JP2022032507A - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP2022032507A
JP2022032507A JP2020136352A JP2020136352A JP2022032507A JP 2022032507 A JP2022032507 A JP 2022032507A JP 2020136352 A JP2020136352 A JP 2020136352A JP 2020136352 A JP2020136352 A JP 2020136352A JP 2022032507 A JP2022032507 A JP 2022032507A
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
heating fluid
heat exchange
exchange amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020136352A
Other languages
Japanese (ja)
Other versions
JP7303553B2 (en
Inventor
真也 森
Shinya Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyawaki Inc
Original Assignee
Miyawaki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyawaki Inc filed Critical Miyawaki Inc
Priority to JP2020136352A priority Critical patent/JP7303553B2/en
Publication of JP2022032507A publication Critical patent/JP2022032507A/en
Application granted granted Critical
Publication of JP7303553B2 publication Critical patent/JP7303553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

To provide a hot water supply system for determining the deterioration of a heat exchanger to discriminate a replacement timing.SOLUTION: A hot water supply system 1 includes a heat exchanger 4 for generating heated water with heat exchange between heating fluid F1 and water W1. A pressure sensor 38 is provided in a heating fluid supply passage 34 which supplies the heating fluid F1 to the heat exchanger 4. Theoretical heat exchange amount calculation means 60 calculates a theoretical heat exchange amount E1 from a value detected by the pressure sensor 38 and the opening of a heating fluid adjusting valve 36. Heat exchange amount calculation means 62 calculates an actual heat exchange amount E2 from the flow rate and the temperature of the water W1 supplied to the heat exchanger 4 and the temperature of the heated water W2 derived from the heat exchanger 4. Determination means 64 determines the deterioration of the heat exchanger 4 from the theoretical heat exchange amount E1 and the heat exchange amount E2.SELECTED DRAWING: Figure 1

Description

本発明は、加熱流体と水との間の熱交換により熱水を生成する熱交換器を備えた給湯システムに関するものである。 The present invention relates to a hot water supply system including a heat exchanger that generates hot water by heat exchange between a heating fluid and water.

従来、冷水または温水を蒸気のような加熱流体で加熱することにより、温水または熱水を生成する加熱システムの一種である給湯装置が知られている(例えば、特許文献1)。生成された温水または熱水はユーザに供給される。このような給湯装置の一種として、循環式の給湯システムがある。循環式の給湯システムでは、熱交換器からの配管にタンクへの戻り管を設けることにより、温水または熱水を使用していない時でも温水または熱水を循環させて水温が一定に保たれている。このため、給湯装置から離れた場所であっても、ユーザは、ほぼ待ち時間なしで、温水または熱水を使用することができる。 Conventionally, a hot water supply device which is a kind of a heating system for generating hot water or hot water by heating cold water or hot water with a heating fluid such as steam is known (for example, Patent Document 1). The generated hot or hot water is supplied to the user. As a kind of such a hot water supply device, there is a circulation type hot water supply system. In the circulation type hot water supply system, by providing a return pipe to the tank in the pipe from the heat exchanger, hot water or hot water is circulated and the water temperature is kept constant even when hot water or hot water is not used. There is. Therefore, the user can use hot water or hot water with almost no waiting time even at a place away from the hot water supply device.

特許第5103495号公報Japanese Patent No. 5103495

このような給湯システムにおいて、熱交換器が故障すると、熱水の生成ができなくなる、つまり、ユーザへの温水または熱水の供給が不可能となり、生産設備等に大きな影響を与えることになる。 In such a hot water supply system, if the heat exchanger fails, hot water cannot be generated, that is, hot water or hot water cannot be supplied to the user, which has a great influence on the production equipment and the like.

本発明は、熱交換器の劣化を判定し、交換時期を判別することができる給湯システムを提供することを目的としている。 An object of the present invention is to provide a hot water supply system capable of determining deterioration of a heat exchanger and determining a replacement time.

上記目的を達成するために、本発明の給湯システムは、加熱流体と水との間の熱交換により熱水を生成する熱交換器と、前記熱交換器に前記加熱流体を供給する加熱流体供給通路に設けられた圧力または温度を検出するセンサの値と加熱流体調節弁の開度から理論熱交換量を算出する理論熱交換量算出手段と、前記熱交換器に供給される水の流量および温度と、前記熱交換器から導出された熱水の温度から実際の熱交換量を算出する熱交換量算出手段と、前記理論熱交換量と前記熱交換量から前記熱交換器の劣化を判定する判定手段と、を備えている。センサは、例えば、加熱流体供給通路の加熱流体の圧力を測定する圧力センサである。また、前記加熱流体は、例えば、蒸気である。 In order to achieve the above object, the hot water supply system of the present invention comprises a heat exchanger that generates hot water by heat exchange between the heating fluid and water, and a heating fluid supply that supplies the heating fluid to the heat exchanger. The theoretical heat exchange amount calculating means for calculating the theoretical heat exchange amount from the value of the sensor for detecting the pressure or temperature provided in the passage and the opening degree of the heating fluid control valve, the flow rate of water supplied to the heat exchanger, and the flow rate of water supplied to the heat exchanger. A heat exchange amount calculating means for calculating the actual heat exchange amount from the temperature and the temperature of the hot water derived from the heat exchanger, and determining the deterioration of the heat exchanger from the theoretical heat exchange amount and the heat exchange amount. It is equipped with a determination means for performing. The sensor is, for example, a pressure sensor that measures the pressure of the heating fluid in the heating fluid supply passage. Further, the heating fluid is, for example, steam.

この構成によれば、理論熱交換量算出手段が、加熱流体供給通路に設けられた圧力または温度を検出するセンサの値と加熱流体調節弁の開度から理論熱交換量を算出する。また、熱交換量算出手段が、熱交換器に供給される水の流量および温度と、熱交換器から導出された熱水の温度から実際の熱交換量を算出する。これらの理論熱交換量と熱交換量から判定手段が熱交換器の劣化を判定する。つまり、判定手段は、熱交換器が劣化していない理論上の熱交換量と、現状の実際の熱交換量とを比較して、その差から熱交換器の劣化を判定する。これにより、熱交換器の交換時期を判別することができ、熱交換器が故障に至る前に熱交換器を交換することが可能になる。その結果、ユーザへの温水または熱水の供給が不可能となることが回避され、生産設備等に悪影響を与えるのを防ぐことができる。 According to this configuration, the theoretical heat exchange amount calculation means calculates the theoretical heat exchange amount from the value of the sensor for detecting the pressure or temperature provided in the heating fluid supply passage and the opening degree of the heating fluid control valve. Further, the heat exchange amount calculating means calculates the actual heat exchange amount from the flow rate and temperature of the water supplied to the heat exchanger and the temperature of the hot water derived from the heat exchanger. From these theoretical heat exchange amounts and heat exchange amounts, the determination means determines the deterioration of the heat exchanger. That is, the determination means compares the theoretical heat exchange amount in which the heat exchanger has not deteriorated with the actual heat exchange amount at present, and determines the deterioration of the heat exchanger from the difference. As a result, it is possible to determine when to replace the heat exchanger, and it is possible to replace the heat exchanger before the heat exchanger fails. As a result, it is possible to prevent the user from being unable to supply hot water or hot water, and to prevent adverse effects on the production equipment and the like.

本発明において、さらに、前記センサの値、前記加熱流体調節弁の開度、前記熱交換器に供給される水の流量および温度から前記熱交換器の出口の理論復水温度を算出する理論復水温度算出手段と、前記理論復水温度と前記熱交換器の出口の復水温度とから前記熱交換器の劣化の判定を修正する修正手段とを備えていてもよい。 In the present invention, further, theoretical restoration for calculating the theoretical condensate temperature at the outlet of the heat exchanger from the value of the sensor, the opening degree of the heating fluid control valve, the flow rate and temperature of the water supplied to the heat exchanger. A water temperature calculation means and a correction means for correcting the determination of deterioration of the heat exchanger from the theoretical condensate temperature and the condensate temperature at the outlet of the heat exchanger may be provided.

この構成によれば、理論復水温度算出手段が、加熱流体供給通路に設けられたセンサの値、加熱流体調節弁の開度、熱交換器に供給される水の流量および温度から熱交換器の出口の理論復水温度を算出する。修正手段は、この理論復水温度と熱交換器の出口の復水温度とから熱交換器の劣化の判定を修正する。つまり、修正手段は、熱交換器が劣化していない理論上の復水温度と、現状の実際の復水温度とを比較して、その差から熱交換器の劣化を判定し、判定手段による熱交換器の劣化判定を修正する。これにより、熱交換器の劣化の判定精度が向上し、熱交換器の交換時期をより正確に判別することができる。 According to this configuration, the theoretical condensate temperature calculation means is a heat exchanger based on the value of the sensor provided in the heating fluid supply passage, the opening degree of the heating fluid control valve, the flow rate and temperature of the water supplied to the heat exchanger. Calculate the theoretical condensate temperature at the outlet of. The correction means corrects the determination of deterioration of the heat exchanger from the theoretical condensate temperature and the condensate temperature at the outlet of the heat exchanger. That is, the correction means compares the theoretical condensate temperature at which the heat exchanger has not deteriorated with the actual condensate temperature at present, determines the deterioration of the heat exchanger from the difference, and uses the determination means. Correct the deterioration judgment of the heat exchanger. As a result, the accuracy of determining the deterioration of the heat exchanger is improved, and the replacement time of the heat exchanger can be determined more accurately.

本発明の給湯システムによれば、熱交換器の交換時期を判別することができ、熱交換器が故障に至る前に熱交換器を交換することが可能になる。 According to the hot water supply system of the present invention, it is possible to determine when to replace the heat exchanger, and it is possible to replace the heat exchanger before the heat exchanger fails.

本発明の第1実施形態に係る給湯システムを示す概略構成図である。It is a schematic block diagram which shows the hot water supply system which concerns on 1st Embodiment of this invention.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明の第1実施形態に係る給湯システム1を示す概略構成図である。本実施形態の給湯システム1は、循環式の給湯システムであるが、循環式に限定されない。給湯システム1は、水W1が貯留されるタンク2と、加熱流体F1とタンク2から導出された水W1との間の熱交換により熱水W2を生成する熱交換器4とを備え、熱交換器4からの熱水W2がユーザを経てタンク2に戻されている。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a hot water supply system 1 according to the first embodiment of the present invention. The hot water supply system 1 of the present embodiment is a circulation type hot water supply system, but is not limited to the circulation type. The hot water supply system 1 includes a tank 2 in which water W1 is stored and a heat exchanger 4 that generates hot water W2 by heat exchange between the heating fluid F1 and the water W1 derived from the tank 2 to exchange heat. The hot water W2 from the vessel 4 is returned to the tank 2 via the user.

ユーザに供給される熱水W2は、例えば、98℃に設定されている。このような熱水W2は、例えば、食品メーカの生産設備における殺菌、滅菌等の作業に用いられる。また、本実施形態では、加熱流体F1として、蒸気が用いられている。ただし、加熱流体F1は、蒸気に限定されず、例えば、高温高圧水であってもよい。 The hot water W2 supplied to the user is set to, for example, 98 ° C. Such hot water W2 is used, for example, for work such as sterilization and sterilization in the production equipment of a food manufacturer. Further, in the present embodiment, steam is used as the heating fluid F1. However, the heating fluid F1 is not limited to steam, and may be, for example, high-temperature and high-pressure water.

タンク2に、熱交換器4に水W1を供給する水供給通路6が接続されている。水供給通路6に、ポンプ8および第1温度センサ10が設けられている。ポンプ8は、タンク2内の水W1を圧送する。第1温度センサ10は、水供給通路6内の水W1の温度(水温度)、つまり、タンク2内の水温度を検出する。本実施形態では、第1温度センサ10は、ポンプ8の下流側で熱交換器4の上流側に配置されている。なお、水供給通路6には、ポンプ8に供給される水W1中の異物を除去するストレーナ12と、水W1の流量を検出する流量計14も設けられている。 A water supply passage 6 for supplying water W1 to the heat exchanger 4 is connected to the tank 2. A pump 8 and a first temperature sensor 10 are provided in the water supply passage 6. The pump 8 pumps the water W1 in the tank 2. The first temperature sensor 10 detects the temperature (water temperature) of the water W1 in the water supply passage 6, that is, the water temperature in the tank 2. In the present embodiment, the first temperature sensor 10 is arranged on the downstream side of the pump 8 and on the upstream side of the heat exchanger 4. The water supply passage 6 is also provided with a strainer 12 for removing foreign matter in the water W1 supplied to the pump 8 and a flow meter 14 for detecting the flow rate of the water W1.

水供給通路6の下流端が、熱交換器4の水入口4aに接続されている。一方、熱交換器4の水出口4bに熱水供給通路16の上流端が接続されている。水入口4aから熱交換器4に流入した水W1は、熱交換器4内において加熱流体F1との間で熱交換されて熱水W2となる。生成された熱水W2は、水出口4bから熱水供給通路16に導出される。熱交換器4における加熱流体F1側の構成については後述する。 The downstream end of the water supply passage 6 is connected to the water inlet 4a of the heat exchanger 4. On the other hand, the upstream end of the hot water supply passage 16 is connected to the water outlet 4b of the heat exchanger 4. The water W1 that has flowed into the heat exchanger 4 from the water inlet 4a is heat-exchanged with the heating fluid F1 in the heat exchanger 4 to become hot water W2. The generated hot water W2 is led out to the hot water supply passage 16 from the water outlet 4b. The configuration of the heating fluid F1 side in the heat exchanger 4 will be described later.

熱水供給通路16に、第2温度センサ18および第1圧力センサ19と、その上流側の逆止弁17が設けられている。第2温度センサ18は、熱水供給通路16内の熱水W2の温度を検出する。熱水供給通路16の下流端に、ユーザ側配管100の入口が接続されている。 The hot water supply passage 16 is provided with a second temperature sensor 18, a first pressure sensor 19, and a check valve 17 on the upstream side thereof. The second temperature sensor 18 detects the temperature of the hot water W2 in the hot water supply passage 16. The inlet of the user-side pipe 100 is connected to the downstream end of the hot water supply passage 16.

ユーザ側配管100の出口に、熱水戻り通路22が接続されている。ユーザ側配管100に供給された熱水W2は、熱水戻り通路22を介してタンク2に戻される。熱水戻り通路22に、電磁弁24が設けられている。電磁弁24は、例えば、ユーザ側配管100から給湯システム内のタンク2への熱水W2の供給を停止する場合に閉止される。 A hot water return passage 22 is connected to the outlet of the user-side pipe 100. The hot water W2 supplied to the user-side pipe 100 is returned to the tank 2 via the hot water return passage 22. A solenoid valve 24 is provided in the hot water return passage 22. The solenoid valve 24 is closed, for example, when the supply of hot water W2 from the user-side piping 100 to the tank 2 in the hot water supply system is stopped.

タンク2に水補給通路26が接続されている。水補給通路26の下流端部に、ボールタップ28が設けられている。つまり、水補給通路26は、タンク2内の水位が設定レベルよりも低下したときに冷水W3をタンク2に補給して、水位を設定レベルに保つ。冷水W3は、例えば、水道水であり、水補給通路26の入口である給水口26aから水補給通路26に供給される。 A water supply passage 26 is connected to the tank 2. A ball tap 28 is provided at the downstream end of the water supply passage 26. That is, the water supply passage 26 replenishes the tank 2 with cold water W3 when the water level in the tank 2 drops below the set level, and keeps the water level at the set level. The cold water W3 is, for example, tap water and is supplied to the water supply passage 26 from the water supply port 26a which is the entrance of the water supply passage 26.

熱交換器4における加熱流体(蒸気)F1側の構成について説明する。給湯システム1は、熱交換器4に加熱流体F1を供給する加熱流体供給通路34を有している。加熱流体供給通路34に、加熱流体調節弁36および第2圧力センサ38が設けられている。加熱流体調節弁36は、熱交換器4への加熱流体F1の供給量を調節する。本実施形態の加熱流体調節弁36は電動ボール弁である。ただし、加熱流体調節弁36は、これに限定されない。第2圧力センサ38は、加熱流体供給通路34内の加熱流体F1の圧力を検出する。なお、加熱流体供給通路34には、加熱流体調節弁36に導入される加熱流体F1中の異物を除去するストレーナ40も設けられている。 The configuration of the heating fluid (steam) F1 side in the heat exchanger 4 will be described. The hot water supply system 1 has a heating fluid supply passage 34 for supplying the heating fluid F1 to the heat exchanger 4. A heating fluid control valve 36 and a second pressure sensor 38 are provided in the heating fluid supply passage 34. The heating fluid control valve 36 regulates the supply amount of the heating fluid F1 to the heat exchanger 4. The heating fluid control valve 36 of this embodiment is an electric ball valve. However, the heating fluid control valve 36 is not limited to this. The second pressure sensor 38 detects the pressure of the heating fluid F1 in the heating fluid supply passage 34. The heating fluid supply passage 34 is also provided with a strainer 40 for removing foreign matter in the heating fluid F1 introduced into the heating fluid control valve 36.

加熱流体供給通路34の下流端が、熱交換器4の加熱流体入口4cに接続されている。一方、熱交換器4の加熱流体出口4dに加熱流体排出通路42の上流端が接続されている。加熱流体入口4cから熱交換器4に流入した加熱流体F1は、熱交換器4内において水W1との間で熱交換して水W1を加熱した後、加熱流体出口4dから加熱流体排出通路42に導出される。 The downstream end of the heated fluid supply passage 34 is connected to the heated fluid inlet 4c of the heat exchanger 4. On the other hand, the upstream end of the heated fluid discharge passage 42 is connected to the heated fluid outlet 4d of the heat exchanger 4. The heated fluid F1 flowing into the heat exchanger 4 from the heated fluid inlet 4c exchanges heat with the water W1 in the heat exchanger 4 to heat the water W1, and then the heated fluid discharge passage 42 from the heated fluid outlet 4d. Is derived to.

加熱流体排出通路42に、第3温度センサ44が設けられている。第3温度センサ44は、加熱流体排出通路42内の加熱流体F1の温度を検出する。加熱流体排出通路42の下流端に、スチームトラップ46が設けられている。スチームトラップ46により、加熱流体排出通路42中の復水(ドレン)F2がドレン通路48から排出される。 A third temperature sensor 44 is provided in the heated fluid discharge passage 42. The third temperature sensor 44 detects the temperature of the heating fluid F1 in the heating fluid discharge passage 42. A steam trap 46 is provided at the downstream end of the heated fluid discharge passage 42. The steam trap 46 discharges the condensate (drain) F2 in the heated fluid discharge passage 42 from the drain passage 48.

加熱流体供給通路34における加熱流体調節弁36の上流側に、ドレン取出用通路50が接続されている。ドレン取出用通路50の下流端にも、スチームトラップ52が設けられている。 A drain take-out passage 50 is connected to the upstream side of the heating fluid control valve 36 in the heating fluid supply passage 34. A steam trap 52 is also provided at the downstream end of the drain take-out passage 50.

給湯システム1の各機器は、制御装置55により制御されている。具体的には、第1~第3温度センサ10,18,44、第1および第2圧力センサ19、38、流量計14等の出力値は制御装置55に入力され、ポンプ8、電磁弁24、加熱流体調節弁36等の機器は制御装置55の指令により動作する。制御装置55は、リレー等からなる電気回路であってもよく、プログラムが実装された演算装置であってもよい。 Each device of the hot water supply system 1 is controlled by the control device 55. Specifically, the output values of the first to third temperature sensors 10, 18, 44, the first and second pressure sensors 19, 38, the flow meter 14, etc. are input to the control device 55, and the pump 8 and the solenoid valve 24 are input. , The equipment such as the heating fluid control valve 36 operates according to the command of the control device 55. The control device 55 may be an electric circuit including a relay or the like, or may be an arithmetic unit on which a program is mounted.

制御装置55は、理論熱交換量算出手段60と、熱交換量算出手段62と、判定手段64とを有している。理論熱交換量算出手段60は、加熱流体供給通路34に設けられた第2圧力センサ38の値と加熱流体調節弁36の開度から理論熱交換量E1を算出する。加熱流体供給通路34の管径は既知であるから、加熱流体F1の圧力P1と加熱流体調節弁36の開度V1が分かれば、熱交換器4に導入される加熱流体F1の流量Q1が算出できる。この流量Q1から、熱交換器4が正常な場合の理論上の熱交換量E1、つまり熱交換量の理想値を、例えば、以下の式(1)により算出できる。
E1=a・V1×(b・P1+c)・・・(1)
ここで、a,b,cは係数である。
The control device 55 has a theoretical heat exchange amount calculation means 60, a heat exchange amount calculation means 62, and a determination means 64. The theoretical heat exchange amount calculating means 60 calculates the theoretical heat exchange amount E1 from the value of the second pressure sensor 38 provided in the heating fluid supply passage 34 and the opening degree of the heating fluid control valve 36. Since the pipe diameter of the heating fluid supply passage 34 is known, if the pressure P1 of the heating fluid F1 and the opening degree V1 of the heating fluid control valve 36 are known, the flow rate Q1 of the heating fluid F1 introduced into the heat exchanger 4 is calculated. can. From this flow rate Q1, the theoretical heat exchange amount E1 when the heat exchanger 4 is normal, that is, the ideal value of the heat exchange amount can be calculated by, for example, the following equation (1).
E1 = a ・ V1 × (b ・ P1 + c) ・ ・ ・ (1)
Here, a, b, and c are coefficients.

本実施形態では、理論熱交換量E1の算出に、圧力センサの値が用いられているが、これに代えて、加熱流体供給通路34の温度を検出する温度センサを設け、その値を用いてもよい。 In the present embodiment, the value of the pressure sensor is used for calculating the theoretical heat exchange amount E1, but instead of this, a temperature sensor for detecting the temperature of the heated fluid supply passage 34 is provided, and the value is used. May be good.

熱交換量算出手段62は、熱交換器4に供給される水W1の流量Q2および温度t1と、熱交換器4から導出された熱水W2の温度t2から実際の熱交換量E2を、例えば、以下の式(2)により算出する。
E2=Cp×ρ×Q2×(t2-t1)・・・(2)
ここで、Cpは加熱流体の熱容量で、ρは加熱流体の密度である。
The heat exchange amount calculating means 62 obtains, for example, an actual heat exchange amount E2 from the flow rate Q2 and temperature t1 of the water W1 supplied to the heat exchanger 4 and the temperature t2 of the hot water W2 derived from the heat exchanger 4. , Calculated by the following formula (2).
E2 = Cp × ρ × Q2 × (t2-t1) ... (2)
Here, Cp is the heat capacity of the heating fluid, and ρ is the density of the heating fluid.

水W1の流量Q2は流量計14の検出値が用いられ、水W1の温度t1は第1温度計10の検出値が用いられ、熱水W2の温度t2は第2温度計19の検出値が用いられている。水W1の流量Q2と、熱交換器4の通過前および通過後の湯温t1、t2から実際の熱交換量E2を算出できる。 The detection value of the flow meter 14 is used for the flow rate Q2 of the water W1, the detection value of the first thermometer 10 is used for the temperature t1 of the water W1, and the detection value of the second thermometer 19 is used for the temperature t2 of the hot water W2. It is used. The actual heat exchange amount E2 can be calculated from the flow rate Q2 of the water W1 and the hot water temperatures t1 and t2 before and after the passage of the heat exchanger 4.

判定手段64は、上述の理論熱交換量E1と熱交換量E2から熱交換器4の劣化を判定する。つまり、判定手段64は、熱交換器4が劣化していない理論上の熱交換量E1と、現状の実際の熱交換量E2とを比較して、その差から熱交換器4の劣化状況を判定する。例えば、理論上の熱交換量E1と実際の熱交換量E2との差(E1-E2)が、理論熱交換量E1の15%よりも大きくなった場合((E1-E2)/E1>0.15)に、判定手段64は、熱交換器4が劣化したと判定する。ただし、劣化判定の数値は、これに限定されない。熱交換器4が劣化状態であると判定された場合、例えば、ランプ表示、音声ガイダンス等で通知する。 The determination means 64 determines the deterioration of the heat exchanger 4 from the above-mentioned theoretical heat exchange amount E1 and heat exchange amount E2. That is, the determination means 64 compares the theoretical heat exchange amount E1 in which the heat exchanger 4 has not deteriorated with the actual heat exchange amount E2 at present, and determines the deterioration status of the heat exchanger 4 from the difference. judge. For example, when the difference (E1-E2) between the theoretical heat exchange amount E1 and the actual heat exchange amount E2 is larger than 15% of the theoretical heat exchange amount E1 ((E1-E2) / E1> 0). In .15), the determination means 64 determines that the heat exchanger 4 has deteriorated. However, the numerical value of the deterioration determination is not limited to this. When it is determined that the heat exchanger 4 is in a deteriorated state, it is notified by, for example, a lamp display, voice guidance, or the like.

制御装置55は、さらに、理論復水温度算出手段66と、修正手段68とを有している。理論復水温度算出手段66は、加熱流体供給通路34に設けられた第2圧力センサ38の値、加熱流体調節弁36の開度、熱交換器4に供給される水W1の流量(流量計14の検出値)および温度(第1温度計10の検出値)から熱交換器4の出口4dの理論復水温度T1を算出する。 The control device 55 further includes a theoretical condensate temperature calculation means 66 and a correction means 68. The theoretical condensate temperature calculation means 66 includes the value of the second pressure sensor 38 provided in the heating fluid supply passage 34, the opening degree of the heating fluid control valve 36, and the flow rate of the water W1 supplied to the heat exchanger 4 (flow meter). The theoretical condensate temperature T1 at the outlet 4d of the heat exchanger 4 is calculated from the detected value of 14) and the temperature (detected value of the first thermometer 10).

上述のように、加熱流体F1の圧力と加熱流体調節弁36の開度が分かれば、熱交換器4に導入される加熱流体F1の流量が算出できる。正常な状態の(劣化していない)熱交換器4により、この流量の加熱流体F1と、熱交換器4に供給される流量および温度の水W1が熱交換された場合、熱交換後(熱交換器4の出口4d)の加熱流体F1の熱交換器4が正常な場合の理論上の復水温度T1、つまり復水温度の理想値を算出できる。 As described above, if the pressure of the heating fluid F1 and the opening degree of the heating fluid control valve 36 are known, the flow rate of the heating fluid F1 introduced into the heat exchanger 4 can be calculated. When the heating fluid F1 at this flow rate and the water W1 at the flow rate and temperature supplied to the heat exchanger 4 are heat-exchanged by the heat exchanger 4 in a normal state (not deteriorated), after heat exchange (heat). The theoretical condensate temperature T1 when the heat exchanger 4 of the heating fluid F1 at the outlet 4d of the exchanger 4 is normal, that is, the ideal value of the condensate temperature can be calculated.

修正手段68は、この理論復水温度T1と実際の熱交換器4の出口4dの復水温度T2とから熱交換器4の劣化を判定し、判定手段64による判定結果を修正する。つまり、修正手段68は、熱交換器4が劣化していない理論上の復水温度T1と、現状の実際の復水温度T2とを比較して、その差から熱交換器4の劣化状況を判定する。実際の熱交換器4の出口4dの復水温度T2は、第3温度計44の検出値が用いられている。修正手段68は、理論上の復水温度T1と実際の復水温度T2との差(T1-T2)から熱交換器4の劣化度を判断し、判定手段64による判定結果を修正する。例えば、判定手段64が劣化していないと判定した場合でも、修正手段68で算出した値が所定値よりも大きい場合、判定手段64が劣化していると判断してもよい。 The correction means 68 determines the deterioration of the heat exchanger 4 from the theoretical condensate temperature T1 and the condensate temperature T2 at the outlet 4d of the actual heat exchanger 4, and corrects the determination result by the determination means 64. That is, the correction means 68 compares the theoretical condensate temperature T1 in which the heat exchanger 4 has not deteriorated with the actual condensate temperature T2 at present, and determines the deterioration status of the heat exchanger 4 from the difference. judge. As the condensate temperature T2 at the outlet 4d of the actual heat exchanger 4, the detected value of the third thermometer 44 is used. The correction means 68 determines the degree of deterioration of the heat exchanger 4 from the difference (T1-T2) between the theoretical condensate temperature T1 and the actual condensate temperature T2, and corrects the determination result by the determination means 64. For example, even when it is determined that the determination means 64 has not deteriorated, if the value calculated by the correction means 68 is larger than the predetermined value, it may be determined that the determination means 64 has deteriorated.

上記構成によれば、理論熱交換量算出手段60が、第2圧力センサ38の値と加熱流体調節弁36の開度から理論熱交換量E1を算出する。また、熱交換量算出手段62が、熱交換器4に供給される水W1の流量および温度と、熱交換器4から導出された熱水W2の温度から実際の熱交換量E2を算出する。これらの理論熱交換量E1と熱交換量E2から判定手段64が熱交換器4の劣化を判定する。熱交換器4の交換時期を判別することができ、熱交換器4が故障に至る前に熱交換器4を交換することが可能なる。その結果、ユーザへの熱水W2の供給が不可能となることが回避され、生産設備等に悪影響を与えるのを防ぐことができる。 According to the above configuration, the theoretical heat exchange amount calculating means 60 calculates the theoretical heat exchange amount E1 from the value of the second pressure sensor 38 and the opening degree of the heating fluid control valve 36. Further, the heat exchange amount calculating means 62 calculates the actual heat exchange amount E2 from the flow rate and temperature of the water W1 supplied to the heat exchanger 4 and the temperature of the hot water W2 derived from the heat exchanger 4. From these theoretical heat exchange amounts E1 and heat exchange amount E2, the determination means 64 determines the deterioration of the heat exchanger 4. The replacement time of the heat exchanger 4 can be determined, and the heat exchanger 4 can be replaced before the heat exchanger 4 fails. As a result, it is possible to prevent the hot water W2 from being unable to be supplied to the user, and it is possible to prevent adverse effects on the production equipment and the like.

また、理論復水温度算出手段が66、第2圧力センサ38の値、加熱流体調節弁36の開度、熱交換器4に供給される水W1の流量および温度から熱交換器4の出口4dの理論復水温度T1を算出する。修正手段68は、この理論復水温度T1と熱交換器4の出口4dの実際の復水温度T2(第3温度計44の検出値)とから熱交換器4の劣化の判定を修正する。つまり、修正手段66は、熱交換器4が劣化していない理論上の復水温度t1と、現状の実際の復水温度T2とを比較して、その差から熱交換器4の劣化を判定し、必要に応じて判定手段64による熱交換器4の劣化判定を修正する。これにより、熱交換器5の劣化の判定精度が向上し、熱交換器4の交換時期をより正確に判別することができる。 Further, the theoretical condensate temperature calculation means is 66, the value of the second pressure sensor 38, the opening degree of the heating fluid control valve 36, the flow rate and temperature of the water W1 supplied to the heat exchanger 4, and the outlet 4d of the heat exchanger 4. The theoretical condensate temperature T1 is calculated. The correction means 68 corrects the determination of deterioration of the heat exchanger 4 from the theoretical condensate temperature T1 and the actual condensate temperature T2 (detected value of the third thermometer 44) at the outlet 4d of the heat exchanger 4. That is, the correction means 66 compares the theoretical condensate temperature t1 in which the heat exchanger 4 has not deteriorated with the actual condensate temperature T2 at present, and determines the deterioration of the heat exchanger 4 from the difference. Then, if necessary, the deterioration determination of the heat exchanger 4 by the determination means 64 is corrected. As a result, the accuracy of determining the deterioration of the heat exchanger 5 is improved, and the replacement time of the heat exchanger 4 can be determined more accurately.

加熱流体F1に蒸気を用いることで、熱交換器4による水の昇温を迅速に行うことができる。 By using steam for the heating fluid F1, the temperature of water can be rapidly raised by the heat exchanger 4.

本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、上記実施形態では、循環式の給湯システムについて説明したが、本発明は循環式以外の給湯システムにも適用可能である。また、上記実施形態の給湯システムは水W1を貯留するタンク2を備えていたが、タンク2はなくてもよい。したがって、そのようなものも本発明の範囲内に含まれる。 The present invention is not limited to the above embodiments, and various additions, changes, or deletions can be made without departing from the gist of the present invention. For example, in the above embodiment, the circulation type hot water supply system has been described, but the present invention can be applied to a hot water supply system other than the circulation type. Further, although the hot water supply system of the above embodiment includes the tank 2 for storing the water W1, the tank 2 may not be provided. Therefore, such things are also included within the scope of the present invention.

1 給湯システム
4 熱交換器
34 加熱流体供給通路
36 加熱流体調節弁
38 第2圧力センサ(センサ)
60 理論熱交換量算出手段
62 熱交換量算出手段
64 判定手段
66 理論復水温度算出手段
68 修正手段
F1 加熱流体(蒸気)
W1 水
W2 熱水
1 Hot water supply system 4 Heat exchanger 34 Heating fluid supply passage 36 Heating fluid control valve 38 Second pressure sensor (sensor)
60 Theoretical heat exchange amount calculation means 62 Heat exchange amount calculation means 64 Judgment means 66 Theoretical condensate temperature calculation means 68 Correction means F1 Heating fluid (steam)
W1 water W2 hot water

Claims (4)

加熱流体と水との間の熱交換により熱水を生成する熱交換器と、
前記熱交換器に前記加熱流体を供給する加熱流体供給通路に設けられた圧力または温度を検出するセンサの値と加熱流体調節弁の開度から理論熱交換量を算出する理論熱交換量算出手段と、
前記熱交換器に供給される水の流量および温度と、前記熱交換器から導出された熱水の温度から実際の熱交換量を算出する熱交換量算出手段と、
前記理論熱交換量と前記熱交換量から前記熱交換器の劣化を判定する判定手段と、を備えた給湯システム。
A heat exchanger that produces hot water by exchanging heat between the heated fluid and water,
The theoretical heat exchange amount calculating means for calculating the theoretical heat exchange amount from the value of the sensor for detecting the pressure or temperature provided in the heating fluid supply passage for supplying the heating fluid to the heat exchanger and the opening degree of the heating fluid control valve. When,
A heat exchange amount calculating means for calculating the actual heat exchange amount from the flow rate and temperature of the water supplied to the heat exchanger and the temperature of the hot water derived from the heat exchanger.
A hot water supply system including a determination means for determining deterioration of the heat exchanger from the theoretical heat exchange amount and the heat exchange amount.
請求項1に記載の給湯システムにおいて、さらに、
前記センサの値、前記加熱流体調節弁の開度、前記熱交換器に供給される水の流量および温度から前記熱交換器の出口の理論復水温度を算出する理論復水温度算出手段と、
前記理論復水温度と前記熱交換器の出口の復水温度とから前記熱交換器の劣化の判定を修正する修正手段と、を備えた給湯システム。
In the hot water supply system according to claim 1, further
A theoretical condensate temperature calculating means for calculating the theoretical condensate temperature at the outlet of the heat exchanger from the value of the sensor, the opening degree of the heating fluid control valve, the flow rate and temperature of the water supplied to the heat exchanger.
A hot water supply system comprising a correction means for correcting the determination of deterioration of the heat exchanger from the theoretical condensate temperature and the condensate temperature at the outlet of the heat exchanger.
請求項1または2に記載の給湯システムにおいて、前記センサが、前記加熱流体供給通路の前記加熱流体の圧力を測定する圧力センサである給湯システム。 In the hot water supply system according to claim 1 or 2, the hot water supply system is a pressure sensor in which the sensor measures the pressure of the heated fluid in the heated fluid supply passage. 請求項1から3のいずれか一項に記載の給湯システムにおいて、前記加熱流体が蒸気である給湯システム。 The hot water supply system according to any one of claims 1 to 3, wherein the heating fluid is steam.
JP2020136352A 2020-08-12 2020-08-12 hot water system Active JP7303553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020136352A JP7303553B2 (en) 2020-08-12 2020-08-12 hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020136352A JP7303553B2 (en) 2020-08-12 2020-08-12 hot water system

Publications (2)

Publication Number Publication Date
JP2022032507A true JP2022032507A (en) 2022-02-25
JP7303553B2 JP7303553B2 (en) 2023-07-05

Family

ID=80350016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020136352A Active JP7303553B2 (en) 2020-08-12 2020-08-12 hot water system

Country Status (1)

Country Link
JP (1) JP7303553B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059699A (en) * 2016-10-05 2018-04-12 株式会社ミヤワキ Feedforward control type hot water system and hot water supply method
WO2020059105A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Air conditioning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059699A (en) * 2016-10-05 2018-04-12 株式会社ミヤワキ Feedforward control type hot water system and hot water supply method
WO2020059105A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JP7303553B2 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP6370136B2 (en) Hot water apparatus and abnormality notification method in hot water apparatus
JP6740049B2 (en) Mold cooling device
GB2533999A (en) Power plant
KR102519815B1 (en) Heat source system, heat source device, control device
JP2022032507A (en) Hot water supply system
JP2015068628A (en) Water heating device and abnormality notification method in water heating device
JP5494059B2 (en) Hot water storage water heater system
JP2017075761A (en) Water heating device
JP6895157B2 (en) Internal circulation type hot water supply system
JP2007255769A (en) Abnormality detecting device for water heater
JP6192610B2 (en) Hot water apparatus and abnormality notification method in hot water apparatus
JP5975956B2 (en) Abnormality notification method in water heater and water heater
KR101810769B1 (en) Hot water supply system
JP4036126B2 (en) Hot water storage hot water supply system
JP5811332B2 (en) Heat source machine
KR102042653B1 (en) Apparatus for regulating flow rate of heat exchanger
JP2022085632A (en) Cell system
JP6710331B2 (en) Hot water supply system
JP7303554B2 (en) hot water system
JP2022026813A (en) Circulation type hot water supply system
JP6575813B2 (en) Heat pump water heater
JP6760016B2 (en) Hot water heater
KR101898237B1 (en) Apparatus for measuring mass flow rate and apparatus for generating power including the same
JPH1122909A (en) Detecting method of leakage in fine tube for heat exchanger
JP7303545B2 (en) circulation hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230616

R150 Certificate of patent or registration of utility model

Ref document number: 7303553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150