JP2022031051A - Condensed system nuclear reaction device and heat outputting means and power generation system using therewith - Google Patents

Condensed system nuclear reaction device and heat outputting means and power generation system using therewith Download PDF

Info

Publication number
JP2022031051A
JP2022031051A JP2020143943A JP2020143943A JP2022031051A JP 2022031051 A JP2022031051 A JP 2022031051A JP 2020143943 A JP2020143943 A JP 2020143943A JP 2020143943 A JP2020143943 A JP 2020143943A JP 2022031051 A JP2022031051 A JP 2022031051A
Authority
JP
Japan
Prior art keywords
deuterium
hydrogen
palladium
alloy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020143943A
Other languages
Japanese (ja)
Inventor
広 水沼
Hiroshi Mizunuma
徹 中間
Toru Nakama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAGIC HAND KK
Original Assignee
MAGIC HAND KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAGIC HAND KK filed Critical MAGIC HAND KK
Priority to JP2020143943A priority Critical patent/JP2022031051A/en
Publication of JP2022031051A publication Critical patent/JP2022031051A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

To establish a continuous reaction cycle of fuel supply to thermal reaction and to unnecessary product discharging in a condensed system nuclear reaction, and a circulation cycle of unreacted deuterium, and to constitute a power generation system.SOLUTION: A hydrogen occlusive metal is subjected to low temperature sintering and formed into a truncated cone by powder metallurgy means, palladium is concentratedly mixed in the vicinity of an upper bottom face thereof, side faces thereof are hydrogen-impermeability formed, with an insulation property, and the truncated cone is closely fitted into a lumen. High frequency wave is applied to a part between the upper bottom face and a lower bottom face, and deuterium is pressure-injected to the lower bottom face. From helium-containing deuterium leaking from the upper bottom face, only deuterium is separated and compressed by an electrochemical type hydrogen pump, and pressure-injected to the lower bottom face. Furthermore, pipes containing the hydrogen occlusive metal are used as a heat source of a boiler, to generate superheated water to drive a turbine. A circulation type steam turbine power generation system condensing by a heat pump is constituted.SELECTED DRAWING: Figure 1

Description

本発明は凝縮系核反応に関するものである。 The present invention relates to a condensed nuclear reaction.

ローソン条件を満たす超高温超高圧のプラズマ中でしか起こり得ないとされてきたD+T反応やD+D反応やHe+D反応等の原子核融合反応が、常圧常温下のパラジウム等の水素吸蔵性の金属又は合金の結晶構造中に、或いは該結晶表面の微細構造に取り込まれた重水素によって惹起され、特異的な過剰熱と共にヘリウムの生成が観測される現象が近年多く報告されている。Nuclear fusion reactions such as the D + T reaction, D + D reaction, and 3He + D reaction, which have been considered to occur only in ultra-high temperature and ultra-high pressure plasma satisfying the Lawson criterion, are hydrogen-absorbing metals such as palladium at normal pressure and normal temperature. In recent years, many phenomena have been reported in which the formation of helium is observed with specific excess heat, which is caused by deuterium incorporated in the crystal structure of the alloy or in the fine structure of the crystal surface.

また超高温超高圧のプラズマ条件下に於いては、D+D→T+p及びD+D→He+nと成って中性子及びγ線を放射するはずのところ、結晶中の凝縮環境に於けるD+D反応に於いてはHeが生成され、これに伴って発生するはずの中性子及びγ線の放射量が僅少であることも、既知の物理学理論を逸脱している。In addition, under ultra-high temperature and ultra-high pressure plasma conditions, D + D → T + p and D + D → 3He + n should radiate neutrons and γ-rays, but in the D + D reaction in the condensed environment in the crystal, The small amount of neutrons and gamma rays that should be generated with the generation of 4 He also deviates from the known physics theory.

このような凝縮環境に於ける核反応は、近年では凝縮系核反応又は凝縮集系核反応と呼称され、反応の発生機序の理論的解明と平行して、熱機関としての工業的応用の研究が進められている。 In recent years, nuclear reactions in such a condensed environment have been called condensed nuclear reactions or condensed concentrated nuclear reactions, and in parallel with the theoretical elucidation of the mechanism of reaction generation, they are industrially applied as heat engines. Research is underway.

また米国に於いても2015年11月に「重水素とナノサイズの金属の加圧による過剰エンタルピー」という技術名で凝縮系核反応に関する特許が成立したとされ、我が国に於いても以下の特許文献が見られる。
特開平5-27062号広報 特開平7-104080号広報 特開平11-271484号広報 特開2014-37996号広報 特開2019-086291号広報
Also in the United States, it is said that a patent on condensed nuclear reaction was granted in November 2015 under the technical name of "excessive enthalpy due to pressurization of deuterium and nano-sized metal", and the following patents are also granted in Japan. You can see the literature.
Japanese Patent Application Laid-Open No. 5-27062 Public Relations Japanese Patent Application Laid-Open No. 7-104080 Public Relations Japanese Patent Laid-Open No. 11-271484 Public Relations Japanese Patent Application Laid-Open No. 2014-37996 Japanese Patent Application Laid-Open No. 2019-086291

またインターネット上のフリー百科事典『ウィキペディア』の「常温核融合」の項目に凝縮系核反応に関する研究の現況の概略が掲載されている。
フリー百科事典『ウィキペディア(Wikipedia)』常温核融合
In addition, the outline of the current state of research on condensed nuclear reactions is published in the item "Cold fusion" in the free encyclopedia "Wikipedia" on the Internet.
Free encyclopedia "Wikipedia" Cold fusion

前項に述べたように、重水素の凝縮系核反応によるヘリウムの生成及び過剰熱の発生は公知の物理現象となっているものの、これを熱機関として実用化するためには、燃料供給→熱反応→不要生成物の排出の連続した反応サイクルを確立する必要がある。 As mentioned in the previous section, the generation of helium and the generation of excess heat by the nuclear reaction of the condensation system of heavy hydrogen are known physical phenomena, but in order to put this into practical use as a heat engine, fuel supply → heat It is necessary to establish a continuous reaction cycle of reaction → discharge of unwanted products.

しかしながら現状では試料である反応金属が過剰熱を発生するものの、主にヘリウムから成る核反応生成物が該反応金属の中に蓄積されるため、時々これを数百度に過熱しないとヘリウムが放出されないとの記述が前項の非特許文献1中に見られるように、上記のような連続した反応サイクルは、未だ確立していない。 However, at present, although the reaction metal as a sample generates excess heat, the nuclear reaction product mainly composed of helium is accumulated in the reaction metal, so that helium is not released unless it is heated to several hundred degrees from time to time. As can be seen in Non-Patent Document 1 in the preceding paragraph, the above-mentioned continuous reaction cycle has not yet been established.

また現状に於いては凝縮系核反応による過剰熱の利用方法として、熱電対発電素子による発電方法が研究されているが、熱電対発電素子は発電効率が低いことも課題となっている。 At present, as a method of utilizing excess heat by a condensed nuclear reaction, a power generation method using a thermocouple power generation element is being studied, but the thermocouple power generation element also has a problem of low power generation efficiency.

円柱形又は円錐形又は円錐台形の形状又はこれに類する先細りの形状又は円柱形の中途を絞って括れを付けた形状を成すパラジウム等の水素吸蔵性金属又は合金を、これに対する鋳型形状の管腔を持つ水素を吸収しない素材の管か、又は管の内面に水素を透過しないライナーを施した管の中に、管腔に密着させて設置する。 A template-shaped cavity for a hydrogen-storing metal or alloy such as palladium, which has a cylindrical or conical or conical trapezoidal shape or a similar tapered shape or a cylindrically constricted shape. It is installed in close contact with the cavity in a tube made of a material that does not absorb hydrogen or a tube with a liner that does not allow hydrogen to permeate the inner surface of the tube.

尚この際、該パラジウム等の水素吸蔵性金属又は合金が円錐形の形状の場合はその頂点を管腔中に僅かに露出させて設置する。 At this time, if the hydrogen storage metal or alloy such as palladium has a conical shape, the apex thereof is slightly exposed in the lumen and installed.

また該パラジウム等の水素吸蔵性金属又は合金の側面に水素を透過しないコーティングを施してこれを管腔に密着させて設置しても良いが、この際には該パラジウム等の水素吸蔵性金属又は合金が円錐形の形状の場合に於いてはその頂点付近を水素透過性のままにしておく。 Further, the side surface of the hydrogen storage metal such as palladium or an alloy may be coated with a coating that does not allow hydrogen to permeate, and this may be installed in close contact with the cavity. In this case, the hydrogen storage metal such as palladium or the hydrogen storage metal or If the alloy has a conical shape, leave the vicinity of its apex hydrogen permeable.

尚、上記の水素を透過しないライナー及びコーティング材には、耐熱性及び後述するように絶縁性も要求されるが、水素透過防止性セラミック薄膜として開発された酸化エルビウム(Er)によるコーティングが好適である。The above-mentioned liner and coating material that do not allow hydrogen to permeate are required to have heat resistance and insulating properties as described later, but are coated with erbium oxide (Er 2 O 3 ), which was developed as a hydrogen permeation-preventing ceramic thin film. Is preferable.

さらに該パラジウム等の水素吸蔵性金属又は合金の形状が、円柱形の場合及び円柱形の中途を絞って括れを付けた形状の場合はその片方の底面を、円錐形の場合はその底面を、円錐台形の場合はその下底面を加圧された重水素に暴露して重水素を浸透させる。 Further, if the shape of the hydrogen-storing metal or alloy such as palladium is a cylinder or a shape in which a constriction is made in the middle of the cylinder, the bottom surface of one of the cylinders is used, and if the shape is a cone, the bottom surface is used. In the case of a conical trapezoidal shape, the lower bottom surface is exposed to pressurized heavy hydrogen to allow heavy hydrogen to permeate.

また請求項2に於いては、請求項1の円錐形又は円錐台形の形状又はこれに類する先細りの形状又は円柱形の中途を絞って括れを付けた形状を成すパラジウム等の水素吸蔵性金属又は合金を粉末冶金手段で製造し、且つその先端部乃至狭隘部のみにパラジウムを配合した。 Further, in claim 2, a hydrogen storage metal such as palladium having a conical or conical trapezoidal shape of claim 1 or a tapered shape similar to this or a cylindrical shape with a constriction in the middle is formed. The alloy was produced by powder metallurgy means, and palladium was blended only in the tip portion or the narrow portion thereof.

請求項3に於いては、請求項1及び2の管とこれに内蔵されるパラジウム等の水素吸蔵性金属又は合金との間を絶縁性として、該パラジウム等の水素吸蔵性金属又は合金の形状が円柱形の場合と円柱形の中途を絞って括れを付けた形状の場合はその両方の底面に、円錐形の場合はその頂点と底面に、円錐台形の場合はその上底面と下底面に、それぞれ電極を設置してこの両電極間に高周波を印加する。 In claim 3, the shape of the hydrogen storage metal or alloy such as palladium is defined as the insulating property between the tubes of claims 1 and 2 and the hydrogen storage metal or alloy such as palladium incorporated therein. In the case of a cylinder and in the case of a cylindrical shape with a constricted shape, on the bottom of both, in the case of a cone, on its apex and bottom, and in the case of a conical trapezoid, on its upper and lower bottoms. , Each electrode is installed and a high frequency is applied between these two electrodes.

請求項4に於いては、請求項1及び2の凝縮系核反応装置のパラジウム等の水素吸蔵性金属又は合金が内蔵された管に熱交換手段を設置して、管内のパラジウム等の水素吸蔵性金属又は合金中に於ける凝縮系核反応で発生する熱を凝縮系核反応装置の外部に移転することにより、該凝縮系核反応装置を熱源として利用できるようにした。 In claim 4, a heat exchange means is installed in a tube containing a hydrogen-absorbing metal or alloy such as palladium in the condensed nuclear reactors of claims 1 and 2, and hydrogen-absorbing palladium or the like in the tube is stored. By transferring the heat generated by the condensed nuclear reaction in the sex metal or alloy to the outside of the condensed nuclear reactor, the condensed nuclear reactor can be used as a heat source.

請求項5に於いては、複数個の請求項1及び2及び3の凝縮系核反応装置のパラジウム等の水素吸蔵性金属又は合金が内蔵された管を、1個の液体容器に水密性に貫通させて設置した。 In claim 5, a tube containing a hydrogen storage metal or alloy such as palladium of a plurality of condensed nuclear reactors of claims 1 and 2 and 3 is made watertight in one liquid container. It was installed through it.

さらに該液体容器に熱媒体となる液体を満たし、この液体を熱交換器に循環させるか、又は該液体容器中の液体に熱交換器を浸漬させて熱交換を行い、これにより凝縮系核反応装置の外部に設置した熱機関を駆動する。 Further, the liquid container is filled with a liquid to be a heat medium and the liquid is circulated in the heat exchanger, or the heat exchanger is immersed in the liquid in the liquid container to perform heat exchange, whereby a condensed nuclear reaction is performed. Drives a heat engine installed outside the device.

またこの際、凝縮系核反応によって熱を産生するパラジウム等の水素吸蔵性金属又は合金が内蔵された管が複数であるため、個々の管の熱量が少なくても管の本数を増やすことで総合的な熱量を大きくすることができるほか、個々の管に加圧された重水素を供給する個々の配管に設けた弁の開閉により、総合的な熱量を調節することができる。 At this time, since there are multiple tubes containing hydrogen-storing metals or alloys such as palladium that generate heat by the condensed nuclear reaction, even if the amount of heat of each tube is small, the number of tubes can be increased. In addition to being able to increase the amount of heat, the total amount of heat can be adjusted by opening and closing the valves provided in the individual pipes that supply pressurized heavy hydrogen to the individual pipes.

請求項6に於いては、請求項1及び2及び3及び4及び5の凝縮系核反応装置及び凝縮系核反応装置の熱出力手段に於ける、重水素の閉鎖循環サイクルを構成した。 In claim 6, the closed circulation cycle of deuterium in the condensed nuclear reactors of claims 1 and 2 and 3 and 4 and 5 and the heat output means of the condensed nuclear reactor was configured.

請求項1及び2及び3及び4の凝縮系核反応装置の、パラジウム等の水素吸蔵性金属又は合金が内蔵された管の加圧された重水素を圧注する側の反対側の管口、及び請求項5の凝縮系核反応装置の液体容器を水密性に貫通する全てのパラジウム等の水素吸蔵性金属又は合金が内蔵された管の、加圧された重水素を圧注する側の反対側の管口から重水素ヘリウム分離装置に配管を繋ぐ。 In the condensed nuclear reactors of claims 1 and 2 and 3 and 4, a tube opening on the opposite side of the tube containing a hydrogen-absorbing metal such as palladium or an alloy and a tube on which pressurized deuterium is pressed, and a tube port on the opposite side. On the opposite side of the tube containing all hydrogen-storing metals or alloys such as palladium that penetrate the liquid container of the condensed nuclear reactor according to claim 5 in a watertight manner, on the opposite side of the pressurized deuterium-injecting side. Connect the pipe from the pipe mouth to the deuterium helium separator.

これらの管口から漏出するヘリウムが混入する重水素を該重水素ヘリウム分離装置で重水素とヘリウムに分離し、重水素のみを、凝縮系核反応装置に重水素を供給する圧縮重水素ボンベに圧縮ポンプで圧注する。 Deuterium mixed with helium leaking from these pipe openings is separated into deuterium and helium by the deuterium helium separator, and only deuterium is transferred to the compressed deuterium bomb that supplies deuterium to the condensed nuclear reactor. Pressurize with a compression pump.

該重水素ヘリウム分離装置は、触媒で挟んだプロトン透過膜で仕切られた重水素電離室と再結合室とから成る電気化学式水素ポンプを用いる。 The deuterium helium separator uses an electrochemical hydrogen pump consisting of a deuterium ionization chamber and a recombination chamber separated by a proton permeable film sandwiched between catalysts.

即ち該重水素電離室に於いて触媒手段によって重水素電離室内の重水素を電離し、且つこの触媒に設置した陽極によって電離した電子を導出し、再結合室側の触媒には陰極を設置して電離した重陽子をプロトン透過膜を透過させて引き寄せ、ここで電子と再結合させて重水素原子に戻す。 That is, in the deuterium ionization chamber, deuterium in the deuterium ionization chamber is ionized by a catalytic means, electrons ionized by an anode installed in this catalyst are derived, and a cathode is installed in the catalyst on the recombination chamber side. The ionized deuterium is permeated through the proton permeable membrane and attracted, where it is recombined with the electron and returned to the deuterium atom.

この際、ヘリウムの電離化エネルギーは重水素に比して非常に大きいため、電離手段によって重水素のみが電離するので、容易に重水素とヘリウムを分離できる。 At this time, since the ionization energy of helium is much larger than that of deuterium, only deuterium is ionized by the ionizing means, so that deuterium and helium can be easily separated.

また該重水素電離室は垂直方向に縦長の形状とし、その上部に重水素電離手段を設置し、その下部に重水素とヘリウムの比重差によってヘリウムが溜まる構造とし、センサーによって底部に滞留するヘリウムの量を判定し、重水素電離室の底部の弁から適宜ヘリウムを放出する。 In addition, the deuterium ionization chamber has a vertically elongated shape, a deuterium ionization means is installed in the upper part, and helium is accumulated in the lower part due to the difference in specific gravity between deuterium and helium. The amount of helium is determined, and helium is appropriately released from the valve at the bottom of the deuterium ionization chamber.

請求項7に於いては、請求項6の凝縮系核反応装置の重水素とヘリウムの分離後の重水素を、パラジウム等の水素吸蔵性金属又は合金が内蔵された管に加圧された重水素として供給する手段としての、重水素圧縮ポンプ及び圧縮重水素ボンベの代替手段として、請求項6で用いた電気化学式水素ポンプの電気化学式圧縮効果を用いた。 In claim 7, the deuterium of the condensed nuclear reactor according to claim 6 and the deuterium after separation of helium are pressed into a tube containing a hydrogen-absorbing metal such as palladium or an alloy. As an alternative to the deuterium compression pump and the compressed deuterium bomb as means for supplying hydrogen, the electrochemical compression effect of the electrochemical hydrogen pump used in claim 6 was used.

即ち重水素ヘリウム分離装置の電気化学式水素ポンプを構成する再結合室を圧縮重水素室として、ここから全てのパラジウム等の水素吸蔵性金属又は合金が内蔵された管へと直接配管して、重水素の圧注を直接行う構造とした。 That is, the recombination chamber constituting the electrochemical hydrogen pump of the deuterium helium separator is used as a compressed deuterium chamber, and direct piping is performed from here to a pipe containing all hydrogen storage metals or alloys such as palladium, and the weight is heavy. The structure is such that hydrogen is directly injected.

これにより、請求項6の凝縮系核反応装置の熱出力手段に於ける重水素の閉鎖循環サイクルから、圧縮重水素ボンベと重水素の圧縮ポンプを省略した。 As a result, the compressed deuterium cylinder and the deuterium compression pump are omitted from the closed circulation cycle of deuterium in the heat output means of the condensed nuclear reactor according to claim 6.

請求項8に於いては、請求項5の凝縮系核反応装置の熱出力手段を利用して復水式(真空式)蒸気タービンシステムによって発電する方式とした。 In claim 8, a method of generating electricity by a condensing steam (vacuum type) steam turbine system using the heat output means of the condensed nuclear reactor of claim 5 is adopted.

請求項5の凝縮系核反応装置の熱出力手段の液体容器を密封性のボイラーと成してここに水を満たし、水タンクを配管で該ボイラーに繋ぎ、この水タンクを水に不溶性の加圧気体のボンベで加圧する。 The liquid container of the heat output means of the condensed nuclear reactor according to claim 5 is formed as a hermetically sealed boiler, filled with water, the water tank is connected to the boiler with a pipe, and the water tank is insoluble in water. Pressurize with a pressure gas cylinder.

これにより凝縮系核反応で加熱されるボイラー内の水を過熱水とし、この過熱水を加圧によって導出し、この過熱水によって密閉ハウジング内の反動式蒸気タービンを駆動し、これにより発電機を駆動して発電する。 As a result, the water in the boiler heated by the condensed nuclear reaction is used as superheated water, and this superheated water is derived by pressurization, and the superheated water drives the repulsive steam turbine in the sealed housing, thereby driving the generator. Drive to generate power.

また該密閉ハウジングは復水器を内蔵する真空乃至低圧タンクに配管で繋がれ、該真空乃至低圧タンク内に吸引される水蒸気を冷却によって復水し、この水をポンプで水タンクに圧注する。 Further, the sealed housing is connected to a vacuum or low pressure tank containing a condenser by a pipe, steam sucked into the vacuum or low pressure tank is restored by cooling, and this water is pumped into the water tank.

尚、真空乃至低圧環境中の蒸気タービンに噴射される請求項8の過熱水のタービン駆動力は、噴射圧よりも水蒸気の膨張圧に依拠するため、該反動式蒸気タービンは水蒸気の膨張圧を効率的に利用できる形状のものが望ましい。 Since the turbine driving force of the superheated water injected into the steam turbine in a vacuum or low pressure environment depends on the expansion pressure of steam rather than the injection pressure, the reaction type steam turbine applies the expansion pressure of steam. A shape that can be used efficiently is desirable.

請求項9に於いては、請求項8の凝縮系核反応装置の発電手段の、復水器の冷却手段をヒートポンプ又は電子冷却機で行い、その放熱側の熱交換器は空冷するか、又は該熱交換器に熱電対発電素子を組み込んで放熱しつつ発電する。 In claim 9, the condenser of the power generating means of the condensed nuclear reactor according to claim 8 is cooled by a heat pump or an electronic cooler, and the heat exchanger on the heat dissipation side thereof is air-cooled or air-cooled. A thermocouple power generation element is incorporated in the heat exchanger to generate heat while radiating heat.

請求項10に於いては、請求項8及び9の凝縮系核反応装置の発電手段の構成要素である密閉ハウジング内の反動式蒸気タービンを、同じく請求項8及び9の構成要素である真空乃至低圧タンクの内部に設置した。 In claim 10, the repulsive steam turbine in the sealed housing, which is a component of the power generation means of the condensed nuclear reactors of claims 8 and 9, is the vacuum to which is also a component of claims 8 and 9. It was installed inside a low-pressure tank.

この際、反動式蒸気タービンのタービン軸を非接触性の永久磁石磁気軸受け又は密封軸受けで支持し、該タービン軸に同軸に水密コーティングを施した永久磁石回転子を設置し、この永久磁石回転子を水密コーティングを施した固定子で非接触に囲むブラシレス発電機を構成した。 At this time, the turbine shaft of the reaction type steam turbine is supported by a non-contact permanent magnet magnetic bearing or a sealed bearing, and a permanent magnet rotor with a watertight coating coaxially attached to the turbine shaft is installed, and the permanent magnet rotor is installed. A brushless generator was constructed by enclosing the magnet in a non-contact manner with a stator coated with a watertight coating.

請求項1及び2及び3に於いては、圧注された重水素が凝縮系核反応を起こしやすいパラジウム等の水素吸蔵性金属又は合金を円柱形又は円錐形又は円錐台形の形状又はこれに類する先細りの形状又は円柱形の中途を絞って括れを付けた形状とし、またその側面を水素非透過性とすることで、その片側から圧注された重水素が該水素吸蔵性金属又は合金の中を注入圧に押されて反対側の断端である解放端から漏出する。 In claims 1, 2 and 3, a hydrogen-storing metal or alloy such as palladium, in which the injected heavy hydrogen is likely to cause a condensed nuclear reaction, is formed into a cylindrical, conical or conical trapezoidal shape or a similar taper. The shape of the shape or the shape of the cylinder is narrowed down to form a constriction, and the side surface is made impermeable to hydrogen, so that heavy hydrogen pressed from one side of the shape is injected into the hydrogen storage metal or alloy. Pushed by pressure, it leaks from the open end, which is the opposite stump.

このとき重水素は凝縮系核反応を起こしやすいパラジウム等の水素吸蔵性金属又は合金中で凝縮系核反応を起こし、熱と反応生成物であるヘリウムが生成される。 At this time, deuterium causes a condensed nuclear reaction in a hydrogen storage metal or alloy such as palladium, which easily causes a condensed nuclear reaction, and heat and helium, which is a reaction product, are generated.

またこのとき、該パラジウム等の水素吸蔵性金属又は合金が先細りか中途に括れがある形状の場合は、この先端部乃至狭隘部に於いて重水素の密度が最大化し、この部分で凝縮系核反応の発生率が高まる効果が得られる。 At this time, if the hydrogen storage metal or alloy such as palladium has a shape that is tapered or constricted in the middle, the density of deuterium is maximized at the tip or narrow portion, and the condensed core is formed at this portion. The effect of increasing the reaction rate can be obtained.

また該パラジウム等の水素吸蔵性金属又は合金が、粉末冶金手段により金属微粒子を低温焼結して製造された合金である場合は、重水素が金属微粒子の粒界を通過し易いため、狭隘部を設ける方法は特に効果的である。 Further, when the hydrogen storage metal or alloy such as palladium is an alloy produced by low-temperature sintering of metal fine particles by powder metallurgy means, heavy hydrogen easily passes through the grain boundaries of the metal fine particles, so that the narrow portion is formed. The method of providing is particularly effective.

尚、以上のように金属微粒子を焼結して製造された合金を用いる場合は、パラジウム等の稀少且つ高価な金属素材を先端部乃至狭隘部のみに配合することにより、その使用量を減らして製造コストを低減することができる。 When using an alloy produced by sintering metal fine particles as described above, the amount used can be reduced by blending a rare and expensive metal material such as palladium only in the tip or narrow portion. The manufacturing cost can be reduced.

またこの場合、パラジウム等の稀少且つ高価な金属素材が配合されていない部分は水素透過性の支持材となるため省略できない。 Further, in this case, the portion where a rare and expensive metal material such as palladium is not blended becomes a hydrogen permeable support material and cannot be omitted.

さらに請求項3に於いて該パラジウム等の水素吸蔵性金属又は合金に高周波を印加することにより、重水素及びこれを囲む金属結晶に高周波振動と熱エネルギーを与えて凝縮系核反応を促進する効果が得られる。 Further, in claim 3, by applying a high frequency to the hydrogen storage metal or alloy such as palladium, the effect of applying high frequency vibration and thermal energy to deuterium and the metal crystals surrounding the deuterium to promote the condensed nuclear reaction. Is obtained.

さらに凝縮系核反応で該パラジウム等の水素吸蔵性金属又は合金内に生成されたヘリウムは、該パラジウム等の水素吸蔵性金属又は合金内の重水素の流れによって押し出され、解放端から重水素と共に漏出する。 Further, the helium produced in the hydrogen storage metal such as palladium or the alloy by the condensation system nuclear reaction is extruded by the flow of heavy hydrogen in the hydrogen storage metal or alloy such as palladium, and is extruded from the open end together with the heavy hydrogen. Leak.

これにより、燃料供給→熱反応→不要生成物の排出の、連続した反応サイクルを確立することができる。 This makes it possible to establish a continuous reaction cycle of fuel supply → thermal reaction → emission of unwanted products.

また凝縮系核反応を起こす該パラジウム等の水素吸蔵性金属又は合金が棒状の管構造の中に格納されているために、管構造全体が加熱されるので熱交換が容易であり、これをボイラーの熱源とすれば、管の本数の増減でボイラーの熱容量を大小自由に設定できることに加え、個々の管への加圧された重水素の供給を個別に弁で開閉することにより、出力調整も容易に行える。 Further, since the hydrogen-storing metal or alloy such as palladium that causes a condensed nuclear reaction is stored in the rod-shaped tube structure, the entire tube structure is heated, so that heat exchange is easy, and this can be used as a boiler. As a heat source, the heat capacity of the boiler can be freely set by increasing or decreasing the number of pipes, and the output can be adjusted by opening and closing the supply of pressurized heavy hydrogen to each pipe individually with a valve. Easy to do.

さらに請求項6に於いては、上記パラジウム等の水素吸蔵性金属又は合金の解放端から漏出するヘリウムが混入した重水素を、電気化学式水素ポンプを用いることによって、重水素とヘリウムの分離と重水素の回収を行い、これにより未反応の重水素のみを閉サイクルで循環させることを可能にした。 Further, in claim 6, deuterium mixed with helium leaking from the open end of the hydrogen storage metal such as palladium or the alloy is separated and deuterium by using an electrochemical hydrogen pump. Hydrogen was recovered, which made it possible to circulate only unreacted deuterium in a closed cycle.

また請求項7に於いては、電気化学式水素ポンプの電気化学式圧縮効果によって、機械式ポンプを用いずに重水素とヘリウムの分離と重水素の加圧を同時に行い、これにより請求項6の重水素圧縮ポンプ及び圧縮重水素ボンベを不要とした。 Further, in claim 7, due to the electrochemical compression effect of the electrochemical hydrogen pump, deuterium and helium are separated and deuterium is pressurized at the same time without using a mechanical pump, whereby the weight of claim 6 is applied. Eliminates the need for hydrogen compression pumps and compressed deuterium bombs.

また請求項8に於いて、上述のように凝縮系核反応を起こすパラジウム等の水素吸蔵性金属又は合金の棒状の管構造を熱源に利用したボイラーを用いて、復水式(真空式)蒸気タービン発電システムを構成したことにより、熱電対発電素子等による発電方式よりも高い発電効率を実現した。 Further, in claim 8, a condensate type (vacuum type) steam is used as a heat source using a rod-shaped tube structure of a hydrogen-storing metal such as palladium or an alloy that causes a condensed nuclear reaction as described above. By configuring the turbine power generation system, higher power generation efficiency than the power generation method using thermocouple power generation elements was realized.

また該復水式蒸気タービン発電システムの復水用冷却器には、ヒートポンプを用いることで復水装置を小型化することができ、さらに該ヒートポンプの放熱側の熱交換器に熱電対発電素子を組み込むことで若干の発電量を上積みすることができる。 Further, by using a heat pump for the condensate cooler of the condensate type steam turbine power generation system, the condensate device can be miniaturized, and a thermocouple power generation element is installed in the heat exchanger on the heat dissipation side of the heat pump. By incorporating it, a small amount of power generation can be added.

また請求項10に於いては、上記の請求項8の復水式蒸気タービン発電システムの反動式蒸気タービンと、これと同軸のブラシレス発電機を真空乃至低圧タンクの内部に設置したことにより、真空乃至低圧タンクの気密性を損なわずに電力を取り出すことができ、また永久磁石磁気軸受けを使えば接触摺動部位が無くなるため、真空乃至低圧タンク内をメンテナンスフリーにできる。 Further, in claim 10, the reaction type steam turbine of the condensate type steam turbine power generation system according to claim 8 and the brushless generator coaxial with the reaction type steam turbine are installed inside a vacuum or low pressure tank to obtain a vacuum. -Electricity can be taken out without impairing the airtightness of the low-pressure tank, and if a permanent magnet magnetic bearing is used, there are no contact sliding parts, so the inside of the vacuum or low-pressure tank can be made maintenance-free.

またこの仕様に於いては、反動式蒸気タービンのハウジングの気密性が不要となり、さらにハウジング中に溜まる水のドレーンも直接真空乃至低圧タンクの底部に排出できる利点がある。 Further, this specification has an advantage that the airtightness of the housing of the reaction type steam turbine becomes unnecessary, and the drain of water collected in the housing can be directly discharged to the bottom of the vacuum or low pressure tank.

粉末冶金手段で水素吸蔵性金属を円錐台形の形状に低温焼結し、且つその先端の狭隘部のみに重点的に凝縮系核反応を起こし易いパラジウム含有構造を構成し、さらにこの側面に水素を透過せず同時に耐熱性と絶縁性を持つコーティングを施す。 Hydrogen storage metal is low-temperature sintered into a conical trapezoidal shape by powder metallurgy means, and a palladium-containing structure that easily causes a condensed nuclear reaction is constructed only in the narrow part at the tip, and hydrogen is further added to this side surface. A coating that does not permeate and has heat resistance and insulation is applied at the same time.

さらに該合金に対する鋳型形状の管腔を持つ管の内面に、水素を透過せず同時に耐熱性と絶縁性を持つライナーを施し、この管腔に該低温焼結合金(以下単に合金と表記)を密着させて設置する。 Furthermore, a liner that does not allow hydrogen to permeate and has heat resistance and insulation is applied to the inner surface of the tube that has a template-shaped lumen for the alloy, and the low-temperature sintered alloy (hereinafter simply referred to as alloy) is applied to this lumen. Install in close contact.

尚、上記の水素を透過せず同時に耐熱性と絶縁性を持つライナー及びコーティング材には、酸化エルビウム(Er)によるセラミックコーティングを用いる。A ceramic coating with erbium oxide (Er 2 O 3 ) is used for the liner and coating material that do not allow hydrogen to permeate and have heat resistance and insulating properties at the same time.

さらに合金を内蔵する管の、合金の下底面側及び合金の上底面側にそれぞれ電極を設置し、両電極間に高周波電流を印加する。 Further, electrodes are installed on the lower bottom side of the alloy and the upper bottom side of the alloy of the tube containing the alloy, and a high frequency current is applied between the electrodes.

さらに合金の下底面側の管腔に、重水素を供給する配管を繋ぎ、ここから加圧された重水素を圧注して合金の下底面側に加圧重水素を浸透させる。 Further, a pipe for supplying deuterium is connected to the cavity on the lower bottom side of the alloy, and pressurized deuterium is pressed from here to infiltrate the pressurized deuterium into the lower bottom side of the alloy.

以上のように本発明の凝縮系核反応装置を構成する。 As described above, the condensed nuclear reactor of the present invention is configured.

さらに該凝縮系核反応装置の合金が内蔵された管の、加圧された重水素を圧注する側の反対側の管口すなわち解放端から重水素ヘリウム分離装置に配管を繋ぎ、加圧によって解放端から漏出するヘリウムが混入する重水素を、電気化学式水素ポンプの重水素電離室に導入する。 Furthermore, a pipe is connected to the deuterium helium separator from the pipe opening, that is, the release end on the opposite side of the tube containing the alloy of the condensed nuclear reactor to the side where the pressurized deuterium is pressed, and released by pressurization. Deuterium mixed with helium leaking from the end is introduced into the deuterium ionization chamber of the electrochemical hydrogen pump.

該電気化学式水素ポンプは、触媒で挟んだプロトン透過膜で仕切られた重水素電離室と再結合室とから成り、該重水素電離室に於いて触媒手段によって重水素を電離し、この触媒に設置された陽極によって電離した電子を導出し、且つ再結合室側の触媒に設置された陰極によって電離した重陽子を引き寄せ、ここで電子と再結合させて重水素原子に戻す。 The electrochemical hydrogen pump consists of a deuterium ionization chamber and a recombination chamber separated by a proton permeable film sandwiched between catalysts. In the deuterium ionization chamber, deuterium is ionized by catalytic means to form this catalyst. The electrons ionized by the installed anode are derived, and the deuterium ionized by the cathode installed in the catalyst on the recombination chamber side is attracted and recombined with the electrons to return to the deuterium atom.

この重水素電離室は垂直方向に縦長の形状とし、その上部に重水素電離手段を設置し、その下部に重水素とヘリウムの比重差によってヘリウムが溜まる構造とし、センサーによって底部に滞留するヘリウムの量を判定し、加圧重水素を重水素電離室に注入することによって、その底部の弁から適宜ヘリウムを放出する。 This deuterium ionization chamber has a vertically elongated shape, a deuterium ionization means is installed at the top, and helium is accumulated at the bottom due to the difference in specific gravity between deuterium and helium. By determining the amount and injecting pressurized deuterium into the deuterium ionization chamber, helium is appropriately released from the valve at the bottom thereof.

また再結合室は耐圧性として加圧重水素ボンベの用を成し、ここから合金が内蔵された管に直接配管してここに加圧重水素を圧注する。 In addition, the recombination chamber is used for a pressurized deuterium cylinder as a pressure resistance, and from here, a pipe is directly connected to a pipe containing an alloy, and the pressurized deuterium is pressed into the pipe.

これによって本発明の凝縮系核反応装置の、未反応重水素の閉サイクルによる循環再利用とヘリウムの分離排出を実現する。 As a result, the condensed nuclear reactor of the present invention can be recycled and recycled by a closed cycle of unreacted deuterium, and helium can be separated and discharged.

さらにこの未反応重水素の閉サイクルによる循環再利用手段を付与した本発明の凝縮系核反応装置の、合金が内蔵された管を複数個ボイラーに貫通設置してボイラーの熱源とする。 Further, a plurality of tubes containing an alloy of the condensed nuclear reactor of the present invention provided with the means for circulating and reusing the unreacted deuterium by a closed cycle are installed through the boiler to serve as a heat source for the boiler.

この際、ボイラーに貫通設置される複数個の合金が内蔵された管の全ての加圧重水素の配管に個別に弁を設け、これを個別に開閉して総合的な熱出力を調整する。 At this time, valves are individually provided in all the pressurized deuterium pipes of the pipes containing a plurality of alloys to be installed through the boiler, and the valves are individually opened and closed to adjust the total heat output.

さらに該ボイラーに水タンクを配管し、この水タンクを水に不溶性の加圧気体のボンベで加圧する。 Further, a water tank is piped to the boiler, and the water tank is pressurized with a cylinder of a pressurized gas insoluble in water.

これにより凝縮系核反応で加熱されるボイラー内の水を過熱水とし、この過熱水を加圧によって導出し、この過熱水によって密閉ハウジング内の、水蒸気の膨張圧を効率的に利用できる形状の反動式蒸気タービンを駆動し、これにより発電機を駆動して発電する。 As a result, the water in the boiler heated by the condensed nuclear reaction is used as superheated water, and this superheated water is derived by pressurization, and the superheated water has a shape that allows the expansion pressure of steam in the sealed housing to be efficiently used. It drives a reaction steam turbine, which drives a generator to generate electricity.

該密閉ハウジングは復水器を内蔵する真空乃至低圧タンクに配管で繋がれ、これにより該真空乃至低圧タンク内に吸引される水蒸気を復水器による冷却によって復水し、この水をポンプで水タンクに圧注する。 The sealed housing is connected to a vacuum or low pressure tank containing a condenser by a pipe, and the steam sucked into the vacuum or low pressure tank is restored by cooling by the condenser, and this water is pumped. Pressurize into the tank.

または該密閉ハウジング内の反動式蒸気タービンを、真空乃至低圧タンクの内部に設置する。 Alternatively, the recoil steam turbine in the sealed housing is installed inside a vacuum or low pressure tank.

この仕様に於いては反動式蒸気タービンのタービン軸を非接触性の永久磁石磁気軸受けで支持し、該タービン軸に同軸に水密コーティングを施した永久磁石回転子を設置し、この永久磁石回転子を水密コーティングを施した固定子で非接触に囲むブラシレス発電機を構成する。 In this specification, the turbine shaft of a repulsive steam turbine is supported by a non-contact permanent magnet magnetic bearing, and a permanent magnet rotor with a watertight coating coaxially attached to the turbine shaft is installed, and this permanent magnet rotor is installed. Consists of a brushless generator that is non-contactly surrounded by a watertightly coated stator.

また該復水器の冷却手段をヒートポンプ又は電子冷却機で行い、その放熱側の熱交換器に熱電対発電素子を組み込んで放熱しつつ発電する。 Further, the cooling means of the condenser is performed by a heat pump or an electronic cooler, and a thermocouple power generation element is incorporated in the heat exchanger on the heat dissipation side to generate power while radiating heat.

本発明の請求項1及び2及び3の凝縮系核反応装置の断面を表す模式図である。 It is a schematic diagram which shows the cross section of the condensed system nuclear reaction apparatus of claims 1, 2 and 3 of this invention. 本発明の凝縮系核反応装置の請求項5の熱出力手段、及び請求項6及び7の重水素の分離回収手段を表す模式図である。尚、図1の「水素を透過せず同時に耐熱性と絶縁性を持つライナーを内面に施した管」の断面を表す模式図は省略した。 It is a schematic diagram showing the heat output means of claim 5 and the deuterium separation and recovery means of claims 6 and 7 of the condensed system nuclear reaction apparatus of this invention. The schematic view showing the cross section of "a tube having a liner on the inner surface which does not allow hydrogen to permeate and has heat resistance and insulation at the same time" in FIG. 1 is omitted. 本発明の請求項8及び9の凝縮系核反応装置の熱出力手段を用いる復水式蒸気タービン発電システムを表す模式図である。尚、ボイラーの断面の模式図と、重水素の分離回収手段を表す模式図は省略した。 It is a schematic diagram which shows the condensing steam turbine power generation system which uses the heat output means of the condensed system nuclear reactor of claims 8 and 9 of this invention. The schematic diagram of the cross section of the boiler and the schematic diagram showing the deuterium separation and recovery means are omitted.

1 水素を透過せず同時に耐熱性と絶縁性を持つライナーを内面に施した管
2 パラジウム等の水素吸蔵性金属又は合金
3 電極
4 高周波発信器
5 圧縮重水素ボンベ
6 圧縮重水素
7 弁
8 逆止弁
9 電気化学式水素ポンプ
10 液体容器又はボイラー
11 重水素電離室
12 陽電極
13 陰電極
14 触媒
15 プロトン透過膜
16 再結合室
17 ヘリウムセンサー
18 重水素センサー
19 ヘリウムが混入した重水素
20 重水素圧縮ポンプ
21 水タンク
22 水
23 水に不溶性の加圧気体のボンベ
24 水に不溶性の加圧気体
25 反動式蒸気タービン
26 発電機
27 タービン回転軸
28 真空タンク
29 復水器(冷却器)
30 ヒートポンプ
31 放熱器
32 水圧送ポンプ
1 A tube with a liner on the inner surface that does not allow hydrogen to permeate and has heat resistance and insulation at the same time. 2 Hydrogen-absorbing metal or alloy such as palladium 3 Electrode 4 High-frequency transmitter 5 Compressed heavy hydrogen bomb 6 Compressed heavy hydrogen 7 Valve 8 Reverse Stop valve 9 Electrochemical hydrogen pump 10 Liquid container or boiler 11 Heavy hydrogen ionization chamber 12 Positive electrode 13 Negative electrode 14 Catalyst 15 Proton permeable film 16 Recombination chamber 17 Helium sensor 18 Heavy hydrogen sensor 19 Heavy hydrogen mixed with helium 20 Heavy hydrogen Compression pump 21 Water tank 22 Water 23 Water-insoluble pressurized gas bomb 24 Water-insoluble pressurized gas 25 Repulsive steam turbine 26 Generator 27 Turbine rotary shaft 28 Vacuum tank 29 Water condenser (cooler)
30 Heat pump 31 Heat sink 32 Hydraulic pump

Claims (10)

円柱形又は円錐形又は円錐台形の形状又はこれに類する先細りの形状又は円柱形の中途を絞って括れを付けた形状を成すパラジウム等の水素吸蔵性金属又は合金を、これに対する鋳型形状の管腔を持つ水素を吸収しない素材の管か、又は管の内面に水素を透過しないライナーを施した管の中に、管腔に密着させて設置し、又は該パラジウム等の水素吸蔵性金属又は合金の側面に水素を透過しないコーティングを施してこれを管腔に密着させて設置する。また該パラジウム等の水素吸蔵性金属又は合金が円錐形の場合は、その頂点を管腔中に僅かに露出させて設置し、頂点付近には水素を透過しないコーティングは施さない。
さらに該パラジウム等の水素吸蔵性金属又は合金の形状が、円柱形の場合及び円柱形の中途を絞って括れを付けた形状の場合はその片方の底面を、円錐形の場合はその底面を、円錐台形の場合はその下底面を加圧した重水素に暴露して重水素を浸透させる。以上のように構成された凝縮系核反応装置。
A hydrogen storage metal or alloy such as palladium having a columnar or conical or conical trapezoidal shape or a similar tapered shape or a columnar shape with a narrowed constriction, and a template-shaped cavity for this. Installed in close contact with the cavity in a tube made of a material that does not absorb hydrogen, or a tube with a liner that does not allow hydrogen to permeate the inner surface of the tube, or a hydrogen storage metal or alloy such as palladium. A coating that does not allow hydrogen to pass through is applied to the sides, and this is placed in close contact with the cavity. When the hydrogen storage metal or alloy such as palladium is conical, the apex is slightly exposed in the cavity and installed, and the vicinity of the apex is not coated with a hydrogen-impermeable coating.
Further, if the shape of the hydrogen-storing metal or alloy such as palladium is a cylinder or a shape in which a constriction is formed in the middle of the cylinder, the bottom surface of one of the cylinders is used, and if the shape is a cone, the bottom surface is used. In the case of a conical trapezoidal shape, the lower bottom surface is exposed to pressurized heavy hydrogen to allow heavy hydrogen to permeate. Condensation system nuclear reactor configured as described above.
請求項1の円錐形又は円錐台形の形状又はこれに類する先細りの形状又は円柱形の中途を絞って括れを付けた形状を成すパラジウム等の水素吸蔵性金属又は合金を、粉末冶金手段で制作し、且つその先端部又は狭隘部のみに重点的にパラジウムを配合した、請求項1の凝縮系核反応装置。 A hydrogen storage metal or alloy such as palladium having a conical or conical trapezoidal shape according to claim 1 or a similar tapered shape or a cylindrical shape with a narrowed constriction is produced by powder metallurgy means. The condensed nuclear reactor according to claim 1, wherein palladium is mainly blended only in the tip portion or the narrow portion thereof. 請求項1及び2の管と、これに内蔵されるパラジウム等の水素吸蔵性金属又は合金との間を絶縁性として、パラジウム等の水素吸蔵性金属又は合金の形状が円柱形の場合と円柱形の中途を絞って括れを付けた形状の場合はその両方の底面に、円錐形の場合はその頂点と底面に、円錐台形の場合はその上底面と下底面に、それぞれ電極を設置してこの両電極間に高周波を印加する。以上のように構成された請求項1及び2の凝縮系核反応装置。 The tube of claims 1 and 2 and the hydrogen storage metal or alloy such as palladium contained therein are insulated from each other, and the shape of the hydrogen storage metal or alloy such as palladium is cylindrical or cylindrical. In the case of a shape with a constriction in the middle, electrodes are installed on both bottom surfaces, in the case of a conical shape, on the apex and bottom surface, and in the case of a conical trapezoidal shape, on the upper and lower bottom surfaces, respectively. A high frequency is applied between both electrodes. The condensed nuclear reactor according to claims 1 and 2 configured as described above. 請求項1及び2及び3の凝縮系核反応装置の、パラジウム等の水素吸蔵性金属又は合金が内蔵された管に、熱交換手段を設置した、請求項1及び2及び3の凝縮系核反応装置の熱出力手段。 The condensed nuclear reaction of claims 1 and 2 and 3 in which a heat exchange means is provided in a tube containing a hydrogen storage metal or alloy such as palladium in the condensed nuclear reaction apparatus of claims 1 and 2 and 3. Heat output means of the device. 複数の、請求項1及び2及び3の凝縮系核反応装置のパラジウム等の水素吸蔵性金属又は合金が内蔵された管が、1個の液体容器を水密性に貫通して設置され、該液体容器を満たす液体を熱交換器に循環させるか、又は該液体容器中の液体に熱交換器を浸漬させて熱交換を行い、これにより凝縮系核反応装置の外部に設置した熱機関を駆動する。以上のように構成された請求項1及び2及び3の凝縮系核反応装置の熱出力手段。 A plurality of tubes containing a hydrogen-storing metal or alloy such as palladium of the condensed nuclear reactors of claims 1 and 2 and 3 are installed by penetrating one liquid container in a watertight manner, and the liquid is installed. The liquid that fills the container is circulated in the heat exchanger, or the heat exchanger is immersed in the liquid in the liquid container to exchange heat, thereby driving the heat engine installed outside the condensed nuclear reactor. .. The heat output means of the condensed nuclear reactor according to claims 1, 2 and 3 configured as described above. 請求項1及び2及び3及び4の凝縮系核反応装置のパラジウム等の水素吸蔵性金属又は合金が内蔵された管の、加圧された重水素を圧注する側の反対側の管口、及び請求項5の液体容器を水密性に貫通する全ての管の、加圧された重水素を圧注する側の反対側の管口から重水素ヘリウム分離装置に配管を繋いで、管口から漏出するヘリウムが混入する重水素をここで重水素とヘリウムに分離し、重水素のみを、凝縮系核反応装置に重水素を供給する圧縮重水素ボンベに圧縮ポンプで圧注する。該重水素ヘリウム分離装置は、触媒で挟んだプロトン透過膜で仕切られた重水素電離室と再結合室とから成る電気化学式水素ポンプを用い、重水素電離室に於いては触媒手段によって重水素電離室内の重水素を電離し、且つこの触媒に設置した陽極によって電離した電子を導出し、再結合室側の触媒には陰極を設置して電離した重陽子をプロトン透過膜を透過させて引き寄せ、ここで電子と再結合させて重水素原子に戻す。また重水素電離室は垂直方向に縦長の形状とし、その上部に重水素電離手段を設置し、その下部を重水素とヘリウムの比重差によってヘリウムが溜まる構造とし、該重水素電離室の底部の弁から適宜ヘリウムを放出する。以上のように構成された請求項1及び2及び3及び4及び5の凝縮系核反応装置及び凝縮系核反応装置の熱出力手段に於ける重水素の閉鎖循環サイクル。 A tube opening on the opposite side of the tube containing a hydrogen-absorbing metal or alloy such as palladium of the condensed nuclear reactors of claims 1 and 2 and 3 and 4, and a tube port on the opposite side to which pressurized deuterium is injected. All the pipes that penetrate the liquid container of claim 5 in a watertight manner are connected to the deuterium helium separator from the pipe opening on the opposite side of the pressurized deuterium pressure injection side, and leak from the pipe opening. Deuterium mixed with helium is separated into deuterium and helium here, and only deuterium is pressed into a compressed deuterium bomb that supplies deuterium to the condensed nuclear reactor with a compression pump. The deuterium helium separator uses an electrochemical hydrogen pump consisting of a deuterium ionization chamber and a recombination chamber separated by a proton permeable film sandwiched between catalysts, and in the deuterium ionization chamber, deuterium is used by catalytic means. Deuterium in the ionization chamber is ionized, and electrons ionized by the anode installed in this catalyst are derived, and a cathode is installed in the catalyst on the recombination chamber side to attract the ionized deuterium through the proton permeable film. Here, it is recombined with an electron to return it to a deuterium atom. In addition, the deuterium ionization chamber has a vertically elongated shape, a deuterium ionization means is installed above it, and the lower part has a structure in which helium is accumulated by the difference in specific gravity between deuterium and helium. Release helium from the valve as appropriate. The closed circulation cycle of deuterium in the condensed nuclear reactor of claims 1 and 2 and 3 and 4 and 5 and the heat output means of the condensed nuclear reactor configured as described above. 請求項6の凝縮系核反応装置の重水素とヘリウムの分離後の重水素の、パラジウム等の水素吸蔵性金属又は合金が内蔵された管への圧注手段として、電気化学式水素ポンプの電気化学式圧縮効果を用いて再結合室を圧縮重水素室と成し、ここから直接全てのパラジウム等の水素吸蔵性金属又は合金が内蔵された管へと配管して重水素の圧注を直接行う構造とし、これにより圧縮重水素ボンベと重水素の圧縮ポンプを省略した、請求項1及び2及び3及び4及び5及び6の凝縮系核反応装置及び凝縮系核反応装置の熱出力手段に於ける重水素の閉鎖循環サイクル。 Electrochemical compression of an electrochemical hydrogen pump as a means for pressing heavy hydrogen after separation of deuterium and helium in the condensed nuclear reactor of claim 6 into a tube containing a hydrogen-absorbing metal or alloy such as palladium. Using the effect, the recombination chamber is formed into a compressed dehydrogen chamber, from which it is directly piped to a pipe containing all hydrogen-storing metals or alloys such as palladium to directly inject heavy hydrogen. As a result, the depleted hydrogen in the condensed nuclear reactors of claims 1 and 2 and 3 and 4 and 5 and 6 and the heat output means of the condensed nuclear reactor, omitting the compressed dehydrogen bomb and the depleted hydrogen compression pump. Closed circulation cycle. 請求項5の凝縮系核反応装置の熱出力手段の液体容器を密封性としてボイラーと成し、ここに水を満たし、水タンクをこれに配管で繋ぎ、この水タンクを水に不溶性の加圧気体のボンベで加圧する。これにより凝縮系核反応で加熱される該ボイラー内の水を過熱水とし、この過熱水を加圧によって導出し、この過熱水によって密閉ハウジング内の反動式蒸気タービンを駆動し、これで発電機を駆動して発電する。該密閉ハウジングは真空乃至低圧タンクに配管で繋がれる。該真空乃至低圧タンク内には復水器があってタンク内に吸引される水蒸気を復水し、この水をポンプで水タンクに圧注する。以上のように構成された請求項5及び6及び7の凝縮系核反応装置の発電手段。 The liquid container of the heat output means of the condensed nuclear reactor according to claim 5 is formed as a boiler as a sealing property, filled with water, a water tank is connected to this by a pipe, and the water tank is pressurized insoluble in water. Pressurize with a gas cylinder. As a result, the water in the boiler heated by the condensed nuclear reaction is used as superheated water, and this superheated water is derived by pressurization, and the superheated water drives the repulsive steam turbine in the sealed housing, which drives the generator. To generate electricity. The sealed housing is piped to a vacuum or low pressure tank. There is a condenser in the vacuum or low pressure tank to condense the steam sucked into the tank, and this water is pumped into the water tank. The power generation means of the condensed nuclear reactor according to claims 5, 6 and 7 configured as described above. 請求項8の凝縮系核反応装置の発電手段の、復水器の冷却手段をヒートポンプ又は電子冷却機で行い、その放熱側の熱交換器は空冷するか、又は該熱交換器に熱電対発電素子を組み込んで放熱しつつ発電する、請求項8の凝縮系核反応装置の発電手段。 The condenser of the power generation means of the condensed nuclear reactor according to claim 8 is cooled by a heat pump or an electronic cooler, and the heat exchanger on the heat radiating side is air-cooled, or the heat exchanger is used for heat exchange power generation. The power generation means of the condensed nuclear reactor according to claim 8, which incorporates an element to generate heat while radiating heat. 請求項8及び9の凝縮系核反応装置の発電手段を構成する密閉ハウジング内の反動式蒸気タービンを、請求項8及び9の真空乃至低圧タンク内に設置し、タービン軸を永久磁石磁気軸受けか密封軸受けで支持し、該タービン軸に水密コーティングを施した永久磁石回転子を同軸に設置し、且つ永久磁石回転子を水密コーティングを施した固定子で非接触に囲んでブラシレス発電機を構成して発電する、請求項8及び9の凝縮系核反応装置の発電手段。 The reaction type steam turbine in the sealed housing constituting the power generation means of the condensed nuclear reactors of claims 8 and 9 is installed in the vacuum to low pressure tank of claims 8 and 9, and the turbine shaft is a permanent magnet magnetic bearing. A brushless generator is constructed by supporting the turbine shaft with a sealed bearing, coaxially installing a permanent magnet rotor with a watertight coating on the turbine shaft, and non-contactly surrounding the permanent magnet rotor with a stator with a watertight coating. The power generation means of the condensed nuclear reactor according to claims 8 and 9.
JP2020143943A 2020-08-07 2020-08-07 Condensed system nuclear reaction device and heat outputting means and power generation system using therewith Pending JP2022031051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020143943A JP2022031051A (en) 2020-08-07 2020-08-07 Condensed system nuclear reaction device and heat outputting means and power generation system using therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020143943A JP2022031051A (en) 2020-08-07 2020-08-07 Condensed system nuclear reaction device and heat outputting means and power generation system using therewith

Publications (1)

Publication Number Publication Date
JP2022031051A true JP2022031051A (en) 2022-02-18

Family

ID=80324437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020143943A Pending JP2022031051A (en) 2020-08-07 2020-08-07 Condensed system nuclear reaction device and heat outputting means and power generation system using therewith

Country Status (1)

Country Link
JP (1) JP2022031051A (en)

Similar Documents

Publication Publication Date Title
US11870050B2 (en) Thermo-electrochemical convertor with integrated energy storage
US7846602B2 (en) Thermoelectric conversion apparatus
US11408082B2 (en) Electrochemical compression system
Luo et al. Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers
JP2012233711A (en) Reactor cooling method and reactor cooling system
FR3076086B1 (en) ENERGY GENERATION ASSEMBLY FOR FUEL CELL AND REVERSIBLE THERMODYNAMIC SYSTEM
Verbetsky et al. Metal hydrides: properties and practical applications. Review of the works in CIS-countries
JP2022031051A (en) Condensed system nuclear reaction device and heat outputting means and power generation system using therewith
WO2010087723A1 (en) Continuously-operated metal hydride hydrogen compressor, and method of operating the same
US4465964A (en) Energy conversion system
US20200176133A1 (en) Nuclear fusion reactor, thermal device, external combustion engine, power generating apparatus, and moving object
JPWO2002068881A1 (en) Thermoelectric conversion and cooling / heating / refrigeration equipment using hydrogen storage alloy unit
US20030001510A1 (en) Magneto-hydrodynamic power cell using atomic conversion of energy, plasma and field ionization
CN109113822A (en) A kind of method and apparatus improving cryogen gaseous temperature
CN107527703B (en) Forced convection liquid cooling method for magnet and cooling system thereof
US10553916B2 (en) Johnson ambient heat engine
JP2009150709A (en) Method for generating lithium cluster chemical nuclear fusion and lithium cluster chemical nuclear fusion device
CN113257449B (en) Storage and transportation device for moon helium 3
US20230194127A1 (en) Geothermal heat extractor
CN217002085U (en) Free piston stirling generator
CN110036519A (en) Johnson's thermoelectrochemistry converter
Rusanov et al. Thermochemical activation of hydrogen in the process of desorption from metal hydride
CN112856223B (en) Thermal cycling hydrogen storage method using solid hydrogen storage material
CN108729968B (en) Thermal energy power generation device
Von Hahn et al. Cryogenic Concept for the Low‐energy Electrostatic Cryogenic Storage Ring (CSR) at MPI‐K in Heidelberg