JP2022031063A - Continuous temperature measurement probe for converter or molten metal ladle using cermet protective tube - Google Patents

Continuous temperature measurement probe for converter or molten metal ladle using cermet protective tube Download PDF

Info

Publication number
JP2022031063A
JP2022031063A JP2020145047A JP2020145047A JP2022031063A JP 2022031063 A JP2022031063 A JP 2022031063A JP 2020145047 A JP2020145047 A JP 2020145047A JP 2020145047 A JP2020145047 A JP 2020145047A JP 2022031063 A JP2022031063 A JP 2022031063A
Authority
JP
Japan
Prior art keywords
molten metal
protective tube
ladle
continuous temperature
cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020145047A
Other languages
Japanese (ja)
Inventor
一郎 谷内江
Ichiro Yachie
謙太 瀬尾
Kenta Seo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON THERMOTEC KK
Original Assignee
NIPPON THERMOTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON THERMOTEC KK filed Critical NIPPON THERMOTEC KK
Priority to JP2020145047A priority Critical patent/JP2022031063A/en
Publication of JP2022031063A publication Critical patent/JP2022031063A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide a temperature sensor having both durability to withstand an impact load of charged scrap or molten metal flow and high thermal conductivity to the molten metal as a means for continuous temperature measurement of molten metal in a container such as a converter or a ladle.SOLUTION: By incorporating a cermet protective tube having high thermal conductivity and high temperature durability inside the refractory sleeve, the cermet protective tube acts as an aggregate and exhibits high strength, and at the same time, by improving temperature measurement accuracy by the high thermal conductivity of the cermet protective tube, the continuous temperature measurement of molten metal in the ladle is made possible.SELECTED DRAWING: Figure 1

Description

本発明は、金属の鋳造の分野において、転炉内の溶銑、取鍋内の溶鋼等の溶融金属の温度を連続測温するための温度センサーに関するものである。 The present invention relates to a temperature sensor for continuously measuring the temperature of molten metal such as hot metal in a converter and molten steel in a ladle in the field of metal casting.

製鋼における転炉での精錬は、溶銑内に含まれる炭素の脱炭、目標出鋼温度への昇熱、珪素、リン、マンガン等の不純物をスラグとして分離させ、除去することを目的として行われている。
この工程にて、溶銑から溶鋼へと精錬され、溶鋼取鍋に出湯された後、LF、RH、CAS、REDAといった二次精錬を経て、最終的に鋳造される。
Refining in a converter in steelmaking is carried out for the purpose of decarburizing carbon contained in hot metal, heating to the target steel output temperature, separating impurities such as silicon, phosphorus and manganese as slag and removing them. ing.
In this step, the hot metal is refined into molten steel, hot water is discharged into a molten steel ladle, and then secondary refining such as LF, RH, CAS, and REDA is performed, and finally casting is performed.

転炉での精錬は、原料組成、温度、排ガスの二次燃焼比率等から成る吹錬モデルに基づいて酸素の吹錬が行われ、サブランスによる含有炭素量と温度の測定結果から酸素吹錬量を調節し、炭素含有量が目標値となるまでの推測値を算出し自動で吹錬を終了するダイナミックコントロールの手法が広く用いられている。
このため、転炉内の溶銑、溶鋼の温度を測定することは、転炉での精錬において不可欠な作業であることは明白である。
In the refining in the converter, oxygen is blown based on the blowing model consisting of the raw material composition, temperature, secondary combustion ratio of exhaust gas, etc., and the oxygen blowing amount is measured from the measurement results of the carbon content and temperature by the sublance. A dynamic control method is widely used in which the amount of oxygen is adjusted, the estimated value until the carbon content reaches the target value is calculated, and the blowing is automatically terminated.
Therefore, it is clear that measuring the temperature of hot metal and molten steel in the converter is an indispensable work in refining in the converter.

取鍋に出鋼された溶鋼は、LF処理にて昇熱、造滓、脱硫が行われ、RHやCAS、REDAといった処理にて、脱ガス、成分調整が行われる。
いずれの処理においても、処理前に消耗型熱電対プローブを用いて、溶融金属のバッチ測温が実施され、処理中にも必要に応じて複数回のバッチ測温を行い、必要な処理の時間、昇熱量、合金添加実施等を決定している。
The molten steel discharged from the ladle is heated, slag-zipped, and desulfurized by LF treatment, and degassed and component adjusted by treatment such as RH, CAS, and REDA.
In each treatment, batch temperature measurement of the molten metal is carried out using a consumable thermocouple probe before the treatment, and batch temperature measurement is performed multiple times as needed during the treatment, and the required treatment time is required. , The amount of heat rise, the implementation of alloy addition, etc. have been decided.

前記の通り、転炉、取鍋での二次精錬工程においては、溶融金属の測温は不可欠であるが、転炉、取鍋のいずれの精錬工程においても、処理前、処理途中、処理終了前、終了後といったタイミングで、消耗型熱電対を使用した、バッチ測温が行われている。測温値から、従来からの実績に基づいた手法で以降の処理を決定しているが、測温を実施した時点の温度から処理時点での温度を推定して、処理を行う。また、推測値と併せて、オペレーターの経験に基づいた判断による制御も行われている。
しかし、この推測値については、転炉、取鍋の消耗の度合いや、精錬する溶融金属の材質の違いにより常に変化していくことから、必ずしも合致するものとはいえない。
As described above, temperature measurement of molten metal is indispensable in the secondary refining process in the converter and ladle, but in both the converter and ladle refining processes, the process is completed before, during, and after the process. Batch temperature measurement using a consumable thermocouple is performed at the timing before and after the end. From the temperature measurement value, the subsequent processing is determined by a method based on the conventional results, but the treatment is performed by estimating the temperature at the time of processing from the temperature at the time when the temperature is measured. In addition to the estimated value, control is also performed by judgment based on the operator's experience.
However, this estimated value does not always match because it constantly changes depending on the degree of wear of the converter and the ladle and the material of the molten metal to be refined.

バッチ測温を基準として処理を進める場合、推測値と経験による制御となるが、処理中の溶融金属の温度が常に連続的に測定され、リアルタイムにシステム及びオペレーターに反映されれば、処理時点での転炉、取鍋の状態や、取鍋内の溶融金属そのものの温度を反映することとなるため、より精度が高く、効率の良い処理が実現できるが、現在でもこの技術は確立されていない。 When proceeding with the process based on batch temperature measurement, it is controlled by estimated value and experience, but if the temperature of the molten metal during the process is always continuously measured and reflected in the system and operator in real time, it will be at the time of the process. Since it reflects the state of the converter and the pan, and the temperature of the molten metal itself in the pan, more accurate and efficient processing can be realized, but this technology has not been established even now. ..

溶融金属の連続的な測温は、過去に取鍋のポーラス煉瓦等の耐火物内部に、シース熱電対等の温度センサーを埋め込み、炉壁材内部の温度を測定することで、溶融金属の温度を推定可能か否かの検証がなされたことはあるが、周囲の耐火物表面には、操業の進行、転炉や取鍋の使用回数の蓄積により、金属やスラグが付着したり、または損耗したりすることで、測定対象との距離や伝熱特性が常に変化していくことから、補正が困難である。 For continuous temperature measurement of molten metal, the temperature of molten metal is measured by embedding a temperature sensor such as sheath thermocouple in the refractory such as porous slag of the ladle in the past and measuring the temperature inside the furnace wall material. Although it has been verified whether it can be estimated, metal and slag adhere to or wear on the surface of the surrounding refractory due to the progress of operation and the accumulation of the number of times the converter and ladle have been used. As a result, the distance to the measurement target and the heat transfer characteristics constantly change, making correction difficult.

特開2009-41069JP 2009-41069

測温精度は、温度センサーが適切な外径、長さを確保した上で、直に溶融金属と接触することで向上させることができるが、シース熱電対は溶融金属と接触させると、容易に破損する。これを防ぐためには、溶融金属との接触部分を耐火物から成る保護管にて覆ったものとすれば、温度による早期の破損は、ある程度防止できる。
一方で、機械的破損に関しては、耐火物は高温強度が低いことと、転炉や取鍋の内壁から所定の長さが飛び出した形であることから、転炉内に投入されたスクラップや、受銑、受鋼時に受ける溶融金属流の衝撃荷重に耐えることが出来ず、破砕してしまうことが懸念される。
The temperature measurement accuracy can be improved by directly contacting the molten metal with the temperature sensor ensuring an appropriate outer diameter and length, but the sheath thermocouple can be easily contacted with the molten metal. fall into disrepair. In order to prevent this, if the contact portion with the molten metal is covered with a protective tube made of a refractory material, early damage due to temperature can be prevented to some extent.
On the other hand, regarding mechanical damage, refractories have low high-temperature strength and have a shape in which a predetermined length protrudes from the inner wall of the converter or ladle. It cannot withstand the impact load of the molten metal flow received during receiving and steel receiving, and there is a concern that it will be crushed.

耐火物部分の肉厚を増すことにより機械的強度は上がるが、肉厚増大による温度センサーの大型化により、スラグ付着面積が増大する。また、肉厚化により、耐火物の低い熱伝導率の影響度が高くなってしまうことで、溶融金属の温度がセンサーの測温点に到達する前に、周囲の耐火物より抜熱されてしまい、溶融金属の温度を捉えることが困難となる。特に、溶鋼取鍋での耐久性が一般に高いとされているアルミナ‐マグネシア系耐火物は、低熱伝導率であることから影響度が高い。 Although the mechanical strength increases by increasing the wall thickness of the refractory part, the slag adhesion area increases due to the increase in size of the temperature sensor due to the increase in wall thickness. In addition, due to the thickening of the wall, the influence of the low thermal conductivity of the fire-resistant material becomes high, so that the heat of the molten metal is removed from the surrounding fire-resistant material before it reaches the temperature measurement point of the sensor. This makes it difficult to capture the temperature of the molten metal. In particular, alumina-magnesia refractories, which are generally considered to have high durability in molten steel ladle, have a high degree of influence because of their low thermal conductivity.

本発明は、上記の事情に鑑みて成されたもので、直接溶融金属に接触させた状態での、補正値でなく真の溶湯温度を測定可能としながら、同時にスクラップや、受銑、受鋼時に受ける溶融金属流の衝撃荷重に耐えられる強度を持った温度センサーを提供することが困難であった。 The present invention has been made in view of the above circumstances, and it is possible to measure the true molten metal temperature instead of the correction value in the state of being in direct contact with the molten metal, and at the same time, scrap, receiving metal, and receiving steel. It has been difficult to provide a temperature sensor that is strong enough to withstand the impact load of the molten metal flow that is sometimes received.

上記課題を解決するために、本発明にかかる連続測温プローブは、内部に靭性、耐熱衝撃性、高温強度、高熱伝導率を備えたサーメット保護管を使用することにより、サーメット保護管が周囲を覆う耐火物スリーブの骨材として作用することで、耐火物のみの保護管では耐えられない衝撃に耐える強度を持ち、その高強度化による周囲耐火物の肉薄化と、サーメット保護管の高熱伝導性による良好な測温精度を兼ね備えた連続測温手段を提供する。 In order to solve the above problems, the continuous temperature measuring probe according to the present invention uses a cermet protective tube having toughness, thermal shock resistance, high temperature strength, and high thermal conductivity inside, so that the cermet protective tube surrounds the periphery. By acting as an aggregate for the refractory sleeve that covers it, it has the strength to withstand impacts that cannot be withstood by a refractory-only protective tube. To provide a continuous temperature measuring means having good temperature measuring accuracy.

本発明によれば、連続測温プローブを、耐火物のみの保護管を用いたプローブよりも高強度化することができ、溶融金属に直接接触させる状態で転炉や取鍋内部に露出していても破損せず、良好な測温精度を保ったまま、連続的に測温することが可能となる。 According to the present invention, the continuous temperature measuring probe can be made stronger than the probe using the refractory-only protective tube, and is exposed inside the converter or the ladle in a state of being in direct contact with the molten metal. Even if it is not damaged, it is possible to continuously measure the temperature while maintaining good temperature measurement accuracy.

本発明のうち、取鍋が予熱や注湯終了後といった、耐火物が蓄熱された熱間状態であっても交換可能な連続測温プローブの構成を示す図である。 In the present invention, it is a figure which shows the structure of the continuous temperature measuring probe which can be exchanged even in the hot state where the refractory heat is stored, such as after the ladle is preheated and the pouring is completed. 図1の連続測温プローブよりも、耐火物の肉厚を大きくすることで耐久性を増し、冷間状態にて煉瓦の差し替えや、不定形耐火物による損耗箇所の増厚を行う、中間補修時に交換することを想定したものの構成を示す図である。 Durability is increased by increasing the wall thickness of the refractory compared to the continuous temperature measuring probe shown in Fig. 1, and intermediate repair is performed by replacing bricks in a cold state and thickening the worn part due to the amorphous refractory. It is a figure which shows the structure of what was supposed to be exchanged at times. 図1または図2に示すような連続測温プローブが、溶融金属の取鍋に取り付けられた状態を示す図である。 It is a figure which shows the state which the continuous temperature measuring probe as shown in FIG. 1 or FIG. 2 is attached to the ladle of molten metal. 本発明の実施例により得られた、取鍋内の溶融金属温度を測定した結果を示す図である。 It is a figure which shows the result of having measured the molten metal temperature in a ladle obtained by the Example of this invention.

以下に、本発明の実施例を説明する。図1は、本発明に係るサーメット保護管を用いた転炉または溶融金属取鍋用連続測温プローブの実施例である。なお、実施例はあくまで、発明の理解を容易にするためであり、この実施例の条件に制限されない。図1に示すように、連続測温プローブは、耐火物から成る保護スリーブ2と、耐火物内部に固定され、内部に熱電対の組み込まれたサーメット保護管1と、サーメット保護管1と接続し、熱電対の保護と、必要な全長の確保と、外部コネクタと接続するための構造を有する金属パイプ9から構成される。連続測温プローブは、内部にテーパ穴を持つ機能煉瓦であるマス煉瓦4に挿入され、その下部から押さえ煉瓦10、調整用鉄板11にて挿入長の調整を行った後、締結治具12により取鍋内部方向に押し当てる様にして固定する。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is an example of a continuous temperature measuring probe for a converter or a molten metal ladle using a cermet protective tube according to the present invention. It should be noted that the examples are merely for the purpose of facilitating the understanding of the invention, and are not limited to the conditions of the examples. As shown in FIG. 1, the continuous temperature measuring probe is connected to a protective sleeve 2 made of a refractory, a cermet protective tube 1 fixed inside the refractory and having a thermocouple incorporated therein, and a cermet protective tube 1. It is composed of a metal pipe 9 having a structure for protecting a thermocouple, ensuring the required total length, and connecting to an external connector. The continuous temperature measuring probe is inserted into the mass brick 4, which is a functional brick having a tapered hole inside, and the insertion length is adjusted by the holding brick 10 and the adjusting iron plate 11 from the lower part, and then by the fastening jig 12. Fix it by pressing it toward the inside of the pan.

サーメット保護管は、高温下での熱伝導率及び熱間強度を確保するため、冷間等方圧加圧法により成形し、焼結炉にて焼結した焼結密度の高いものが好ましいが、保護スリーブが溶損や浸食により消耗して、サーメット保護管が取鍋内部に露出する前に連続測温プローブを交換することを前提とするのであれば、押出成形で成形し、焼結したサーメット保護管を採用してもよい。The cermet protective tube is preferably formed by a cold isotropic pressure method and sintered in a sintering furnace to have a high sintering density in order to secure thermal conductivity and hot strength at high temperatures. If it is assumed that the protective sleeve will be worn out due to melting or erosion and the continuous temperature measuring probe will be replaced before the cermet protective tube is exposed inside the pan, the cermet molded and sintered by extrusion molding. A protective tube may be adopted.

煉瓦3、煉瓦5、煉瓦6、煉瓦7は、取鍋内に注湯して運搬する溶融金属の種類により異なるが、特に煉瓦3と、保護スリーブ2、マス煉瓦4は溶融金属に接触し、高温化することから、線膨張率、熱伝導率の近い材質とすることが好ましい。実施例では、煉瓦3がアルミナ-マグネシア系のキャスタブルであったため、保護スリーブ2も同様のキャスタブルを流し込みで成形した、プレキャストスリーブを採用した。材質としては、連続測温プローブの使用環境に応じて、アルミナ-カーボン、スピネル-カーボン、マグネシア-カーボン、ジルコニア-カーボン、炭化ケイ素-カーボン等の黒物系耐火物から成るものと、アルミナ、アルミナ-シリカ、アルミナ-スピネル、アルミナ-マグネシア、マグネシア等の白物系から成るものの、いずれかまたは双方を用いた保護スリーブを採用してもよい。 Brick 3, brick 5, brick 6, and brick 7 differ depending on the type of molten metal to be carried by pouring hot water into the ladle, but in particular, the brick 3, the protective sleeve 2, and the mass brick 4 come into contact with the molten metal. Since the temperature rises, it is preferable to use a material having a similar linear expansion rate and thermal conductivity. In the example, since the brick 3 was an alumina-magnesia castable, the protective sleeve 2 also adopted a precast sleeve formed by pouring a similar castable. The materials include those made of black refractory materials such as alumina-carbon, spinel-carbon, magnesia-carbon, zirconia-carbon, and silicon carbide-carbon, and alumina and alumina, depending on the usage environment of the continuous temperature measuring probe. -A protective sleeve made of silica, alumina-spinel, alumina-magnesia, magnesia, or the like, but using either or both of them may be adopted.

金属パイプ9は、取り外しが簡易であることから、先端にワンタッチ式のコネクタ用部品を、溶接にて固定したものを採用した。 Since the metal pipe 9 is easy to remove, a one-touch type connector component is fixed to the tip by welding.

実用新案Utility model

実用新案登録第3211664号
このコネクタについては、ワンタッチ式のコネクタ用部品の代わりに、ステンレス製ホースを接続して内部に熱電対素線を通し、先端にメタルコネクタやセラミックスコネクタを取り付けたものとしてもよい。
Utility model registration No. 3211664 For this connector, instead of the one-touch type connector parts, a stainless steel hose is connected, a thermocouple wire is passed through the inside, and a metal connector or a ceramic connector is attached to the tip. good.

図3の様に、取鍋14の敷に固定されたマス煉瓦4に、連続測温プローブ15を固定し、金属パイプ9を鍋の外に露出してその先端に熱電対延長ケーブル16を接続した。このケーブルを、取鍋外部に取り付けた断熱ボックス17に接続し、断熱ボックス17内部にセットした無線送信機18へ起電力を読み込ませ、温度データを送信する仕組みとした。 As shown in FIG. 3, the continuous temperature measuring probe 15 is fixed to the mass brick 4 fixed to the floor of the ladle 14, the metal pipe 9 is exposed to the outside of the pan, and the thermocouple extension cable 16 is connected to the tip thereof. did. This cable is connected to the heat insulating box 17 attached to the outside of the ladle, the electromotive force is read into the wireless transmitter 18 set inside the heat insulating box 17, and the temperature data is transmitted.

このような構成にて、試験的に溶融金属の温度を連続測温した実施例を以下に説明する。
実施例に示した構造の連続測温プローブを、実際に操業中の取鍋に取り付けて温度測定を実施したところ、図4のグラフに示す通りの測温データが得られた。測温点は、取鍋底面から90mmの位置である。この図に示されるように、
連続測温プローブは予熱時から取鍋内部の温度を検出しており、二次精錬のLF処理、RH処理時に実施された、消耗型熱電対プローブによるバッチ測温の測温値と比較しても、ほぼ同じ温度を捉えていることがわかる。
An example in which the temperature of the molten metal is continuously measured on a trial basis with such a configuration will be described below.
When the continuous temperature measuring probe having the structure shown in the example was attached to the ladle in operation and the temperature was measured, the temperature measurement data as shown in the graph of FIG. 4 was obtained. The temperature measurement point is 90 mm from the bottom of the pan. As shown in this figure
The continuous temperature measuring probe detects the temperature inside the ladle from the time of preheating, and compares it with the temperature measurement value of the batch temperature measurement by the consumable thermocouple probe performed during the LF treatment and RH treatment of the secondary refining. However, it can be seen that they capture almost the same temperature.

なお、実施例においては、図1の熱間での交換が可能な構造の連続測温プローブを使用しているが、連続測温プローブの交換頻度及び漏鋼のリスクを低減するために、冷間状態にて煉瓦の差し替えや、不定形耐火物による損耗箇所の増厚を行う、中間補修時まで耐用させることを前提とした、図2のような構造の連続測温プローブを取鍋内に組み込んでもよい。この形状であれば、図1の様な押さえ煉瓦10、調整用鉄板11、締結治具12を使用する時と比較して、穿孔する穴の径を小さくでき、連続測温プローブの取り付けの手間も削減することができる。 In the embodiment, the continuous temperature measuring probe having a structure capable of hot exchange in FIG. 1 is used, but in order to reduce the frequency of exchanging the continuous temperature measuring probe and the risk of steel leakage, it is cooled. A continuous temperature measuring probe with a structure as shown in Fig. 2 is placed in the pan on the premise that the bricks will be replaced in the interim state, the damaged part will be thickened by the amorphous refractory, and it will be used until the intermediate repair. It may be incorporated. With this shape, the diameter of the hole to be drilled can be made smaller than when the holding brick 10, the adjusting iron plate 11, and the fastening jig 12 as shown in FIG. 1 are used, and it takes time and effort to attach the continuous temperature measuring probe. Can also be reduced.

以上の様に、本発明によれば、取鍋内部に露出していても、受鋼時に受ける溶融金属流の衝撃荷重に耐える強度を持ち、良好な測温精度も兼ね備える連続測温プローブの製作が可能となった。 As described above, according to the present invention, there is a continuous temperature measuring probe that has the strength to withstand the impact load of the molten metal flow received during steel receiving even if it is exposed inside the ladle, and also has good temperature measurement accuracy. Is now possible.

1 サーメット保護管
2 保護スリーブ
3 煉瓦
4 マス煉瓦
5 煉瓦
6 煉瓦
7 煉瓦
8 鉄皮
9 金属パイプ
10 押さえ煉瓦
11 調整用鉄板
12 締結治具
13 保護スリーブ
14 取鍋
15 連続測温プローブ
16 熱電対延長ケーブル
17 断熱ボックス
18 無線送信機
1 Cermet protective tube 2 Protective sleeve 3 Brick 4 Mass brick 5 Brick 6 Brick 7 Brick 8 Iron skin 9 Metal pipe 10 Pressing brick 11 Adjusting iron plate 12 Fastening jig 13 Protective sleeve 14 Ladle 15 Continuous temperature measuring probe 16 Thermocouple extension Cable 17 Insulation box 18 Wireless transmitter

Claims (4)

転炉または溶銑、溶鋼、溶湯等の溶融金属を運搬する取鍋に固定され、溶融金属の温度を連続的に測定可能な連続測温プローブにおいて、耐火物製の保護スリーブと、その内部に熱電対を組み込んだサーメット保護管と、サーメット保護管から所定の長さを延長する金属パイプから成る連続測温プローブ。 In a continuous temperature measuring probe that is fixed to a converter or a ladle that transports molten metal such as hot metal, molten steel, and molten metal and can continuously measure the temperature of the molten metal, a protective sleeve made of refractory material and a thermoelectric inside it. A continuous temperature measuring probe consisting of a cermet protective tube incorporating a pair and a metal pipe extending a predetermined length from the cermet protective tube. アルミナ-カーボン、スピネル-カーボン、マグネシア-カーボン、ジルコニア-カーボン、炭化ケイ素-カーボン等の黒物系耐火物から成るものと、
アルミナ、アルミナ-シリカ、アルミナ-スピネル、アルミナ-マグネシア、マグネシア等の白物系から成るものの、いずれかまたは双方を用いた保護スリーブを備えた、請求項1に記載の連続測温プローブ。
Alumina-carbon, spinel-carbon, magnesia-carbon, zirconia-carbon, silicon carbide-carbon, and other black refractories.
The continuous temperature measuring probe according to claim 1, further comprising a protective sleeve using any or both of white goods such as alumina, alumina-silica, alumina-spinel, alumina-magnesia, and magnesia.
サーメット保護管を、請求項2に記載の保護スリーブにて周囲を覆うことで、サーメット保護管に保護スリーブの骨材としての機能を持たせると共に、サーメット保護管の高熱伝導率を利用して測温精度を高めた請求項1に記載の連続測温プローブ。 By covering the circumference of the cermet protective tube with the protective sleeve according to claim 2, the cermet protective tube has a function as an aggregate of the protective sleeve, and the high thermal conductivity of the cermet protective tube is used for measurement. The continuous temperature measuring probe according to claim 1, which has improved temperature accuracy. 熱間での交換を可能とするために、機能煉瓦であるマス煉瓦を取鍋に固定し、そのテーパ穴に保護スリーブ部を挿入し、押さえ煉瓦と調整用鉄板と締結治具で固定する構造と、取鍋の中修まで耐用する様、保護スリーブの形状を円錐台と角柱を組み合わせたものとしたものの、いずれかの固定方法にて使用する請求項1に記載の連続測温プローブ。 In order to enable hot replacement, a structure in which a mass brick, which is a functional brick, is fixed to a ladle, a protective sleeve is inserted into the tapered hole, and a holding brick, an adjusting iron plate, and a fastening jig are used to fix it. The continuous temperature measuring probe according to claim 1, wherein the shape of the protective sleeve is a combination of a truncated cone and a prism so that it can be used up to the middle of the ladle.
JP2020145047A 2020-08-07 2020-08-07 Continuous temperature measurement probe for converter or molten metal ladle using cermet protective tube Pending JP2022031063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020145047A JP2022031063A (en) 2020-08-07 2020-08-07 Continuous temperature measurement probe for converter or molten metal ladle using cermet protective tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020145047A JP2022031063A (en) 2020-08-07 2020-08-07 Continuous temperature measurement probe for converter or molten metal ladle using cermet protective tube

Publications (1)

Publication Number Publication Date
JP2022031063A true JP2022031063A (en) 2022-02-18

Family

ID=80325135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020145047A Pending JP2022031063A (en) 2020-08-07 2020-08-07 Continuous temperature measurement probe for converter or molten metal ladle using cermet protective tube

Country Status (1)

Country Link
JP (1) JP2022031063A (en)

Similar Documents

Publication Publication Date Title
US9829385B2 (en) Container for molten metal, use of the container and method for determining an interface
KR100849597B1 (en) Apparatus for measuring realtime temperature of continuous in Steel Manufacture Ladle
KR101230331B1 (en) A continuous temperature detecting device
US3161499A (en) Metallurgical process control
JP2022031063A (en) Continuous temperature measurement probe for converter or molten metal ladle using cermet protective tube
JP2008286609A (en) Temperature measuring device
JP2023099941A (en) Continuous temperature measuring probe and fixing structure of continuous temperature measuring probe
JPH01288741A (en) Protective tube type temperature sensor
JP2016148102A (en) Tuyere refractory for gas blowing plug
CN216115361U (en) Smelting furnace slag hole protection device and smelting furnace with same
GB2032083A (en) Sliding gate valves
Polatschek IoT for clogging and refractory wear detection
JP3213369U (en) Implantable continuous temperature probe for use in tundish
JPH054928Y2 (en)
JPS5848344Y2 (en) hot metal trough
CN207570670U (en) A kind of temperature measuring equipment
SU320127A1 (en) DEVICE FOR CONTINUOUS MEASUREMENT OF TEMPERATURE IN MELTING AND REFINING HEATERS
JPS5821210B2 (en) Continuous temperature measuring device for molten metal
KR100361760B1 (en) Female.male connector of slag detector for ladle
KR20220026878A (en) Method of calculation total heat energy in ladle refractory
Hirjak et al. Using Castables of Improved Properties for Iron and Steel Production
Anan Wear of Refractories in BOF
JPH058020A (en) Ladle and tundish for casting
JP4190199B2 (en) Drying control method for magnesia-containing amorphous refractories
JPH07190749A (en) Residual thickness detecting structure of refractory for gas blowing-in

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924