JP2022035564A - Distance measuring device and distance measuring method - Google Patents

Distance measuring device and distance measuring method Download PDF

Info

Publication number
JP2022035564A
JP2022035564A JP2020139983A JP2020139983A JP2022035564A JP 2022035564 A JP2022035564 A JP 2022035564A JP 2020139983 A JP2020139983 A JP 2020139983A JP 2020139983 A JP2020139983 A JP 2020139983A JP 2022035564 A JP2022035564 A JP 2022035564A
Authority
JP
Japan
Prior art keywords
light
signal
generator
intensity
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020139983A
Other languages
Japanese (ja)
Other versions
JP7493772B2 (en
Inventor
洋介 田中
Yosuke Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2020139983A priority Critical patent/JP7493772B2/en
Publication of JP2022035564A publication Critical patent/JP2022035564A/en
Application granted granted Critical
Publication of JP7493772B2 publication Critical patent/JP7493772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To provide a distance measuring device, etc., with which it is possible to improve a signal-to-noise ratio while suppressing average optical power.SOLUTION: A distance measuring device comprises: a first light generation unit and a second light generation unit for generating laser beams mutually different in wavelength and intensity modulated with the same frequency; a signal generator for outputting modulation signals to the first light generation unit and the second light generation unit; a multiplexer for multiplexing the return light of a laser beam from the first light generation unit and having been reflected by a measurement object and a laser beam from the second light generation unit; a photodetector for receiving light from the multiplexer and outputting an intensity correlation signal by two-photon absorption response; and a control unit for controlling the signal generator and calculating the distance to the measurement object on the basis of the intensity correlation signal from the photodetector. The second light generation unit generates pulse light as a laser beam.SELECTED DRAWING: Figure 1

Description

本発明は、距離測定装置及び距離測定方法に関する。 The present invention relates to a distance measuring device and a distance measuring method.

従来、強度変調されたプローブ光を発生し、測定対象で反射した戻り光と強度変調された参照光との強度相関をとって強度相関信号を取得し、取得した強度相関信号に基づいて測定対象までの距離を測定する手法が知られている(例えば、特許文献1)。 Conventionally, an intensity-modulated probe light is generated, an intensity correlation signal is acquired by taking an intensity correlation between the return light reflected by the measurement target and the intensity-modulated reference light, and the measurement target is measured based on the acquired intensity correlation signal. A method for measuring the distance to a distance is known (for example, Patent Document 1).

特開2019-215165号公報Japanese Unexamined Patent Publication No. 2019-215165

上記の手法では、正弦波によって強度変調をしたプローブ光と参照光を利用するため、良好な信号対雑音比を得るためには、プローブ光、参照光の平均光パワーを上げて変調振幅を拡大する必要がある。しかし、プローブ光のパワーを上げすぎると、特に光ファイバの場合、後方散乱光である誘導ブリルアン散乱が発生し、遠方までプローブ光を伝送することができなくなるという問題があった。また、参照光のパワーを上げすぎると、機器の損傷を招く他、そもそも大出力の光増幅器が必要になる等の問題があった。そのため、長手方向に複数存在する反射点までの距離が測れる上記手法においても光パワーの面で測定点数に限界があった。 In the above method, probe light and reference light that have been intensity-modulated by a sine wave are used. Therefore, in order to obtain a good signal-to-noise ratio, the average optical power of the probe light and reference light is increased to expand the modulation amplitude. There is a need to. However, if the power of the probe light is increased too much, guided Brillouin scattering, which is backscattered light, occurs, especially in the case of an optical fiber, and there is a problem that the probe light cannot be transmitted to a distant place. In addition, if the power of the reference light is increased too much, the equipment may be damaged and a large output optical amplifier may be required in the first place. Therefore, even in the above method of measuring the distances to a plurality of reflection points existing in the longitudinal direction, there is a limit to the number of measurement points in terms of optical power.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、平均光パワーを抑えつつ信号対雑音比を向上させることが可能な距離測定装置等を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a distance measuring device or the like capable of improving the signal-to-noise ratio while suppressing the average optical power. It is in.

(1)本発明は、互いに異なる波長のレーザー光であって同一の周波数で強度変調されたレーザー光を発生する第1光発生部及び第2光発生部と、前記第1光発生部及び前記第2光発生部に変調信号を出力する信号発生器と、前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波する合波器と、前記合波器からの光を受光し二光子吸収応答により強度相関信号を出力する光検出器と、前記信号発生器を制御し、前記光検出器からの強度相関信号に基づき前記測定対象までの距離を算出する制御部とを含み、前記第2光発生部は、前記レーザー光としてパルス光を発生する距離測定装置に関する。 (1) The present invention includes a first light generating unit and a second light generating unit that generate laser light having different wavelengths and intensity-modulated laser light at the same frequency, and the first light generating unit and the above. A signal generator that outputs a modulation signal to the second light generator, a return light reflected by the laser beam from the first light generator, and a laser beam from the second light generator are combined. Based on the intensity correlation signal from the light detector, which controls the combiner, the light detector that receives the light from the combiner and outputs the intensity correlation signal by the two-photon absorption response, and the signal generator. The second light generating unit includes a control unit for calculating the distance to the measurement target, and the second light generating unit relates to a distance measuring device that generates pulsed light as the laser light.

また、本発明は、互いに異なる波長のレーザー光であって同一の周波数で強度変調されたレーザー光を第1光発生部及び第2光発生部により発生する光発生ステップと、信号発生器により前記第1光発生部及び前記第2光発生部に変調信号を出力する信号発生ステップと、前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波器により合波する合波ステップと、前記合波器からの光を光検出器により受光し二光子吸収応答により強度相関信号を出力する光検出ステップと、前記信号発生器を制御し、前記光検出器からの強度相関信号に基づき前記測定対象までの距離を算出する制御ステップとを含み、前記光発生ステップでは、前記信号発生器からの変調信号に基づき強度変調されたレーザー光を第1光発生部及び第2光発生部により発生し、前記第2光発生部は、前記レーザー光としてパルス光を発生する距離測定方法に関する
Further, according to the present invention, the light generation step of generating laser light having different wavelengths and intensity-modulated at the same frequency by the first light generator and the second light generator, and the signal generator are used. A signal generation step that outputs a modulation signal to the first light generation unit and the second light generation unit, return light reflected by the laser light from the first light generation unit on the measurement target, and the second light generation unit. A combine wave step in which the laser light of the above is combined by a combiner, a light detection step in which light from the combiner is received by an optical detector and an intensity correlation signal is output by a two-photon absorption response, and the signal generator. Including a control step of controlling and calculating the distance to the measurement target based on the intensity correlation signal from the light detector, in the light generation step, the intensity was modulated based on the modulated signal from the signal generator. The second light generating section relates to a distance measuring method in which laser light is generated by a first light generating section and a second light generating section, and pulsed light is generated as the laser light.

本発明によれば、参照光(第2光発生部が発生するレーザー光)としてパルス光を用いることで、平均光パワーを抑えつつ信号対雑音比を向上させることができる。 According to the present invention, by using pulsed light as reference light (laser light generated by a second light generating portion), it is possible to improve the signal-to-noise ratio while suppressing the average light power.

(2)また本発明に係る距離測定装置及び距離測定方法では、前記信号発生器は、前記第2光発生部に前記変調信号としてパルス信号を出力してもよい。 (2) Further, in the distance measuring device and the distance measuring method according to the present invention, the signal generator may output a pulse signal as the modulation signal to the second light generator.

(3)また本発明に係る距離測定装置及び距離測定方法では、前記第2光発生部は、パルスレーザー光源を備えてもよい。 (3) Further, in the distance measuring device and the distance measuring method according to the present invention, the second light generating unit may include a pulse laser light source.

本実施形態に係る距離測定装置の構成の一例を示す図。The figure which shows an example of the structure of the distance measuring apparatus which concerns on this embodiment. 本実施形態の手法により距離を測定する実験で得られたフーリエスペクトルを示す図。The figure which shows the Fourier spectrum obtained by the experiment which measured the distance by the method of this embodiment. 本実施形態に係る距離測定装置の構成の他の例を示す図。The figure which shows the other example of the structure of the distance measuring apparatus which concerns on this embodiment.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。 Hereinafter, this embodiment will be described. The embodiments described below do not unreasonably limit the content of the present invention described in the claims. Moreover, not all of the configurations described in the present embodiment are essential constituent requirements of the present invention.

図1は、第1の実施形態に係る距離測定装置の構成の一例を示す図である。距離測定装置1は、第1光発生部として機能するレーザー光源10及び強度変調器11と、第2光発生部として機能するレーザー光源12及び強度変調器13と、信号発生器20と、光検出器30と、演算処理部(プロセッサー)及び記憶部を有する制御部40とを含む。図1に示す例では、プローブ光路となる5kmの光ファイバの先端に測定対象となる反射点R(ミラー)を配置している。 FIG. 1 is a diagram showing an example of a configuration of a distance measuring device according to a first embodiment. The distance measuring device 1 includes a laser light source 10 and an intensity modulator 11 that function as a first light generator, a laser light source 12 and an intensity modulator 13 that function as a second light generator, a signal generator 20, and a photodetector. A device 30 and a control unit 40 having an arithmetic processing unit (processor) and a storage unit are included. In the example shown in FIG. 1, a reflection point R (mirror) to be measured is arranged at the tip of an optical fiber of 5 km which is a probe optical path.

強度変調器11は、レーザー光源10からのレーザー光を変調周波数fの正弦波で強度変調して、変調周波数fで強度変調されたレーザー光(プローブ光)を発生し、強度変調器13は、レーザー光源12からのレーザー光を変調周波数fのパルス波で強度変調して、変調周波数fで強度変調されたパルスレーザー光(参照光)を発生する。受光素子の二光子吸収応答を利用した計測では光電界干渉は雑音となるため、レーザー光源10,12としては、互いに波長が僅かに異なる単一モードレーザー光源を用いる。ここでは、レーザー光源10の波長を1550nmとし、レーザー光源12の波長を1552nmとした。図1に示す例では、第1及び第2光発生部をレーザー光源と強度変調器で構成する場合について説明するが、変調信号をレーザー光源10,12に出力してレーザー光を強度変調する直接変調方式(変調信号に基づき駆動電流を強度変調することでレーザー光源の出力強度を直接変調する方式)を採用してもよい。 The intensity modulator 11 intensity-modulates the laser light from the laser light source 10 with a sine wave having a modulation frequency fm to generate intensity-modulated laser light (probe light) at the modulation frequency fm , and the intensity modulator 13 generates the intensity-modulated laser light. Intensifies the laser light from the laser light source 12 with a pulse wave having a modulation frequency of fm to generate pulsed laser light (reference light) whose intensity is modulated at the modulation frequency fm . In the measurement using the two-photon absorption response of the light receiving element, the optical electric field interference becomes noise. Therefore, as the laser light sources 10 and 12, single-mode laser light sources having slightly different wavelengths are used. Here, the wavelength of the laser light source 10 is set to 1550 nm, and the wavelength of the laser light source 12 is set to 1552 nm. In the example shown in FIG. 1, a case where the first and second light generators are configured by a laser light source and an intensity modulator will be described, but the modulation signal is output to the laser light sources 10 and 12 to directly modulate the intensity of the laser light. A modulation method (a method in which the output intensity of the laser light source is directly modulated by intensity-modulating the drive current based on the modulation signal) may be adopted.

信号発生器20は、制御部40からの制御信号に基づき、強度変調器11に変調周波数fの正弦波の変調信号を出力し、強度変調器13に変調周波数fのパルス波の変調信号(パルス信号)を出力する。また、信号発生器20は、ロックインアンプ70に周波数fの参照信号を出力する。強度変調器11は、信号発生器20からの変調信号に基づきレーザー光源10からのレーザー光を強度変調してプローブ光を発生し、強度変調器13は、信号発生器20からの変調信号に基づきレーザー光源12からのレーザー光を強度変調して参照光を発生する。 The signal generator 20 outputs a sine wave modulation signal having a modulation frequency fm to the intensity modulator 11 and a pulse wave modulation signal having a modulation frequency fm to the intensity modulator 13 based on the control signal from the control unit 40. (Pulse signal) is output. Further, the signal generator 20 outputs a reference signal having a frequency of fm to the lock-in amplifier 70. The intensity modulator 11 intensity-modulates the laser light from the laser light source 10 based on the modulated signal from the signal generator 20 to generate probe light, and the intensity modulator 13 is based on the modulated signal from the signal generator 20. The intensity of the laser light from the laser light source 12 is modulated to generate reference light.

第1光発生部(レーザー光源10、強度変調器11)から出射されたプローブ光は、光
サーキュレータ60を通過して反射点Rに至る。反射点Rで反射したプローブ光(戻り光)は、光サーキュレータ60を通過して光カプラ61(合波器)で参照光と合波され、レンズ62で集光されて光検出器30に入射する。一方、第2光発生部(レーザー光源12、強度変調器13)から出射された参照光は、光増幅器50(EDFA)で増幅された(平均光パワーが調整された)後、光カプラ61でプローブ光と合波され、レンズ62で集光されて光検出器30に入射する。なお、光サーキュレータ60、光カプラ61に代えて、ハーフミラーを用いてもよい。
The probe light emitted from the first light generator (laser light source 10, intensity modulator 11) passes through the optical circulator 60 and reaches the reflection point R. The probe light (return light) reflected at the reflection point R passes through the optical circulator 60, is combined with the reference light by the optical coupler 61 (combiner), is condensed by the lens 62, and is incident on the photodetector 30. do. On the other hand, the reference light emitted from the second light generator (laser light source 12, intensity modulator 13) is amplified by the optical amplifier 50 (EDFA) (the average optical power is adjusted) and then by the optical coupler 61. It is combined with the probe light, condensed by the lens 62, and incident on the light detector 30. A half mirror may be used instead of the optical circulator 60 and the optical coupler 61.

光検出器30は、光カプラ61からの光(プローブ光(戻り光)と参照光が合波された)を受光する。光検出器30の高域カットオフ周波数は変調周波数fよりも低く、光検出器30は、光信号の直流成分のみを検出する。ここでは、光検出器30の受光素子として、Si-APD(Avalanche Photo Diode)を用いる。Si-APDに波長1.5μm帯の高強度光を入射すると、二光子吸収応答により入射光強度(戻り光と参照光の強度の和)の二乗平均に比例した電流(二光子吸収電流)が発生するため、これを利用することで高速に強度相関信号を得られる。光検出器30からの信号は、ロックインアンプ70により周波数fでロックイン検出(同期検波)される。ロックインアンプ70の出力信号は、図示しないAD変換器によりデジタルデータに変換され、制御部40に出力される。 The photodetector 30 receives the light from the optical coupler 61 (the probe light (return light) and the reference light are combined). The high cutoff frequency of the photodetector 30 is lower than the modulation frequency fm , and the photodetector 30 detects only the DC component of the optical signal. Here, Si-APD (Avalanche Photo Diode) is used as the light receiving element of the photodetector 30. When high-intensity light with a wavelength of 1.5 μm is incident on Si-APD, the current (two-photon absorption current) proportional to the squared average of the incident light intensity (sum of the intensity of the return light and the reference light) is generated by the two-photon absorption response. Since it is generated, an intensity correlation signal can be obtained at high speed by using this. The signal from the photodetector 30 is locked-in detected (synchronous detection) at a frequency fm by the lock-in amplifier 70. The output signal of the lock-in amplifier 70 is converted into digital data by an AD converter (not shown) and output to the control unit 40.

制御部40は、信号発生器20を制御し、また、ロックインアンプ70の出力信号に基づいて反射点Rまでの距離(反射点Rで反射したプローブ光と参照光の伝搬距離差)を算出する。より詳細には、制御部40は、信号発生器20を制御して変調周波数fを一定の周波数間隔で離散的に掃引し、変調周波数fを掃引したときに周期的に変化する強度相関信号(出力信号)の周期に基づいて反射点Rまでの距離を算出する。 The control unit 40 controls the signal generator 20 and calculates the distance to the reflection point R (difference in propagation distance between the probe light reflected at the reflection point R and the reference light) based on the output signal of the lock-in amplifier 70. do. More specifically, the control unit 40 controls the signal generator 20 to sweep the modulation frequency fm discretely at regular frequency intervals, and the intensity correlation that changes periodically when the modulation frequency fm is swept. The distance to the reflection point R is calculated based on the period of the signal (output signal).

ここで、プローブ光の光検出器30の受光面における強度pは、以下の式(1)で表され、参照光の光検出器30の受光面における強度rは、以下の式(2)で表される。 Here, the intensity p of the probe light on the light receiving surface of the photodetector 30 is represented by the following equation (1), and the intensity r of the reference light on the light receiving surface of the photodetector 30 is expressed by the following equation (2). expressed.

Figure 2022035564000002
ここで、Iはプローブ光の光検出器30の受光面における係数であり、Iは参照光の光検出器30の受光面における係数であり、tは時間であり、nは光が伝搬する媒質の屈折率であり、ΔLは反射点Rで反射したプローブ光と参照光の伝搬距離差(プローブ光路と参照光路の伝搬光路長差)、すなわち、反射点Rまでの往復距離であり、cは光速であり、δはデルタ関数である。図1に示す例では、プローブ光路となる光ファイバ長が5km(往復10km)、光ファイバの屈折率nが1.5であるから、nΔL=15kmとなる。
Figure 2022035564000002
Here, I p is a coefficient on the light receiving surface of the optical detector 30 of the probe light, Ir is a coefficient on the light receiving surface of the light detector 30 of the reference light, t is time, and n is the propagation of light. It is the refractive index of the medium to be used, and ΔL is the propagation distance difference between the probe light and the reference light reflected at the reflection point R (the propagation light path length difference between the probe optical path and the reference optical path), that is, the round-trip distance to the reflection point R. c is the optical path and δ is the delta function. In the example shown in FIG. 1, since the length of the optical fiber serving as the probe optical path is 5 km (round trip 10 km) and the refractive index n of the optical fiber is 1.5, nΔL = 15 km.

>>Iのとき、光検出器30から出力される二光子吸収電流iTPAは、以下の式(3)で表される。 When Ir >> Ip , the two-photon absorption current iTPA output from the photodetector 30 is expressed by the following equation (3).

Figure 2022035564000003
<<Iのとき、二光子吸収電流を周波数fでロックイン検出すると、検出される信号iは、以下の式(4)で表される。ただし、2aI cos[2πf(t-nΔL/c)]の項は無視した。
Figure 2022035564000003
When the two-photon absorption current is locked in at a frequency fm when IS << Ir , the detected signal i is expressed by the following equation (4). However, the term of 2aIS 2 cos [ 2πfm (tnΔL / c)] was ignored.

Figure 2022035564000004
式(4)より、変調周波数fを掃引して得られた出力信号(余弦波状に変化する波形)のフーリエスペクトルピークからnΔLが求められることがわかる。すなわち、当該出力信号をフーリエ変換して得られるスペクトルにおけるピーク位置がnΔLに対応する。また、式(4)より、信号がI倍になることがわかる。また、平均光パワーはτI/T(τはパルス時間幅、Tはパルス繰り返し周期)であり、平均光パワーのT/τ倍の信号増幅が可能なことがわかる。
Figure 2022035564000004
From equation (4), it can be seen that nΔL can be obtained from the Fourier spectrum peak of the output signal (waveform that changes like a cosine wave) obtained by sweeping the modulation frequency fm. That is, the peak position in the spectrum obtained by Fourier transforming the output signal corresponds to nΔL. Further, from the equation (4), it can be seen that the signal is multiplied by Ir . Further, the average optical power is τIr / T (τ is the pulse time width, T is the pulse repetition period), and it can be seen that signal amplification of T / τ times the average optical power is possible.

図1に示す例においてnΔLを測定する実験を行った。この実験では、変調周波数fを500kHz~1500kHzの範囲にわたり2.5kHz間隔で掃引した。この掃引範囲は空間分解能300mを与える。また、強度変調器13に供給するパルス波の変調信号のパルス時間幅を25.5nsに設定した。従って、参照光のピークパワーは平均光パワーの26倍以上になる。 An experiment was conducted to measure nΔL in the example shown in FIG. In this experiment, the modulation frequency fm was swept at 2.5 kHz intervals over the range of 500 kHz to 1500 kHz. This sweep range provides a spatial resolution of 300 m. Further, the pulse time width of the modulated signal of the pulse wave supplied to the intensity modulator 13 was set to 25.5 ns. Therefore, the peak power of the reference light is 26 times or more the average light power.

図2に、本実験で得られたフーリエスペクトルを示す。図2に示すように15km付近にピークが現れており、本実施形態の手法により光ファイバに対応する距離測定ができていることが示された。 FIG. 2 shows the Fourier spectrum obtained in this experiment. As shown in FIG. 2, a peak appears in the vicinity of 15 km, indicating that the distance measurement corresponding to the optical fiber can be performed by the method of the present embodiment.

本実施形態の手法によれば、参照光としてパルス光を用いることで、パルス光のピーク強度の分だけ信号を増幅することができるため、平均光パワーを抑えつつ信号対雑音比を向上させることができる。平均光パワーを抑えることで、光源の駆動電力の負担を抑制し、光源パワーの負担を軽減することができ、また、高い光パワーによる光学機器の損傷の危険もないという効果もある。 According to the method of the present embodiment, by using the pulsed light as the reference light, the signal can be amplified by the peak intensity of the pulsed light, so that the signal-to-noise ratio can be improved while suppressing the average light power. Can be done. By suppressing the average optical power, the burden of the driving power of the light source can be suppressed and the burden of the light source power can be reduced, and there is also an effect that there is no risk of damage to the optical equipment due to the high optical power.

上記例では、第2光発生部の強度変調器13にパルス波の変調信号を供給することで参照光をパルス光とする場合について説明したが、第2光発生部の光源をパルスレーザー光源とすることで参照光をパルス光とするようにしてもよい。図3に示す例では、第2光発生部の光源として、モード同期ファイバリング型パルスレーザー光源を用いている。モード同期ファイバリング型パルスレーザー光源は、ファイバリング14と、強度変調器13と、光増幅器15とを備える。強度変調器13には変調周波数fmの変調信号が供給され、モード同期ファイバリング型パルスレーザー光源は、変調周波数fで強度変調されたパルスレーザー光(参照光)を発生する。この構成では、パルス時間幅を1ns程度にすることも可能であり、上述の実験と変調周波数fの条件が同じであれば、参照光のピー
クパワーを平均光パワーの650倍以上にすることができる。
In the above example, the case where the reference light is used as pulse light by supplying the pulse wave modulation signal to the intensity modulator 13 of the second light generation unit has been described, but the light source of the second light generation unit is a pulse laser light source. By doing so, the reference light may be made into pulsed light. In the example shown in FIG. 3, a mode-synchronized fiber ring type pulse laser light source is used as the light source of the second light generation unit. The mode-synchronized fiber ring type pulse laser light source includes a fiber ring 14, an intensity modulator 13, and an optical amplifier 15. A modulation signal having a modulation frequency fm is supplied to the intensity modulator 13, and the mode-synchronized fiber ring type pulse laser light source generates pulse laser light (reference light) intensity-modulated at the modulation frequency fm . In this configuration, the pulse time width can be set to about 1 ns, and if the conditions of the modulation frequency fm are the same as those in the above experiment, the peak power of the reference light should be 650 times or more the average light power. Can be done.

本発明に係る距離測定装置は、光ファイバ回折格子(FBG:Fiber Bragg Grating)を用いた多点型FBGセンサに適用することができる。多点型FBGセンサは、構造物の健全性診断に用いられるが、測定点数は10点程度が一般的である。本発明の手法でピークパワーの高い参照光を利用することで、測定可能な点数を一桁増やすことも可能になる。 The distance measuring device according to the present invention can be applied to a multi-point FBG sensor using an optical fiber diffraction grating (FBG: Fiber Bragg Grating). The multi-point FBG sensor is used for diagnosing the soundness of a structure, but the number of measurement points is generally about 10. By using the reference light having a high peak power in the method of the present invention, it is possible to increase the measurable score by an order of magnitude.

また本発明に係る距離測定装置は、マルチコア光ファイバとFBGを用いた曲げセンサに適用することができる。当該センサでは、プローブ光をN個のコアに分け、戻り光を同じ光ファイバに戻すので、少なくとも光パワーが1/Nに減衰してしまう。本発明の手法を用いれば、その影響を抑制でき、コアへの光入力の制御に光スイッチ等を用いることなく、多点同時曲げセンシングを実現することができる。 Further, the distance measuring device according to the present invention can be applied to a bending sensor using a multi-core optical fiber and an FBG. In this sensor, the probe light is divided into N cores and the return light is returned to the same optical fiber, so that the optical power is attenuated to at least 1 / N2 . By using the method of the present invention, the influence can be suppressed, and multipoint simultaneous bending sensing can be realized without using an optical switch or the like to control the optical input to the core.

なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変更が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications can be made. The present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect). The present invention also includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. Further, the present invention includes a configuration having the same action and effect as the configuration described in the embodiment or a configuration capable of achieving the same object. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

1…距離測定装置、10,12…レーザー光源、11,13…強度変調器、14…ファイバリング、15…光増幅器、20…信号発生器、30…光検出器、40…制御部、50…光増幅器、60…光サーキュレータ、61…光カプラ、62…レンズ、70…ロックインアンプ、R…反射点(測定対象) 1 ... Distance measuring device, 10, 12 ... Laser light source, 11, 13 ... Intensity modulator, 14 ... Fiber ring, 15 ... Optical amplifier, 20 ... Signal generator, 30 ... Optical detector, 40 ... Control unit, 50 ... Optical amplifier, 60 ... Optical circulator, 61 ... Optical coupler, 62 ... Lens, 70 ... Lock-in amplifier, R ... Reflection point (measurement target)

Claims (4)

互いに異なる波長のレーザー光であって同一の周波数で強度変調されたレーザー光を発生する第1光発生部及び第2光発生部と、
前記第1光発生部及び前記第2光発生部に変調信号を出力する信号発生器と、
前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波する合波器と、
前記合波器からの光を受光し二光子吸収応答により強度相関信号を出力する光検出器と、
前記信号発生器を制御し、前記光検出器からの強度相関信号に基づき前記測定対象までの距離を算出する制御部とを含み、
前記第2光発生部は、
前記レーザー光としてパルス光を発生する、距離測定装置。
A first light generator and a second light generator that generate laser beams having different wavelengths and intensity-modulated at the same frequency.
A signal generator that outputs a modulated signal to the first light generator and the second light generator,
A combiner that combines the return light reflected by the laser beam from the first light generating section and the laser beam from the second light generating section with the measurement target.
A photodetector that receives light from the combiner and outputs an intensity correlation signal by a two-photon absorption response.
It includes a control unit that controls the signal generator and calculates the distance to the measurement target based on the intensity correlation signal from the photodetector.
The second light generator is
A distance measuring device that generates pulsed light as the laser light.
請求項1において、
前記信号発生器は、
前記第2光発生部に前記変調信号としてパルス信号を出力する、距離測定装置。
In claim 1,
The signal generator is
A distance measuring device that outputs a pulse signal as the modulation signal to the second light generation unit.
請求項1において、
前記第2光発生部は、
パルスレーザー光源を備える、距離測定装置。
In claim 1,
The second light generator is
A distance measuring device equipped with a pulsed laser light source.
互いに異なる波長のレーザー光であって同一の周波数で強度変調されたレーザー光を第1光発生部及び第2光発生部により発生する光発生ステップと、
信号発生器により前記第1光発生部及び前記第2光発生部に変調信号を出力する信号発生ステップと、
前記第1光発生部からのレーザー光が測定対象で反射した戻り光と、前記第2光発生部からのレーザー光を合波器により合波する合波ステップと、
前記合波器からの光を光検出器により受光し二光子吸収応答により強度相関信号を出力する光検出ステップと、
前記信号発生器を制御し、前記光検出器からの強度相関信号に基づき前記測定対象までの距離を算出する制御ステップとを含み、
前記光発生ステップでは、
前記信号発生器からの変調信号に基づき強度変調されたレーザー光を第1光発生部及び第2光発生部により発生し、
前記第2光発生部は、
前記レーザー光としてパルス光を発生する、距離測定方法。
A light generation step in which the first light generation unit and the second light generation unit generate laser light having different wavelengths and intensity-modulated at the same frequency.
A signal generation step of outputting a modulated signal to the first light generator and the second light generator by a signal generator, and
A combined wave step in which the return light reflected by the laser beam from the first light generating section and the laser beam from the second light generating section are combined by a combiner.
A photodetection step in which the light from the combiner is received by a photodetector and an intensity correlation signal is output by a two-photon absorption response.
It includes a control step of controlling the signal generator and calculating the distance to the measurement target based on the intensity correlation signal from the photodetector.
In the light generation step,
A laser beam whose intensity is modulated based on the modulation signal from the signal generator is generated by the first light generator and the second light generator.
The second light generator is
A distance measuring method that generates pulsed light as the laser light.
JP2020139983A 2020-08-21 2020-08-21 Distance measuring device and distance measuring method Active JP7493772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020139983A JP7493772B2 (en) 2020-08-21 2020-08-21 Distance measuring device and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139983A JP7493772B2 (en) 2020-08-21 2020-08-21 Distance measuring device and distance measuring method

Publications (2)

Publication Number Publication Date
JP2022035564A true JP2022035564A (en) 2022-03-04
JP7493772B2 JP7493772B2 (en) 2024-06-03

Family

ID=80443486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139983A Active JP7493772B2 (en) 2020-08-21 2020-08-21 Distance measuring device and distance measuring method

Country Status (1)

Country Link
JP (1) JP7493772B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771777B2 (en) 2000-05-12 2006-04-26 三菱電機株式会社 Laser radar equipment
JP4761258B2 (en) 2006-01-27 2011-08-31 国立大学法人 東京大学 Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
JP2007205949A (en) 2006-02-02 2007-08-16 Tokyo Univ Of Agriculture & Technology Distance detector
US7372551B1 (en) 2006-07-25 2008-05-13 University Of Central Florida Research Foundation Systems and methods for long-range, high-resolution laser radar range detection
JP6072301B2 (en) 2013-12-10 2017-02-01 三菱電機株式会社 Laser radar equipment
JP7061364B2 (en) 2018-06-11 2022-04-28 国立大学法人東京農工大学 Distance measuring device and distance measuring method

Also Published As

Publication number Publication date
JP7493772B2 (en) 2024-06-03

Similar Documents

Publication Publication Date Title
US9702975B2 (en) Lidar measuring system and lidar measuring method
JP4100574B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
KR100719892B1 (en) Apparatus for measuring a differential mode delay of a multimode optical fiber
JP5105302B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
JP2954871B2 (en) Optical fiber sensor
JP5043714B2 (en) Optical fiber characteristic measuring apparatus and method
JP5332103B2 (en) Lightwave radar device
CN111678583B (en) Optical fiber vibration measuring device and method for improving light source noise
US5557400A (en) Multiplexed sensing using optical coherence reflectrometry
JP7247446B2 (en) Multi-core optical fiber sensing system
US11585928B2 (en) LIDAR measuring device
JP2020134264A (en) Device and method for measuring optical fiber strain and temperature
JP7061364B2 (en) Distance measuring device and distance measuring method
JP7040386B2 (en) Optical fiber strain and temperature measuring device and optical fiber strain and temperature measuring method
JP7493772B2 (en) Distance measuring device and distance measuring method
JP7352962B2 (en) Brillouin frequency shift measurement device and Brillouin frequency shift measurement method
KR102177933B1 (en) Distance measurement apparatus and method using visible light laser and near-infrared pulse laser
JPH071220B2 (en) Optical waveguide fault point search method and apparatus
JP6342857B2 (en) Light reflection measuring device and light reflection measuring method
JP7351365B1 (en) Optical fiber sensor and Brillouin frequency shift measurement method
US20240053172A1 (en) Optical fiber sensor and brillouin frequency shift measurement method
WO2022181373A1 (en) Measuring device, method for adjusting measuring device, and measuring method
WO2022209789A1 (en) Optical beam generation device and optical detector
Brown et al. Combined Raman and Brillouin scattering sensor for simultaneous high-resolution measurement of temperature and strain
JP6764247B2 (en) Optical line characteristic analyzer and signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240515

R150 Certificate of patent or registration of utility model

Ref document number: 7493772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150