JP2022036327A - Controller and control method for continuously variable transmission - Google Patents

Controller and control method for continuously variable transmission Download PDF

Info

Publication number
JP2022036327A
JP2022036327A JP2018161395A JP2018161395A JP2022036327A JP 2022036327 A JP2022036327 A JP 2022036327A JP 2018161395 A JP2018161395 A JP 2018161395A JP 2018161395 A JP2018161395 A JP 2018161395A JP 2022036327 A JP2022036327 A JP 2022036327A
Authority
JP
Japan
Prior art keywords
pressure
control
primary
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018161395A
Other languages
Japanese (ja)
Inventor
篤志 廣枝
Atsushi Hiroe
智昭 可部
Tomoaki Kabe
浩介 阿部
Kosuke Abe
理宇 城戸
Michitaka Kido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2018161395A priority Critical patent/JP2022036327A/en
Priority to PCT/JP2019/032931 priority patent/WO2020045253A1/en
Publication of JP2022036327A publication Critical patent/JP2022036327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

To perform abnormality removal operation quickly in a case where abnormality resulting from foreign matter occurs in a valve.SOLUTION: A controller for a continuously variable transmission 1 comprises a primary pulley 4, a secondary pulley 5, and a belt 6 wound around both pulleys, and comprises a solenoid valve 63 for hydraulic control that is connected to a vehicle drive source 10 and controls a gear ratio. The controller comprises determination means 71 that determines that a delay has occurred in the change in actual pressure with respect to the change in indicated pressure to the solenoid valve 63 for hydraulic control, and valve control means 72 that when the determination means determines that a delay has occurred, performs foreign matter removal operation that temporarily reciprocates a spool of the solenoid valve 63 for hydraulic control.SELECTED DRAWING: Figure 1

Description

本発明は、バルブに異物の噛み込みに起因した作動不良が生じた場合を考慮して無段変速機を制御する無段変速機の制御装置及び制御方法に関するものである。 The present invention relates to a continuously variable transmission control device and a control method for controlling a continuously variable transmission in consideration of a case where a malfunction occurs due to a foreign substance being caught in a valve.

車両用自動変速機の制御装置には、入力信号に基づいて制御圧を発生するリニアソレノイドバルブ(以下、単にバルブともいう)が使用されている。このバルブは、入力ポート、出力ポート、ドレンポート等を備えたスリーブ内でスプールがソレノイドによって軸方向移動することで油圧が調整され制御圧が発生する。出力油圧を調圧している状態では、入力ポートやドレンポートのクリアランスは極めて小さいため、油中に混入している鉄粉等の異物がこのポートのクリアランスに噛み込んで適切な油圧制御に支障をきたすおそれがある。 A linear solenoid valve (hereinafter, also simply referred to as a valve) that generates a control pressure based on an input signal is used in a control device of an automatic transmission for a vehicle. In this valve, the hydraulic pressure is adjusted and control pressure is generated by the spool moving in the axial direction by a solenoid in a sleeve provided with an input port, an output port, a drain port and the like. When the output hydraulic pressure is regulated, the clearance between the input port and drain port is extremely small, so foreign matter such as iron powder mixed in the oil gets caught in the clearance of this port and interferes with proper hydraulic control. There is a risk of causing it.

そこで、例えば特許文献1に開示されているように、ソレノイドを作動させてスプールを一時的に往復移動させる異物除去動作を行う技術が開発されている。
特許文献1の技術では、車両が停止状態でかつN制御(車両が走行レンジで停車中に入力クラッチによって伝達されるトルクを小さくする制御)の開始前や、車両が停止状態でかつN制御の終了直後のタイミングで異物除去動作を行う。これらのタイミングでは、異物除去動作を行った場合でも入力クラッチの係合圧は殆ど変動しないので、入力クラッチの係合圧の変動に伴うショックの発生も招かない。
Therefore, for example, as disclosed in Patent Document 1, a technique has been developed for performing a foreign matter removing operation in which a solenoid is operated to temporarily reciprocate the spool.
In the technique of Patent Document 1, before the start of N control (control to reduce the torque transmitted by the input clutch while the vehicle is stopped in the traveling range) or when the vehicle is stopped and N control is performed. The foreign matter removal operation is performed immediately after the end. At these timings, the engagement pressure of the input clutch hardly fluctuates even when the foreign matter removal operation is performed, so that a shock is not generated due to the fluctuation of the engagement pressure of the input clutch.

特開2008-101632号公報Japanese Unexamined Patent Publication No. 2008-101632

ところで、特許文献1に記載のように、車両が停止状態でかつN制御の開始前や終了直後のタイミングで異物除去動作を行う構成では、バルブに異物が噛み込む異常が生じてから異物除去動作を行うまでの間にタイムラグが生じる場合がある。つまり、バルブに異物に起因した異常が発生しても、上記の条件が成立するタイミングになるまでは、異物除去動作を行なわないので、この間、バルブの異常状態が継続され、自動変速機の作動に支障をきたすおそれがあり、ベルト式無段変速機の場合には、ベルト滑りによって無段変速機の損傷を招くおそれもある。 By the way, as described in Patent Document 1, in a configuration in which the vehicle is stopped and the foreign matter removal operation is performed at the timing before the start or the end of the N control, the foreign matter removal operation is performed after the abnormality that the foreign matter is caught in the valve occurs. There may be a time lag before performing. That is, even if an abnormality caused by a foreign matter occurs in the valve, the foreign matter removal operation is not performed until the timing when the above condition is satisfied. Therefore, during this period, the abnormal state of the valve is continued and the automatic transmission is operated. In the case of a belt-type continuously variable transmission, the belt slip may cause damage to the continuously variable transmission.

本発明は、このような課題に着目して創案されたもので、バルブに異物に起因した異常が生じた場合に速やかに異物除去動作を行うことができるようにした無段変速機の制御装置及び制御方法を提供することを目的としている。 The present invention was devised focusing on such a problem, and is a control device for a continuously variable transmission capable of promptly performing a foreign matter removing operation when an abnormality caused by a foreign matter occurs in the valve. And to provide a control method.

(1)上記の目的を達成するために、本発明の無段変速機の制御装置は、プライマリプーリとセカンダリプーリと前記両プーリに巻き掛けられたベルトとを備え、 変速比を制御する油圧制御用ソレノイドバルブを備えた無段変速機を制御する無段変速機の制御装置であって、油圧制御用ソレノイドバルブへの指示圧の変化に対する実圧の変化に遅れが発生したことを判定する判定手段と、前記判定手段が前記遅れの発生を判定したら前記油圧制御用ソレノイドバルブのスプールを一時的に往復移動させる異物除去動作を行うバルブ制御手段と、を備えていることを特徴としている。 (1) In order to achieve the above object, the control device for the stepless transmission of the present invention includes a primary pulley, a secondary pulley, and a belt wound around both pulleys, and is hydraulically controlled to control the gear ratio. A determination device for a stepless transmission that controls a stepless transmission equipped with a solenoid valve for hydraulic pressure, and determines that a delay has occurred in the change in actual pressure with respect to the change in the instruction pressure to the solenoid valve for hydraulic pressure control. It is characterized by comprising means and valve control means for performing a foreign matter removing operation of temporarily reciprocating the spool of the hydraulic control solenoid valve when the determination means determines the occurrence of the delay.

(2)前記判定手段は、前記指示圧と前記実圧との差の変化量が所定量以上になったときに、前記遅れが発生したと判定することが好ましい。
(3)前記判定手段は、前記無段変速機への入力及び前記変速比の少なくとも一方の状態が定常状態である場合の前記指示圧と前記実圧との差である第1オフセットと、前記一方の状態が過渡状態である場合の前記指示圧と前記実圧との差である第2オフセットとを比較し、前記第2オフセットと前記第1オフセットとの差が所定以上大きいときに、前記遅れが発生したと判定することが好ましい。
(4)前記セカンダリプーリに加えられるセカンダリ圧は、前記無段変速機への入力トルクの大きさに応じたセカンダリ指示圧で制御され、前記プライマリプーリに加えられるプライマリ圧は、前記変速比と前記セカンダリ圧とに応じたプライマリ指示圧で制御され、前記油圧制御用ソレノイドバルブは、前記プライマリ圧を制御するプライマリバルブであって、前記指示圧は前記プライマリ指示圧であることが好ましい。
(2) It is preferable that the determination means determines that the delay has occurred when the amount of change in the difference between the indicated pressure and the actual pressure becomes a predetermined amount or more.
(3) The determination means has a first offset, which is the difference between the indicated pressure and the actual pressure when at least one of the input to the continuously variable transmission and the gear ratio is a steady state, and the above. The second offset, which is the difference between the indicated pressure and the actual pressure when one of the states is a transient state, is compared, and when the difference between the second offset and the first offset is larger than a predetermined value, the said It is preferable to determine that a delay has occurred.
(4) The secondary pressure applied to the secondary pulley is controlled by the secondary instruction pressure according to the magnitude of the input torque to the stepless transmission, and the primary pressure applied to the primary pulley is the gear ratio and the above. The hydraulic pressure control solenoid valve is controlled by a primary instruction pressure corresponding to the secondary pressure, and is preferably a primary valve that controls the primary pressure, and the instruction pressure is preferably the primary instruction pressure.

(5)本発明の無段変速機の制御方法は、無段変速機の変速比を制御する油圧制御用ソレノイドバルブの制御方法であって、油圧制御用ソレノイドバルブへの指示圧の変化に対する実圧の変化に遅れが発生したか否かを判定する判定ステップと、前記判定ステップで前記遅れの発生を判定したら前記油圧制御用ソレノイドバルブのスプールを一時的に往復移動させる異物除去動作を行うバルブ制御ステップと、を備えていることを特徴としている。 (5) The control method of the stepless transmission of the present invention is a control method of a solenoid valve for hydraulic pressure control for controlling the gear ratio of the stepless transmission, and is actually a change in the instruction pressure to the solenoid valve for hydraulic pressure control. A valve that performs a foreign matter removal operation that temporarily reciprocates the spool of the hydraulic control solenoid valve after determining the occurrence of the delay in the determination step for determining whether or not a delay has occurred in the pressure change. It is characterized by having a control step.

本発明によれば、油圧制御用ソレノイドバルブへの指示圧の変化に対する実圧の変化に遅れが発生したら油圧制御用ソレノイドバルブのスプールを一時的に往復移動させる異物除去動作を行うので、油圧制御用ソレノイドバルブの異常を速やかに解消することが可能になる。 According to the present invention, when a delay occurs in the change in the actual pressure with respect to the change in the indicated pressure to the solenoid valve for hydraulic pressure, a foreign matter removing operation for temporarily reciprocating the spool of the solenoid valve for hydraulic pressure is performed, so that hydraulic control is performed. It is possible to quickly eliminate the abnormality of the solenoid valve.

つまり、油圧制御用ソレノイドバルブが正常であれば、油圧制御用ソレノイドバルブの指示圧が変化した際に実圧の変化に遅れ(一定以上の遅れ)は発生しないが、油圧制御用ソレノイドバルブが異常な場合は、指示圧が変化した際に実圧の変化に遅れが発生することがあり、この場合、同時にベルトのスリップが発生する可能性が極めて高い。そこで、遅れが発生したら異物除去動作を行うことで、油圧制御用ソレノイドバルブの異常の原因が異物の噛み込みにある場合には、異物除去動作で異物を除去できれば油圧制御用ソレノイドバルブを正常状態に復帰させることができ、ベルトのスリップの再発を防止することができる。 In other words, if the hydraulic control solenoid valve is normal, there will be no delay (delay above a certain level) in the change in actual pressure when the indicated pressure of the hydraulic control solenoid valve changes, but the hydraulic control solenoid valve is abnormal. In this case, there may be a delay in the change in the actual pressure when the indicated pressure changes, and in this case, it is extremely likely that the belt slips at the same time. Therefore, if the cause of the abnormality of the hydraulic control solenoid valve is the biting of foreign matter by performing the foreign matter removal operation when a delay occurs, if the foreign matter can be removed by the foreign matter removal operation, the hydraulic control solenoid valve is in the normal state. It is possible to prevent the recurrence of the slip of the belt.

本発明の一実施形態にかかる車両の駆動系及び無段変速機並びにその制御装置の構成図である。It is a block diagram of the drive system of a vehicle which concerns on one Embodiment of this invention, a continuously variable transmission, and the control device thereof. 本発明の一実施形態にかかる無段変速機の制御装置による制御原理を説明するタイムチャートである。It is a time chart explaining the control principle by the control device of the continuously variable transmission which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる無段変速機の制御装置によるバルブの作動不良の判定(異常判定)の一例を説明するフローチャートである。It is a flowchart explaining an example of the determination (abnormality determination) of the valve malfunction by the control device of the continuously variable transmission which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる無段変速機の制御装置による異物除去及び保護制御の一例を説明するフローチャートである。It is a flowchart explaining an example of the foreign matter removal and protection control by the control device of the continuously variable transmission which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる無段変速機の制御装置による制御の一例を説明するタイムチャートである。It is a time chart explaining an example of control by the control device of the continuously variable transmission which concerns on one Embodiment of this invention.

以下、図面を参照して本発明の実施形態を説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することや適宜組み合わせることが可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments shown below are merely examples, and there is no intention of excluding the application of various modifications and techniques not specified in the following embodiments. Each configuration of the following embodiments can be variously modified and implemented without departing from the purpose thereof, and can be selected as necessary or combined as appropriate.

[全体システム構成]
図1は本実施形態に係る車両及びこの車両に搭載された無段変速機とその制御装置の要部を示す構成図である。
図1に示すように、無段変速機(CVT)1は、駆動源であるエンジン(内燃機関)10の出力軸10aとトルクコンバータ11を介して駆動連結された入力軸2と、入力軸2と平行に配置され、駆動輪12と減速機13及び差動機構14を介して駆動連結された出力軸3と、入力軸2と連結されたプライマリプーリ4と、出力軸3と連結されたセカンダリプーリ5と、プライマリプーリ4とセカンダリプーリ5とに巻き掛けられた無端状のベルト6と、を備えている。
[Overall system configuration]
FIG. 1 is a configuration diagram showing a vehicle according to the present embodiment, a continuously variable transmission mounted on the vehicle, and a main part of the control device thereof.
As shown in FIG. 1, the stepless transmission (CVT) 1 includes an input shaft 2 driven and connected to an output shaft 10a of an engine (internal engine) 10 as a drive source via a torque converter 11, and an input shaft 2. The output shaft 3 which is arranged in parallel with the drive wheel 12 and is driven and connected via the speed reducer 13 and the differential mechanism 14, the primary pulley 4 connected to the input shaft 2, and the secondary connected to the output shaft 3. It includes a pulley 5 and an endless belt 6 wound around the primary pulley 4 and the secondary pulley 5.

プライマリプーリ4は、固定シーブ41と、可動シーブ42と、可動シーブ42を軸方向に移動させるプライマリ油室43とを有する。
セカンダリプーリ5は、固定シーブ51と、可動シーブ52と、可動シーブ52を軸方向に移動させるセカンダリ油室53とを有する。
The primary pulley 4 has a fixed sheave 41, a movable sheave 42, and a primary oil chamber 43 for moving the movable sheave 42 in the axial direction.
The secondary pulley 5 has a fixed sheave 51, a movable sheave 52, and a secondary oil chamber 53 that moves the movable sheave 52 in the axial direction.

無段変速機1は、プライマリ油室43及びセカンダリ油室53に作動油を供給するために、エンジン10で駆動されるオイルポンプ61と、オイルポンプ61から吐出された作動油を所定のライン圧Pに調圧するライン圧制御弁(プレッシャレギュレータ弁)62と、ライン圧Pを元圧としてプライマリ圧Ppriに調圧するプライマリ圧制御弁63と、ライン圧Pを元圧としてセカンダリ圧Psecに調圧するセカンダリ圧制御弁64とを備えている。 The stepless transmission 1 has a predetermined line pressure of the oil pump 61 driven by the engine 10 and the hydraulic oil discharged from the oil pump 61 in order to supply the hydraulic oil to the primary oil chamber 43 and the secondary oil chamber 53. A line pressure control valve (pressure regulator valve) 62 that regulates the pressure to PL, a primary pressure control valve 63 that regulates the primary pressure Ppri using the line pressure PL as the main pressure, and a secondary pressure Psec using the line pressure PL as the main pressure. It is equipped with a secondary pressure control valve 64 for adjusting the pressure.

各制御弁62,63,64は、油圧制御回路60内に設けられ、詳細は図示しないが、入力ポート、出力ポート、ドレンポート等を備えたスリーブに内装されたスプールをソレノイドで駆動するソレノイドバルブであって、CVTECU(CVT電子制御ユニット)7によって、各ソレノイド62a,63a,64aへの電流を制御することにより、スプールが駆動され出力する油圧が調整される。そこで、制御弁62,63,64については、「油圧制御用ソレノイドバルブ」とも言う。 Each of the control valves 62, 63, 64 is provided in the hydraulic control circuit 60, and although details are not shown, a solenoid valve for driving a spool built in a sleeve equipped with an input port, an output port, a drain port, etc. by a solenoid. The CVT ECU (CVT electronic control unit) 7 controls the currents to the solenoids 62a, 63a, 64a, thereby driving the spool and adjusting the output hydraulic pressure. Therefore, the control valves 62, 63, 64 are also referred to as "hydraulic control solenoid valves".

CVTECU7には、プライマリプーリ4の回転速度(単位時間回転数、プライマリプーリ回転数)Npriを検出するプライマリ回転センサ81、セカンダリプーリ5の回転速度(単位時間回転数、セカンダリプーリ回転数)Nsecを検出するセカンダリ回転センサ82、プライマリ油室43の圧力(プライマリ圧)Ppriを検出するプライマリ圧センサ83、セカンダリ油室53の圧力(セカンダリ圧)Psecを検出するセカンダリ圧センサ84等の各種センサが接続され、これらのセンサ情報やスイッチ情報が入力される。また、CVTECU7は、エンジンECU(エンジン電子制御ユニット)8と情報伝達可能に接続されている。 The CVTEC 7 detects the rotation speed of the primary pulley 4 (unit time rotation speed, primary pulley rotation speed) Npri, the primary rotation sensor 81, and the rotation speed of the secondary pulley 5 (unit time rotation speed, secondary pulley rotation speed) Nsec. Various sensors such as a secondary rotation sensor 82, a primary pressure sensor 83 for detecting the pressure (primary pressure) Ppri of the primary oil chamber 43, and a secondary pressure sensor 84 for detecting the pressure (secondary pressure) Psec of the secondary oil chamber 53 are connected. , These sensor information and switch information are input. Further, the CVT ECU 7 is connected to the engine ECU (engine electronic control unit) 8 so as to be able to transmit information.

無段変速機1は、ベルト6とプーリ4,5との間で滑りが発生しない範囲でできるだけ低い推力を各プーリ4,5に付与し、変速比Rを変更する際には、プライマリプーリ4とセカンダリプーリ5との間に差推力を加えて目標変速比Ratio0が達成されるように各可動シーブ42,52を軸方向に駆動する。これらの推力及び差推力は、CVTECU7によってプライマリ圧Ppri及びセカンダリ圧Psecを制御することによって行う。 The continuously variable transmission 1 applies the lowest possible thrust to each of the pulleys 4 and 5 as long as slip does not occur between the belt 6 and the pulleys 4 and 5, and when the gear ratio R is changed, the primary pulley 4 A differential thrust is applied between the and the secondary pulley 5 to drive the movable sheaves 42 and 52 in the axial direction so that the target gear ratio Ratio 0 is achieved. These thrusts and differential thrusts are performed by controlling the primary pressure Ppri and the secondary pressure Psec by the CVTEC7.

[油圧制御系の構成]
このため、CVTECU7は、詳細は図示しないが、ライン圧Pを制御するライン圧制御部と、プライマリ圧Ppriを制御するプライマリ圧制御部と、セカンダリ圧Psecを制御するセカンダリ圧制御部とを有する変速制御部(変速制御手段)70を備えている。
また、CVTECU7は、プライマリプーリ回転数Npri及びセカンダリプーリ回転数Nsecから実変速比Ratioを算出する変速比演算部(図示略)を備えている。
[Hydraulic control system configuration]
Therefore, although the details are not shown, the CVT ECU 7 has a line pressure control unit that controls the line pressure PL, a primary pressure control unit that controls the primary pressure Ppri , and a secondary pressure control unit that controls the secondary pressure Psec. A shift control unit (shift control means) 70 is provided.
Further, the CVT ECU 7 includes a gear ratio calculation unit (not shown) that calculates the actual gear ratio Ratio from the primary pulley rotation speed Npri and the secondary pulley rotation speed Nsec.

ライン圧制御部は、所定の制御指令(ライン圧指示値)をライン圧ソレノイド62aに出力する。
プライマリ圧制御部は、所定のプライマリ圧目標値Ppri_tを得る制御指令(プライマリ圧指示値Ppri_d)をプライマリ油圧ソレノイド63aに出力する。
セカンダリ圧制御部は、所定のセカンダリ圧目標値Psec_tを得る制御指令(セカンダリ圧指示値Psec_d)をセカンダリ油圧ソレノイド64aに出力する。
The line pressure control unit outputs a predetermined control command (line pressure instruction value) to the line pressure solenoid 62a.
The primary pressure control unit outputs a control command (primary pressure instruction value Ppri_d) for obtaining a predetermined primary pressure target value Ppri_t to the primary hydraulic solenoid 63a.
The secondary pressure control unit outputs a control command (secondary pressure instruction value Psec_d) for obtaining a predetermined secondary pressure target value Psec_t to the secondary hydraulic solenoid 64a.

さらに詳細には、セカンダリ圧制御部は、エンジンECU8からの出力情報及びセカンダリ回転センサ82からの車速情報等に基づいて無段変速機1により伝達するトルク容量(必要トルク伝達容量)を算出し、この伝達トルク容量から必要推力に応じたセカンダリ圧目標値Psec_tを導出してセカンダリ圧指示値Psec_dを設定する。なお、セカンダリ圧指示値Psec_dはこのセカンダリ圧目標値Psec_tに、セカンダリ実圧Psecに基づくフィードバック補正量を加算することで設定する。したがって、セカンダリ圧Psecはセカンダリ実圧Psecに基づくフィードバック制御(PID制御)によって制御される。 More specifically, the secondary pressure control unit calculates the torque capacity (required torque transmission capacity) transmitted by the continuously variable transmission 1 based on the output information from the engine ECU 8 and the vehicle speed information from the secondary rotation sensor 82. The secondary pressure target value Psec_t corresponding to the required thrust is derived from this transmission torque capacity, and the secondary pressure instruction value Psec_d is set. The secondary pressure instruction value Psec_d is set by adding the feedback correction amount based on the secondary actual pressure Psec to this secondary pressure target value Psec_t. Therefore, the secondary pressure Psec is controlled by the feedback control (PID control) based on the secondary actual pressure Psec.

プライマリ圧制御部は、エンジンECU8からの出力情報及びセカンダリ回転センサ82からの車速情報等に基づいて算出した目標変速比Ratio0と変速比演算部(図示略)で演算した実変速比Ratioとセカンダリ圧指示値(セカンダリ指示圧)Psec_dとから、プライマリ圧目標値Ppri_tを設定し、このプライマリ圧目標値Ppri_tとプライマリ実圧Ppriとからプライマリ圧指示値(プライマリ指示圧)Ppri_dを設定する。つまり、プライマリ圧制御部では、目標変速比Ratio0と実変速比Ratioとの偏差(Ratio0-Ratio)に基づくフィードバック制御(PID制御)によって、セカンダリ圧指示値Psec_dとの関係が目標差推力に応じたものとなるプライマリ圧目標値Ppri_tを与えてライマリ実圧Ppriを考慮しながらプライマリ圧指示値Ppri_dを設定する。 The primary pressure control unit has a target gear ratio Ratio 0 calculated based on output information from the engine ECU 8 and vehicle speed information from the secondary rotation sensor 82, an actual gear ratio Ratio calculated by the gear ratio calculation unit (not shown), and a secondary pressure. The primary pressure target value Ppri_t is set from the indicated value (secondary indicated pressure) Psec_d, and the primary pressure indicated value (primary indicated pressure) Ppri_d is set from the primary pressure target value Ppri_t and the primary actual pressure Ppri. That is, in the primary pressure control unit, the relationship with the secondary pressure indicated value Psec_d corresponds to the target difference thrust by the feedback control (PID control) based on the deviation (Ratio0-Ratio) between the target gear ratio Ratio 0 and the actual gear ratio Ratio. The primary pressure indicated value Ppri_d is set while considering the actual pressure Ppri by giving the primary pressure target value Ppri_t.

ライン圧制御部はセカンダリ圧指示値Psec_d及びプライマリ圧指示値Ppri_dに基づいて、セカンダリ圧指示値Psec_d及びプライマリ圧指示値Ppri_dを達成可能とするように、セカンダリ圧指示値Psec_d及びプライマリ圧指示値Ppri_dのうち大きい方よりもマージン分(差圧ΔP0)だけ高いライン圧指示値P_dを設定する。 The line pressure control unit can achieve the secondary pressure indicated value Psec_d and the primary pressure indicated value Ppri_d based on the secondary pressure indicated value Psec_d and the primary pressure indicated value Ppri_d, so that the secondary pressure indicated value Psec_d and the primary pressure indicated value Ppri_d can be achieved. The line pressure indicated value PL _d , which is higher by the margin (differential pressure ΔP0) than the larger one, is set.

ところで、このような無段変速機1に装備された制御弁62,63,64は、ソレノイド62a,63a,64aへの電流を制御することにより、出力する油圧を調整する油圧制御用ソレノイドバルブであるが、例えば入力ポートやドレンポートとスプールとの間などの極めて小さいクリアランスに、油中に混入している鉄粉等の異物(夾雑物、或いはコンタミとも言う)が噛み込んで、所謂バルブスティックを生じて、適切な油圧制御に支障をきたす場合がある。この場合、同時にベルト滑りが発生している可能性が極めて高い。 By the way, the control valves 62, 63, 64 provided in such a continuously variable transmission 1 are hydraulic control solenoid valves that adjust the output hydraulic pressure by controlling the current to the solenoids 62a, 63a, 64a. However, foreign matter (also called contaminants or contamination) such as iron powder mixed in the oil gets caught in the extremely small clearance between the input port or drain port and the spool, so-called valve stick. May interfere with proper hydraulic control. In this case, it is highly possible that belt slippage occurs at the same time.

本装置は、バルブに作動不良が生じているか否かを判定して、バルブに作動不良が生じていると判定されたら、まず、異物の噛み込みによる作動不良の解消を試みる異物除去動作を実施する。それでも作動不良が解消されない場合には、バルブの作動不良による油圧不足でプーリの推力が低下しベルト滑り等の無段変速機1の作動不良が生じ、無段変速機1の損傷を招くおそれがあるので、無段変速機1の保護制御を実施する。
以下、プライマリ圧制御弁63に着目して、異物除去動作及び保護制御を説明する。
This device determines whether or not the valve is malfunctioning, and if it is determined that the valve is malfunctioning, it first performs a foreign matter removal operation that attempts to eliminate the malfunction due to the biting of foreign matter. do. If the malfunction is still not resolved, the thrust of the pulley may decrease due to insufficient hydraulic pressure due to the malfunction of the valve, causing malfunction of the continuously variable transmission 1 such as belt slippage, which may lead to damage to the continuously variable transmission 1. Therefore, the protection control of the continuously variable transmission 1 is carried out.
Hereinafter, the foreign matter removing operation and the protection control will be described with a focus on the primary pressure control valve 63.

CVTECU7は、図1に示すように、バルブに作動不良が生じているか否かを判定する判定部(判定手段)71と、判定部71がバルブに作動不良が生じていると判定したら、異物除去動作を行うバルブ制御部(バルブ制御手段)72と、異物除去動作を行ってもバルブに作動不良が生じているとの判定が継続したら、無段変速機1の保護制御を行う保護制御部(保護制御手段)73と、を備えている。 As shown in FIG. 1, the CVTEC 7 has a determination unit (determination means) 71 for determining whether or not the valve is malfunctioning, and when the determination unit 71 determines that the valve is malfunctioning, foreign matter is removed. If the valve control unit (valve control means) 72 that operates and the protection control unit that performs protection control of the continuously variable transmission 1 continue to be determined that the valve is malfunctioning even after the foreign matter removal operation is performed (valve control unit) ( (Protection control means) 73 and.


判定部71によるバルブに作動不良が生じているか否かの判定は、プライマリ指示圧Ppri_dの変化(ここでは、増加)に対するプライマリ実圧Ppriの変化(ここでは、増加)に遅れが発生したか否かによって判定している。つまり、プライマリ指示圧Ppri_dの変化に対してプライマリ実圧Ppriの変化が一定以上遅れたら、バルブに作動不良が生じている(即ち、ベルト滑りが発生している)と判定する。

In the determination by the determination unit 71 whether or not the valve is malfunctioning, whether or not there is a delay in the change (here, increase) in the primary actual pressure Ppri with respect to the change (here, increase) in the primary instruction pressure Ppri_d. It is judged by whether. That is, if the change in the primary actual pressure Ppri is delayed by a certain amount or more with respect to the change in the primary indicated pressure Ppri_d, it is determined that the valve is malfunctioning (that is, belt slippage has occurred).

ところで、上記のように、セカンダリ指示圧Ppri_dは必要推力に応じたセカンダリ圧目標値Psec_tから値を設定されるため、フィードバック制御に用いるセカンダリ実圧Psecは値を適切に把握する必要がある。このため、セカンダリ実圧Psecを検出するセカンダリ圧センサ84は、予めキャリブレーションが実施される。
したがって、セカンダリ圧制御弁64の場合には、セカンダリ指示圧Psec_dの変化に対してセカンダリ実圧Psecの変化に遅れが発生しなければ、セカンダリ実圧Psecはセカンダリ指示圧Psec_dとほぼ一致(両者の差が微小)し、前記遅れが発生したら、セカンダリ実圧Psecとセカンダリ指示圧Psec_dとの差が一定値以上になる。このことから、前記遅れの発生を判定することができる。
By the way, as described above, since the secondary indicated pressure Ppri_d is set from the secondary pressure target value Psec_t according to the required thrust, it is necessary to appropriately grasp the value of the secondary actual pressure Psec used for the feedback control. Therefore, the secondary pressure sensor 84 that detects the secondary actual pressure Psec is calibrated in advance.
Therefore, in the case of the secondary pressure control valve 64, if there is no delay in the change in the secondary actual pressure Psec with respect to the change in the secondary indicated pressure Psec_d, the secondary actual pressure Psec is almost the same as the secondary indicated pressure Psec_d (both). If the difference is small) and the delay occurs, the difference between the secondary actual pressure Psec and the secondary instruction pressure Psec_d becomes a certain value or more. From this, it is possible to determine the occurrence of the delay.

これに対して、プライマリ指示圧Ppri_dは、目標変速比Ratio0と実変速比Ratioとセカンダリ指示圧Psec_dとに応じたプライマリ圧目標値Ppri_tから設定されるため、フィードバック制御に用いるプライマリ実圧Ppriの検出値に実際値とズレが生じていても、支障なくフィードバック制御できる。このため、プライマリ実圧Ppriを検出するプライマリ圧センサ83は、このような検出値に実際値とズレを補正するキャリブレーションが実施されることなく使用される。 On the other hand, the primary indicated pressure Ppri_d is set from the primary pressure target value Ppri_t corresponding to the target gear ratio Ratio 0, the actual gear ratio Ratio, and the secondary indicated pressure Psec_d, so that the primary actual pressure Ppri used for feedback control is detected. Even if the value deviates from the actual value, feedback control can be performed without any problem. Therefore, the primary pressure sensor 83 that detects the primary actual pressure Ppri is used without performing calibration for correcting the deviation from the actual value in such a detected value.

このような事情から、プライマリ圧センサ83の検出値は、実際値に対してプラス方向或いはマイナス方向に一定のズレをもっていることが想定される。したがって、プライマリ指示圧Ppri_dとプライマリ実圧Ppriとの差に着目しても、プライマリ指示圧Ppri_dの変化に対するプライマリ実圧Ppriの変化の遅れを適正には判定できない。
そこで、判定部71は、変速比Rが定常状態(換言すれば、無段変速機1が定常状態)であることを前提条件として、指示圧Ppri_dと実圧Ppriとの差の変化量が所定量以上になったときに、実圧Ppriの変化に遅れが発生したと判定する。
Under such circumstances, it is assumed that the detected value of the primary pressure sensor 83 has a certain deviation in the positive direction or the negative direction with respect to the actual value. Therefore, even if attention is paid to the difference between the primary indicated pressure Ppri_d and the primary actual pressure Ppri, the delay in the change in the primary actual pressure Ppri with respect to the change in the primary indicated pressure Ppri_d cannot be properly determined.
Therefore, the determination unit 71 determines the amount of change in the difference between the indicated pressure Ppri_d and the actual pressure Ppri on the precondition that the gear ratio R is in a steady state (in other words, the continuously variable transmission 1 is in a steady state). When the amount exceeds the fixed amount, it is determined that a delay has occurred in the change in the actual pressure Ppri.

上記の変速比Rが定常状態であるとする判定条件について、ここでは、到達変速比DRatioと目標変速比Ratio0との差であるRatio差(=|DRatio-Ratio0|)を判定基準値(微小値)αと比較して、Ratio差が判定基準値α以下の状態が所定時間P1以上継続したこととしている。 Regarding the above-mentioned determination condition that the gear ratio R is in the steady state, here, the Ratio difference (= | DRatio-Ratio0 |), which is the difference between the reached gear ratio DRatio and the target gear ratio Ratio0, is the determination reference value (small value). ) It is assumed that the state in which the Ratio difference is equal to or less than the judgment reference value α as compared with α has continued for a predetermined time of P1 or more.

到達変速比DRatioは車両の走行状態に基づいて設定され、目標変速比Ratio0は実変速比Ratioをこの到達変速比DRatioに所定の変化速度で到達(収束)させるために設定される。過渡状態では、到達変速比DRatioが変更され、これに伴って目標変速比Ratio0が変更されるが、目標変速比Ratio0の変更は小さく抑えられるため、Ratio差が判定基準値α以上となる。したがって、定常状態の判定に、かかる判定手法を用いている。 The reached gear ratio DRatio is set based on the running condition of the vehicle, and the target gear ratio Ratio 0 is set to reach (converge) the actual gear ratio Ratio to this reached gear ratio DRatio at a predetermined change speed. In the transient state, the reached gear ratio DRatio is changed, and the target gear ratio Ratio0 is changed accordingly. However, since the change in the target gear ratio Ratio0 is suppressed to a small extent, the Ratio difference becomes the determination reference value α or more. Therefore, such a determination method is used to determine the steady state.

なお、定常状態の判定には、駆動源のエンジン10から無段変速機1への入力トルクが定常状態であることを、変速比Rが定常状態であることに加えて或いは替えて、前提条件としてもよい。 In order to determine the steady state, it is a prerequisite that the input torque from the engine 10 of the drive source to the continuously variable transmission 1 is in the steady state, in addition to or in place of the gear ratio R being in the steady state. May be.

プライマリ指示圧Ppri_dの変化に対するプライマリ実圧Ppriの変化の遅れの判定について、具体的には、判定部71は、無段変速機1が上記定常状態である場合の指示圧Pd(ここでは、プライマリ指示圧Ppri_d)と実圧Pr(ここでは、プライマリ実圧Ppri)との差である第1オフセットOff1(=Pd-Pr)と、この定常状態から変速比Rが変動する過渡状態(換言すれば、無段変速機1が過渡状態)となった場合の指示圧Pd(プライマリ指示圧Ppri_d)と実圧Pr(プライマリ実圧Ppri)との差である第2オフセットOff2(=Pd-Pr)とを比較し、第2オフセットOff2と第1オフセットOff1との差Dif(=Off2-Off1)が所定差Dif0以上大きいときに、実圧Prの変化に遅れが発生したと判定する。 Regarding the determination of the delay in the change in the primary actual pressure Ppri with respect to the change in the primary indicated pressure Ppri_d, specifically, the determination unit 71 determines the indicated pressure Pd (here, the primary) when the stepless transmission 1 is in the steady state. The first offset Offf1 (= Pd-Pr), which is the difference between the indicated pressure Ppri_d) and the actual pressure Pr (here, the primary actual pressure Ppri), and the transient state (in other words, the gear ratio R fluctuates from this steady state). The second offset Off2 (= Pd-Pr), which is the difference between the indicated pressure Pd (primary indicated pressure Ppri_d) and the actual pressure Pr (primary actual pressure Ppri) when the stepless transmission 1 is in the transient state). When the difference Dif (= Offf2-Offf1) between the second offset Off2 and the first offset Offf1 is larger than the predetermined difference Dif0, it is determined that a delay has occurred in the change in the actual pressure Pr.

なお、変速比Rが過渡状態となったことの判定については、Ratio差が判定基準値α以下の状態で、目標変速比Ratio0と実変速比Ratioとの偏差(=|Ratio0-Ratio|)を判定基準値(微小値)βと比較して、この偏差が判定基準値β以上になったら、変速比Rが過渡状態となったと判定する。判定基準値βは判定基準値αとほぼ同レベルの値(判定基準値αと等しいかこれよりもやや小さい値)とする。逆に、定常状態を判定するには、この偏差が判定基準値β未満であることが条件に含まれている。 Regarding the determination that the gear ratio R has become a transient state, the deviation between the target gear ratio Ratio 0 and the actual gear ratio Ratio (= | Ratio0-Ratio |) is determined when the Ratio difference is equal to or less than the determination reference value α. When this deviation becomes equal to or greater than the determination reference value β in comparison with the determination reference value (small value) β, it is determined that the gear ratio R is in a transient state. The judgment reference value β is a value at substantially the same level as the judgment reference value α (a value equal to or slightly smaller than the judgment reference value α). On the contrary, in order to judge the steady state, it is included in the condition that this deviation is less than the judgment reference value β.

バルブ制御部72による異物除去動作は、具体的には、バルブ(プライマリバルブ63)のソレノイド(プライマリソレノイド63a)に対して、所定周期で電流が変化するディザ制御用の電流を一時的(一定時間)に流すことで、バルブ63のスプールを、一時的に往復移動させる制御(「ディザ制御」)である。この異物除去動作を行う時間の長さ(ディザ制御用の電流を流す期間)は適宜に設定してよい。検知された調圧不良が、コンタミ等により一時的に発生したものである場合、異物除去動作を行うことで、その調圧不良の解消が期待できる。 Specifically, the foreign matter removing operation by the valve control unit 72 temporarily (constant time) a dither control current in which the current changes in a predetermined cycle to the solenoid (primary solenoid 63a) of the valve (primary valve 63). ), The spool of the valve 63 is temporarily reciprocated (“dither control”). The length of time for performing this foreign matter removing operation (the period during which the current for dither control is passed) may be appropriately set. If the detected pressure regulation defect is temporarily generated due to contamination or the like, it can be expected that the pressure regulation defect will be resolved by performing a foreign matter removing operation.

保護制御部73による保護制御は、具体的には、エンジン10から無段変速機1への入力トルクを制限する入力トルク制限制御を適用している。無段変速機1のベルト6の滑りは、プーリ4への作動油の実圧Prが指示圧Pdよりも一定量(マージン)以上低いと、無段変速機1への入力トルクに対してプーリ4の推力不足を招いて発生する。したがって、ベルト6の滑りの発生を抑制して無段変速機1を保護するには、無段変速機1への入力トルク(駆動源10の発生トルク)を制限することが有効である。 Specifically, the protection control by the protection control unit 73 applies the input torque limit control that limits the input torque from the engine 10 to the continuously variable transmission 1. When the actual pressure Pr of the hydraulic oil to the pulley 4 is lower than the indicated pressure Pd by a certain amount (margin) or more, the slip of the belt 6 of the continuously variable transmission 1 is a pulley with respect to the input torque to the continuously variable transmission 1. It occurs due to insufficient thrust of 4. Therefore, in order to suppress the occurrence of slippage of the belt 6 and protect the continuously variable transmission 1, it is effective to limit the input torque (torque generated by the drive source 10) to the continuously variable transmission 1.

ここで、図2のタイムチャートを参照して、判定部71による判定及び判定結果に応じた制御の一例を説明する。 Here, with reference to the time chart of FIG. 2, an example of determination by the determination unit 71 and control according to the determination result will be described.

図2のタイムチャートには、複数のフラグを示している。
このうち、フラグF1は変速比Rが所定期間(又は、所定時間)以上定常状態にあると1とされ、定常判定がなされるまでは0とされる定常判定フラグである。
フラグF2は変速比Rが定常状態では1(クリア)、過渡状態では0(セット)とされる定常判定クリアフラグ(過渡判定フラグ)である。
フラグF3は指示圧Pdの変化に対する実圧Prの変化に遅れが生じてベルト滑りの可能性のある運転領域では1とされ、他の運転領域では0とされる滑り領域判定フラグである。
フラグF4はベルト滑りの可能性のある運転領域において、異物除去動作としてのディザ処理(有事ディザ)の作動要求をする場合に1とされ、その他の場合に0とされる有事ディザ作動要求フラグである。
フラグF5はベルト滑りの可能性のある運転領域となって(フラグF3=1)有事ディザを実施(フラグF4=1)した場合1とされ、その他の場合に0とされる滑り判定フラグである。
The time chart of FIG. 2 shows a plurality of flags.
Of these, the flag F1 is a steady-state determination flag that is set to 1 when the gear ratio R is in a steady state for a predetermined period (or a predetermined time) or longer, and is set to 0 until a steady-state determination is made.
The flag F2 is a steady-state determination clear flag (transient determination flag) in which the gear ratio R is 1 (clear) in the steady state and 0 (set) in the transient state.
The flag F3 is a slip region determination flag which is set to 1 in an operating region where there is a possibility of belt slip due to a delay in the change of the actual pressure Pr with respect to the change of the indicated pressure Pd, and is set to 0 in the other operating regions.
Flag F4 is an emergency dither operation request flag that is set to 1 when requesting operation of dither processing (emergency dither) as a foreign matter removal operation in an operating area where belt slippage is possible, and is set to 0 in other cases. be.
Flag F5 is a slip determination flag that is set to 1 when the operating area has a possibility of belt slip (flag F3 = 1) and emergency dither is performed (flag F4 = 1), and is set to 0 in other cases. ..

まず、図2に示す時点t1で、到達変速比DRatioと目標変速比Ratio0との差(=DRatio-Ratio0)が判定基準値α以下となり、この状態が所定時間P1後の時点t2まで継続すると、定常状態であることが判定されて、定常判定フラグF1がオン(F1=1)とされる。 First, at the time point t1 shown in FIG. 2, the difference (= DRatio-Ratio0) between the reached gear ratio DRatio and the target gear ratio Ratio0 becomes the determination reference value α or less, and this state continues until the time point t2 after the predetermined time P1. It is determined that the state is steady, and the steady state determination flag F1 is turned on (F1 = 1).

この定常判定フラグF1がオン状態で且つ定常判定クリアフラグF2がクリア状態(定常判定許容状態、F2=1)であれば、変速比Rは定常状態であり、指示圧Pd(プライマリ指示圧Ppri_d)と実圧Pr(プライマリ実圧Ppri)との差である第1オフセットOff1(=Pd-Pr)を算出する。 If the steady state determination flag F1 is on and the steady state determination clear flag F2 is in the clear state (steady state determination allowable state, F2 = 1), the gear ratio R is in the steady state, and the instruction pressure Pd (primary instruction pressure Ppri_d). The first offset Off1 (= Pd-Pr), which is the difference between the actual pressure Pr and the actual pressure Pr (primary actual pressure Ppri), is calculated.

その後の時点t3で、到達変速比DRatio及び目標変速比Ratio0は変動がないが実変速比Ratioのみが変動(ここでは、上昇)して目標変速比Ratio0と実変速比Ratioとの偏差(=|Ratio0-Ratio|)が判定基準値β以上になると、定常判定クリアフラグF2はセット状態(F2=0)となり、変速比Rは過渡状態と判定される。この時には、オフセットOffも第1オフセットOff1よりも大きな値Offsに増大する。
この状態で、指示圧Pd(プライマリ指示圧Ppri_d)と実圧Pr(プライマリ実圧Ppri)との差である第2オフセットOff2(=Pd-Pr)を算出する。
At the subsequent time point t3, the reached gear ratio DRatio and the target gear ratio Ratio0 do not fluctuate, but only the actual gear ratio Ratio fluctuates (here, increases) and the deviation between the target gear ratio Ratio0 and the actual gear ratio Ratio (= | When Ratio0-Ratio |) becomes the determination reference value β or more, the steady determination clear flag F2 is in the set state (F2 = 0), and the gear ratio R is determined to be in the transient state. At this time, the offset Offf also increases to a value Offfs larger than that of the first offset Offf1.
In this state, the second offset Off2 (= Pd-Pr), which is the difference between the indicated pressure Pd (primary indicated pressure Ppri_d) and the actual pressure Pr (primary actual pressure Ppri), is calculated.

第2オフセットOff2が増大し、時点t4で、第2オフセットOff2と第1オフセットOff1との差Dif(=Off2-Off1)が所定差Dif0に達すると、実圧Prの変化に遅れが発生したと判定し、ベルト滑りが懸念される領域にあることを示す滑り領域判定フラグF3がオンとなって(F3=1)、同時に、有事ディザ作動要求フラグF4がオンとなって(F4=1)、ディザ制御によるディザ(異物除去動作)が実施される。滑り領域判定フラグF3及び有事ディザ作動要求フラグF4は一定時間オン状態が継続されて一定時間後の時点t7でオフに戻る。 When the second offset Off2 increases and the difference Dif (= Off2-Offf1) between the second offset Off2 and the first offset Off1 reaches the predetermined difference Dif0 at the time point t4, the change of the actual pressure Pr is delayed. The slip area determination flag F3, which indicates that the belt is in a region where slippage is a concern, is turned on (F3 = 1), and at the same time, the emergency dither operation request flag F4 is turned on (F4 = 1). Dither (foreign matter removal operation) is performed by dither control. The slip area determination flag F3 and the emergency dither operation request flag F4 continue to be on for a certain period of time and return to off at a time point t7 after a certain period of time.

また、滑り領域判定フラグF3及び有事ディザ作動要求フラグR4がオン状態とされている間に適宜のタイミング(ここでは、変速比Rが定常復帰したタイミング)t6で、滑り判定フラグF5がオン(F5=1)にセットされる。
なお、定常判定フラグF1,定常判定クリアフラグF2,滑り判定フラグF5は、滑り領域判定フラグF3及び有事ディザ作動要求フラグF4がオフに戻るタイミング(時点t7)でそれぞれリセット(F1=0,F2=1,F5=0)される。ただし、定常判定クリアフラグF2については、二点鎖線で示すように、変速比Rが定常復帰したタイミングT6から所定時間P2後にリセットするようにしてもよい。
そして、この滑り判定フラグが所定期間内にオンにセットされる回数に応じて滑りカウンタをカウントし、滑りカウンタのカウント値Cが所定数に達したら上記の保護制御が実施される。
Further, the slip determination flag F5 is turned on (F5) at an appropriate timing (here, the timing at which the gear ratio R is constantly restored) t6 while the slip area determination flag F3 and the emergency dither operation request flag R4 are in the ON state. = 1) is set.
The steady determination flag F1, the steady determination clear flag F2, and the slip determination flag F5 are reset (F1 = 0, F2 =) at the timing (time point t7) when the slip area determination flag F3 and the emergency dither operation request flag F4 return to off. 1, F5 = 0). However, the steady-state determination clear flag F2 may be reset after a predetermined time P2 from the timing T6 at which the gear ratio R has returned to steady state, as shown by the alternate long and short dash line.
Then, the slip counter is counted according to the number of times the slip determination flag is set to ON within a predetermined period, and when the count value C of the slip counter reaches a predetermined number, the above protection control is executed.

〔作用及び効果〕
本実施形態にかかる無段変速機の制御装置は、上述のように構成されるので、図3,図4及び図5に示すように、無段変速機の制御を実施することができる。
なお、ここで示す制御例では、滑り判定フラグが一回オンになってから車両の走行距離Mが所定距離Ms内のうちに再び滑り判定フラグがオンになったら、保護制御を実施するように設定されている。
[Action and effect]
Since the continuously variable transmission control device according to the present embodiment is configured as described above, the continuously variable transmission can be controlled as shown in FIGS. 3, 4 and 5.
In the control example shown here, if the slip determination flag is turned on again within the predetermined distance Ms after the slip determination flag is turned on once, the protection control is performed. It is set.

まず、指示圧Pdの変化に対する実圧Prの変化に遅れが生じたか否か(即ち、ベルトの滑りが生じたか否か)を判定する。
つまり、図3に示すように、変速比Rが所定期間(又は、所定時間)以上定常状態にあったか否かを判定する(ステップS11)。所定期間以上定常状態になければリターンする。所定期間以上定常状態にあれば、定常判定フラグF1をオン(F1=1)にセットし(ステップS12)、次に、現在、定常状態にあるか否かを判定し(ステップS13)、現在、定常状態にあれば、指示圧Pdと実圧Prとの差である第1オフセットOff1(=Pd-Pr)を算出する(ステップS14)。
First, it is determined whether or not there is a delay in the change in the actual pressure Pr with respect to the change in the indicated pressure Pd (that is, whether or not the belt slips).
That is, as shown in FIG. 3, it is determined whether or not the gear ratio R has been in a steady state for a predetermined period (or a predetermined time) or more (step S11). If it is not in a steady state for a predetermined period or more, it returns. If it is in a steady state for a predetermined period or longer, the steady state determination flag F1 is set to on (F1 = 1) (step S12), and then it is determined whether or not it is currently in a steady state (step S13). If it is in the steady state, the first offset Off1 (= Pd-Pr), which is the difference between the indicated pressure Pd and the actual pressure Pr, is calculated (step S14).

一方、現在、定常状態になければ、定常判定クリアフラグF2をセット(F2=0)し(ステップS15)、指示圧Pdと実圧Prとの差である第2オフセットOff2(=Pd-Pr)を算出する(ステップS16)。そして、第2オフセットOff2と第1オフセットOff1との差Dif(=Off2-Off1)を算出し(ステップS17)、この差Difが所定差Dif0以上になったか否かを判定する(ステップS18)、走行距離Mが所定距離Ms以上となったら、指示圧Pdの変化に対する実圧Prの変化に遅れが生じたと判断し、滑り領域判定フラグF3をオン(F3=1)にセットする(ステップS19)。 On the other hand, if it is not in the steady state at present, the steady state determination clear flag F2 is set (F2 = 0) (step S15), and the second offset Off2 (= Pd-Pr) which is the difference between the indicated pressure Pd and the actual pressure Pr. Is calculated (step S16). Then, the difference Dif (= Offf2-Offf1) between the second offset Off2 and the first offset Offf1 is calculated (step S17), and it is determined whether or not the difference Dif is equal to or greater than the predetermined difference Dif0 (step S18). When the mileage M becomes a predetermined distance Ms or more, it is determined that the change in the actual pressure Pr with respect to the change in the indicated pressure Pd has occurred, and the slip area determination flag F3 is set to ON (F3 = 1) (step S19). ..

このような指示圧Pdの変化に対する実圧Prの変化に遅れが生じたか否かの判定に基づいて、図4に示すように、ディザ処理や保護制御の各処理が行われる。実圧Prの変化に遅れが生じなければ(滑り領域判定フラグF3が0ならば)、これらの処理は行わない。 As shown in FIG. 4, each process of dither processing and protection control is performed based on the determination of whether or not the change of the actual pressure Pr with respect to the change of the indicated pressure Pd has occurred. If there is no delay in the change of the actual pressure Pr (if the slip region determination flag F3 is 0), these processes are not performed.

まず、走行距離(走行距離カウント値)Mが所定距離Ms以上であるか否かを判定する(ステップS2)。走行距離Mは、滑り判定フラグがオンになったらカウントを開始する距離カウント値である。
走行距離Mが所定距離Ms以上であれば、走行距離Mを0にリセットし(ステップS4)、後述のフラグF6を0にリセットし(ステップS6)、滑りカウンタのカウント値Cを0にリセットする(ステップS8)。
First, it is determined whether or not the mileage (mileage count value) M is equal to or greater than the predetermined distance Ms (step S2). The mileage M is a distance count value that starts counting when the slip determination flag is turned on.
If the mileage M is a predetermined distance Ms or more, the mileage M is reset to 0 (step S4), the flag F6 described later is reset to 0 (step S6), and the count value C of the slip counter is reset to 0. (Step S8).

次に、指示圧Pdの変化に対する実圧Prの変化に遅れが生じたか否か(滑り領域判定フラグF3が1か否か)を判定する(ステップS10)。
指示圧Pdの変化に対する実圧Prの変化に遅れが生じた(F3=1)と判定されると、まず、フラグF6が0であるか否かを判定する(ステップS20)。このフラグF6は、滑り判定がされディザ処理が1回実施されると、1にセットされ、その後、車両の走行距離Mが所定距離Ms以上となるまでの間に滑り判定がなされなければ0にリセットされる(ステップS6)。
Next, it is determined whether or not there is a delay in the change in the actual pressure Pr with respect to the change in the indicated pressure Pd (whether or not the slip region determination flag F3 is 1) (step S10).
When it is determined that the change in the actual pressure Pr with respect to the change in the indicated pressure Pd has occurred (F3 = 1), it is first determined whether or not the flag F6 is 0 (step S20). This flag F6 is set to 1 when the slip determination is made and the dither processing is performed once, and then set to 0 if the slip determination is not made until the mileage M of the vehicle becomes a predetermined distance Ms or more. It is reset (step S6).

フラグF6が0であればフラグF6を1にセットし(ステップS30)、車両の走行距離Mのカウントを開始し(ステップS40)、有事ディザ作動要求フラグF4を1にセットし、ディザ処理(異物除去動作)を所定時間実施する(ステップS50)。そして、滑り判定フラグF5を1にセットし(ステップS52)、ディザ処理(異物除去動作)が所定時間継続されたか否かを判定し(ステップS54)、ディザ処理が所定時間継続されたら、各フラグF1~F6をリセットする(ステップS56) If the flag F6 is 0, the flag F6 is set to 1 (step S30), the counting of the mileage M of the vehicle is started (step S40), the emergency dither operation request flag F4 is set to 1, and the dither processing (foreign matter) is performed. The removal operation) is carried out for a predetermined time (step S50). Then, the slip determination flag F5 is set to 1 (step S52), it is determined whether or not the dither processing (foreign matter removing operation) is continued for a predetermined time (step S54), and if the dither processing is continued for a predetermined time, each flag is set. Reset F1 to F6 (step S56)

一方、フラグF6が0でなければ、フラグF6は1であり、車両の走行距離Mのカウントを継続し(ステップS58)、ディザ処理(異物除去動作)を所定時間実施する(ステップS60)。そして、滑り判定フラグF5を1にセットし(ステップS62)、滑りカウンタのカウント値Cをインクリメントして(ステップS64)、カウント値Cが閾値Cs(ここでは、Cs=2)以上であるか否かを判定する(ステップS66)。 On the other hand, if the flag F6 is not 0, the flag F6 is 1, the counting of the mileage M of the vehicle is continued (step S58), and the dither processing (foreign matter removing operation) is performed for a predetermined time (step S60). Then, the slip determination flag F5 is set to 1 (step S62), the count value C of the slip counter is incremented (step S64), and whether or not the count value C is equal to or greater than the threshold Cs (here, Cs = 2). (Step S66).

カウント値Cが閾値Cs以上でなければ、ディザ処理(異物除去動作)が所定時間継続されたか否かを判定し(ステップS54)、ディザ処理が所定時間継続されたら、各フラグF1~F6をリセットする(ステップS56)
一方、カウント値Cが閾値Cs以上であれば、無段変速機1の保護制御を実施する(ステップS70)。
この場合は、車両に警告表示を行って、ドライバに修理を案内する。
If the count value C is not equal to or greater than the threshold value Cs, it is determined whether or not the dither processing (foreign matter removing operation) is continued for a predetermined time (step S54), and if the dither processing is continued for a predetermined time, the flags F1 to F6 are reset. (Step S56)
On the other hand, if the count value C is equal to or higher than the threshold value Cs, the protection control of the continuously variable transmission 1 is performed (step S70).
In this case, a warning is displayed on the vehicle and the driver is informed of the repair.

図5は図3,図4のフローチャートに対応したタイムチャートであり、図5において、VSPは車速、TVOはスロットル開度を示す。
図5に示すように、時点t11で指示圧Pdの変化に対する実圧Prの変化に遅れが生じたことからベルト滑りが検知され、時点t11~t12で、ディザ処理が実施され(ディザ作動)、滑りフラグがセットされる。また、滑りカウンタが0(正常)から1(仮故障)に切り換えられる。
その後、車両の走行距離Mが所定距離Ms以上となる時点t13までベルト滑りが検知されないため、滑りカウンタは0(正常)にリセットされる。
5A and 5B are time charts corresponding to the flowcharts of FIGS. 3 and 4. In FIG. 5, VSS indicates a vehicle speed and TVO indicates a throttle opening degree.
As shown in FIG. 5, belt slip is detected due to a delay in the change in the actual pressure Pr with respect to the change in the indicated pressure Pd at the time point t11, and dither processing is performed (dither operation) at the time points t11 to t12. The slip flag is set. Further, the slip counter is switched from 0 (normal) to 1 (temporary failure).
After that, since the belt slip is not detected until the time point t13 when the mileage M of the vehicle becomes the predetermined distance Ms or more, the slip counter is reset to 0 (normal).

その後、時点t14で指示圧Pdの変化に対する実圧Prの変化に遅れが生じたことからベルト滑りが検知され、時点t14~t15で、ディザ処理が実施され(ディザ作動)、滑りフラグがセットされる。また、滑りカウンタが0(正常)から1(仮故障)に切り換えられる。車両の走行距離Mが所定距離Ms以上となる前の時点t16でベルト滑りが検知されると、時点t16~t17で、ディザ処理が実施され(ディザ作動)、滑りフラグがセットされ、滑りカウンタが1(仮故障)から2(故障確定)に切り換えられて、無段変速機1の保護制御が実施される。 After that, the belt slip was detected because the change of the actual pressure Pr with respect to the change of the indicated pressure Pd occurred at the time point t14, and the dither treatment was performed (dither operation) at the time points t14 to t15, and the slip flag was set. To. Further, the slip counter is switched from 0 (normal) to 1 (temporary failure). When belt slip is detected at a time point t16 before the vehicle's mileage M becomes a predetermined distance Ms or more, dither processing is performed (dither operation) at time points t16 to t17, a slip flag is set, and a slip counter is set. The protection control of the continuously variable transmission 1 is carried out by switching from 1 (temporary failure) to 2 (fixed failure).

このようにして、本装置によれば、油圧制御用ソレノイドバルブであるプライマリ制御弁63への指示圧Pdの変化に対する実圧Prの変化に遅れが発生したら、バルブ63の作動不良によるベルト滑りの発生の可能性が高くなるが、バルブ63のスプールを一時的に往復移動させる異物除去動作を行うので、バルブ63の作動不良を速やかに解消することが可能になる。 In this way, according to the present device, if there is a delay in the change in the actual pressure Pr with respect to the change in the indicated pressure Pd to the primary control valve 63, which is the solenoid valve for hydraulic control, the belt slip due to the malfunction of the valve 63. Although the possibility of occurrence is high, since the foreign matter removing operation of temporarily reciprocating the spool of the valve 63 is performed, it is possible to quickly eliminate the malfunction of the valve 63.

また、バルブ63の作動不良が解消されない場合や、バルブ63の作動不良が解消されても、長い期間を置かずに再度バルブ63の作動不良が発生した場合には、無段変速機1の保護制御を行うので、例えばベルト滑りの発生が速やかに抑制され無段変速機1の損傷の回避を図ることができる。 Further, if the malfunction of the valve 63 is not resolved, or if the malfunction of the valve 63 is resolved but the malfunction of the valve 63 occurs again within a long period of time, the continuously variable transmission 1 is protected. Since the control is performed, for example, the occurrence of belt slippage can be quickly suppressed, and damage to the continuously variable transmission 1 can be avoided.

なお、前記遅れが発生したら、すぐに保護制御を行うことも可能であるが、保護制御を行う前に、異物除去動作を行うと、バルブ63の作動不良を速やかに解消することが可能になり、こうして、バルブ63の作動不良が解消されれば保護制御は不要になり、保護制御に伴う車両の運転性能の低下を回避することができる。 It is possible to perform the protection control immediately when the delay occurs, but if the foreign matter removal operation is performed before the protection control is performed, the malfunction of the valve 63 can be quickly resolved. Thus, if the malfunction of the valve 63 is eliminated, the protection control becomes unnecessary, and it is possible to avoid the deterioration of the driving performance of the vehicle due to the protection control.

また、本プライマリ制御弁63については、検出値に実際値とズレを補正するキャリブレーションが実施されることなく使用されるため、バルブ63への指示圧Pdと実圧Prとの単純な比較によってバルブ63の作動不良を判定することはできないが、バルブ63への指示圧Pdの変化に対する実圧Prの変化に遅れが発生したことからバルブ63の作動不良を判定するので、適切に判定することができる。 Further, since the primary control valve 63 is used without being calibrated to correct the deviation from the actual value in the detected value, a simple comparison between the indicated pressure Pd to the valve 63 and the actual pressure Pr is used. Although it is not possible to determine the malfunction of the valve 63, the malfunction of the valve 63 is determined because the change in the actual pressure Pr with respect to the change in the indicated pressure Pd to the valve 63 is delayed. Can be done.

以上、本発明の実施形態を説明したが、本発明はかかる実施形態を適宜変更して実施してもよい。
例えば、上記実施形態では、プライマリ制御弁63に係る異物除去動作及び保護制御を説明したが、例えば、セカンダリ制御弁64など他の油圧制御用ソレノイドバルブの管理にも適用することができる。
Although the embodiment of the present invention has been described above, the present invention may be carried out by appropriately modifying such an embodiment.
For example, in the above embodiment, the foreign matter removing operation and protection control related to the primary control valve 63 have been described, but the present invention can also be applied to the management of other hydraulic control solenoid valves such as the secondary control valve 64.

また、上記実施形態では、指示圧Pdの変化に対する実圧Prの変化に遅れが発生したら、ディザ(異物除去動作)を実施してそれでも実圧Prの変化に遅れが発生したら保護制御を行っているが、保護制御については省略してもよい。 Further, in the above embodiment, if there is a delay in the change in the actual pressure Pr with respect to the change in the indicated pressure Pd, dither (foreign matter removing operation) is performed, and if there is still a delay in the change in the actual pressure Pr, protection control is performed. However, protection control may be omitted.

1 車両用無段変速機(CVT)
4 プライマリプーリ
5 セカンダリプーリ
6 無端状のベルト
63 プライマリ圧制御弁(油圧制御用ソレノイドバルブ)
63 セカンダリ圧制御弁(油圧制御用ソレノイドバルブ)
70 変速制御部(変速制御手段)
71 判定部(判定手段)
72 バルブ制御部(バルブ制御手段)
73 保護制御部(保護制御手段)
1 Continuously variable transmission for vehicles (CVT)
4 Primary pulley 5 Secondary pulley 6 Endless belt 63 Primary pressure control valve (solenoid valve for hydraulic control)
63 Secondary pressure control valve (solenoid valve for hydraulic control)
70 Shift control unit (shift control means)
71 Judgment unit (judgment means)
72 Valve control unit (valve control means)
73 Protection control unit (protection control means)

Claims (5)

プライマリプーリとセカンダリプーリと前記両プーリに巻き掛けられたベルトとを備え、 変速比を制御する油圧制御用ソレノイドバルブを備えた無段変速機を制御する無段変速機の制御装置であって、
油圧制御用ソレノイドバルブへの指示圧の変化に対する実圧の変化に遅れが発生したことを判定する判定手段と、
前記判定手段が前記遅れの発生を判定したら前記油圧制御用ソレノイドバルブのスプールを一時的に往復移動させる異物除去動作を行うバルブ制御手段と、を備えている
ことを特徴とする無段変速機の制御装置。
A continuously variable transmission control device that controls a continuously variable transmission equipped with a primary pulley, a secondary pulley, a belt wound around both pulleys, and a solenoid valve for hydraulic control that controls a gear ratio.
A determination means for determining that a delay has occurred in the change in the actual pressure with respect to the change in the indicated pressure to the solenoid valve for hydraulic pressure control, and
A continuously variable transmission comprising: a valve control means for performing a foreign matter removing operation of temporarily reciprocating the spool of the hydraulic control solenoid valve when the determination means determines the occurrence of the delay. Control device.
前記判定手段は、前記指示圧と前記実圧との差の変化量が所定量以上になったときに、前記遅れが発生したと判定する
ことを特徴とする請求項1に記載の無段変速機の制御装置。
The stepless speed change according to claim 1, wherein the determination means determines that the delay has occurred when the amount of change in the difference between the indicated pressure and the actual pressure becomes a predetermined amount or more. Machine control device.
前記判定手段は、前記無段変速機への入力及び前記変速比の少なくとも一方の状態が定常状態である場合の前記指示圧と前記実圧との差である第1オフセットと、前記一方の状態が過渡状態である場合の前記指示圧と前記実圧との差である第2オフセットとを比較し、前記第2オフセットと前記第1オフセットとの差が所定以上大きいときに、前記遅れが発生したと判定する
ことを特徴とする請求項1に記載の無段変速機の制御装置。
The determination means has a first offset, which is the difference between the indicated pressure and the actual pressure when at least one of the input to the continuously variable transmission and the gear ratio is a steady state, and one of the states. Compares the second offset, which is the difference between the indicated pressure and the actual pressure when is in a transient state, and when the difference between the second offset and the first offset is larger than a predetermined value, the delay occurs. The control device for a continuously variable transmission according to claim 1, wherein it is determined that the operation has been performed.
前記セカンダリプーリに加えられるセカンダリ圧は、前記無段変速機への入力トルクの大きさに応じたセカンダリ指示圧で制御され、
前記プライマリプーリに加えられるプライマリ圧は、前記変速比と前記セカンダリ圧とに応じたプライマリ指示圧で制御され、
前記油圧制御用ソレノイドバルブは、前記プライマリ圧を制御するプライマリバルブであって、前記指示圧は前記プライマリ指示圧である
ことを特徴とする請求項1~3の何れか1項に記載の無段変速機の制御装置。
The secondary pressure applied to the secondary pulley is controlled by the secondary indicated pressure according to the magnitude of the input torque to the continuously variable transmission.
The primary pressure applied to the primary pulley is controlled by the primary indicated pressure according to the gear ratio and the secondary pressure.
The stepless step according to any one of claims 1 to 3, wherein the hydraulic control solenoid valve is a primary valve that controls the primary pressure, and the indicated pressure is the primary indicated pressure. Transmission control device.
無段変速機の変速比を制御する油圧制御用ソレノイドバルブの制御方法であって、
油圧制御用ソレノイドバルブへの指示圧の変化に対する実圧の変化に遅れが発生したか否かを判定する判定ステップと、
前記判定ステップで前記遅れの発生を判定したら前記油圧制御用ソレノイドバルブのスプールを一時的に往復移動させる異物除去動作を行うバルブ制御ステップと、を備えている
ことを特徴とする無段変速機の制御方法。
It is a control method of a solenoid valve for hydraulic control that controls the gear ratio of a continuously variable transmission.
A determination step for determining whether or not there is a delay in the change in the actual pressure with respect to the change in the indicated pressure to the solenoid valve for hydraulic pressure control, and
The continuously variable transmission is provided with a valve control step for performing a foreign matter removing operation of temporarily reciprocating the spool of the hydraulic control solenoid valve when the occurrence of the delay is determined in the determination step. Control method.
JP2018161395A 2018-08-30 2018-08-30 Controller and control method for continuously variable transmission Pending JP2022036327A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018161395A JP2022036327A (en) 2018-08-30 2018-08-30 Controller and control method for continuously variable transmission
PCT/JP2019/032931 WO2020045253A1 (en) 2018-08-30 2019-08-23 Control device and control method for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161395A JP2022036327A (en) 2018-08-30 2018-08-30 Controller and control method for continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2022036327A true JP2022036327A (en) 2022-03-08

Family

ID=69644183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161395A Pending JP2022036327A (en) 2018-08-30 2018-08-30 Controller and control method for continuously variable transmission

Country Status (2)

Country Link
JP (1) JP2022036327A (en)
WO (1) WO2020045253A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151102B2 (en) * 2018-03-08 2022-10-12 株式会社アイシン Vehicle drive system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466061B2 (en) * 1997-09-02 2003-11-10 本田技研工業株式会社 Control device for automatic transmission for vehicles
JP3998567B2 (en) * 2002-11-29 2007-10-31 アイシン・エィ・ダブリュ株式会社 Control device for automatic transmission for vehicle
JP2016050585A (en) * 2014-08-28 2016-04-11 株式会社デンソー Valve control device
US20180142783A1 (en) * 2015-06-05 2018-05-24 Nissan Motor Co., Ltd. Control device for continuously variable transmission

Also Published As

Publication number Publication date
WO2020045253A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP4762875B2 (en) Shift control device for belt type continuously variable transmission
JP2007100898A (en) Line pressure controller for belt type continuously variable transmission
JP2004125104A (en) Apparatus for judging abnormal decrease in oil pressure of transmission for vehicle
JP2007100899A (en) Transmission gear ratio control device for belt type continuously variable transmission
JP2010223336A (en) Belt type continuously variable transmission and method for controlling shift of the same
CN109642663B (en) Control method and control device for continuously variable transmission
US9958063B2 (en) Hydraulic control device and method for controlling the same
US10746294B2 (en) Control device for continuously variable transmission
WO2020044948A1 (en) Valve inspecting device and valve inspecting method
JP6268308B2 (en) Control device and control method for continuously variable transmission
US9562546B2 (en) Hydraulic control circuit and its control method
JP2022036327A (en) Controller and control method for continuously variable transmission
JP6673483B2 (en) Continuously variable transmission and control method thereof
CN110023652B (en) Method for controlling continuously variable transmission and continuously variable transmission system
JP2020034091A (en) Control device and control method for continuously variable transmission
JP6603118B2 (en) Hydraulic circuit abnormality detection device and hydraulic circuit abnormality detection method
WO2018016518A1 (en) Pressure regulation valve control device
JP2008106815A (en) Hydraulic control device for belt type continuously variable transmission
WO2016194597A1 (en) Control device for continuously variable transmission
US11137071B2 (en) Control device and control method for continuously variable transmission
JP2008075736A (en) Shift control device for vehicular continuously variable transmission
JP2008101716A (en) Control device for vehicle continuously variable transmission
WO2020032010A1 (en) Vehicle continuously-variable transmission control device and vehicle continuously-variable transmission control method
JP5961847B2 (en) Control device for belt type continuously variable transmission
KR20170117516A (en) Control device of transmission and control method of transmission