylpropylurea Chemical compound CO[Si](OC)(OC)CCCNC(N)=O LVACOMKKELLCHJ-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- OSSMYOQKNHMTIP-UHFFFAOYSA-N 5-[dimethoxy(methyl)silyl]pentane-1,3-diamine Chemical compound CO[Si](C)(OC)CCC(N)CCN OSSMYOQKNHMTIP-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- FVBPWWRZWAQHOU-UHFFFAOYSA-N CCC(C)(C)c(cc1)ccc1S(=O)=O Chemical compound CCC(C)(C)c(cc1)ccc1S(=O)=O FVBPWWRZWAQHOU-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- CNEKIVLPGGFVJY-UHFFFAOYSA-N Cc(cc1)cc(C)c1SC Chemical compound Cc(cc1)cc(C)c1SC CNEKIVLPGGFVJY-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- ITIONVBQFUNVJV-UHFFFAOYSA-N Etomidoline Chemical compound C12=CC=CC=C2C(=O)N(CC)C1NC(C=C1)=CC=C1OCCN1CCCCC1 ITIONVBQFUNVJV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241001631125 Oligoma Species 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- ZJKCITHLCNCAHA-UHFFFAOYSA-K aluminum dioxidophosphanium Chemical compound [Al+3].[O-][PH2]=O.[O-][PH2]=O.[O-][PH2]=O ZJKCITHLCNCAHA-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- XSAOTYCWGCRGCP-UHFFFAOYSA-K aluminum;diethylphosphinate Chemical compound [Al+3].CCP([O-])(=O)CC.CCP([O-])(=O)CC.CCP([O-])(=O)CC XSAOTYCWGCRGCP-UHFFFAOYSA-K 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229940064002 calcium hypophosphite Drugs 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- LITFOGPYONJRNO-UHFFFAOYSA-L calcium phosphinate Chemical compound [Ca+2].[O-]P=O.[O-]P=O LITFOGPYONJRNO-UHFFFAOYSA-L 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 159000000006 cesium salts Chemical class 0.000 description 1
- IBSGAWQJFSDRBJ-UHFFFAOYSA-M cesium sulfanide Chemical compound [SH-].[Cs+] IBSGAWQJFSDRBJ-UHFFFAOYSA-M 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QTNDMWXOEPGHBT-UHFFFAOYSA-N dicesium;sulfide Chemical compound [S-2].[Cs+].[Cs+] QTNDMWXOEPGHBT-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- MXIPHWDAHRGDRK-UHFFFAOYSA-N ethyl-dimethoxy-propylsilane Chemical compound CCC[Si](CC)(OC)OC MXIPHWDAHRGDRK-UHFFFAOYSA-N 0.000 description 1
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000005067 haloformyl group Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- KDDRURKXNGXKGE-UHFFFAOYSA-M lithium;pentanoate Chemical compound [Li+].CCCCC([O-])=O KDDRURKXNGXKGE-UHFFFAOYSA-M 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- IWELDVXSEVIIGI-UHFFFAOYSA-N piperazin-2-one Chemical class O=C1CNCCN1 IWELDVXSEVIIGI-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 239000002954 polymerization reaction product Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M potassium hydrosulfide Chemical compound [SH-].[K+] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- LXOXXUIVMOYGST-UHFFFAOYSA-M rubidium(1+);sulfanide Chemical compound [SH-].[Rb+] LXOXXUIVMOYGST-UHFFFAOYSA-M 0.000 description 1
- AHKSSQDILPRNLA-UHFFFAOYSA-N rubidium(1+);sulfide Chemical compound [S-2].[Rb+].[Rb+] AHKSSQDILPRNLA-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 229960003885 sodium benzoate Drugs 0.000 description 1
- SIGUVTURIMRFDD-UHFFFAOYSA-M sodium dioxidophosphanium Chemical compound [Na+].[O-][PH2]=O SIGUVTURIMRFDD-UHFFFAOYSA-M 0.000 description 1
- KOUDKOMXLMXFKX-UHFFFAOYSA-N sodium oxido(oxo)phosphanium hydrate Chemical compound O.[Na+].[O-][PH+]=O KOUDKOMXLMXFKX-UHFFFAOYSA-N 0.000 description 1
- 229940006198 sodium phenylacetate Drugs 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- CNALVHVMBXLLIY-IUCAKERBSA-N tert-butyl n-[(3s,5s)-5-methylpiperidin-3-yl]carbamate Chemical compound C[C@@H]1CNC[C@@H](NC(=O)OC(C)(C)C)C1 CNALVHVMBXLLIY-IUCAKERBSA-N 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- VMFOHNMEJNFJAE-UHFFFAOYSA-N trimagnesium;diphosphite Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])[O-].[O-]P([O-])[O-] VMFOHNMEJNFJAE-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
本発明は、優れた耐フッ化水素酸性、耐かしめ性、ウェルド部の靱性、耐熱性を兼ね備えたポリフェニレンスルフィド樹脂組成物からなる電池用絶縁部材に関するものである。 The present invention relates to an insulating member for a battery made of a polyphenylene sulfide resin composition having excellent hydrogen fluoride acid resistance, caulking resistance, toughness of a welded portion, and heat resistance.
電池には、内部短絡の防止を目的として各種の絶縁部材が設けられている。従来の絶縁部材には、実使用時の安全性を確保するために、耐電解液性と靭性を持つポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン系樹脂が用いられてきた。近年、電子機器の小型化や電気自動車の普及から、特に2次電池において、高容量化やエネルギー密度の向上が進んでいる。そのため2次電池において、異常発生時に絶縁部材はより高温に晒されるようになり、絶縁部材には耐熱性も必要とされている。このような背景から、ポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン系樹脂に代わり、靭性、高温剛性、成形加工性、耐熱性を兼ね備えた新たな樹脂材料を素材とする絶縁板などの絶縁部材の創出が求められている。ポリオレフィン系樹脂以外の樹脂を用いた絶縁部材として、例えば、特許文献1では、絶縁板にガラスクロスを基材とし無機添加剤を含んだフェノール樹脂の積層板を用いることで、過充電時の熱によるフェノール樹脂の硬化収縮を抑制し、正極板と負極板、セパレータを介してなる極板群の変形を防止できる旨が記載されている。
The battery is provided with various insulating members for the purpose of preventing an internal short circuit. Polyolefin-based resins such as polyethylene resin and polypropylene resin, which have electrolytic solution resistance and toughness, have been used for conventional insulating members in order to ensure safety during actual use. In recent years, due to the miniaturization of electronic devices and the widespread use of electric vehicles, the capacity and energy density of secondary batteries have been increasing. Therefore, in the secondary battery, the insulating member is exposed to a higher temperature when an abnormality occurs, and the insulating member is also required to have heat resistance. Against this background, the creation of insulating members such as insulating plates made of new resin materials that have toughness, high-temperature rigidity, molding processability, and heat resistance, instead of polyolefin resins such as polyethylene resin and polypropylene resin, has been created. It has been demanded. As an insulating member using a resin other than a polyolefin resin, for example, in
一方、リチウムイオン二次電池においては、一般に、例えば特許文献2に記載の通り、非水電解質としてプロピレンカーボネート、エチレンカーボネートなどの環状カーボネートとジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートとの混合溶媒が用いられ、支持塩としてLiPF6、LiBF4などのフッ素化合物が用いられる。しかしながら、フッ素化合物を使用すると、電池内の微量な水分と反応してフッ化水素酸(HF)が発生し、発生したHFが絶縁部材をはじめとする周辺部材を劣化させる課題がある。そのため、例えば特許文献3には、非水電解質への耐性と耐フッ化水素酸性に優れるテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)からなる封口ガスケットが記載されている。
On the other hand, in a lithium ion secondary battery, generally, as described in
また、電池用絶縁部材の製造方法として、量産性に優れる射出成形が広く用いられているが、絶縁板などの絶縁部材などは端子をはめ込むための開口部や貫通孔を有するため、射出成形法による造形の場合、環状のキャビティ内で2つ以上の樹脂の流れが生じて、これらの樹脂の流れ同士が合流したところで脆弱なウェルドラインが生じる。例えば、特許文献4に記載されているように、電池の製造工程においては、絶縁板などの絶縁部材を嵌合する際に接合部を押し付けるまたは締め付けるいわゆる「かしめ工程」を経ることが知られているが、ウェルド部分を有する絶縁部材やガスケットをかしめた場合には、荷重によりウェルド部分での亀裂が生じ、絶縁部材やガスケットとして役割を果たさない課題がある。また、電池使用時に生じる内圧の上昇に伴う電池の膨れに伴う絶縁部材の変形に対して、ウェルド部が追従出来ず、ウェルド部での亀裂や破断が生じ、絶縁部材やガスケットの役割を果たさないおそれがある。これに対して、特許文献4では、押出成形にて得た筒体を切断およびフレア加工によりウェルドラインを発生させないガスケットの製造方法が記載されている。
Further, as a method for manufacturing an insulating member for a battery, injection molding having excellent mass productivity is widely used. However, since an insulating member such as an insulating plate has an opening or a through hole for fitting a terminal, an injection molding method is used. In the case of molding by, two or more resin flows are generated in the annular cavity, and a fragile weld line is generated when these resin flows merge with each other. For example, as described in
また、特許文献5では、シート状にしたPFAを成形品形状に打ち抜いた後、熱圧と冷圧処理を施す製造工程が記載されている。 Further, Patent Document 5 describes a manufacturing process in which a sheet-shaped PFA is punched into a molded product shape and then subjected to hot pressure and cold pressure treatment.
しかしながら、特許文献1に記載の材料は、フッ化水素酸に対する耐性を有さない課題がある。また、打ち抜き加工により生産されるためウェルド部分は生じないものの、ガラスクロスの基材にフェノール樹脂を含浸させた後、加熱硬化させて積層板を作成し、更に打ち抜き加工を経るため、生産性の観点で難がある。
However, the material described in
特許文献3~5は、いずれも高価な樹脂であるPFA樹脂を用いており、コスト的に好ましくない。また、特許文献4に記載の製造方法は、押出成形にて筒状の成形品を得た後、ガスケット形状に加工する工程を経るためウェルド部分は生じないものの、射出成形に比べ、生産性の観点で好ましくない。
また、特許文献5に記載の製造方法は、シートを作成した後、成形品に打ち抜き、更に熱圧と冷圧を施す工程を経るためウェルド部分は生じないものの、射出成形に比べ、生産性の観点で好ましくない。 Further, the manufacturing method described in Patent Document 5 is more productive than injection molding, although a weld portion does not occur because a sheet is produced, punched into a molded product, and further subjected to a step of applying hot pressure and cold pressure. Not preferable from the viewpoint.
本発明者らは、かかる課題を解決すべく検討を行った結果、(a)ポリフェニレンスルフィド樹脂と、(b)有機シラン化合物を含有するポリフェニレンスルフィド樹脂組成物が、フッ化水素酸に対し優れた耐性を示す特性を見出し、当該樹脂組成物を用いた絶縁板などの絶縁部材が優れた耐薬品性、耐かしめ性、ウェルド部の靱性、および耐熱性を有することを見出すに至った。すなわち、本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実施可能である。
(1)電池用絶縁部材であって、前記絶縁部材が(a)ポリフェニレンスルフィド樹脂、および(b)有機シラン化合物を含有するポリフェニレンスルフィド樹脂組成物からなり、前記樹脂組成物を射出成形して得られる試験片(ISO527-2-1A)を、フッ化水素酸(50%水溶液)に60℃条件下で500時間浸漬した後の引張試験(ISO527-1,2)において、5%以上の引張破断伸びを有する電池用絶縁部材。
(2)(1)に記載の電池用絶縁部材であって、前記樹脂組成物を射出成形して得られる試験片(ISO527-2-1A)をフッ化水素酸(50%水溶液)に60℃条件下で500時間浸漬した際の浸漬前後の重量変化率が2%以下である電池用絶縁部材。
(3)(1)または(2)に記載の電池用絶縁部材であって、前記樹脂組成物を射出成形して得られる、標線間中央部にウェルド部が形成された厚み1.6mm、幅6mm、標線間距離50mmの試験片の、23℃、引張速度10mm/minの条件で測定した引張試験において、応力-ひずみ曲線の曲線下面積で表される抗張積が100MPa・%以上である電池用絶縁部材。
(4)(1)~(3)のいずれかに記載の電池用絶縁部材であって、前記樹脂組成物を射出成形して得られる、標線間中央部にウェルド部が形成された厚み1.6mm、幅6mm、標線間距離50mmの試験片の、23℃、引張速度10mm/minの条件で測定した引張試験において、引張破断伸びが3.0%以上である電池用絶縁部材。
(5)(1)~(4)のいずれかに記載の電池用絶縁部材であって、前記樹脂組成物を射出成形して得られる標線間中央部にウェルド部が形成された試験片の、80℃雰囲気下での引張試験時において、引張強さが45MPa以上である電池用絶縁部材。
(6)(1)~(5)のいずれか1項に記載の電池用絶縁部材であって、前記樹脂組成物が(a)PPS樹脂100重量部に対して、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体の含有量が1重量部未満である電池用絶縁部材。
(7)(1)~(6)のいずれか1項に記載の電池用絶縁部材であって、前記樹脂組成物の溶融粘度(測定条件は温度320℃、剪断速度2432/s)が250Pa・s以下である電池用絶縁部材。
(8)(1)~(7)のいずれか1項に記載の電池用絶縁部材であって、前記樹脂組成物のゲルパーミエーションクロマトグラフィー(GPC)の測定から得られる分子量分布において、ポリスチレン換算の分子量750000に対応する溶出時間より早く検出される成分の割合が0.4~8.5%であり、かつポリスチレン換算の分子量750000に対応する溶出時間より遅く検出される成分の重量平均分子量が50000~95000である電池用絶縁部材。
(9)(1)~(8)のいずれか1項に記載の電池用絶縁部材であって、前記樹脂組成物中の(a)ポリフェニレンスルフィド樹脂の割合が95重量%以上である電池用絶縁部材。
(10)(1)~(9)のいずれか1項に記載の電池用絶縁部材であって、ウェルドラインを有する電池用絶縁部材。
(11)(1)~(10)のいずれか1項に記載の電池用絶縁部材の製造方法であって、前記樹脂組成物を射出成形する電池用絶縁部材の製造方法。
As a result of studies to solve the above problems, the present inventors have found that (a) a polyphenylene sulfide resin and (b) a polyphenylene sulfide resin composition containing an organic silane compound are superior to hydrofluoric acid. We have found that the insulating member such as an insulating plate using the resin composition has excellent chemical resistance, caulking resistance, toughness of a welded portion, and heat resistance. That is, the present invention has been made to solve at least a part of the above-mentioned problems, and can be implemented as the following embodiments.
(1) An insulating member for a battery, wherein the insulating member comprises (a) a polyphenylene sulfide resin and (b) a polyphenylene sulfide resin composition containing an organic silane compound, and the resin composition is injection-molded. In a tensile test (ISO527-1 and 2) after immersing the test piece (ISO527-2-1A) in hydrofluoric acid (50% aqueous solution) under 60 ° C. conditions for 500 hours, a tensile breakage of 5% or more was obtained. Insulation member for batteries with elongation.
(2) The test piece (ISO527-2-1A) obtained by injection molding the resin composition, which is the insulating member for a battery according to (1), is mixed with hydrofluoric acid (50% aqueous solution) at 60 ° C. A battery insulating member having a weight change rate of 2% or less before and after immersion under conditions of immersion for 500 hours.
(3) The insulating member for a battery according to (1) or (2), which is obtained by injection molding the resin composition and has a thickness of 1.6 mm in which a weld portion is formed in the central portion between marked lines. In a tensile test of a test piece with a width of 6 mm and a distance between marked lines of 50 mm, measured under the conditions of 23 ° C. and a tensile speed of 10 mm / min, the tensile load represented by the area under the curve of the stress-strain curve is 100 MPa ·% or more. Insulation member for batteries.
(4) The
(5) The test piece according to any one of (1) to (4), wherein a weld portion is formed in the central portion between marked lines obtained by injection molding the resin composition. , A battery insulating member having a tensile strength of 45 MPa or more in a tensile test in an atmosphere of 80 ° C.
(6) The insulating member for a battery according to any one of (1) to (5), wherein the resin composition contains 80 wt of (c) an olefin component with respect to 100 parts by weight of (a) PPS resin. % Or more content of the polyolefin monomer or polyolefin copolymer is less than 1 part by weight.
(7) The battery insulating member according to any one of (1) to (6), wherein the resin composition has a melt viscosity (measurement conditions: temperature 320 ° C., shear rate 2432 / s) of 250 Pa. Insulation member for batteries that is s or less.
(8) The insulating member for a battery according to any one of (1) to (7), in terms of polystyrene in the molecular weight distribution obtained from the measurement of gel permeation chromatography (GPC) of the resin composition. The proportion of components detected earlier than the elution time corresponding to the molecular weight of 750000 is 0.4 to 8.5%, and the weight average molecular weight of the components detected later than the elution time corresponding to the polystyrene-equivalent molecular weight of 750000 is Insulation member for batteries, which is 50,000 to 95,000.
(9) The battery insulating member according to any one of (1) to (8), wherein the proportion of the (a) polyphenylene sulfide resin in the resin composition is 95% by weight or more. Element.
(10) The battery insulating member according to any one of (1) to (9), which has a weld line.
(11) The method for manufacturing a battery insulating member according to any one of (1) to (10), wherein the battery insulating member is injection-molded from the resin composition.
本発明によれば、優れた耐フッ化水素酸性、耐薬品性、耐かしめ性、ウェルド部の靱性、および耐熱性を兼ね備えたポリフェニレンスルフィド樹脂組成物からなる電池用絶縁部材を得ることができる。 According to the present invention, it is possible to obtain an insulating member for a battery made of a polyphenylene sulfide resin composition having excellent hydrogen fluoride acidity, chemical resistance, caulking resistance, toughness of a welded portion, and heat resistance.
以下、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
(1)(a)ポリフェニレンスルフィド樹脂
本発明で用いられる(a)PPS樹脂は、下記構造式で示される繰り返し単位を有する重合体であり、
(1) (a) Polyphenylene sulfide resin The (a) PPS resin used in the present invention is a polymer having a repeating unit represented by the following structural formula.
耐熱性の観点からは上記構造式で示される繰り返し単位を含む重合体を70モル%以上、更には90モル%以上含む重合体が好ましい。また(a)PPS樹脂はその繰り返し単位の30モル%未満程度が、下記の構造を有する繰り返し単位等で構成されていてもよい。 From the viewpoint of heat resistance, a polymer containing 70 mol% or more, more preferably 90 mol% or more of the polymer containing the repeating unit represented by the above structural formula is preferable. Further, (a) less than 30 mol% of the repeating unit of the PPS resin may be composed of a repeating unit having the following structure or the like.
かかる構造を一部有するPPS共重合体は、PPSの一般的な融点である280℃に対して融点が低くなるため、このような樹脂組成物は成形加工性の点で有利となる。 Since the PPS copolymer having a part of such a structure has a melting point lower than the general melting point of 280 ° C. of PPS, such a resin composition is advantageous in terms of moldability.
本発明で用いられる(a)PPS樹脂の重量平均分子量に特に制限はないが、より優れた機械物性を得る意味から重量平均分子量は30000~150000が好ましく、40000~130000が更に好ましく、45000~110000がより好ましく、50000~90000がより好ましい。重量平均分子量が小さい場合は、PPS樹脂自体の機械物性が低下するため、30000以上が好ましい。一方、重量平均分子量が150000を超える場合には、溶融粘度が著しく大きくなるため、成形加工において好ましくない傾向である。 The weight average molecular weight of the (a) PPS resin used in the present invention is not particularly limited, but the weight average molecular weight is preferably 30,000 to 150,000, more preferably 40,000 to 130,000, and further preferably 45,000 to 110,000 from the viewpoint of obtaining more excellent mechanical properties. Is more preferable, and 50,000 to 90000 is more preferable. When the weight average molecular weight is small, the mechanical properties of the PPS resin itself are deteriorated, so that it is preferably 30,000 or more. On the other hand, when the weight average molecular weight exceeds 150,000, the melt viscosity becomes remarkably large, which is not preferable in the molding process.
なお、本発明における重量平均分子量は、センシュー科学製ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算で算出した値である。 The weight average molecular weight in the present invention is a value calculated in terms of polystyrene using gel permeation chromatography (GPC) manufactured by Senshu Science.
以下に、本発明に用いる(a)PPS樹脂の製造方法について説明するが、上記特性を有する(a)PPS樹脂が得られれば下記方法に限定されるものではない。 Hereinafter, the method for producing (a) the PPS resin used in the present invention will be described, but the method is not limited to the following method as long as the (a) PPS resin having the above-mentioned characteristics can be obtained.
まず、製造方法において使用するポリハロゲン化芳香族化合物、スルフィド化剤、重合溶媒、分子量調節剤、重合助剤および重合安定剤の内容について説明する。 First, the contents of the polyhalogenated aromatic compound, the sulfidizing agent, the polymerization solvent, the molecular weight modifier, the polymerization aid and the polymerization stabilizer used in the production method will be described.
[ポリハロゲン化芳香族化合物]
ポリハロゲン化芳香族化合物とは、1分子中にハロゲン原子を2個以上有する化合物をいう。具体例としては、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3,5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼン、ヘキサクロロベンゼン、2,5-ジクロロトルエン、2,5-ジクロロ-p-キシレン、1,4-ジブロモベンゼン、1,4-ジヨードベンゼン、1-メトキシ-2,5-ジクロロベンゼンなどのポリハロゲン化芳香族化合物が挙げられ、好ましくはp-ジクロロベンゼンが用いられる。また、カルボキシル基の導入を目的に、2,4-ジクロロ安息香酸、2,5-ジクロロ安息香酸、2,6-ジクロロ安息香酸、3,5-ジクロロ安息香酸などのカルボキシル基含有ジハロゲン化芳香族化合物、およびそれらの混合物を共重合モノマーとして用いることも好ましい態様の1つである、また、異なる2種以上のポリハロゲン化芳香族化合物を組み合わせて共重合体とすることも可能であるが、p-ジハロゲン化芳香族化合物を主要成分とすることが好ましい。
[Polyhalogenated aromatic compounds]
The polyhalogenated aromatic compound means a compound having two or more halogen atoms in one molecule. Specific examples include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, and hexa. Polyhalogenated aromatics such as chlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, 1-methoxy-2,5-dichlorobenzene. Group compounds are mentioned, preferably p-dichlorobenzene. Further, for the purpose of introducing a carboxyl group, a carboxyl group-containing dihalogenated aromatic such as 2,4-dichlorobenzoic acid, 2,5-dichlorobenzoic acid, 2,6-dichlorobenzoic acid, and 3,5-dichlorobenzoic acid. It is also one of the preferable embodiments to use the compound and a mixture thereof as the copolymerization monomer, and it is also possible to combine two or more different polyhalogenated aromatic compounds to form a copolymer. It is preferable to use a p-dihalogenated aromatic compound as a main component.
ポリハロゲン化芳香族化合物の使用量は、加工に適した粘度の(a)PPS樹脂を得る点から、スルフィド化剤1モル当たり0.9から2.0モル、好ましくは0.95から1.5モル、更に好ましくは1.005から1.2モルの範囲が例示できる。 The amount of the polyhalogenated aromatic compound used is 0.9 to 2.0 mol, preferably 0.95 to 1. The range of 5 mol, more preferably 1.005 to 1.2 mol, can be exemplified.
[スルフィド化剤]
スルフィド化剤としては、アルカリ金属硫化物、アルカリ金属水硫化物、および硫化水素が挙げられる。
[Sulfidating agent]
Sulfides include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
アルカリ金属硫化物の具体例としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。 Specific examples of the alkali metal sulfide include, for example, lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof, and sodium sulfide is preferably used. These alkali metal sulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides.
アルカリ金属水硫化物の具体例としては、例えば水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化ナトリウムが好ましく用いられる。これらのアルカリ金属水硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。 Specific examples of the alkali metal hydrosulfide include, for example, sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and a mixture of two or more of these, among which sodium hydrosulfide is used. It is preferably used. These alkali metal hydrosulfides can be used as hydrates or aqueous mixtures, or in the form of anhydrides.
また、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、アルカリ金属水硫化物とアルカリ金属水酸化物からアルカリ金属硫化物を調製し、これを重合槽に移して用いることができる。 Further, an alkali metal sulfide prepared in situ in the reaction system from the alkali metal hydrosulfide and the alkali metal hydroxide can also be used. Further, an alkali metal sulfide can be prepared from an alkali metal hydrosulfide and an alkali metal hydroxide, and the alkali metal sulfide can be transferred to a polymerization tank for use.
あるいは、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素からアルカリ金属硫化物を調製し、これを重合槽に移して用いることができる。 Alternatively, alkali metal sulfides prepared in situ in the reaction system from alkali metal hydroxides such as lithium hydroxide and sodium hydroxide and hydrogen sulfide can also be used. Further, an alkali metal sulfide can be prepared from alkali metal hydroxides such as lithium hydroxide and sodium hydroxide and hydrogen sulfide, and the alkali metal sulfide can be transferred to a polymerization tank for use.
仕込みスルフィド化剤の量は、脱水操作などにより重合反応開始前にスルフィド化剤の一部損失が生じる場合には、実際の仕込み量から当該損失分を差し引いた残存量を意味するものとする。 The amount of the charged sulfidating agent shall mean the residual amount obtained by subtracting the loss from the actual charging amount when a partial loss of the sulfidizing agent occurs before the start of the polymerization reaction due to a dehydration operation or the like.
なお、スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。アルカリ金属水酸化物の具体例としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物を好ましいものとして挙げることができ、アルカリ土類金属水酸化物の具体例としては、例えば水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、なかでも水酸化ナトリウムが好ましく用いられる。 It is also possible to use an alkali metal hydroxide and / or an alkaline earth metal hydroxide in combination with the sulfide agent. Specific examples of the alkali metal hydroxide include, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide and a mixture of two or more thereof, and alkaline earth can be mentioned as preferable. Specific examples of the metal hydroxide include calcium hydroxide, strontium hydroxide, barium hydroxide and the like, and sodium hydroxide is preferably used.
スルフィド化剤として、アルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいが、この使用量はアルカリ金属水硫化物1モルに対し0.95から1.20モル、好ましくは1.00から1.15モル、更に好ましくは1.005から1.100モルの範囲が例示できる。 When alkali metal hydrosulfide is used as the sulfidizing agent, it is particularly preferable to use alkali metal hydroxide at the same time, but the amount used is 0.95 to 1. per 1 mol of alkali metal hydrosulfide. The range of 20 mol, preferably 1.00 to 1.15 mol, more preferably 1.005 to 1.100 mol can be exemplified.
[重合溶媒]
重合溶媒としては有機極性溶媒を用いるのが好ましい。具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンなどのN-アルキルピロリドン類、N-メチル-ε-カプロラクタムなどのカプロラクタム類、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、ジメチルスルホン、テトラメチレンスルホキシドなどに代表されるアプロチック有機溶媒、およびこれらの混合物などが挙げられ、これらはいずれも反応の安定性が高いために好ましく使用される。これらのなかでも、特にN-メチル-2-ピロリドン(以下、NMPと略記することもある)が好ましく用いられる。
[Polymerization solvent]
It is preferable to use an organic polar solvent as the polymerization solvent. Specific examples include N-alkylpyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone, caprolactams such as N-methyl-ε-caprolactam, and 1,3-dimethyl-2-imidazolidi. Examples thereof include aprotic organic solvents typified by non, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphate triamide, dimethylsulfone, tetramethylenesulfoxide, and mixtures thereof, all of which are used. It is preferably used because of its high reaction stability. Among these, N-methyl-2-pyrrolidone (hereinafter, may be abbreviated as NMP) is particularly preferably used.
有機極性溶媒の使用量は、スルフィド化剤1モル当たり2.0モルから10モル、好ましくは2.25モルから6.0モル、より好ましくは2.5モルから5.5モルの範囲が選ばれる。 The amount of the organic polar solvent used is preferably in the range of 2.0 to 10 mol, preferably 2.25 mol to 6.0 mol, and more preferably 2.5 mol to 5.5 mol per mol of the sulfide agent. Will be.
[分子量調節剤]
生成する(a)PPS樹脂の末端を形成させるか、あるいは重合反応や分子量を調節するなどのために、モノハロゲン化合物(必ずしも芳香族化合物でなくともよい)を、上記ポリハロゲン化芳香族化合物と併用することができる。
[Molecular weight regulator]
(A) A monohalogen compound (not necessarily an aromatic compound) is combined with the polyhalogenated aromatic compound to form the terminal of the PPS resin to be produced, or to adjust the polymerization reaction or the molecular weight. Can be used together.
[重合助剤]
比較的高重合度の(a)PPS樹脂をより短時間で得るために重合助剤を用いることも好ましい態様の一つである。ここで重合助剤とは、得られる(a)PPS樹脂の粘度を増大させる作用を有する物質を意味する。このような重合助剤の具体例としては、例えば有機カルボン酸塩、水、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩およびアルカリ土類金属リン酸塩などが挙げられる。これらは単独であっても、また2種以上を同時に用いることもできる。なかでも、有機カルボン酸塩、水、およびアルカリ金属塩化物が好ましく、更に有機カルボン酸塩としてはアルカリ金属カルボン酸塩が、アルカリ金属塩化物としては塩化リチウムが好ましい。
[Polymerization aid]
It is also one of the preferable embodiments to use a polymerization aid in order to obtain the (a) PPS resin having a relatively high degree of polymerization in a shorter time. Here, the polymerization aid means a substance having an action of increasing the viscosity of the obtained (a) PPS resin. Specific examples of such polymerization aids include, for example, organic carboxylates, water, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates and alkaline soils. Examples include metal phosphates. These may be used alone or in combination of two or more at the same time. Of these, organic carboxylate, water, and alkali metal chloride are preferable, alkali metal carboxylate is preferable as the organic carboxylate, and lithium chloride is preferable as the alkali metal chloride.
上記アルカリ金属カルボン酸塩とは、一般式R(COOM)n(式中、Rは、炭素数1~20を有するアルキル基、シクロアルキル基、アリール基、アルキルアリール基またはアリールアルキル基である。Mは、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれるアルカリ金属である。nは1~3の整数である。)で表される化合物である。アルカリ金属カルボン酸塩は、水和物、無水物または水溶液としても用いることができる。アルカリ金属カルボン酸塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウム、およびそれらの混合物などを挙げることができる。 The alkali metal carboxylate is a general formula R (COMM) n (in the formula, R is an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group or an arylalkyl group having 1 to 20 carbon atoms. M is an alkali metal selected from lithium, sodium, potassium, rubidium and cesium. N is an integer of 1 to 3). Alkali metal carboxylates can also be used as hydrates, anhydrides or aqueous solutions. Specific examples of the alkali metal carboxylate include lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, sodium benzoate, sodium phenylacetate, potassium p-tolurate, and mixtures thereof. Can be mentioned.
アルカリ金属カルボン酸塩は、有機酸と、水酸化アルカリ金属、炭酸アルカリ金属塩および重炭酸アルカリ金属塩よりなる群から選ばれる一種以上の化合物とを、ほぼ等化学当量ずつ添加して反応させることにより形成させてもよい。上記アルカリ金属カルボン酸塩の中で、リチウム塩は反応系への溶解性が高く助剤効果が大きいが高価であり、カリウム、ルビジウムおよびセシウム塩は反応系への溶解性が不十分であると思われるため、安価で、重合系への適度な溶解性を有する酢酸ナトリウムが最も好ましく用いられる。 The alkali metal carboxylate is a reaction in which an organic acid and one or more compounds selected from the group consisting of alkali metal hydroxide, alkali metal carbonate and alkali metal bicarbonate are added in approximately equal chemical equivalents. May be formed by. Among the above alkali metal carboxylates, the lithium salt has high solubility in the reaction system and has a large auxiliary effect, but is expensive, and the potassium, rubidium and cesium salts have insufficient solubility in the reaction system. Therefore, sodium acetate, which is inexpensive and has an appropriate solubility in a polymerization system, is most preferably used.
これらアルカリ金属カルボン酸塩を重合助剤として用いる場合の使用量は、仕込みアルカリ金属硫化物1モルに対し、通常0.01モル~2モルの範囲であり、より高い重合度を得る意味においては0.1モル~0.6モルの範囲が好ましく、0.2モル~0.5モルの範囲がより好ましい。 When these alkali metal carboxylates are used as a polymerization aid, the amount used is usually in the range of 0.01 mol to 2 mol with respect to 1 mol of the charged alkali metal sulfide, and in the sense of obtaining a higher degree of polymerization. The range of 0.1 mol to 0.6 mol is preferable, and the range of 0.2 mol to 0.5 mol is more preferable.
また水を重合助剤として用いる場合の添加量は、仕込みアルカリ金属硫化物1モルに対し、通常0.3モル~15モルの範囲であり、より高い重合度を得る意味においては0.6モル~10モルの範囲が好ましく、1モル~5モルの範囲がより好ましい。 When water is used as a polymerization aid, the amount added is usually in the range of 0.3 mol to 15 mol with respect to 1 mol of the charged alkali metal sulfide, and 0.6 mol in the sense of obtaining a higher degree of polymerization. The range of ~ 10 mol is preferable, and the range of 1 mol ~ 5 mol is more preferable.
これら重合助剤は2種以上を併用することももちろん可能であり、例えばアルカリ金属カルボン酸塩と水を併用すると、それぞれより少量で高分子量化が可能となる。 Of course, two or more of these polymerization aids can be used in combination, and for example, when an alkali metal carboxylate and water are used in combination, it is possible to increase the molecular weight in a smaller amount of each.
これら重合助剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよいが、重合助剤としてアルカリ金属カルボン酸塩を用いる場合は前工程開始時或いは重合開始時に同時に添加することが、添加が容易である点からより好ましい。また水を重合助剤として用いる場合は、ポリハロゲン化芳香族化合物を仕込んだ後、重合反応途中で添加することが効果的である。 The timing of addition of these polymerization aids is not particularly specified, and may be added at any time of the pre-step, the start of polymerization, and the middle of polymerization, which will be described later, or may be added in a plurality of times. When an alkali metal carboxylate is used as the polymerization aid, it is more preferable to add it at the same time as the start of the previous step or the start of polymerization because it is easy to add. When water is used as a polymerization aid, it is effective to add the polyhalogenated aromatic compound in the middle of the polymerization reaction after charging it.
[重合安定剤]
重合反応系を安定化し、副反応を防止するために、重合安定剤を用いることもできる。重合安定剤は、重合反応系の安定化に寄与し、望ましくない副反応を抑制する。副反応の一つの目安としては、チオフェノールの生成が挙げられ、重合安定剤の添加によりチオフェノールの生成を抑えることができる。重合安定剤の具体例としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属水酸化物、およびアルカリ土類金属炭酸塩などの化合物が挙げられる。そのなかでも、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムなどのアルカリ金属水酸化物が好ましい。上述のアルカリ金属カルボン酸塩も重合安定剤として作用する。また、スルフィド化剤としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいことを前述したが、ここでスルフィド化剤に対して過剰となるアルカリ金属水酸化物も重合安定剤となり得る。
[Polymerization stabilizer]
Polymerization stabilizers can also be used to stabilize the polymerization reaction system and prevent side reactions. The polymerization stabilizer contributes to the stabilization of the polymerization reaction system and suppresses undesired side reactions. One guideline for side reactions is the production of thiophenols, and the addition of a polymerization stabilizer can suppress the production of thiophenols. Specific examples of the polymerization stabilizer include compounds such as alkali metal hydroxides, alkali metal carbonates, alkaline earth metal hydroxides, and alkaline earth metal carbonates. Among them, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide are preferable. The alkali metal carboxylate described above also acts as a polymerization stabilizer. Further, when an alkali metal hydrosulfide is used as the sulfidizing agent, it is particularly preferable to use the alkali metal hydroxide at the same time, but here, the alkali metal water which is excessive with respect to the sulfidizing agent is used. Oxides can also be polymerization stabilizers.
これら重合安定剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。重合安定剤は、仕込みアルカリ金属硫化物1モルに対して、通常0.02~0.2モル、好ましくは0.03~0.1モル、より好ましくは0.04~0.09モルの割合で使用することが好ましい。この割合が少ないと安定化効果が不十分であり、逆に多すぎても経済的に不利益であったり、ポリマー収率が低下したりする傾向となる。 These polymerization stabilizers can be used alone or in combination of two or more. The ratio of the polymerization stabilizer to 1 mol of the charged alkali metal sulfide is usually 0.02 to 0.2 mol, preferably 0.03 to 0.1 mol, and more preferably 0.04 to 0.09 mol. It is preferable to use in. If this ratio is small, the stabilizing effect is insufficient, and conversely, if it is too large, it tends to be economically disadvantageous or the polymer yield tends to decrease.
重合安定剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよいが、前工程開始時或いは重合開始時に同時に添加することが容易である点からより好ましい。 The timing of addition of the polymerization stabilizer is not particularly specified, and it may be added at any time of the pre-process, the start of polymerization, and the middle of polymerization, which will be described later, or it may be added in a plurality of times. It is more preferable because it is easy to add at the same time at the start of the process or the start of polymerization.
次に、本発明に用いる(a)PPS樹脂の好ましい製造方法について、前工程、重合反応工程、回収工程、および後処理工程と、順を追って具体的に説明するが、勿論この方法に限定されるものではない。 Next, a preferable method for producing the (a) PPS resin used in the present invention will be specifically described step by step in the order of a pre-step, a polymerization reaction step, a recovery step, and a post-treatment step, but of course, the method is limited to this method. It's not something.
[前工程]
(a)PPS樹脂の製造方法において、スルフィド化剤は通常水和物の形で使用されるが、ポリハロゲン化芳香族化合物を添加する前に、有機極性溶媒とスルフィド化剤を含む混合物を昇温し、過剰量の水を系外に除去することが好ましい。
[pre-process]
(A) In the method for producing a PPS resin, a sulfidizing agent is usually used in the form of a hydrate, but a mixture containing an organic polar solvent and a sulfidizing agent is promoted before adding a polyhalogenated aromatic compound. It is preferred to warm and remove excess water out of the system.
また、上述したように、スルフィド化剤として、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで、あるいは重合槽とは別の槽で調製されるスルフィド化剤も用いることができる。この方法には特に制限はないが、望ましくは不活性ガス雰囲気下、常温~150℃、好ましくは常温から100℃の温度範囲で、有機極性溶媒にアルカリ金属水硫化物とアルカリ金属水酸化物を加え、常圧または減圧下、少なくとも150℃以上、好ましくは180~260℃まで昇温し、水分を留去させる方法が挙げられる。この段階で重合助剤を加えてもよい。また、水分の留去を促進するために、トルエンなどを加えて反応を行ってもよい。 Further, as described above, as the sulfidizing agent, a sulfidizing agent prepared from alkali metal hydrosulfide and alkali metal hydroxide in situ in the reaction system or in a tank separate from the polymerization tank is also used. Can be done. Although this method is not particularly limited, it is desirable to use alkali metal hydrosulfide and alkali metal hydroxide as an organic polar solvent in a temperature range of normal temperature to 150 ° C., preferably normal temperature to 100 ° C. in an inert gas atmosphere. In addition, a method of distilling off water by raising the temperature to at least 150 ° C. or higher, preferably 180 to 260 ° C. under normal pressure or reduced pressure can be mentioned. A polymerization aid may be added at this stage. Further, in order to promote the distillation of water, toluene or the like may be added to carry out the reaction.
重合反応における、重合系内の水分量は、仕込みスルフィド化剤1モル当たり0.3~10.0モルであることが好ましい。ここで重合系内の水分量とは重合系に仕込まれた水分量から重合系外に除去された水分量を差し引いた量である。また、仕込まれる水は、水、水溶液、結晶水などのいずれの形態であってもよい。 The amount of water in the polymerization system in the polymerization reaction is preferably 0.3 to 10.0 mol per mol of the charged sulfidizing agent. Here, the water content in the polymerization system is the amount obtained by subtracting the water content removed from the outside of the polymerization system from the water content charged in the polymerization system. Further, the water to be charged may be in any form such as water, an aqueous solution, and water of crystallization.
[重合反応工程]
有機極性溶媒中でスルフィド化剤とポリハロゲン化芳香族化合物とを200℃以上290℃未満の温度範囲内で反応させることにより(a)PPS樹脂を製造する。
[Polymerization reaction step]
(A) PPS resin is produced by reacting a sulfidizing agent and a polyhalogenated aromatic compound in an organic polar solvent within a temperature range of 200 ° C. or higher and lower than 290 ° C.
重合反応工程を開始するに際しては、望ましくは不活性ガス雰囲気下、常温~240℃、好ましくは100℃~230℃の温度範囲で、有機極性溶媒とスルフィド化剤とポリハロゲン化芳香族化合物を混合する。この段階で重合助剤を加えてもよい。これらの原料の仕込み順序は、順不同であってもよく、同時であってもさしつかえない。 When starting the polymerization reaction step, an organic polar solvent, a sulfidizing agent and a polyhalogenated aromatic compound are mixed, preferably in an inert gas atmosphere at room temperature to 240 ° C., preferably 100 ° C. to 230 ° C. do. A polymerization aid may be added at this stage. The order of charging these raw materials may be random or simultaneous.
かかる混合物を通常200℃~290℃未満の範囲に昇温する。昇温速度に特に制限はないが、通常0.01~5℃/分の速度が選択され、0.1~3℃/分の範囲がより好ましい。 The temperature of such a mixture is usually raised to the range of 200 ° C. to less than 290 ° C. The rate of temperature rise is not particularly limited, but usually a rate of 0.01 to 5 ° C./min is selected, and a range of 0.1 to 3 ° C./min is more preferable.
一般に、最終的には250~290℃未満の温度まで昇温し、その温度で通常0.25~50時間、好ましくは0.5~20時間反応させる。 In general, the temperature is finally raised to a temperature of 250 to less than 290 ° C., and the reaction is carried out at that temperature for usually 0.25 to 50 hours, preferably 0.5 to 20 hours.
最終温度に到達させる前の段階で、例えば200℃~260℃で一定時間反応させた後、270℃~290℃未満に昇温する方法は、より高い重合度を得る上で有効である。この際、200℃~260℃での反応時間としては、通常0.25時間から20時間の範囲が選択され、好ましくは0.25時間~10時間の範囲が選ばれる。 A method of reacting at 200 ° C. to 260 ° C. for a certain period of time before reaching the final temperature and then raising the temperature to less than 270 ° C. to 290 ° C. is effective in obtaining a higher degree of polymerization. At this time, the reaction time at 200 ° C. to 260 ° C. is usually selected in the range of 0.25 hours to 20 hours, preferably in the range of 0.25 hours to 10 hours.
なお、より高重合度のポリマーを得るためには、複数段階で重合を行うことが有効である場合がある。複数段階で重合を行う際は、245℃における系内のポリハロゲン化芳香族化合物の転化率が、40モル%以上、好ましくは60モル%に達した時点であることが有効である。 In addition, in order to obtain a polymer having a higher degree of polymerization, it may be effective to carry out the polymerization in a plurality of steps. When the polymerization is carried out in a plurality of steps, it is effective that the conversion rate of the polyhalogenated aromatic compound in the system at 245 ° C. reaches 40 mol% or more, preferably 60 mol% or more.
なお、ポリハロゲン化芳香族化合物(ここではPHAと略記)の転化率は、以下の式で算出した値である。PHA残存量は、通常、ガスクロマトグラフ法によって求めることができる。 The conversion rate of the polyhalogenated aromatic compound (abbreviated as PHA here) is a value calculated by the following formula. The residual amount of PHA can usually be determined by gas chromatography.
(A)ポリハロゲン化芳香族化合物をアルカリ金属硫化物に対しモル比で過剰に添加した場合
転化率=〔PHA仕込み量(モル)-PHA残存量(モル)〕/〔PHA仕込み量(モル)-PHA過剰量(モル)〕。
(A) When the polyhalogenated aromatic compound is excessively added to the alkali metal sulfide in terms of molar ratio, conversion rate = [PHA charge amount (mol) -PHA residual amount (mol)] / [PHA charge amount (mol)) -PHA excess (mol)].
(B)上記(A)以外の場合
転化率=〔PHA仕込み量(モル)-PHA残存量(モル)〕/〔PHA仕込み量(モル)〕。
(B) In cases other than the above (A) Conversion rate = [PHA charge amount (mol) -PHA residual amount (mol)] / [PHA charge amount (mol)].
[回収工程]
(a)PPS樹脂の製造方法においては、重合終了後に、重合体、溶媒などを含む重合反応物から固形物を回収する。回収方法については、重合反応終了後、徐冷して粒子状のポリマーを回収する方法を採用することが必須である。この際の徐冷速度には特に制限は無いが、通常0.1℃/分~3℃/分程度である。徐冷工程の全工程において同一速度で徐冷する必要はなく、ポリマー粒子が結晶化析出するまでは0.1~1℃/分、その後1℃/分以上の速度で徐冷する方法などを採用してもよい。
[Recovery process]
(A) In the method for producing a PPS resin, a solid substance is recovered from a polymerization reaction product containing a polymer, a solvent and the like after the completion of polymerization. As for the recovery method, it is indispensable to adopt a method of recovering the particulate polymer by slowly cooling after the completion of the polymerization reaction. The slow cooling rate at this time is not particularly limited, but is usually about 0.1 ° C./min to 3 ° C./min. It is not necessary to slowly cool at the same rate in all the slow cooling steps, and a method of slowly cooling at a rate of 0.1 to 1 ° C / min until the polymer particles crystallize and precipitate, and then at a rate of 1 ° C / min or higher, etc. It may be adopted.
[後処理工程]
(a)PPS樹脂は、上記重合、回収工程を経て生成した後、酸処理、熱水処理、有機溶媒による洗浄、アルカリ金属やアルカリ土類金属処理を施されたものであってもよい。
[Post-treatment process]
(A) The PPS resin may be produced through the above polymerization and recovery steps, and then subjected to acid treatment, hot water treatment, washing with an organic solvent, and alkali metal or alkaline earth metal treatment.
酸処理を行う場合は次のとおりである。(a)PPS樹脂の酸処理に用いる酸は、(a)PPS樹脂を分解する作用を有しないものであれば特に制限はなく、酢酸、塩酸、硫酸、リン酸、珪酸、炭酸およびプロピル酸などが挙げられ、なかでも酢酸および塩酸がより好ましく用いられるが、硝酸のような(a)PPS樹脂を分解、劣化させるものは好ましくない。 When performing acid treatment, it is as follows. The acid used for the acid treatment of (a) PPS resin is not particularly limited as long as it does not have the action of decomposing (a) PPS resin, such as acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, silicic acid, carbonic acid and propyl acid. Of these, acetic acid and hydrochloric acid are more preferably used, but those that decompose and deteriorate (a) PPS resin such as nitric acid are not preferable.
酸処理の方法は、酸または酸の水溶液に(a)PPS樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。例えば、酢酸を用いる場合、pH4の水溶液を80~200℃に加熱した中にPPS樹脂粉末を浸漬し、30分間撹拌することにより十分な効果が得られる。処理後のpHは4以上、例えばpH4~8程度となってもよい。酸処理を施された(a)PPS樹脂は残留している酸または塩などを除去するため、水または温水で数回洗浄することが好ましい。洗浄に用いる水は、酸処理による(a)PPS樹脂の好ましい化学的変性の効果を損なわない意味で、蒸留水、脱イオン水であることが好ましい。
The acid treatment method includes (a) immersing the PPS resin in an acid or an aqueous solution of an acid, and if necessary, stirring or heating can be performed as appropriate. For example, when acetic acid is used, a sufficient effect can be obtained by immersing the PPS resin powder in an aqueous solution of
熱水処理を行う場合は次のとおりである。(a)PPS樹脂を熱水処理するにあたり、熱水の温度を100℃以上、より好ましくは120℃以上、更に好ましくは150℃以上、特に好ましくは170℃以上とすることが好ましい。100℃未満では(a)PPS樹脂の好ましい化学的変性の効果が小さいため好ましくない。 When performing hot water treatment, it is as follows. (A) When treating the PPS resin with hot water, the temperature of the hot water is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 150 ° C. or higher, and particularly preferably 170 ° C. or higher. Below 100 ° C., (a) the effect of preferable chemical modification of the PPS resin is small, which is not preferable.
熱水洗浄による(a)PPS樹脂の好ましい化学的変性の効果を発現するため、使用する水は蒸留水あるいは脱イオン水であることが好ましい。熱水処理の操作に特に制限は無く、所定量の水に所定量の(a)PPS樹脂を投入し、圧力容器内で加熱、撹拌する方法、連続的に熱水処理を施す方法などにより行われる。(a)PPS樹脂と水との割合は、水が多い方が好ましいが、通常、水1リットルに対し、(a)PPS樹脂200g以下の浴比が選ばれる。 The water used is preferably distilled water or deionized water in order to exhibit the effect of (a) preferable chemical modification of the PPS resin by hot water washing. There is no particular limitation on the operation of hot water treatment, and a method of adding a predetermined amount of (a) PPS resin to a predetermined amount of water, heating and stirring in a pressure vessel, a method of continuously performing hot water treatment, etc. Will be. The ratio of (a) PPS resin to water is preferably more than that of water, but usually, a bath ratio of (a) 200 g or less of PPS resin is selected with respect to 1 liter of water.
また、処理の雰囲気は、末端基の分解が好ましくないので、これを回避するため不活性雰囲気下とすることが望ましい。更に、この熱水処理操作を終えた(a)PPS樹脂は、残留している成分を除去するため温水で数回洗浄するのが好ましい。 Further, the atmosphere of the treatment is preferably an inert atmosphere in order to avoid the decomposition of the terminal group, which is not preferable. Further, the (a) PPS resin that has been subjected to this hot water treatment operation is preferably washed with warm water several times in order to remove residual components.
有機溶媒で洗浄する場合は次のとおりである。(a)PPS樹脂の洗浄に用いる有機溶媒は、(a)PPS樹脂を分解する作用などを有しないものであれば特に制限はなく、例えばN-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチルイミダゾリジノン、ヘキサメチルホスホラスアミド、ピペラジノン類などの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホン、スルホランなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、ジオキサン、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、パークロルエチレン、モノクロルエタン、ジクロルエタン、テトラクロルエタン、パークロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール・フェノール系溶媒およびベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などが挙げられる。これらの有機溶媒のうちでも、N-メチル-2-ピロリドン、アセトン、ジメチルホルムアミドおよびクロロホルムなどの使用が特に好ましい。また、これらの有機溶媒は、1種類または2種類以上の混合で使用される。 When cleaning with an organic solvent, it is as follows. The organic solvent used for cleaning the (a) PPS resin is not particularly limited as long as it does not have the action of decomposing the (a) PPS resin, for example, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, and the like. Nitrogen-containing polar solvents such as 1,3-dimethylimidazolidinone, hexamethylphosphorasamide, and piperazinones, sulfoxide-sulfone solvents such as dimethylsulfoxide, dimethylsulfone, and sulfolane, and ketones such as acetone, methylethylketone, diethylketone, and acetophenone. Solvents, ether solvents such as dimethyl ether, dipropyl ether, dioxane, tetrahydrofuran, chloroform, methylene chloride, trichloroethylene, ethylene dichloride, perchlorethylene, monochloroethane, dichloroethane, tetrachloroethane, perchlorethane, chlorbenzene, etc. Alcohol / phenol solvents such as halogen solvents, methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, phenol, cresol, polyethylene glycol, polypropylene glycol and aromatic hydrocarbon solvents such as benzene, toluene and xylene. Examples include solvents. Among these organic solvents, the use of N-methyl-2-pyrrolidone, acetone, dimethylformamide, chloroform and the like is particularly preferable. In addition, these organic solvents are used in one kind or a mixture of two or more kinds.
有機溶媒による洗浄の方法としては、有機溶媒中に(a)PPS樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。有機溶媒で(a)PPS樹脂を洗浄する際の洗浄温度については特に制限はなく、常温~300℃程度の任意の温度が選択できる。洗浄温度が高くなる程洗浄効率が高くなる傾向があるが、通常は常温~150℃の洗浄温度で十分効果が得られる。圧力容器中で、有機溶媒の沸点以上の温度で加圧下に洗浄することも可能である。また、洗浄時間についても特に制限はない。洗浄条件にもよるが、バッチ式洗浄の場合、通常5分間以上洗浄することにより十分な効果が得られる。また連続式で洗浄することも可能である。 As a method of cleaning with an organic solvent, there is a method such as (a) immersing the PPS resin in the organic solvent, and it is also possible to appropriately stir or heat as necessary. The cleaning temperature when (a) the PPS resin is washed with an organic solvent is not particularly limited, and any temperature of about room temperature to 300 ° C. can be selected. The higher the cleaning temperature, the higher the cleaning efficiency tends to be, but usually, a sufficient effect can be obtained at a cleaning temperature of room temperature to 150 ° C. It is also possible to wash under pressure in a pressure vessel at a temperature above the boiling point of the organic solvent. In addition, there is no particular limitation on the cleaning time. Although it depends on the cleaning conditions, in the case of batch type cleaning, a sufficient effect is usually obtained by washing for 5 minutes or more. It is also possible to wash continuously.
アルカリ金属、アルカリ土類金属処理する方法としては、上記前工程の前、前工程中、前工程後にアルカリ金属塩、アルカリ土類金属塩を添加する方法、重合工程前、重合工程中、重合工程後に重合釜内にアルカリ金属塩、アルカリ土類金属塩を添加する方法、あるいは上記洗浄工程の最初、中間、最後の段階でアルカリ金属塩、アルカリ土類金属塩を添加する方法などが挙げられる。中でももっとも容易な方法としては、有機溶剤洗浄や、温水または熱水洗浄で残留オリゴマーや残留塩を除いた後にアルカリ金属塩、アルカリ土類金属塩を添加する方法が挙げられる。アルカリ金属、アルカリ土類金属は、酢酸塩、水酸化物、炭酸塩などのアルカリ金属イオン、アルカリ土類金属イオンの形でPPS中に導入するのが好ましい。また過剰のアルカリ金属塩、アルカリ土類金属塩は温水洗浄などにより取り除く方が好ましい。上記アルカリ金属、アルカリ土類金属導入の際のアルカリ金属イオン、アルカリ土類金属イオン濃度としてはPPS1gに対して0.001mmol以上が好ましく、0.01mmol以上がより好ましい。温度としては、50℃以上が好ましく、75℃以上がより好ましく、90℃以上が特に好ましい。上限温度は特にないが、操作性の観点から通常280℃以下が好ましい。浴比(乾燥PPS重量に対する洗浄液重量)としては0.5以上が好ましく、3以上がより好ましく、5以上が更に好ましい。 As a method for treating alkali metal and alkaline earth metal, a method of adding an alkali metal salt and an alkaline earth metal salt before, during, and after the above-mentioned pre-step, before the polymerization step, during the polymerization step, and the polymerization step. Later, a method of adding an alkali metal salt or an alkaline earth metal salt into the polymerization kettle, or a method of adding an alkali metal salt or an alkaline earth metal salt at the first, middle, or last stages of the above-mentioned cleaning step can be mentioned. Among them, the simplest method includes organic solvent washing and a method of adding an alkali metal salt and an alkaline earth metal salt after removing residual oligomers and salts by washing with warm water or hot water. Alkaline metals and alkaline earth metals are preferably introduced into PPS in the form of alkali metal ions such as acetates, hydroxides and carbonates, and alkaline earth metal ions. Further, it is preferable to remove excess alkali metal salt and alkaline earth metal salt by washing with warm water or the like. The alkali metal ion and alkaline earth metal ion concentrations at the time of introducing the alkali metal and alkaline earth metal are preferably 0.001 mmol or more, more preferably 0.01 mmol or more with respect to 1 g of PPS. The temperature is preferably 50 ° C. or higher, more preferably 75 ° C. or higher, and particularly preferably 90 ° C. or higher. Although there is no particular upper limit temperature, it is usually preferably 280 ° C. or lower from the viewpoint of operability. The bath ratio (weight of the washing liquid with respect to the weight of the dried PPS) is preferably 0.5 or more, more preferably 3 or more, still more preferably 5 or more.
本発明においては、滞留安定性の優れたポリフェニレンスルフィド樹脂組成物を得る観点から、有機溶媒洗浄と80℃程度の温水または前記した熱水洗浄を数回繰り返すことにより残留オリゴマーや残留塩を除いた後、酸処理もしくはアルカリ金属塩、アルカリ土類金属塩で処理する方法が好ましく、特にアルカリ金属塩、アルカリ土類金属塩で処理する方法が更に好ましい。 In the present invention, from the viewpoint of obtaining a polyphenylene sulfide resin composition having excellent retention stability, residual oligomers and residual salts were removed by repeating organic solvent washing and washing with warm water at about 80 ° C. or the above-mentioned hot water washing several times. After that, a method of treating with an acid or an alkali metal salt or an alkaline earth metal salt is preferable, and a method of treating with an alkali metal salt or an alkaline earth metal salt is more preferable.
その他、(a)PPS樹脂は、重合終了後に酸素雰囲気下においての加熱および過酸化物などの架橋剤を添加しての加熱による熱酸化架橋処理により高分子量化して用いることも可能である。 In addition, (a) the PPS resin can be used by increasing the molecular weight by heating in an oxygen atmosphere after the completion of polymerization and by thermal oxidative cross-linking treatment by adding a cross-linking agent such as a peroxide.
熱酸化架橋による高分子量化を目的として乾式熱処理する場合には、その温度は160~260℃が好ましく、170~250℃の範囲がより好ましい。また、酸素濃度は5体積%以上、更には8体積%以上とすることが望ましい。酸素濃度の上限には特に制限はないが、50体積%程度が限界である。処理時間は、0.5~100時間が好ましく、1~50時間がより好ましく、2~25時間が更に好ましい。加熱処理の装置は通常の熱風乾燥機でもよいし、回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よく、しかもより均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。 In the case of dry heat treatment for the purpose of increasing the molecular weight by thermal oxidative crosslinking, the temperature is preferably 160 to 260 ° C, more preferably 170 to 250 ° C. Further, it is desirable that the oxygen concentration is 5% by volume or more, more preferably 8% by volume or more. The upper limit of the oxygen concentration is not particularly limited, but is limited to about 50% by volume. The treatment time is preferably 0.5 to 100 hours, more preferably 1 to 50 hours, still more preferably 2 to 25 hours. The heat treatment device may be a normal hot air dryer or a rotary type or a heating device with a stirring blade, but for efficient and more uniform treatment, heating with a rotary type or a stirring blade. It is more preferable to use the device.
また、熱酸化架橋を抑制し、揮発分除去を目的として乾式熱処理を行うことも可能である。その温度は130~250℃が好ましく、160~250℃の範囲がより好ましい。また、この場合の酸素濃度は5体積%未満、更には2体積%未満とすることが望ましい。処理時間は、0.5~50時間が好ましく、1~20時間がより好ましく、1~10時間が更に好ましい。加熱処理の装置は通常の熱風乾燥機でもよいし、回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よく、しかもより均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。 It is also possible to perform dry heat treatment for the purpose of suppressing thermal oxidative cross-linking and removing volatile components. The temperature is preferably 130 to 250 ° C, more preferably 160 to 250 ° C. Further, the oxygen concentration in this case is preferably less than 5% by volume, more preferably less than 2% by volume. The treatment time is preferably 0.5 to 50 hours, more preferably 1 to 20 hours, still more preferably 1 to 10 hours. The heat treatment device may be a normal hot air dryer or a rotary type or a heating device with a stirring blade, but for efficient and more uniform treatment, heating with a rotary type or a stirring blade. It is more preferable to use the device.
但し、本発明の(a)PPS樹脂は、優れた靱性を発現する観点から、熱酸化架橋処理による高分子量化を行わない実質的に直鎖型のPPS樹脂であるか、軽度に酸化架橋処理した半架橋型のPPS樹脂であることが好ましく、実質的に直鎖型のPPS樹脂がより好ましい。また本発明では、溶融粘度の異なる複数の(a)PPS樹脂を混合して使用してもよい。 However, from the viewpoint of exhibiting excellent toughness, the (a) PPS resin of the present invention is a substantially linear PPS resin that is not polymerized by thermal oxidative crosslinking treatment, or is lightly oxidatively crosslinked. It is preferably a semi-crosslinked PPS resin, and a substantially linear PPS resin is more preferable. Further, in the present invention, a plurality of (a) PPS resins having different melt viscosities may be mixed and used.
本発明の(a)PPS樹脂は、(b)有機シラン化合物との反応性向上の観点から、カルボキシル基を25~400μmol/g含むことも好ましい態様として挙げられる。カルボキシル基含有量は25~250μmol/gが更に好ましく、30~150μmol/gが更に好ましく、30~80μmol/gが更に好ましい。PPS樹脂のカルボキシル基量が25μmol/gを下回る場合は、(b)有機シラン化合物との反応性が低下する傾向にあるため好ましくない。一方、PPS樹脂のカルボキシル基含有量が400μmol/gを超える場合は、加工工程における揮発成分量が増加するため好ましくない。 From the viewpoint of improving the reactivity of the (a) PPS resin of the present invention with the (b) organic silane compound, it is also preferable that the PPS resin contains 25 to 400 μmol / g of a carboxyl group. The carboxyl group content is more preferably 25 to 250 μmol / g, further preferably 30 to 150 μmol / g, still more preferably 30 to 80 μmol / g. When the amount of the carboxyl group of the PPS resin is less than 25 μmol / g, (b) the reactivity with the organic silane compound tends to decrease, which is not preferable. On the other hand, when the carboxyl group content of the PPS resin exceeds 400 μmol / g, the amount of volatile components in the processing step increases, which is not preferable.
(a)PPS樹脂中に、カルボキシル基を導入する方法としては、カルボキシル基を含むポリハロゲン化芳香族化合物を共重合する方法や、カルボキシル基を含む化合物、例えば無水マレイン酸、ソルビン酸などを添加して、(a)PPS樹脂と溶融混練しながら反応せしめることにより導入する方法などを例示できる。 (A) As a method for introducing a carboxyl group into the PPS resin, a method for copolymerizing a polyhalogenated aromatic compound containing a carboxyl group or adding a compound containing a carboxyl group such as maleic anhydride or sorbic acid is added. Then, (a) a method of introducing by reacting with the PPS resin while melt-kneading can be exemplified.
(2)(b)有機シラン化合物
本発明の電池用絶縁部材を構成するPPS樹脂組成物には、(b)有機シラン化合物を配合することが必須である。有機シラン化合物の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルエチルジメトキシシラン、γ-イソシアネートプロピルエチルジエトキシシラン、γ-イソシアネートプロピルトリクロロシランなどのイソシアネート基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物などの有機シラン化合物を挙げることができ、中でも反応性の観点から、エポキシ基含有アルコキシシラン化合物、アミノ基含有アルコキシシラン化合物、イソシアネート含有アルコキシシラン化合物が好ましく、イソシアネート基含有アルコキシシラン化合物が特に好ましい。反応性に優れることは、フッ化水素酸処理後の優れた靭性の発現に繋がることを意味する。
(2) (b) Organic Silane Compound It is essential to add (b) an organic silane compound to the PPS resin composition constituting the insulating member for a battery of the present invention. Specific examples of the organic silane compound include epoxy group-containing alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Compounds, mercapto group-containing alkoxysilane compounds such as γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ- (2-ureidoethyl) Ureid group-containing alkoxysilane compounds such as aminopropyltrimethoxysilane, γ-isocyanapropyltriethoxysilane, γ-isocyanapropyltrimethoxysilane, γ-isocyanapropylmethyldimethoxysilane, γ-isoxapropylmethyldiethoxysilane, γ-isocyanate. Isocyanate group-containing alkoxysilane compounds such as propylethyldimethoxysilane, γ-isocyanapropylethyldiethoxysilane, γ-isocyanapropyltrichlorosilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl). ) Organic silane compounds such as amino group-containing alkoxysilane compounds such as aminopropyltrimethoxysilane and γ-aminopropyltrimethoxysilane can be mentioned. Among them, from the viewpoint of reactivity, epoxy group-containing alkoxysilane compounds and amino group-containing compounds can be mentioned. An alkoxysilane compound and an isocyanate-containing alkoxysilane compound are preferable, and an isocyanate group-containing alkoxysilane compound is particularly preferable. Excellent reactivity means that it leads to the development of excellent toughness after hydrofluoric acid treatment.
かかる有機シラン化合物の添加量は、PPS樹脂組成物の合計100重量部に対して、0.2~5重量部が好ましく、特に0.2~3重量部が好ましい。更に0.2~2重量部が好ましい。有機シラン化合物の添加量を0.2重量部以上とすると、フッ化水素酸処理後の優れた靭性が十分に得られる上に、成形加工時のバリの発生や金型汚れの発生を抑制できる。有機シラン化合物の添加量を5重量部以下とすることで、靭性向上効果が得られながらも、ガス発生量を抑制できるため金型汚れが発生せず、溶融粘度の著しい増加も抑制できるため薄肉形状の電池用絶縁部材であっても、容易に射出成形が可能であり、好ましい。 The amount of the organic silane compound added is preferably 0.2 to 5 parts by weight, particularly preferably 0.2 to 3 parts by weight, based on 100 parts by weight of the total PPS resin composition. Further, 0.2 to 2 parts by weight is preferable. When the amount of the organic silane compound added is 0.2 parts by weight or more, excellent toughness after hydrofluoric acid treatment can be sufficiently obtained, and burrs and mold stains during molding can be suppressed. .. By adding the amount of the organic silane compound to 5 parts by weight or less, the effect of improving toughness can be obtained, but the amount of gas generated can be suppressed, so that mold stains do not occur and the remarkable increase in melt viscosity can be suppressed, so that the thickness is thin. Even an insulating member for a battery having a shape can be easily injection-molded, which is preferable.
(3)(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体
本発明の電池用絶縁部材を構成するPPS樹脂組成物には、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体の含有量が1重量部未満とすることが好ましい。
(3) (c) Polyolefin monomer or polyolefin copolymer containing 80 wt% or more of an olefin component The PPS resin composition constituting the insulating member for a battery of the present invention contains (c) a polyolefin containing 80 wt% or more of an olefin component. The content of the monomer or polyolefin copolymer is preferably less than 1 part by weight.
例えば、ポリオレフィン単量体としてポリエチレンを配合すること、射出成形時の離型性が向上することで成形サイクルの短縮に繋がり、成形加工性の向上が期待できる。一方で、配合量を1重量部以上とした場合には、成形加工時のガスの発生や金型汚れに繋がるため好ましくない。ポリオレフィン単量体としては、ポリエチレンに加えて、ポリプロピレン、ポリブチレン、ポリイソブチレン、ポリペンテン、ポリメチルペンテンなどのアルケンの重合物が例示できる。 For example, by blending polyethylene as a polyolefin monomer and improving the mold releasability during injection molding, the molding cycle can be shortened, and the molding processability can be expected to be improved. On the other hand, when the blending amount is 1 part by weight or more, it is not preferable because it leads to the generation of gas during the molding process and the stain on the mold. Examples of the polyolefin monomer include, in addition to polyethylene, polymers of alkene such as polypropylene, polybutylene, polyisobutylene, polypentene, and polymethylpentene.
また、一般に(a)PPS樹脂の靭性を改良する目的で、ポリオレフィン共重合体の一種である熱可塑性エラストマーを配合することが行われている。しかし、本発明においては、ポリオレフィン共重合体の配合を極力避けることが、良好な耐かしめ性や、ウェルド部での靱性、成形加工性を得る上で好ましい。ポリオレフィン共重合体は、PPS樹脂からなる海相に対し、島成分として存在するが、島成分となるPPS樹脂以外の樹脂成分の存在がウェルド部での密着性低下に寄与し、靱性の低下を招くと考えられるため、(c)成分の配合量は上記範囲にすることが好ましい。 Further, in general, (a) a thermoplastic elastomer, which is a kind of polyolefin copolymer, is blended for the purpose of improving the toughness of the PPS resin. However, in the present invention, it is preferable to avoid blending the polyolefin copolymer as much as possible in order to obtain good caulking resistance, toughness at the weld portion, and molding processability. The polyolefin copolymer exists as an island component in the sea phase made of PPS resin, but the presence of a resin component other than the PPS resin, which is an island component, contributes to a decrease in adhesion at the weld portion and a decrease in toughness. It is preferable that the blending amount of the component (c) is in the above range because it is considered to be inviting.
かかるポリオレフィン共重合体としては、エチレン-ブテン共重合体、エチレン-プロピレン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-グリシジルメタアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-スチレン共重合体、エチレン-アクリル酸メチル-グリシジルメタアクリレート共重合体、エチレン-アクリル酸エチル-グリシジルメタアクリレート共重合体、エチレン-酢酸ビニル-グリシジルメタアクリレート共重合体等が例示できる。 Examples of such polyolefin copolymers include ethylene-butene copolymers, ethylene-propylene copolymers, ethylene-hexene copolymers, ethylene-octene copolymers, ethylene-vinyl acetate copolymers, and ethylene-methyl acrylate copolymers. Polymers, ethylene-ethyl acrylate copolymers, ethylene-glycidyl methacrylate copolymers, ethylene-butyl acrylate copolymers, ethylene-methyl acrylate copolymers, ethylene-styrene copolymers, ethylene-methyl acrylate- Examples thereof include a glycidyl methacrylate copolymer, an ethylene-ethyl acrylate-glycidyl methacrylate copolymer, and an ethylene-vinyl acetate-glycidyl methacrylate copolymer.
本発明で用いられるポリオレフィン共重合体は、(a)PPS樹脂との分子間の結合を形成する観点から反応性官能基を含有することも好ましい態様として挙げられる。 It is also preferable that the polyolefin copolymer used in the present invention contains a reactive functional group from the viewpoint of (a) forming an intermolecular bond with the PPS resin.
ポリオレフィン共重合体が有する反応性官能基は特に限定されるものではなく、具体的にはビニル基、エポキシ基、カルボキシル基、酸無水物基、エステル基、アルデヒド基、カルボニルジオキシ基、ハロホルミル基、アルコキシカルボニル基、アミノ基、水酸基、スチリル基、メタクリル基、アクリル基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基、加水分解性シリル基などを例示できるが、中でも水酸基、エポキシ基、カルボキシル基、アミノ基、酸無水物基、イソシアネート基が好ましく、これら反応性官能基が2種以上含まれていてもよい。 The reactive functional group of the polyolefin copolymer is not particularly limited, and specifically, a vinyl group, an epoxy group, a carboxyl group, an acid anhydride group, an ester group, an aldehyde group, a carbonyldioxy group and a haloformyl group. , Alkoxycarbonyl group, amino group, hydroxyl group, styryl group, methacrylic group, acrylic group, ureido group, mercapto group, sulfide group, isocyanate group, hydrolyzable silyl group and the like can be exemplified. Among them, hydroxyl group, epoxy group and carboxyl group. , Amino group, acid anhydride group and isocyanate group are preferable, and two or more of these reactive functional groups may be contained.
本発明において、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体の含有量は、(a)ポリフェニレンスルフィド樹脂100重量部に対して、1重量部未満であるであることが好ましく、0.8重量部未満であることがより好ましく、0.5重量部未満であることが更に好ましい。またポリオレフィン共重合体を配合しないことが特に好ましい。ポリオレフィン共重合体の含有量が1重量部を超えると、PPS樹脂組成物の加熱溶融時の揮発性成分が増加し、耐電解液性や成形加工性の観点で好ましくない。 In the present invention, the content of (c) the polyolefin monomer or polyolefin copolymer containing 80 wt% or more of the olefin component is less than 1 part by weight with respect to 100 parts by weight of (a) the polyphenylene sulfide resin. Is more preferable, less than 0.8 parts by weight is more preferable, and less than 0.5 parts by weight is further preferable. Further, it is particularly preferable not to blend the polyolefin copolymer. When the content of the polyolefin copolymer exceeds 1 part by weight, the volatile components of the PPS resin composition at the time of heating and melting increase, which is not preferable from the viewpoint of electrolyte resistance and molding processability.
(4)(d)その他の添加剤
更に、本発明の電池用絶縁部材を構成するPPS樹脂組成物には本発明の効果を損なわない範囲において、(a)PPS樹脂、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体以外の樹脂を添加配合してもよい。
(4) (d) Other Additives Further, the PPS resin composition constituting the insulating member for a battery of the present invention contains (a) a PPS resin and (c) an olefin component as long as the effects of the present invention are not impaired. A resin other than the polyolefin monomer or the polyolefin copolymer containing 80 wt% or more may be added and blended.
その具体例としては、ポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリケトン、液晶ポリマー、ポリエーテルケトン、ポリエーテルエーテルケトン、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE))が例示できるが、これらに限定されるものではない。 かかる樹脂の添加量は、PPS樹脂組成物の合計100重量部に対して、15重量部未満が好ましく、10重量部未満がより好ましく、特に5重量部未満が好ましい。島成分となるPPS樹脂以外の樹脂成分の存在がウェルド部での密着性低下に寄与し、靱性の低下を招くと考えられるため、その他の樹脂の配合量は上記範囲にすることが好ましい。 Specific examples thereof include polyamide, polybutylene terephthalate, polyethylene terephthalate, polyketone, liquid crystal polymer, polyether ketone, polyether ether ketone, fluororesin (polytetrafluoroethylene (PTFE), and ethylene-tetrafluoroethylene copolymer (ETFE). ), Tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene-hexafluoropropylene copolymer, polyvinylidene fluoride ( PVDF), polychlorotrifluoroethylene (PCTFE)) can be exemplified, but the present invention is not limited thereto. The amount of the resin added is preferably less than 15 parts by weight, more preferably less than 10 parts by weight, and particularly preferably less than 5 parts by weight, based on 100 parts by weight of the total PPS resin composition. Since it is considered that the presence of a resin component other than the PPS resin, which is an island component, contributes to a decrease in adhesion at the welded portion and causes a decrease in toughness, it is preferable that the blending amount of the other resin is within the above range.
本発明の電池用絶縁部材を構成するPPS樹脂組成物には、(a)PPS樹脂100重量部に対して、リンのオキソ酸金属塩の配合量が0.01重量部未満であることが好ましく、0.005重量部未満であることがより好ましい。リンのオキソ酸金属塩の配合により、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体の酸化分解を抑制し、成形加工時の金型汚れを抑制することできる一方で、配合量が0.01重量部以上であるとPPS樹脂組成物の溶融粘度が著しく増加するため、薄肉形状である電池用絶縁部材の成形加工においては好ましくないためである。リンのオキソ酸金属塩を含まないことが最も好ましい。 In the PPS resin composition constituting the insulating member for a battery of the present invention, it is preferable that the amount of the oxoacid metal salt of phosphorus is less than 0.01 part by weight with respect to 100 parts by weight of (a) PPS resin. , More preferably less than 0.005 parts by weight. By blending the oxo acid metal salt of phosphorus, (c) the oxidative decomposition of the polyolefin monomer or polyolefin copolymer containing 80 wt% or more of the olefin component can be suppressed, and the mold stain during the molding process can be suppressed. This is because if the blending amount is 0.01 parts by weight or more, the melt viscosity of the PPS resin composition increases remarkably, which is not preferable in the molding process of the insulating member for a battery having a thin wall shape. Most preferably, it does not contain the oxoacid metal salt of phosphorus.
リンのオキソ酸金属塩としては次亜リン酸、亜リン酸、リン酸、ホスフィン酸、ホスホン酸、二リン酸、三リン酸が挙げられる。具体的には次亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カルシウム、ホスフィン酸カリウム、ホスフィン酸ナトリウム、ホスフィン酸カルシウム、ホスフィン酸アルミニウム、ジエチルホスフィン酸アルミニウム、ホスフィン酸亜鉛、ホスフィン酸マグネシウムなどが挙げられる。 Examples of the oxo acid metal salt of phosphorus include hypophosphorous acid, phophosphorous acid, phosphoric acid, phosphinic acid, phosphonic acid, diphosphate and triphosphate. Specifically, potassium hypophosphite, sodium hypophosphite, calcium hypophosphite, potassium phosphinate, sodium phosphinate, calcium phosphinate, aluminum phosphinate, aluminum diethylphosphinate, zinc phosphinate, magnesium phosphite, etc. Can be mentioned.
また、改質を目的として、以下のような化合物の添加が可能である。ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン系化合物などの可塑剤、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重縮合物、シリコーン系化合物などの離型剤、その他、水、滑剤、紫外線防止剤、着色防止剤、着色剤、発泡剤などの通常の添加剤を配合することができる。上記化合物は何れも組成物全体の10重量部を超えると本発明のPPS樹脂組成物本来の特性が損なわれるため好ましくなく、5重量部以下、更に好ましくは1重量部以下の添加がよい。 Further, the following compounds can be added for the purpose of modification. Polyalkylene oxide oligoma compounds, thioether compounds, ester compounds, organic phosphorus compounds and other plasticizers, organic phosphorus compounds, polyether ether ketones and other crystal nucleating agents, montanic acid waxes, lithium stearate, aluminum stearate Metal soaps such as ethylenediamine / stearic acid / sebacic acid polycondensate, mold release agents such as silicone compounds, and other usual additives such as water, lubricants, UV inhibitors, anticolorants, colorants, foaming agents, etc. Can be compounded. If any of the above compounds exceeds 10 parts by weight of the entire composition, the original characteristics of the PPS resin composition of the present invention are impaired, so that it is not preferable, and it is preferable to add 5 parts by weight or less, more preferably 1 part by weight or less.
また、本発明においては、各樹脂間の相溶性を高める目的で相溶化剤を併用することが可能である。具体的には、エポキシ樹脂を例示できる。エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化エポキシ樹脂、ビフェニル骨格やナフタレン骨格等を有する特殊骨格2官能エポキシ樹脂、クレゾールノボラック型やトリスフェノールメタン型、ジシクロペンタジエン型等の多官能エポキシ樹脂などに代表されるグリシジルエーテル型エポキシ樹脂、芳香族アミン型やアミノフェノール型等に代表されるグリシジルアミン型エポキシ樹脂、ヒドロフタル酸型やダイマー酸型に代表されるグリシジルエステル型エポキシ樹脂を挙げることができる。 Further, in the present invention, a compatibilizer can be used in combination for the purpose of enhancing the compatibility between the resins. Specifically, an epoxy resin can be exemplified. Specific examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated epoxy resin, special skeleton bifunctional epoxy resin having a biphenyl skeleton, naphthalene skeleton, etc., cresol novolak type, trisphenol methane type, and di. Glycidyl ether type epoxy resin typified by polyfunctional epoxy resin such as cyclopentadiene type, glycidylamine type epoxy resin typified by aromatic amine type and aminophenol type, and typified by hydrophthalic acid type and dimer acid type. A glycidyl ester type epoxy resin can be mentioned.
かかるエポキシ樹脂の添加量は、PPS樹脂組成物の合計100重量部に対して、0.1~5重量部が好ましく、特に0.2~3重量部が好ましい。 The amount of the epoxy resin added is preferably 0.1 to 5 parts by weight, particularly preferably 0.2 to 3 parts by weight, based on 100 parts by weight of the total PPS resin composition.
本発明の電池用絶縁部材を構成するPPS樹脂組成物には、必須成分ではないが、本発明の効果を損なわない範囲で無機フィラーを配合して使用することも可能である。かかる無機フィラーの具体例としてはガラス繊維、炭素繊維、カーボンナノチューブ、カーボンナノホーン、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカー、ワラステナイトウィスカー、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、あるいはフラーレン、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、シリカ、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、窒化ホウ素、炭化珪素、カーボンブラックおよびシリカ、黒鉛などの非繊維状充填材が用いられ、なかでもガラス繊維、シリカ、炭酸カルシウムが好ましく、更に炭酸カルシウムやシリカが、防食材、滑材の効果の点から特に好ましい。またこれらの無機フィラーは中空であってもよく、更に2種類以上併用することも可能である。また、これらの無機フィラーをイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用してもよい。中でも炭酸カルシウムやシリカ、カーボンブラックが、防食材、滑材としての観点から好ましい。 Although the PPS resin composition constituting the insulating member for a battery of the present invention is not an essential component, it is also possible to blend and use an inorganic filler as long as the effect of the present invention is not impaired. Specific examples of such inorganic fillers include glass fibers, carbon fibers, carbon nanotubes, carbon nanohorns, potassium titanate whiskers, zinc oxide whiskers, calcium carbonate whiskers, wallastenite whiskers, aluminum borate whiskers, aramid fibers, alumina fibers, and silicon carbide fibers. , Ceramic fiber, asbestos fiber, stone wool fiber, metal fiber and other fibrous fillers, or fullerene, talc, wallastenite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, silica, bentonite, asbestos, alumina. Silates such as silicates, silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide, metal compounds such as iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, and water. Hydroxide such as calcium oxide, magnesium hydroxide, aluminum hydroxide, glass beads, glass flakes, glass powder, ceramic beads, boron nitride, silicon carbide, carbon black and silica, non-fibrous fillers such as graphite are used. Of these, glass fiber, silica, and calcium carbonate are preferable, and calcium carbonate and silica are particularly preferable from the viewpoint of the effects of food-proofing materials and lubricants. Further, these inorganic fillers may be hollow, and two or more kinds thereof can be used in combination. Further, these inorganic fillers may be pretreated with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound and an epoxy compound before use. Of these, calcium carbonate, silica, and carbon black are preferable from the viewpoint of preventing foodstuffs and lubricants.
かかる無機フィラーの配合量は、PPS樹脂組成物の合計100重量部に対して、30重量部未満の範囲が選択され、10重量部未満の範囲が好ましく、5重量部未満の範囲がより好ましく、1重量部以下の範囲が更に好ましい。下限は特に無いが0.0001重量部以上が好ましい。無機フィラーの配合は材料の強度向上に有効である反面、30重量部を超えるような配合は靱性の低下をもたらすため、好ましくない。 The blending amount of the inorganic filler is selected in the range of less than 30 parts by weight, preferably less than 10 parts by weight, more preferably less than 5 parts by weight, based on 100 parts by weight of the total PPS resin composition. A range of 1 part by weight or less is more preferable. There is no particular lower limit, but 0.0001 parts by weight or more is preferable. The blending of the inorganic filler is effective for improving the strength of the material, but the blending of more than 30 parts by weight causes a decrease in toughness, which is not preferable.
(5)樹脂組成物の製造方法
本発明の電池用絶縁部材を構成するPPS樹脂組成物を製造する方法としては、溶融状態での製造や溶液状態での製造等が使用できるが、簡便さの観点から、溶融状態での製造が好ましく用いられる。溶融状態での製造については、押出機による溶融混練や、ニーダーによる溶融混練等が使用できるが、生産性の観点から、連続的に製造可能な押出機による溶融混練が好ましく用いられる。押出機による溶融混練については、単軸押出機、二軸押出機、四軸押出機等の多軸押出機、二軸単軸複合押出機等の押出機を少なくとも1台使用できるが、混練性、反応性、生産性向上の点から、二軸押出機、四軸押出機等の多軸押出機が好ましく使用でき、二軸押出機による溶融混練が最も好ましい。
(5) Method for Producing Resin Composition As a method for producing the PPS resin composition constituting the insulating member for a battery of the present invention, production in a molten state, production in a solution state, or the like can be used, but it is simple. From the viewpoint, production in a molten state is preferably used. For production in the molten state, melt-kneading by an extruder, melt-kneading by a kneader, or the like can be used, but from the viewpoint of productivity, melt-kneading by an extruder capable of continuously producing is preferably used. For melt kneading with an extruder, at least one extruder such as a single-screw extruder, a twin-screw extruder, a multi-screw extruder such as a four-screw extruder, or a twin-screw single-screw compound extruder can be used, but kneading property is possible. From the viewpoint of improving reactivity and productivity, a multi-screw extruder such as a twin-screw extruder or a four-screw extruder can be preferably used, and melt-kneading by the twin-screw extruder is most preferable.
溶融混練する更に具体的な方法としては、必ずしもこれに限定されるものでは無いが、L/D(L:スクリュー長さ、D:スクリュー直径)が10以上、好ましくは20以上であり、ニーディング部を2箇所以上、好ましくは3箇所以上有する二軸押出機を使用することが好ましい。L/Dの上限については特に制限しないが、60以下が経済性の観点から好ましい。また、ニーディング部の数の上限についても特に制限しないが、生産性の観点から10箇所以下であることが好ましい。スクリュー全長に対するニーディング部の割合は、15%以上が好ましく、20%以上がより好ましく、30%以上が更に好ましい。スクリュー全長に対するニーディング部の割合が15%を下回る場合は、混練力が劣るため、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体の数平均分散径が粗大化し、所望の物性も発現し難い。一方、スクリュー全長に対するニーディング部の割合の上限については、混練時の過剰な剪断発熱の発生による樹脂の劣化を防ぐ観点から、70%以下が好ましい。 A more specific method for melt-kneading is not necessarily limited to this, but the L / D (L: screw length, D: screw diameter) is 10 or more, preferably 20 or more, and is kneading. It is preferable to use a twin-screw extruder having two or more parts, preferably three or more parts. The upper limit of L / D is not particularly limited, but 60 or less is preferable from the viewpoint of economy. Further, the upper limit of the number of kneading portions is not particularly limited, but it is preferably 10 or less from the viewpoint of productivity. The ratio of the kneading portion to the total length of the screw is preferably 15% or more, more preferably 20% or more, still more preferably 30% or more. When the ratio of the kneading portion to the total length of the screw is less than 15%, the kneading power is inferior, so that (c) the number average dispersion diameter of the polyolefin monomer or polyolefin copolymer containing 80 wt% or more of the olefin component becomes coarse. It is difficult to develop desired physical properties. On the other hand, the upper limit of the ratio of the kneading portion to the total length of the screw is preferably 70% or less from the viewpoint of preventing deterioration of the resin due to the generation of excessive shearing heat generation during kneading.
スクリュー回転数については150~1000回転/分、好ましくは300~1000回転/分、より好ましくは350~800回転/分の条件で混練する方法が好ましい。スクリュー回転数が150回転/分を上回る場合は、混練力が十分であるため、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体の数平均分散径が微細化し、所望の靭性の発現に繋がる。(b)有機シラン化合物を添加した場合も反応が十分に起こるため、所望の靭性、金型汚れ性の発現に繋がる。スクリュー回転数が1000回転/分を上回る場合は、混練時の過剰な剪断発熱による樹脂や添加剤の劣化が発生し、靭性の低下や金型汚れ性の低下、溶融粘度の低下によるバリの発生などの成形加工性の低下にも繋がるため好ましくない。また、この範囲内でスクリュー回転数を大きく設定することで、靭性を維持しながら溶融粘度を小さくすることができるため、薄肉形状である電池用絶縁部材の射出成形時の流動性が向上し、成形加工性の観点で好ましい傾向である。 As for the screw rotation speed, a method of kneading under the conditions of 150 to 1000 rotations / minute, preferably 300 to 1000 rotations / minute, and more preferably 350 to 800 rotations / minute is preferable. When the screw rotation speed exceeds 150 rotations / minute, the kneading force is sufficient, so that (c) the number average dispersion diameter of the polyolefin monomer or polyolefin copolymer containing 80 wt% or more of the olefin component becomes finer, which is desired. It leads to the development of toughness. (B) Since the reaction occurs sufficiently even when the organic silane compound is added, it leads to the development of desired toughness and mold stainability. When the screw rotation speed exceeds 1000 rpm, deterioration of the resin and additives occurs due to excessive shear heat generation during kneading, resulting in deterioration of toughness, mold stainability, and burrs due to a decrease in melt viscosity. It is not preferable because it leads to deterioration of molding processability. Further, by setting a large screw rotation speed within this range, the melt viscosity can be reduced while maintaining the toughness, so that the fluidity of the thin-walled insulating member for a battery during injection molding is improved. This is a preferable tendency from the viewpoint of moldability.
好ましいシリンダー温度(℃)の範囲は、(a)PPS樹脂の融点である250~280℃に対して、+5~100℃の温度範囲が望ましく、具体的には280~400℃の範囲であり、280~360℃の範囲がより好ましく、280~330℃の範囲が更に好ましい。 The preferred cylinder temperature (° C.) range is (a) a temperature range of + 5 to 100 ° C., more preferably a range of 280 to 400 ° C., relative to the melting point of 250 to 280 ° C. of the PPS resin. The range of 280 to 360 ° C. is more preferable, and the range of 280 to 330 ° C. is even more preferable.
溶融混練する際の原料の混合順序については特に制限されるものではないが、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練し、これと更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後、2軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。 The mixing order of the raw materials at the time of melt-kneading is not particularly limited, but a method of melting and kneading all the raw materials by the above method after mixing, and a method of melting and kneading some of the raw materials by the above method after mixing are performed. Either this and the remaining raw materials are blended and melt-kneaded, or some of the raw materials are blended and then the remaining raw materials are mixed using a side feeder during melt-kneading with a twin-screw extruder. May be used.
(6)PPS樹脂組成物
本発明の電池用絶縁部材を構成するPPS樹脂組成物は、射出成形して得られる試験片(ISO527-2-1A)を、フッ化水素酸(50%水溶液)に60℃条件下で500時間浸漬した後の引張試験(ISO527-1、2)において、引張破断伸びが5%以上であることを特徴とする(実験条件は、23℃、引張速度50mm/min、チャック間距離114mmとする)。6%以上がさらに好ましく、7%以上がより好ましい。試験片のフッ化水素酸浸漬後の引張試験の引張破断伸びが5%以上であることは、PPS樹脂組成物からなる電池用絶縁部材の、フッ化水素酸への耐性が優れることを意味し、電池用絶縁部材の実用時に生じるフッ化水素酸に晒されても材料の劣化を抑制でき、絶縁性を維持することができるため、安全性確保の観点から必須である。フッ化水素酸浸漬後の引張試験の引張破断伸びの上限については、高い値ほど好ましく、特に制限は無いが、実質的に上限は200%程度である。この様なフッ化水素酸浸漬後の引張破断伸びを有するPPS樹脂組成物を得るためには、PPS樹脂に対して有機シラン化合物を添加する方法や、有機シラン化合物以外のその他の成分を極力添加しない方法が好ましい方法として例示できる。
(6) PPS Resin Composition In the PPS resin composition constituting the insulating member for a battery of the present invention, a test piece (ISO527-2-1A) obtained by injection molding is converted into hydrofluoric acid (50% aqueous solution). In a tensile test (ISO527-1, 2) after immersion under 60 ° C. conditions for 500 hours, the tensile elongation at break is 5% or more (experimental conditions are 23 ° C., tensile speed 50 mm / min, The distance between chucks is 114 mm). 6% or more is more preferable, and 7% or more is more preferable. The tensile elongation at break of the test piece after immersion in hydrofluoric acid in the tensile test is 5% or more, which means that the insulating member for a battery made of the PPS resin composition has excellent resistance to hydrofluoric acid. It is indispensable from the viewpoint of ensuring safety because the deterioration of the material can be suppressed and the insulating property can be maintained even if the insulating member for a battery is exposed to hydrofluoric acid generated in practical use. The upper limit of the tensile elongation at break in the tensile test after immersion in hydrofluoric acid is preferably as high as possible, and there is no particular limitation, but the upper limit is substantially about 200%. In order to obtain a PPS resin composition having such tensile elongation at break after immersion in hydrofluoric acid, a method of adding an organic silane compound to the PPS resin or adding other components other than the organic silane compound as much as possible. The method of not using can be exemplified as a preferable method.
本発明の電池用絶縁部材を構成するPPS樹脂組成物は、射出成形して得られる標線間中央部にウェルド部が形成された厚み1.6mm、幅6mm、標線間距離50mmの試験片の、23℃、引張速度10mm/minの条件で測定した引張試験(以降、このようなウェルド部を有する試験片を用いた引張試験を、ウェルド引張試験と表す場合がある)において、応力-ひずみ曲線の曲線下面積で表される抗張積が100MPa・%以上が好ましい。150MPa・%以上がさらに好ましく、200MPa・%以上がより好ましい。抗張積とは、引張試験での応力-ひずみ曲線の曲線下面積で表され、引張試験における破断点までのひずみ破壊エネルギーとして用いることができ、いわゆる靱性の指標となる。具体的には、例えば、応力-ひずみ曲線の曲線下の面積を、伸び率0.04%毎にその伸び状態での応力値を積分することで抗張積を算出できる。ウェルド引張試験の抗張積が100MPa・%以上であることは、ウェルド部分の靱性が優れることを意味し、電池用絶縁部材の形状とした場合は、電池製造時のかしめ工程での破損と、実使用時の破損を抑制し、絶縁性を維持することができるため、安全性確保の観点から好ましい。ウェルド引張試験の抗張積の上限については、高い値ほど好ましく特に制限は無いが、実質的に上限は1000MPa・%程度である。この様な抗張積を有するPPS樹脂組成物を得るためには、PPS樹脂に対して有機シラン化合物を添加する方法や、有機シラン化合物以外のその他の成分を極力添加しない方法が好ましい方法として例示できる。 The PPS resin composition constituting the insulating member for a battery of the present invention is a test piece having a thickness of 1.6 mm, a width of 6 mm, and a distance between marked lines of 50 mm in which a weld portion is formed in the central portion between marked lines obtained by injection molding. In a tensile test measured under the conditions of 23 ° C. and a tensile speed of 10 mm / min (hereinafter, a tensile test using a test piece having such a welded portion may be referred to as a weld tensile test). The tensile strength represented by the area under the curve is preferably 100 MPa ·% or more. 150 MPa ·% or more is more preferable, and 200 MPa ·% or more is more preferable. The tensile volume is represented by the area under the stress-strain curve in the tensile test, can be used as strain fracture energy up to the breaking point in the tensile test, and is an index of so-called toughness. Specifically, for example, the tensile product can be calculated by integrating the area under the stress-strain curve with the stress value in the stretched state every 0.04% of the elongation rate. The tensile strength of the weld tensile test is 100 MPa ·% or more, which means that the toughness of the weld portion is excellent. It is preferable from the viewpoint of ensuring safety because it can suppress damage during actual use and maintain insulation. The upper limit of the tensile strength of the weld tensile test is preferably as high as possible, but there is no particular limitation, but the upper limit is substantially 1000 MPa ·%. In order to obtain a PPS resin composition having such a tensile strength, a method of adding an organic silane compound to the PPS resin and a method of adding as little other components as possible other than the organic silane compound are exemplified as preferable methods. can.
本発明の電池用絶縁部材を構成するPPS樹脂組成物は、射出成形して得られる標線間中央部にウェルド部が形成された厚み1.6mm、幅6mm、標線間距離50mmの試験片の、23℃、引張速度10mm/minの条件で測定した引張試験において、引張破断伸び(%)が3.0%以上であり、4.0%以上が好ましく、5.0%以上がより好ましい。ウェルド引張試験での引張破断伸びが3.0%以上であることは、ウェルド部分の靱性が優れることを意味し、電池用絶縁部材の形状とした場合は、電池製造時のかしめ工程にて荷重を加え引き延ばされた際に破損が抑制されるので、生産工程での歩留まり向上や、実使用環境での安全性を確保する観点から好ましい。ウェルド引張試験の引張破断伸びの上限については、高伸度ほど好ましく、特に制限は無いが、実質的に上限は100%程度である。また、同試験における引張強さは、60MPa以上が好ましく、65MPa以上がより好ましく、70MPa以上が更に好ましい。ウェルド引張試験での引張強さが60MPa以上であることは、成形品中で最も脆弱となるウェルド部の破損を抑制できることを意味し、部材の設計において成形品の薄肉化や複雑化にも対応できるため好ましい。ウェルド引張試験の引張強さの上限については、高強度ほど好ましく、特に制限は無いが、実質的に上限は300MPa程度である。 The PPS resin composition constituting the insulating member for a battery of the present invention is a test piece having a thickness of 1.6 mm, a width of 6 mm, and a distance between marked lines of 50 mm in which a weld portion is formed in the central portion between marked lines obtained by injection molding. In a tensile test measured under the conditions of 23 ° C. and a tensile speed of 10 mm / min, the tensile elongation at break (%) is 3.0% or more, preferably 4.0% or more, and more preferably 5.0% or more. .. A tensile breaking elongation of 3.0% or more in the weld tensile test means that the toughness of the weld portion is excellent, and when the shape of the insulating member for a battery is used, a load is applied in the caulking process during battery manufacturing. Since damage is suppressed when the battery is stretched, it is preferable from the viewpoint of improving the yield in the production process and ensuring the safety in the actual use environment. The upper limit of the tensile elongation at break in the weld tensile test is preferably as high as the elongation, and there is no particular limitation, but the upper limit is substantially 100%. The tensile strength in the test is preferably 60 MPa or more, more preferably 65 MPa or more, and even more preferably 70 MPa or more. A tensile strength of 60 MPa or more in the weld tensile test means that damage to the weld, which is the most fragile part of the molded product, can be suppressed, and it is possible to deal with thinning and complication of the molded product in the design of the member. It is preferable because it can be done. The upper limit of the tensile strength of the weld tensile test is preferably as high as possible, and there is no particular limitation, but the upper limit is substantially about 300 MPa.
本発明の電池用絶縁部材を構成するPPS樹脂組成物は、射出成形して得られる標線間中央部にウェルド部が形成された厚み1.6mm、幅6mm、標線間距離50mmの試験片の、80℃雰囲気での引張速度10mm/minの条件で測定した引張試験において、引張強さは45MPa以上であることが好ましく、50MPa以上がより好ましい。80℃雰囲気下でのウェルド引張試験における引張強さが45MPa以上であることは、電池の実使用時の高温環境においても電池用絶縁部材としての強度が保たれ、変形および破損を抑制できるため好ましい。80℃雰囲気下でのウェルド引張試験における引張強さの上限については、高強度ほど好ましく、特に制限は無いが、実質的に上限は200MPa程度である。 The PPS resin composition constituting the insulating member for a battery of the present invention is a test piece having a thickness of 1.6 mm, a width of 6 mm, and a distance between marked lines of 50 mm in which a weld portion is formed in the central portion between marked lines obtained by injection molding. In the tensile test measured under the condition of a tensile speed of 10 mm / min in an atmosphere of 80 ° C., the tensile strength is preferably 45 MPa or more, more preferably 50 MPa or more. It is preferable that the tensile strength in the weld tensile test in an atmosphere of 80 ° C. is 45 MPa or more because the strength as an insulating member for a battery can be maintained even in a high temperature environment during actual use of the battery, and deformation and breakage can be suppressed. .. The upper limit of the tensile strength in the weld tensile test in an atmosphere of 80 ° C. is preferably as high as possible, and there is no particular limitation, but the upper limit is substantially about 200 MPa.
本発明の電池用絶縁部材を構成するPPS樹脂組成物の溶融粘度(温度320℃、剪断速度2432/s)は250Pa・s以下が好ましく、200Pa・s以下がより好ましく、180MPa が更に好ましい。溶融粘度が250Pa・s以下であることは、薄肉形状である電池用絶縁部材の成形加工性の観点から好ましい。溶融粘度が250Pa・sを超えると、成形加工性の低下に繋がる。溶融粘度の下限については、成形加工時のバリの発生に繋がるため10Pa・s以上が好ましい。このような溶融粘度を有するPPS樹脂組成物を得るためには、特定の範囲の分子量を有するPPS樹脂を原料に用いることや、PPS樹脂と有機シラン化合物の溶融混練時に高回転速度で混練する方法が例示できる。 The melt viscosity (temperature 320 ° C., shear rate 2432 / s) of the PPS resin composition constituting the insulating member for a battery of the present invention is preferably 250 Pa · s or less, more preferably 200 Pa · s or less, still more preferably 180 MPa. It is preferable that the melt viscosity is 250 Pa · s or less from the viewpoint of molding processability of the thin-walled insulating member for a battery. If the melt viscosity exceeds 250 Pa · s, the moldability is deteriorated. The lower limit of the melt viscosity is preferably 10 Pa · s or more because it leads to the generation of burrs during the molding process. In order to obtain a PPS resin composition having such a melt viscosity, a method of using a PPS resin having a molecular weight in a specific range as a raw material or a method of kneading a PPS resin and an organic silane compound at a high rotation speed during melt kneading. Can be exemplified.
また、本発明の電池用絶縁部材を構成するPPS樹脂組成物の流動性は、スパイラルフロー金型における流動長(1mm厚み、シリンダー温度320℃、金型温度140℃、射出速度230mm/sec、射出圧力98MPa、射出時間5sec、冷却時間15sec)が、100mm以上が好ましく、115mm以上がより好ましく、130mm以上が更に好ましい。この値が大きいほど、流動性に優れることを意味する。流動長が100mm以上であることは、薄肉形状である電池用絶縁部材の成形加工性の観点から好ましい。流動長が100mmを下回ると、成形加工性の低下に繋がる。流動長の上限については、高い値ほど好ましく、特に制限は無いが、実質的に上限は300mm程度である。 Further, the fluidity of the PPS resin composition constituting the insulating member for a battery of the present invention is the flow length (1 mm thickness, cylinder temperature 320 ° C., mold temperature 140 ° C., injection speed 230 mm / sec, injection) in the spiral flow mold. The pressure (pressure 98 MPa, injection time 5 sec, cooling time 15 sec) is preferably 100 mm or more, more preferably 115 mm or more, still more preferably 130 mm or more. The larger this value is, the better the liquidity is. A flow length of 100 mm or more is preferable from the viewpoint of moldability of the thin-walled insulating member for a battery. If the flow length is less than 100 mm, the molding processability is deteriorated. As for the upper limit of the flow length, a higher value is preferable, and there is no particular limitation, but the upper limit is substantially about 300 mm.
本発明の電池用絶縁部材を構成するPPS樹脂組成物は、前記樹脂組成物のゲルパーミエーションクロマトグラフィー(GPC)の測定から得られる分子量分布において、ポリスチレン換算の分子量750000に対応する溶出時間より早く検出される成分(以下、成分(X)とすることがある)の割合が0.4~8.5%でかつ、ポリスチレン換算の分子量750000に対応する溶出時間より遅く検出される成分(以下、「成分(Y)」とすることがある)の重量平均分子量が50000~95000であることが好ましい。成分(X)の割合と成分(Y)の重量平均分子量を上記の範囲にすることで、電池用絶縁部材の優れた靭性の発現と、薄肉形状の成形加工に適した溶融粘度の発現の両立に繋がるため好ましい。成分(X)の割合は0.5~8.0%であることが好ましく、0.5~7.5%であることが更に好ましい。成分(Y)の重量平均分子量は60000~90000であることが好ましく、65000~85000であることが更に好ましい。成分(X)の割合と成分(Y)の重量平均分子量はいずれも押出機内の反応で得られる高分子量体の生成量の指標であり、成分(X)の割合が8.5%を上回ると、PPS樹脂と含有するPPS樹脂以外の成分との反応が過剰であるため、溶融粘度が著しく大きくなり、成形加工性の低下に繋がる。0.4%未満であると、所望の靭性の発現が困難であったり、成形加工時のバリの発生や低分子量成分による金型汚れの発生に繋がったりする。成分(Y)の重量平均分子量が50000未満であると、PPS樹脂組成物中のPPS樹脂の分子量が小さすぎることを意味し、所望の靭性の発現が難しく、95000を上回ると、PPS樹脂組成物中のPPS樹脂の分子量が大きすぎるため、溶融粘度が高いことを意味し、成形加工性の低下に繋がる。成分(X)の割合と成分(Y)の重量平均分子量を上記の範囲にするためには、PPS樹脂と有機シラン化合物との二軸押出機を用いた溶融混練において重量平均分子量が50000~90000のPPS樹脂を用いて、高回転速度で混練する方法が例示できる。 The PPS resin composition constituting the insulating member for a battery of the present invention has a molecular weight distribution obtained from the measurement of gel permeation chromatography (GPC) of the resin composition, which is faster than the elution time corresponding to the polystyrene-equivalent molecular weight of 750000. The ratio of the detected component (hereinafter, may be referred to as component (X)) is 0.4 to 8.5%, and the component detected later than the elution time corresponding to the polystyrene-equivalent molecular weight of 750000 (hereinafter, may be referred to as component (X)). It is preferable that the weight average molecular weight of (may be referred to as “component (Y)”) is 50,000 to 95,000. By setting the ratio of the component (X) and the weight average molecular weight of the component (Y) in the above range, both the excellent toughness of the insulating member for a battery and the melt viscosity suitable for the thin-walled molding process are exhibited. It is preferable because it leads to. The ratio of the component (X) is preferably 0.5 to 8.0%, more preferably 0.5 to 7.5%. The weight average molecular weight of the component (Y) is preferably 60000 to 90000, more preferably 65000 to 85000. The ratio of the component (X) and the weight average molecular weight of the component (Y) are both indicators of the amount of high molecular weight compound produced by the reaction in the extruder, and when the ratio of the component (X) exceeds 8.5%. Since the reaction between the PPS resin and the components other than the PPS resin contained therein is excessive, the melt viscosity becomes remarkably high, which leads to a decrease in molding processability. If it is less than 0.4%, it may be difficult to develop the desired toughness, or it may lead to the generation of burrs during molding and the generation of mold stains due to low molecular weight components. If the weight average molecular weight of the component (Y) is less than 50,000, it means that the molecular weight of the PPS resin in the PPS resin composition is too small, and it is difficult to develop the desired toughness. If it exceeds 95,000, the PPS resin composition Since the molecular weight of the PPS resin in the resin is too large, it means that the melt viscosity is high, which leads to a decrease in molding processability. In order to keep the ratio of the component (X) and the weight average molecular weight of the component (Y) in the above range, the weight average molecular weight is 50,000 to 90000 in the melt kneading of the PPS resin and the organic silane compound using a twin-screw extruder. A method of kneading at a high rotation speed using the PPS resin of No. 1 can be exemplified.
ここで、「分子量750000に対応する溶出時間より早く検出される成分の割合」とは、GPC溶出曲線の全エリア面積を100%とした場合の、ポリスチレン換算の分子量750000以上の分子量を有する成分に相当するエリア面積の割合である。 Here, "the ratio of the component detected earlier than the elution time corresponding to the molecular weight 750000" means the component having a molecular weight of 7.50000 or more in terms of polystyrene when the total area area of the GPC elution curve is 100%. It is the ratio of the corresponding area area.
本発明の電池用絶縁部材を構成するPPS樹脂組成物は、PPS樹脂組成物中の(a)PPS樹脂の割合が95重量%以上であることが、ウェルド部の靱性と成形加工性の観点で好ましく、97重量%以上であることがより好ましく、98重量%以上であることが更に好ましい。 In the PPS resin composition constituting the insulating member for a battery of the present invention, the proportion of (a) PPS resin in the PPS resin composition is 95% by weight or more from the viewpoint of toughness of the weld portion and moldability. It is more preferably 97% by weight or more, and even more preferably 98% by weight or more.
(7)電池用絶縁部材
本発明のPPS樹脂組成物から構成される電池用絶縁部材は、1次または2次電池用の絶縁部材のことを指し、1次または2次電池における一対の端子間の内部短絡を防止するために用いられるものである。1次または2次電池としては、アルカリマンガン乾電池、ガルバニ電池、ニッケル系1次電池、リチウム電池、マンガン乾電池、水銀電池、全固体電池等の1次電池、鉛蓄電池、リチウム・空気電池、リチウムイオン2次電池、リチウムイオンポリマー2次電池、リン酸鉄リチウムイオン電池、リチウム・硫黄電池、ニッケル・カドミウム蓄電池、ニッケル・水素充電池、ニッケル・リチウム電池、ニッケル・亜鉛電池、全固体電池等の2次電池が挙げられる。
(7) Insulating member for battery The insulating member for a battery made of the PPS resin composition of the present invention refers to an insulating member for a primary or secondary battery, and is between a pair of terminals in the primary or secondary battery. It is used to prevent an internal short circuit in the battery. Primary or secondary batteries include alkaline manganese dry batteries, galvanic batteries, nickel-based primary batteries, lithium batteries, manganese dry batteries, mercury batteries, all-solid-state batteries and other primary batteries, lead storage batteries, lithium / air batteries, and lithium ions. 2 such as secondary battery, lithium ion polymer secondary battery, iron phosphate lithium ion battery, lithium / sulfur battery, nickel / cadmium storage battery, nickel / hydrogen rechargeable battery, nickel / lithium battery, nickel / zinc battery, all-solid-state battery, etc. The next battery is mentioned.
電池用絶縁部材としては、絶縁板、ガスケット、端子ホルダー、ケース、絶縁リング、絶縁チューブ等が挙げられる。本発明のPPS樹脂組成物から構成される電池用絶縁部材は、射出成形等で生じるウェルド部においても優れた靱性を有するため、ウェルド部で破損が発生するリスクを大きく低減できるので、絶縁板、ガスケット、端子ホルダー、ケースへの適用が好ましく、内部短絡へ直結するリスクの観点から絶縁板への適用が特に好ましい例として挙げられる。 Examples of the insulating member for a battery include an insulating plate, a gasket, a terminal holder, a case, an insulating ring, an insulating tube and the like. Since the insulating member for a battery made of the PPS resin composition of the present invention has excellent toughness even in the weld portion generated by injection molding or the like, the risk of damage in the weld portion can be greatly reduced. Application to gaskets, terminal holders, and cases is preferable, and application to insulating plates is particularly preferable from the viewpoint of the risk of direct connection to an internal short circuit.
本発明の電池用絶縁部材は、射出成形、押出成形、圧縮成形、吹込成形、射出圧縮成形など、各種成形手法により成形可能であるが、中でも射出成形が生産性の面から好ましい。ただし、射出成形にて電池用絶縁部材を成形した場合には、端子や蓋などをはめ込む開口部等に環状の溶融樹脂の流れが生じ、2つ以上の樹脂の流れが合流する部分にウェルドと呼ばれる脆弱部分が形成される。電池製造時には電池の正負極の端子と蓋およびガスケットや絶縁板を組み付ける嵌合の工程が設けられ、嵌合には接合部を打ち付けるまたは締め付けるいわゆる「かしめ工程」が用いられるが、射出成形法にて得たウェルド部分を有する絶縁板やガスケットを用いた場合には、嵌合時のかしめ工程における成形品への荷重によりウェルド部分に亀裂が生じ、絶縁板やガスケットの役割を果たさないおそれがある。この様な製造工程に対して、本発明は、電池用絶縁部材においてウェルド部分を有する場合には、該ウェルド部が引き延ばし等の変形に対して追随しても破損が生じない抗張積(ひずみ破壊エネルギー)の特性が重要であることを見出した。 The insulating member for a battery of the present invention can be molded by various molding methods such as injection molding, extrusion molding, compression molding, injection molding, injection compression molding, and injection molding is particularly preferable from the viewpoint of productivity. However, when the insulating member for a battery is molded by injection molding, an annular molten resin flow occurs in an opening or the like into which a terminal or a lid is fitted, and a weld is formed in a portion where two or more resin flows meet. A vulnerable part called is formed. At the time of battery manufacturing, a fitting process of assembling the terminals of the positive and negative of the battery with the lid, gasket and insulating plate is provided, and the so-called "caulking process" of striking or tightening the joint is used for fitting. When an insulating plate or gasket having a welded portion obtained is used, the welded portion may be cracked due to the load on the molded product in the caulking process at the time of fitting, and the welded portion may not play the role of the insulating plate or gasket. .. For such a manufacturing process, in the present invention, when the insulating member for a battery has a welded portion, the welded portion does not cause damage even if it follows the deformation such as stretching (strain). It was found that the property of (destructive energy) is important.
本発明のPPS樹脂組成物から構成される絶縁板などの絶縁部材は、耐かしめ性に優れることが好ましい。耐かしめ性の評価は以下の通りの方法で行うことができる。射出成形により図1に示す開口部を有する電池用絶縁部材を射出成形し、ウェルドラインを中心線として、電池用絶縁部材を90度屈曲させた際の破損状況を以下の基準にて評価し、耐かしめ性の指標とする。10検体の評価を行った際に、破断および亀裂がゼロの水準は◎、破断はゼロおよび亀裂が1検体以上、3検体以下の水準は○、破断がゼロおよび亀裂が4検体以上、10検体以下の水準は△、1検体でも破断が生じた検体は×と判定する。 It is preferable that the insulating member such as the insulating plate made of the PPS resin composition of the present invention has excellent caulking resistance. The caulking resistance can be evaluated by the following method. The battery insulating member having the opening shown in FIG. 1 is injection molded by injection molding, and the damage state when the battery insulating member is bent 90 degrees with the weld line as the center line is evaluated according to the following criteria. It is used as an index of caulking resistance. When 10 samples were evaluated, the level of zero breaks and cracks was ◎, the level of zero breaks and cracks was 1 or more, and the level of 3 or less was ○, the level of zero breaks and cracks was 4 or more, and 10 samples. The following levels are Δ, and the sample in which even one sample is broken is judged to be ×.
本発明のPPS樹脂組成物から構成される電池用絶縁部材は、フッ化水素酸に対する耐性が優れる。フッ化水素酸に対する耐性の評価は以下の通り実施することができる。射出成形により試験片(ISO527-2-1A)を成形し、フッ化水素酸(50%水溶液)に60℃条件下で500時間浸漬した際の浸漬前後の重量変化率を以下の式により求め、評価する。重量変化率は、絶対値として算出し評価する。
重量変化率(%)=|(処理後の成形品重量-処理前の成形品重量)/処理前の重量|×100(%)
フッ化水素酸への浸漬前後の重量変化率は2%以下が好ましく、1.5%以下がさらに好ましく、1.2%以下がより好ましい。フッ化水素酸への浸漬前後の重量変化率が2%以下であることは、電池用絶縁部材の劣化抑制の観点から好ましい。フッ化水素酸への浸漬前後の重量変化率が2%を超える場合には、樹脂材料の劣化や分解または膨潤が生じ、電池用構造部材としての機械特性が低下することを意味し、好ましくない。フッ化水素酸への浸漬前後の重量変化率の下限については、変化量が小さいほど好ましく、特に制限は無いが、実質的に下限は0.001%程度である。
The battery insulating member made of the PPS resin composition of the present invention has excellent resistance to hydrofluoric acid. The evaluation of resistance to hydrofluoric acid can be carried out as follows. A test piece (ISO527-2-1A) was molded by injection molding, and the weight change rate before and after immersion when immersed in hydrofluoric acid (50% aqueous solution) under 60 ° C. conditions for 500 hours was calculated by the following formula. evaluate. The weight change rate is calculated and evaluated as an absolute value.
Weight change rate (%) = | (Molded product weight after treatment-Molded product weight before treatment) / Weight before treatment | × 100 (%)
The rate of change in weight before and after immersion in hydrofluoric acid is preferably 2% or less, more preferably 1.5% or less, and even more preferably 1.2% or less. It is preferable that the weight change rate before and after immersion in hydrofluoric acid is 2% or less from the viewpoint of suppressing deterioration of the battery insulating member. If the rate of change in weight before and after immersion in hydrofluoric acid exceeds 2%, it means that the resin material deteriorates, decomposes or swells, and the mechanical properties as a structural member for a battery deteriorate, which is not preferable. .. The lower limit of the rate of change in weight before and after immersion in hydrofluoric acid is preferably as small as the amount of change, and there is no particular limitation, but the lower limit is substantially 0.001%.
以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
実施例および比較例において、(a)PPS樹脂、(b)有機シラン化合物、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体、(d)その他の添加物として以下のものを用いた。 In Examples and Comparative Examples, (a) a PPS resin, (b) an organic silane compound, (c) a polyolefin monomer or a polyolefin copolymer containing 80 wt% or more of an olefin component, and (d) other additives as described below. I used the one.
[(a)PPS樹脂(a-1、a-2)]
a-1:直鎖型PPS樹脂 重量平均分子量:70000、数平均分子量:23000、カルボキシル基量:33μmol/g、融点:280℃
a-2:直鎖型PPS樹脂 重量平均分子量:42000、数平均分子量:16000、カルボキシル基量:42μmol/g、融点:280℃
[(A) PPS resin (a-1, a-2)]
a-1: Linear PPS resin Weight average molecular weight: 70000, number average molecular weight: 23000, carboxyl group amount: 33 μmol / g, melting point: 280 ° C.
a-2: Linear PPS resin Weight average molecular weight: 42000, number average molecular weight: 16000, carboxyl group amount: 42 μmol / g, melting point: 280 ° C.
[(b)有機シラン化合物(b-1、b-2、b-3)]
b-1:γ-イソシアネートプロピルトリエトキシシラン(信越化学工業社製、KBE-9007N)。
b-2:γ-アミノプロピルトリエトキシシラン(信越化学工業社製、KBE-903)
b-3:2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(信越化学工業社製、KBM-303)
[(B) Organic silane compound (b-1, b-2, b-3)]
b-1: γ-Isocyanatepropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-9007N).
b-2: γ-Aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-903)
b-3: 2- (3,4-Epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-303)
[(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体(c-1、c-2)]
c-1:ポリエチレン(プライムポリマー社製、PE7000FP)、融点130℃
c-2:エチレンーグリシジルメタクリレート共重合体(住友化学社製オレフィン樹脂、ボンドファーストE、融点103℃、MFR:3g/10分(190℃、21.2N荷重))、反応性官能基量:12重量%
[(C) Polyolefin monomer or polyolefin copolymer containing 80 wt% or more of olefin component (c-1, c-2)]
c-1: Polyethylene (manufactured by Prime Polymer Co., Ltd., PE7000FP), melting point 130 ° C.
c-2: Ethylene-glycidyl methacrylate copolymer (olefin resin manufactured by Sumitomo Chemical Co., Ltd., Bond First E, melting point 103 ° C., MFR: 3 g / 10 minutes (190 ° C., 21.2 N load)), reactive functional group amount: 12% by weight
[(d)その他の添加物(d-1、d-2、d-3)]
d-1:ポリエーテルスルホン樹脂(住友化学社製、スミカエクセルSE4800G)、ガラス転移温度:225℃
d-2:ガラス繊維(日本電気硝子(株)社製T-747)、平均繊維直径13μm
d-3:ホスフィン酸ナトリウム一水和物(和光純薬工業社製)
以下の実施例において、材料特性については次の方法により評価した。
[(D) Other additives (d-1, d-2, d-3)]
d-1: Polyester sulfone resin (manufactured by Sumitomo Chemical Co., Ltd., Sumika Excel SE4800G), glass transition temperature: 225 ° C.
d-2: Glass fiber (T-747 manufactured by Nippon Electric Glass Co., Ltd.), average fiber diameter 13 μm
d-3: Sodium phosphinate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.)
In the following examples, the material properties were evaluated by the following method.
[フッ化水素酸浸漬後の引張試験]
射出成形機(住友重機製:SE75DUZ)を用いてシリンダー温度320℃、金型温度140℃の条件でISO527-2-1Aに準拠した試験片を成形した。得られた試験片を、PFA容器内でフッ化水素酸(50%水溶液)に浸漬させ、60℃条件下で500時間処理した。浸漬処理した試験片に対して、雰囲気:23℃、引張速度:50mm/min、チャック間距離114mmの条件で引張試験(ISO527-1、2)を行い、引張破断伸び(呼びひずみ)を評価した。
[Tensile test after immersion in hydrofluoric acid]
An injection molding machine (manufactured by Sumitomo Heavy Industries: SE75DUZ) was used to mold a test piece conforming to ISO527-2-1A under the conditions of a cylinder temperature of 320 ° C. and a mold temperature of 140 ° C. The obtained test piece was immersed in hydrofluoric acid (50% aqueous solution) in a PFA container and treated under 60 ° C. conditions for 500 hours. A tensile test (ISO527-1, 2) was performed on the immersed test piece under the conditions of atmosphere: 23 ° C., tensile speed: 50 mm / min, and chuck distance of 114 mm, and tensile elongation at break (nominal strain) was evaluated. ..
[ウェルド引張試験]
射出成形機(住友重機製:SE75DUZ)を用いて、シリンダー温度300℃、金型温度150℃の条件で射出成形し、両端にゲートを有し、中央部にウェルドを形成した引張ダンベル片(平行部形状:厚み1.6mm、幅6mm、標線間距離50mm)を得た。得られた試験片を用いて、温度23℃、引張速度:10mm/minの条件で引張試験を行い、引張破断伸び、引張強さ、および抗張積を評価した。抗張積は応力-ひずみ曲線の曲線下の面積を、伸び率0.04%毎に応力値を積分して算出した。
[Weld tensile test]
Using an injection molding machine (manufactured by Sumitomo Heavy Industries: SE75DUZ), injection molding was performed under the conditions of a cylinder temperature of 300 ° C and a mold temperature of 150 ° C. Part shape: thickness 1.6 mm, width 6 mm, distance between marked lines 50 mm) was obtained. Using the obtained test piece, a tensile test was performed under the conditions of a temperature of 23 ° C. and a tensile speed of 10 mm / min, and tensile elongation at break, tensile strength, and tensile strength were evaluated. The tensile product was calculated by integrating the stress value in the area under the stress-strain curve at every 0.04% elongation.
[80℃でのウェルド引張試験]
上記ウェルド引張試験に用いたものと同様の方法で作製した引張ダンベル片について、温度80℃、引張速度:10mm/minの条件で引張試験を行い、引張強さを評価した。
[Weld tensile test at 80 ° C]
Tensile dumbbell pieces prepared by the same method as those used in the weld tensile test were subjected to a tensile test under the conditions of a temperature of 80 ° C. and a tensile speed of 10 mm / min, and the tensile strength was evaluated.
[溶融粘度]
PPS樹脂組成物の溶融粘度は、320℃、剪断速度2432/sの条件下、東洋精機製キャピログラフを用いて測定した値である。測定には、長さ10mm、口径1mmのキャピラリーを用いた。
[Melting viscosity]
The melt viscosity of the PPS resin composition is a value measured using a capillograph manufactured by Toyo Seiki under the conditions of 320 ° C. and a shear rate of 2432 / s. A capillary having a length of 10 mm and a diameter of 1 mm was used for the measurement.
[GPC測定]
ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算で算出したPPS樹脂組成物およびPPS樹脂の重量平均分子量と数平均分子量、およびPPS樹脂組成物のポリスチレン換算の分子量750000に対応する溶出時間より早く検出される成分(X)の割合と、分子量750000に対応する溶出時間より遅く検出される成分(Y)の重量平均分子量を求めた。、GPCの測定条件を以下に示す。
装置:SSC-7110(センシュー科学)
カラム名:Shodex UT806M×2
溶離液:1-クロロナフタレン
検出器:示差屈折率検出器
カラム温度:210℃
プレ恒温槽温度:250℃
ポンプ恒温槽温度:50℃
検出器温度:210℃
流量:1.0mL/min
試料注入量:300μL(スラリー状:約0.2重量%)。
[GPC measurement]
From the weight average molecular weight and number average molecular weight of the PPS resin composition and PPS resin calculated in terms of polystyrene using gel permeation chromatography (GPC), and the elution time corresponding to the molecular weight of the PPS resin composition in terms of polystyrene of 750000. The proportion of the component (X) detected earlier and the weight average molecular weight of the component (Y) detected later than the elution time corresponding to the molecular weight 750000 were determined. , The measurement conditions of GPC are shown below.
Equipment: SSC-7110 (Senshu Science)
Column name:
Eluent: 1-Chloronaphthalene detector: Differential refractive index detector Column temperature: 210 ° C
Pre-constant temperature bath temperature: 250 ° C
Pump constant temperature bath temperature: 50 ° C
Detector temperature: 210 ° C
Flow rate: 1.0 mL / min
Sample injection amount: 300 μL (slurry: about 0.2% by weight).
[PPS樹脂のカルボキシル基量]
PPS樹脂のカルボキシル基含有量は、フーリエ変換赤外分光装置(以下、FT-IRと略す)を用いて算出した。
[Amount of carboxyl group in PPS resin]
The carboxyl group content of the PPS resin was calculated using a Fourier transform infrared spectroscope (hereinafter abbreviated as FT-IR).
まず、標準物質として安息香酸をFT-IRにて測定し、ベンゼン環のC-H結合の吸収である3066cm-1のピークの吸収強度(b1)とカルボキシル基の吸収である1704cm-1のピークの吸収強度(c1)を読み取り、ベンゼン環1単位に対するカルボキシル基量(U1)、(U1)=(c1)/[(b1)/5]を求めた。次に、PPS樹脂を320℃にて1分間溶融プレスした後、急冷して得られた非晶フィルムのFT-IR測定を行った。3066cm-1の吸収強度(b2)と1704cm-1の吸収強度(c2)を読み取り、ベンゼン環1単位に対するカルボキシル基量(U2)、(U2)=(c2)/[(b2)/4]を求めた。PPS樹脂1gに対するカルボキシル基含有量を以下の式から算出した。
PPS樹脂のカルボキシル基量(μmol/g)=(U2)/(U1)/108.161×1000000。
First, benzoic acid was measured by FT-IR as a standard substance, and the absorption intensity (b1) of the peak of 3066 cm -1 , which is the absorption of the CH bond of the benzene ring, and the peak of 1704 cm -1 , which is the absorption of the carboxyl group. The absorption intensity (c1) of the above was read, and the amount of carboxyl groups (U1) and (U1) = (c1) / [(b1) / 5] with respect to 1 unit of the benzene ring were determined. Next, the PPS resin was melt-pressed at 320 ° C. for 1 minute and then rapidly cooled to perform FT-IR measurement of the obtained amorphous film. Read the absorption intensity (b2) of 3066 cm -1 and the absorption intensity (c2) of 1704 cm -1 , and determine the amount of carboxyl group (U2), (U2) = (c2) / [(b2) / 4] for one unit of the benzene ring. I asked. The carboxyl group content with respect to 1 g of PPS resin was calculated from the following formula.
Amount of carboxyl group (μmol / g) = (U2) / (U1) /108.161 × 1000000 of PPS resin.
[流動性(スパイラルフロー)]
1mm厚みのスパイラルフロー金型を用いて、シリンダー温度320℃、金型温度140℃、射出速度230mm/sec、射出圧力98MPa、射出時間5sec、冷却時間15secの条件で成形し、流動長測定を行なった(使用射出成形機:住友重機製”SE-30D”)。
[Liquidity (spiral flow)]
Using a 1 mm thick spiral flow mold, molding was performed under the conditions of cylinder temperature 320 ° C, mold temperature 140 ° C, injection speed 230 mm / sec, injection pressure 98 MPa, injection time 5 sec, and cooling time 15 sec, and the flow length was measured. (Injection molding machine used: "SE-30D" manufactured by Sumitomo Heavy Industries).
[耐かしめ性]
シリンダー温度:320℃、金型温度:130℃、射出速度:100mm/sとして、充填時間が0.4秒となるよう、射出圧力を50~80MPa内で設定して射出成形を行い(使用成形機:住友重機械工業製“SE75DUZ-C250”)、図1に示す開口部を有する電池用絶縁部材(サイズ;長さ:55mm、幅:20mm、厚み:2mm、開口部サイズ:6mmφ、ウェルドライン:2mm)を得た。
[Crimping resistance]
Cylinder temperature: 320 ° C, mold temperature: 130 ° C, injection speed: 100 mm / s, injection pressure is set within 50-80 MPa so that the filling time is 0.4 seconds, and injection molding is performed (molding used). Machine: "SE75DUZ-C250" manufactured by Sumitomo Heavy Industries, Ltd.), Insulation member for battery having an opening shown in FIG. 1 (size; length: 55 mm, width: 20 mm, thickness: 2 mm, opening size: 6 mmφ, weld line : 2 mm) was obtained.
得られた電池用絶縁部材のウェルドラインを中心線として、電池用絶縁部材を90度屈曲させた際の破損状況を以下の基準にて評価した。10検体の評価を行った際に、破断および亀裂がゼロの水準は◎、破断はゼロおよび亀裂が1検体以上、3検体以下の水準は○、破断がゼロおよび亀裂が4検体以上、10検体以下の水準は△、1検体でも破断が生じた検体は×と判定した。 With the weld line of the obtained battery insulating member as the center line, the damage state when the battery insulating member was bent 90 degrees was evaluated according to the following criteria. When 10 samples were evaluated, the level of zero breaks and cracks was ◎, the level of zero breaks and cracks was 1 or more, and the level of 3 or less was ○, the level of zero breaks and cracks was 4 or more, and 10 samples. The following levels were determined to be Δ, and samples in which even one sample was broken were judged to be ×.
[耐フッ化水素酸性(フッ化水素酸浸漬前後の重量変化率)]
射出成形機(住友重機製:SE75DUZ)を用いてシリンダー温度320℃、金型温度140℃の条件でISO527-2-1Aに準拠した成形品を成形した。得られた成形品の重量を測定し、処理前の重量とした。その後、成形品をPFA容器内でフッ化水素酸(50%水溶液)に浸漬させ、60℃条件下で500時間処理した。処理後、表面の水溶液を除去した後、成形品の重量を測定し、処理後の重量とした。重量変化率は、(処理後の成形品重量-処理前の成形品重量)/処理前の重量×100(%)の絶対値として算出した。
[Hydrogen fluoride acid resistance (weight change rate before and after immersion in hydrofluoric acid)]
An injection molding machine (manufactured by Sumitomo Heavy Industries: SE75DUZ) was used to mold a molded product conforming to ISO527-2-1A under the conditions of a cylinder temperature of 320 ° C. and a mold temperature of 140 ° C. The weight of the obtained molded product was measured and used as the weight before processing. Then, the molded product was immersed in hydrofluoric acid (50% aqueous solution) in a PFA container and treated under 60 ° C. conditions for 500 hours. After the treatment, the aqueous solution on the surface was removed, and then the weight of the molded product was measured and used as the weight after the treatment. The weight change rate was calculated as an absolute value of (weight of molded product after treatment-weight of molded product before treatment) / weight before treatment × 100 (%).
[実施例1~4、6~8、比較例1、3~7]
(a)PPS樹脂、(b)有機シラン化合物、(c)オレフィン成分を80wt%以上含むポリオレフィン単量体またはポリオレフィン共重合体、(d)その他の添加物を表1に示す割合でドライブレンドした後、真空ベントを具備した日本製鋼所製TEX30α型二軸押出機(30mmφ、L/D=45)を用い、スクリューアレンジをニーディング部3箇所、スクリュー全長に対するニーディング部の割合を30%とし、シリンダー温度は320℃、スクリュー回転数を300rpmに設定して溶融混練した。この条件による溶融混練方法をAとする。その後、ストランドカッターによりペレット化した。得られたペレットを130℃で一晩乾燥した後、溶融粘度、GPCの測定に用いた。また得られたペレットを射出成形に供し、フッ化水素酸浸漬試験、ウェルド特性、成形性、耐かしめ性の評価を行った。結果は表1および表2に示す通りであった。
[Examples 1 to 4, 6 to 8, Comparative Examples 1, 3 to 7]
(A) PPS resin, (b) organic silane compound, (c) polyolefin monomer or polyolefin copolymer containing 80 wt% or more of olefin component, (d) other additives were dry-blended at the ratio shown in Table 1. After that, using a TEX30α twin-screw extruder (30 mmφ, L / D = 45) manufactured by Japan Steel Works equipped with a vacuum vent, the screw arrangement was made at 3 kneading parts, and the ratio of the kneading part to the total length of the screw was 30%. The cylinder temperature was set to 320 ° C. and the screw rotation speed was set to 300 rpm for melt-kneading. Let A be the melt-kneading method under this condition. Then, it was pelletized by a strand cutter. The obtained pellets were dried at 130 ° C. overnight and then used for measuring the melt viscosity and GPC. The obtained pellets were subjected to injection molding, and hydrofluoric acid immersion test, weld characteristics, moldability, and caulking resistance were evaluated. The results are as shown in Tables 1 and 2.
[実施例5]
スクリュー回転数を500rpmに設定して溶融混練した以外は、実施例1と同様の条件にて溶融混練し、樹脂組成物ペレットを得、各種特性評価を行った。この条件による溶融混練方法をBとする。結果は表1に示す通りであった。
[Example 5]
The resin composition pellets were obtained by melt-kneading under the same conditions as in Example 1 except that the screw rotation speed was set to 500 rpm and melt-kneaded, and various characteristics were evaluated. Let B be the melt-kneading method under this condition. The results are as shown in Table 1.
[比較例2]
スクリュー全長に対して45%の位置にサイドフィーダーを設置し、サイドフィーダーを用いてガラス繊維を投入した以外は、実施例1と同様の条件にて溶融混練し、樹脂組成物ペレットを得、各種特性評価を行った。この条件による溶融混練方法をCとする。結果は表2に示す通りであった。
[Comparative Example 2]
A side feeder was installed at a position 45% of the total length of the screw, and glass fibers were charged using the side feeder. The characteristics were evaluated. Let C be a melt-kneading method under this condition. The results are as shown in Table 2.
上記実施例と比較例の結果を比較して説明する。 The results of the above-mentioned Examples and Comparative Examples will be compared and described.
実施例1~8では、(a)PPS樹脂と(b)有機シラン化合物を含有するPPS樹脂組成物とすることで、フッ化水素酸浸漬処理後において優れた引張破断伸びと、実用特性であるフッ化水素酸浸漬処理前後の重量変化の小ささを発現した。また、ウェルド引張試験でも優れた抗張積が発現し、特に比較例に比べてウェルド部の引張破断伸びが向上する傾向が見られた。実施例は、ウェルド部の特性が優れているため、絶縁部材として耐かしめ性が良好な結果であった。 In Examples 1 to 8, the PPS resin composition containing (a) a PPS resin and (b) an organic silane compound has excellent tensile elongation at break and practical characteristics after the hydrofluoric acid immersion treatment. The small change in weight before and after the hydrofluoric acid immersion treatment was exhibited. In addition, excellent tensile strength was also exhibited in the weld tensile test, and there was a tendency for the tensile elongation at break of the weld portion to be improved as compared with the comparative example. In the examples, since the characteristics of the weld portion are excellent, the caulking resistance as an insulating member is good.
(C)オレフィン系共重合体やその他の添加物を添加した実施例3、4は、実施例1、2に比較して、フッ化水素酸処理前後の重量変化が大きくなる傾向が見られた。また、ウェルド引張試験での抗張積およびウェルド引張破断伸びが低下し、耐かしめ性が低下する傾向であった。 (C) In Examples 3 and 4 to which the olefin copolymer and other additives were added, the weight change before and after the hydrofluoric acid treatment tended to be larger than in Examples 1 and 2. .. In addition, the tensile strength and the weld tensile elongation at break in the weld tensile test tended to decrease, and the caulking resistance tended to decrease.
一方、比較例1~6はいずれもフッ化水素酸浸漬処理後の引張破断伸びが小さく、耐フッ化水素酸性に劣る結果を示した。比較例2は浸漬処理後に試験片の形状をとどめなかったため測定できなかった。 On the other hand, in Comparative Examples 1 to 6, the tensile elongation at break after the hydrofluoric acid immersion treatment was small, and the results were inferior to the acid resistance to hydrogen fluoride. Comparative Example 2 could not be measured because the shape of the test piece was not retained after the immersion treatment.
また、比較例1~6はいずれもウェルド引張試験での抗張積が100MPa・%以下と小さく、靱性も低く、耐かしめ性試験においてはいずれも成形品が破断する結果となった。このような結果となった理由について、比較例1では有機シラン化合物を用いなかったためと推定される。比較例2ではガラス繊維を用いたため、極端に靱性が低下した。分子量の低いPPS樹脂を用いた比較例3~5は、GPC測定での成分(X)の割合が低く、成分(Y)の重量平均分子量も小さい結果となった。有機シラン化合物を0.1重量部配合した比較例5は、有機シラン化合物の添加効果がほとんど見られなかった。一方、有機シラン化合物を10重量部配合した比較例7は樹脂組成物が著しく増粘し、射出成形により成形品を成形することができなかった。 Further, in Comparative Examples 1 to 6, the tensile strength in the weld tensile test was as small as 100 MPa ·% or less, the toughness was low, and the molded product was broken in the caulking resistance test. It is presumed that the reason for such a result is that the organic silane compound was not used in Comparative Example 1. Since glass fiber was used in Comparative Example 2, the toughness was extremely lowered. In Comparative Examples 3 to 5 using the PPS resin having a low molecular weight, the ratio of the component (X) in the GPC measurement was low, and the weight average molecular weight of the component (Y) was also small. In Comparative Example 5 in which 0.1 part by weight of the organic silane compound was blended, almost no effect of adding the organic silane compound was observed. On the other hand, in Comparative Example 7 in which 10 parts by weight of the organic silane compound was blended, the resin composition was remarkably thickened, and the molded product could not be molded by injection molding.
1.耐かしめ性評価用成形品
2.ゲート
3.開口部
4.ウェルドライン
1. 1. Molded product for evaluation of
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020140802A JP2022036538A (en) | 2020-08-24 | 2020-08-24 | Insulating member for battery made of polyphenylene sulfide resin composition and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020140802A JP2022036538A (en) | 2020-08-24 | 2020-08-24 | Insulating member for battery made of polyphenylene sulfide resin composition and manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022036538A true JP2022036538A (en) | 2022-03-08 |
Family
ID=80493716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020140802A Pending JP2022036538A (en) | 2020-08-24 | 2020-08-24 | Insulating member for battery made of polyphenylene sulfide resin composition and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022036538A (en) |
-
2020
- 2020-08-24 JP JP2020140802A patent/JP2022036538A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9938407B2 (en) | Polyarylene sulfide resin composition | |
JP4974265B2 (en) | Polyphenylene sulfide resin composition | |
JP6885096B2 (en) | Polyphenylene sulfide resin composition and molded article | |
US9074096B2 (en) | Polyphenylene sulfide resin composition and molding comprising same | |
US10889714B2 (en) | Polyphenylene sulfide resin composition and manufacturing method of the same | |
JP6707810B2 (en) | Automotive cooling module made of polyphenylene sulfide resin composition | |
JP6705209B2 (en) | Piping parts made of polyphenylene sulfide resin composition | |
JP7067052B2 (en) | Polyphenylene sulfide resin compositions and articles | |
JP7501359B2 (en) | Polyphenylene sulfide resin composition and molded article | |
JP2020056007A (en) | Polyphenylene sulfide resin composition and hollow molded article using the same | |
JP7443757B2 (en) | Insulating member for batteries made of polyphenylene sulfide resin composition | |
JP5809783B2 (en) | Resin composition for gasket, method for producing the same, and gasket for secondary battery | |
JP2022036538A (en) | Insulating member for battery made of polyphenylene sulfide resin composition and manufacturing method | |
JP7151086B2 (en) | Polyphenylene sulfide resin composition | |
JP2018141074A (en) | Polyphenylene sulfide resin composition and molding | |
JP2021172675A (en) | Polyphenylene sulfide resin composition and molding | |
JP2006219665A (en) | Polyarylene sulfide resin composition | |
JP2021155694A (en) | Polyphenylene sulfide resin composition and hollow molding using the same | |
JP2022109212A (en) | Polyphenylene sulfide resin composition and compact | |
JP6228134B2 (en) | Resin composition for gasket and gasket for secondary battery | |
JP2004059835A (en) | Polyphenylene sulfide copolymer resin composition | |
CN114729189A (en) | Polyphenylene sulfide resin composition for automobile cooling part and automobile cooling part | |
JP2021107546A (en) | Polyphenylene sulfide resin composition, molded product, and method of producing molded product | |
JP2020143274A (en) | Polyphenylene sulfide resin composition and molded article comprising the same | |
JP6742109B2 (en) | Resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240711 |