JP2022029421A - Method of determining operator's mental and physical condition, and system for the same - Google Patents

Method of determining operator's mental and physical condition, and system for the same Download PDF

Info

Publication number
JP2022029421A
JP2022029421A JP2021108097A JP2021108097A JP2022029421A JP 2022029421 A JP2022029421 A JP 2022029421A JP 2021108097 A JP2021108097 A JP 2021108097A JP 2021108097 A JP2021108097 A JP 2021108097A JP 2022029421 A JP2022029421 A JP 2022029421A
Authority
JP
Japan
Prior art keywords
value
driver
mental
rsa
physiological index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021108097A
Other languages
Japanese (ja)
Inventor
千鶴 中川
Chizuru Nakagawa
綾子 鈴木
Ayako Suzuki
貴浩 渡部
Takahiro Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Publication of JP2022029421A publication Critical patent/JP2022029421A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To provide a method and system for determining an operator's mental and physical condition from both of heart rate data and aspiration data of an operator to be measured.SOLUTION: The method and system determine an operator's mental and physical condition by using time variation of a heart rate and aspiration measured for an operator during operation of a railroad vehicle and calculating an RSA value as a respiratory sinus arrhythmia (RSA) component of the heart rate on the basis of this association. The system measures the time variation in a simulation operation interval including a tension task and determines each reference value concerning physiological indexes, in advance. While measuring time variation in a real operation interval, in a case where the RSA value is lower than a reference RSA value at a specific position for determining an operator's mental and physical condition, the system determines a tension state of the operator on the basis of a variation width from a reference value of each physiological index. Furthermore, the system comprises: a measurement unit including a sensor for measuring time variation; and a control unit for calculating the physiological index.SELECTED DRAWING: Figure 1

Description

本発明は、鉄道車両運転中の運転者の心身状態を判定する方法及びそのシステムに関し、特に、測定される運転者の心拍及び呼吸の両データから該運転者の心身状態を判定する方法及びそのシステムに関する。 The present invention relates to a method and a system for determining a driver's mental and physical condition while driving a railroad vehicle, and in particular, a method for determining the driver's mental and physical condition from both measured driver's heart rate and respiration data and the system thereof. Regarding the system.

人間の自律神経は、交感神経系と副交感神経系とで構成されており、これらをバランスさせて心身を正常状態に維持し、各種の日常生活に対応している。ここで、心拍変動(HRV:Heart Rate Variability)は、心身の緊張状態を反映する交感神経系の活動と、この働きを鎮静状態へと導く副交感神経系の活動とを反映する両成分を含んでいる。そこで、車両運転中の運転者の心拍の変化から該運転者の自律神経の活動状態を判定し、車両の運転制御に反映させ、又は、警報を与えようとするシステムが提案されている。 The human autonomic nerve is composed of a sympathetic nervous system and a parasympathetic nervous system, and balances these to maintain the mind and body in a normal state and corresponds to various daily lives. Here, heart rate variability (HRV) includes both components that reflect the activity of the sympathetic nervous system that reflects the state of mental and physical tension and the activity of the parasympathetic nervous system that leads this function to a sedative state. There is. Therefore, there has been proposed a system that determines the activity state of the autonomic nerve of the driver from the change in the heartbeat of the driver while driving the vehicle, reflects it in the driving control of the vehicle, or gives an alarm.

例えば、特許文献1では、運転者の心拍変化を検出し該運転者の自律神経の活動状態を判定する方法を開示している。ここでは、車両のハンドル部に設けた電極によって運転者の心拍計測を行うとともに、電極を複数設けたハンドルの把持状態を検出し、更に、運転者を撮像して姿勢を検出することで、心拍と運転者の様子とからその自律神経の活動状態、つまり、緊張感、眠気、焦燥感、疲労感、ぼんやり(注意散漫)などの車両の運転に注意を要する状態を判定できるとしている。 For example, Patent Document 1 discloses a method of detecting a change in the heartbeat of a driver and determining the activity state of the autonomic nerve of the driver. Here, the driver's heartbeat is measured by the electrodes provided on the steering wheel of the vehicle, the gripping state of the steering wheel provided with a plurality of electrodes is detected, and the driver is imaged to detect the posture to detect the heartbeat. From the state of the driver, it is possible to determine the active state of the autonomic nerves, that is, the state requiring attention when driving the vehicle, such as tension, drowsiness, impatience, fatigue, and vagueness (distraction).

また、呼吸についても、心拍同様に、自律神経との関係性を有するが、呼吸は人の意志によって変化させ得るため、測定される呼吸のみの生体周期情報から運転者の自律神経の活動状態を判定することは非常に難しい。 In addition, breathing has a relationship with the autonomic nerves as well as heartbeat, but since breathing can be changed by human will, the activity state of the driver's autonomic nerves can be determined from the measured biological cycle information of breathing only. It is very difficult to judge.

例えば、特許文献2では、呼吸の変化に合わせて運転状態の変化を測定することにより、運転者の心理的動転度合いを判定する方法を開示している。シート背部に設けた感圧センサからの体圧信号と、アクセル及びブレーキの走行状態量と、から呼吸信号を抽出するが、体圧信号にはアクセル及びブレーキの操作に基づく体圧変動が含まれるため、走行状態量によって体圧信号から体圧変動を取り除いて、正確な呼吸信号を得るとしている。 For example, Patent Document 2 discloses a method of determining the degree of psychological agitation of a driver by measuring a change in a driving state in accordance with a change in breathing. The breathing signal is extracted from the body pressure signal from the pressure sensor provided on the back of the seat and the running state amount of the accelerator and the brake, and the body pressure signal includes the body pressure fluctuation based on the operation of the accelerator and the brake. Therefore, it is said that an accurate breathing signal is obtained by removing the body pressure fluctuation from the body pressure signal according to the running state amount.

また、特許文献3では、測定された心拍について呼吸性変動の出現を期待される拍間時間(RRI)を数値的にフィルタ処理し、RRIの変動状態が通常運転状態のものか、又は、急激な精神負荷の変動に対応する単純増加又は単純減少かを検出して、「居眠り」のような自律神経の活動状態の指標である覚醒度の判定を行う覚醒度判定方法を開示している。ここでは、通常状態であるときと、単純増加あるいは単純減少であるときで、RRIの変動に対応した基準線f(n)を変更し、この基準線f(n)に対するRRIの分散RRVnを演算して、分散RRVnに基づいた覚醒度の検出を行うとしている。 Further, in Patent Document 3, the interbeat time (RRI) in which the appearance of respiratory fluctuation is expected for the measured heartbeat is numerically filtered, and the fluctuation state of RRI is the one in the normal operation state or abrupt. It discloses an arousal degree determination method for determining an arousal degree which is an index of an autonomic nerve activity state such as "sleeping" by detecting whether it is a simple increase or a simple decrease corresponding to a change in mental load. Here, the reference line f (n) corresponding to the fluctuation of RRI is changed between the normal state and the simple increase or decrease, and the variance RRVn of RRI with respect to this reference line f (n) is calculated. Then, the degree of arousal is detected based on the dispersed RRVn.

国際公開第2007/111223号International Publication No. 2007/11223 特開2006-042903号公報Japanese Unexamined Patent Publication No. 2006-042903 特開2007-044154号公報Japanese Unexamined Patent Publication No. 2007-04145

測定された心拍変動HRVについて呼吸性洞性不整脈(RSA;Respiratory sinus arrhythmia)に対応した成分を抽出し、自律神経の活動状態を判定することが提案されている。ここで、測定される呼吸のみ又は心拍のみの生体周期情報から運転者の自律神経の活動状態を判定することは難しいが、心拍と同時に呼吸変動を測定して所定のフィルタ処理をしてノイズを除去することで、心拍及び呼吸の両データを合わせて解析し、車両運転中の多様な状況に対する応答に対する評価を得られることが期待される。 It has been proposed to extract components corresponding to respiratory sinus arrhythmia (RSA) from the measured heart rate variability HRV and determine the activity state of the autonomic nerves. Here, it is difficult to determine the activity state of the driver's autonomic nerve from the measured respiratory-only or heartbeat-only biological cycle information, but the respiratory variability is measured at the same time as the heartbeat and a predetermined filter process is performed to eliminate noise. By removing it, it is expected that both heart rate and respiration data will be analyzed together and an evaluation of the response to various situations while driving the vehicle will be obtained.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、測定される運転者の心拍及び呼吸の両データから該運転者の心身状態を判定する方法及びそのシステムを提供することにある。 The present invention has been made in view of the above situations, and an object thereof is a method for determining a driver's mental and physical condition from both measured driver's heart rate and respiration data. It is to provide the system.

本発明による車両運転中の運転者の心身状態判定方法は、鉄道車両運転中の運転者において測定される心拍及び呼吸の時間変動を用いてこの対応から心拍の呼吸性洞性不整脈(RSA)成分としてのRSA値を算出し心身状態を判定する方法であって、緊張課題を含む模擬運転区間で前記時間変動を測定し、呼吸長及び/又は呼吸振幅、RSA値を含む生理指標について、前記運転者毎の基準となる基準RSA値とともに、基準呼吸長及び/又は基準呼吸振幅を含む各基準値を決定しておき、実運行区間で前記時間変動を測定しながら、心身状態判定のための特定位置において、RSA値が前記基準RSA値よりも低い場合に、前記生理指標の前記各基準値からの変動幅から前記運転者の緊張状態を判定することを特徴とする。 The method for determining the mental and physical condition of a driver while driving a vehicle according to the present invention uses the time variation of the heartbeat and breathing measured by the driver while driving a railroad vehicle, and from this correspondence, the respiratory sinus arrhythmia (RSA) component of the heartbeat. This is a method of calculating the RSA value as an RSA value to determine the mental and physical condition, in which the time variation is measured in a simulated operation section including a tension task, and the operation is performed with respect to a physiological index including the respiratory length and / or the respiratory amplitude and the RSA value. Each reference value including the reference breathing length and / or the reference breathing amplitude is determined together with the reference RSA value as the reference for each person, and the time variation is measured in the actual operation section to specify the mental and physical condition. When the RSA value is lower than the reference RSA value at the position, the tension state of the driver is determined from the fluctuation range of the physiological index from each reference value.

かかる特徴によれば、測定される運転者の心拍及び呼吸の両データから運転者の心身状態をより明確に判定することができる。 According to such a feature, the mental and physical condition of the driver can be more clearly determined from both the measured heart rate and respiration data of the driver.

上記した発明において、前記基準RSA値とともに、前記基準呼吸長及び/又は前記基準呼吸振幅に合わせて基準心拍数を決定しておき、緊張状態の判定において、心拍数の前記基準心拍数からの変動幅及び/又はRSA値の前記基準RSA値からの変動幅を更に組合せて判定することを特徴としてもよい。 In the above-described invention, the reference heart rate is determined according to the reference breathing length and / or the reference breathing amplitude together with the reference RSA value, and the fluctuation of the heart rate from the reference heart rate is determined in the determination of the tension state. It may be characterized in that the width and / or the fluctuation range of the RSA value from the reference RSA value is further combined and determined.

上記した発明において、前記基準値は、対応する前記生理指標の前記模擬運転区間を通しての算術平均として決定されることを特徴としてもよい。 In the above invention, the reference value may be determined as an arithmetic mean of the corresponding physiological index through the simulated driving section.

上記した発明において、前記緊張状態の判定において、前記模擬運転区間を通しての前記生理指標の標準偏差に対する前記変動幅の大小の判別を含むことを特徴としてもよい。 The invention described above may be characterized in that the determination of the tension state includes the determination of the magnitude of the fluctuation range with respect to the standard deviation of the physiological index through the simulated driving section.

上記した発明において、前記RSA値は、前記呼吸の1呼吸に対応する前記心拍から算出することを特徴としてもよい。 In the above-described invention, the RSA value may be calculated from the heartbeat corresponding to one breath of the breath.

上記した発明において、心拍数、心拍数変化率、及び、呼吸長変化率をさらに含む前記生理指標から、前記呼吸長とともに前記運転者毎に1つ以上を選択して特定生理指標とし、前記特定生理指標について前記模擬運転区間での測定から各基準値を決定しておき、緊張状態の判定において、前記特定生理指標についての対応する前記基準値に対する変動幅に基づいて判定を行うことを特徴としてもよい。 In the above-mentioned invention, one or more is selected for each driver together with the breathing length from the physiological index further including the heart rate, the heart rate change rate, and the respiratory length change rate, and used as the specific physiological index. The feature is that each reference value is determined from the measurement in the simulated operation section for the physiological index, and the determination is made based on the fluctuation range with respect to the corresponding reference value for the specific physiological index in the determination of the tension state. May be good.

上記した発明において、前記模擬運転区間は非緊張課題を含み、前記非緊張課題に対応する前記生理指標から、前記呼吸長とともに前記運転者毎に1つ以上を選択して第2の特定生理指標とし、前記第2の特定生理指標について前記模擬運転区間での測定から各基準値を決定しておき、RSA値が前記基準RSA値よりも高い場合に、前記第2の特定生理指標についての対応する前記基準値に対する変動幅に基づいて前記判定を行うことを特徴としてもよい。 In the above-described invention, the simulated driving section includes a non-tension task, and one or more is selected for each driver together with the breath length from the physiological index corresponding to the non-tension task, and a second specific physiological index is selected. Then, each reference value is determined from the measurement in the simulated driving section for the second specific physiological index, and when the RSA value is higher than the reference RSA value, the response to the second specific physiological index is taken. It may be characterized in that the determination is made based on the fluctuation range with respect to the reference value.

上記した発明において、呼吸波形及び心拍変動波形の1呼吸にそれぞれ対応する1呼吸間呼吸波形及び1呼吸間心拍変動波形を比較して定めた補正係数を乗じることで前記基準RSA値からの変動幅を補正することを特徴としてもよい。 In the above-described invention, the fluctuation range from the reference RSA value is multiplied by a correction coefficient determined by comparing one breathing waveform and one breathing heart rate variability waveform corresponding to one breath of the respiratory waveform and the heart rate variability waveform, respectively. It may be characterized by correcting.

上記した発明において、前記模擬運転区間は運転シミュレータによって与えられるものであることを特徴としてもよい。かかる特徴によれば、模擬運転区間での心拍及び呼吸の時間変動を簡便に測定できて、簡便に運転者の心身状態を判定することができる。 In the above-mentioned invention, the simulated driving section may be characterized by being given by a driving simulator. According to such a feature, the time variation of the heartbeat and the respiration in the simulated driving section can be easily measured, and the mental and physical condition of the driver can be easily determined.

上記した発明において、前記呼吸の時間変動は前記運転者の胸囲又は腹囲を測定して取得されることを特徴としてもよい。かかる特徴によれば、呼吸のデータを簡便に取得でき、簡便に運転者の心身状態を判定することができる。 In the above-mentioned invention, the time variation of the respiration may be obtained by measuring the chest circumference or the abdominal circumference of the driver. According to such a feature, the respiratory data can be easily acquired, and the mental and physical condition of the driver can be easily determined.

また、本発明による車両運転中の運転者の心身状態判定システムは、鉄道車両運転中の運転者において測定される心拍及び呼吸の時間変動を用いてこの対応から心拍の呼吸性洞性不整脈(RSA)成分としてのRSA値を算出し心身状態を判定するシステムであって、前記時間変動を測定するセンサを含む測定ユニットと、前記測定ユニットで測定された前記時間変動から、呼吸長及び/又は呼吸振幅、RSA値を含む生理指標を算出する制御ユニットと、を含み、前記制御ユニットは、前記測定ユニットによって緊張課題を含む模擬運転区間で測定された前記時間変動から、前記生理指標について、前記運転者毎の基準となる、基準RSA値とともに、基準呼吸長及び/又は基準呼吸振幅の各基準値を決定するとともに、前記測定ユニットによって実運行区間で前記時間変動を測定しながら、心身状態判定のための特定位置において、RSA値が前記基準RSA値よりも低い場合に、前記生理指標の前記各基準値からの変動幅から前記運転者の緊張状態を判定することを特徴とする。 Further, the mental and physical condition determination system of the driver while driving the vehicle according to the present invention uses the time variation of the heartbeat and the breath measured by the driver while driving the railroad vehicle, and from this correspondence, the respiratory sinus arrhythmia (RSA) of the heartbeat is used. ) A system that calculates the RSA value as a component and determines the mental and physical condition, from the measurement unit including the sensor that measures the time fluctuation and the time fluctuation measured by the measurement unit, the breath length and / or the breath. The control unit includes a control unit for calculating a physiological index including an amplitude and an RSA value, and the control unit is operated with respect to the physiological index from the time variation measured by the measuring unit in a simulated operation section including a tension task. Along with the reference RSA value, which is the reference for each person, each reference value of the reference breath length and / or the reference breath amplitude is determined, and the time variation is measured in the actual operation section by the measurement unit to determine the mental and physical condition. When the RSA value is lower than the reference RSA value at a specific position, the tension state of the driver is determined from the fluctuation range of the physiological index from each reference value.

かかる特徴によれば、測定される運転者の心拍及び呼吸の両データから運転者の心身状態をより明確に判定することができる。 According to such a feature, the mental and physical condition of the driver can be more clearly determined from both the measured heart rate and respiration data of the driver.

上記した発明において、前記基準RSA値とともに、前記基準呼吸長及び/又は前記基準呼吸振幅に合わせて基準心拍数を決定しておき、前記緊張状態の判定において、心拍数の前記基準心拍数からの変動幅及び/又はRSA値の前記基準RSA値からの変動幅を更に組合せて判定することを特徴としてもよい。 In the above-described invention, the reference heart rate is determined according to the reference breathing length and / or the reference breathing amplitude together with the reference RSA value, and in the determination of the tension state, the heart rate is based on the reference heart rate. It may be characterized in that the fluctuation range and / or the fluctuation range of the RSA value from the reference RSA value is further combined and determined.

上記した発明において、前記制御ユニットは、心拍数、心拍数変化率、及び、呼吸長変化率をさらに含む前記生理指標から前記運転者毎に1つ以上を選択して特定生理指標として記憶させ、前記特定生理指標について前記模擬運転区間での測定から各基準値を決定するとともに、緊張状態の判定において、前記特定生理指標についての対応する前記基準値からの変動幅に基づいて判定を行うことを特徴としてもよい。 In the above-described invention, the control unit selects one or more for each driver from the physiological index further including the heart rate, the heart rate change rate, and the respiratory length change rate, and stores them as a specific physiological index. For the specific physiological index, each reference value is determined from the measurement in the simulated operation section, and in the determination of the tension state, the determination is made based on the fluctuation range from the corresponding reference value for the specific physiological index. It may be a feature.

上記した発明において、前記制御ユニットは、前記測定ユニットによって非緊張課題を更に含む前記模擬運転区間で測定された前記時間変動に基づき、前記非緊張課題に対応する前記生理指標から、前記呼吸長とともに前記運転者毎に1つ以上を選択して第2の特定生理指標として記憶させ、前記第2の特定生理指標についての各基準値を決定するとともに、心身状態判定のための特定位置において、RSA値が前記基準RSA値よりも高い場合に、前記第2の特定生理指標についての対応する前記基準値からの変動幅に基づいて前記判定を行うことを特徴としてもよい。 In the above invention, the control unit is based on the time variation measured by the measuring unit in the simulated operation section including the non-tension task, from the physiological index corresponding to the non-tension task, together with the respiratory length. One or more is selected for each driver and stored as a second specific physiological index, each reference value for the second specific physiological index is determined, and an RSA is used at a specific position for determining the physical and mental condition. When the value is higher than the reference RSA value, the determination may be made based on the fluctuation range from the corresponding reference value for the second specific physiological index.

本発明の代表的な一例によるシステムのブロック図である。It is a block diagram of the system by a typical example of this invention. 運転者の心拍及び呼吸の波形データである。It is the waveform data of the driver's heartbeat and respiration. 模擬運転における停止操作中と駅停車中のRSAの得点ごとの出現率のグラフである。It is a graph of the appearance rate for each score of RSA during the stop operation and the station stop in the simulated operation. 模擬運転における停止操作中と駅停車中の(a)心拍数、(b)呼吸長、(c)呼吸振幅の得点ごとの出現率のグラフである。It is a graph of the appearance rate for each score of (a) heart rate, (b) respiratory length, and (c) respiratory amplitude during stop operation and station stop in simulated driving. 模擬運転における停止操作中と駅停車中の総合判定の得点毎の出現率のグラフである。It is a graph of the appearance rate for each score of the comprehensive judgment during the stop operation and the station stop in the simulated driving. 模擬運転における複数の緊張課題及び非緊張課題に対する、(a)各生理指標での非緊張傾向及び緊張傾向の出現率、(b)生理指標を組み合わせて総合判定したときの出現率のグラフである。It is a graph of (a) the appearance rate of the non-tension tendency and the tension tendency in each physiological index, and (b) the appearance rate when comprehensively judged by combining the physiological indexes for a plurality of tension tasks and non-tension tasks in simulated driving. ..

以下、本発明の代表的な一例による車両運転中の運転者の心身状態を判定する方法及びそのシステムの具体的な実施態様について、図1~図5を用いて説明する。 Hereinafter, a method for determining the mental and physical condition of a driver while driving a vehicle according to a typical example of the present invention and a specific embodiment of the system will be described with reference to FIGS. 1 to 5.

図1に示すように、車両運転中の運転者の心身状態の判定システム1は、運転者の心拍と呼吸との時間変動を波形としてそれぞれ測定する波形測定ユニット10と、波形測定ユニット10からの時間変動の波形データを受信して分析する機能を含む制御ユニット20と、を含む。 As shown in FIG. 1, the determination system 1 of the mental and physical condition of the driver while driving the vehicle is from a waveform measuring unit 10 and a waveform measuring unit 10 that measure time fluctuations between the driver's heartbeat and breathing as waveforms, respectively. It includes a control unit 20 including a function of receiving and analyzing time-varying waveform data.

波形測定ユニット10は、例えば運転者の胸部又は腹部に装着可能な伸縮性を有するベルト状の装着具であり、心拍を測定する心拍測定センサ11と、呼吸状態を測定する呼吸測定センサ12と、を含む。ここで、心拍測定センサ11は、複数の心電図電極等によって心拍の時間変動、すなわち心拍変動波形HRVを取得し得るものである。また、呼吸測定センサ12は、運転者の胸囲又は腹囲、すなわち、胸部又は腹部の周囲長の変化を検出する変位センサ等によって呼吸の時間変動である呼吸波形を取得できるものである。これにより、波形測定ユニット10は、例えばウエアラブルセンサとし得て、運転者の動作に制限を加えることなく、心拍と呼吸との時間変動を同時かつ近傍で測定することができる。 The waveform measuring unit 10 is, for example, a belt-shaped wearing device having elasticity that can be worn on the chest or abdomen of a driver, and includes a heartbeat measuring sensor 11 for measuring heartbeat, a breathing measuring sensor 12 for measuring a breathing state, and a breathing measuring sensor 12. including. Here, the heart rate measurement sensor 11 can acquire the time variation of the heart rate, that is, the heart rate variation waveform HRV by a plurality of electrocardiogram electrodes or the like. Further, the breathing measurement sensor 12 can acquire a breathing waveform which is a time variation of breathing by a displacement sensor or the like that detects a change in the chest circumference or abdominal circumference of the driver, that is, the circumference of the chest or abdomen. As a result, the waveform measuring unit 10 can be used as a wearable sensor, for example, and can measure the time fluctuations of the heartbeat and the respiration at the same time and in the vicinity without limiting the movement of the driver.

制御ユニット20は、判定システム1全体の動作を制御するとともに、制御装置21、判定装置22及び記憶装置23を含む。制御装置21は、波形測定ユニット10に心拍と呼吸との時間変動の測定を指令してその波形データを受信することができる。判定装置22は、制御装置21から転送された波形データを分析して運転者の心身状態を判定することができる。記憶装置23は、判定装置22が実行するプログラムや波形測定ユニット10から受信した波形データを記憶することができる。制御ユニット20はさらにモニタなどの図示しない出力装置を備えていてもよい。 The control unit 20 controls the operation of the entire determination system 1 and includes the control device 21, the determination device 22, and the storage device 23. The control device 21 can instruct the waveform measuring unit 10 to measure the time variation between heartbeat and respiration and receive the waveform data. The determination device 22 can analyze the waveform data transferred from the control device 21 to determine the physical and mental state of the driver. The storage device 23 can store the program executed by the determination device 22 and the waveform data received from the waveform measurement unit 10. The control unit 20 may further include an output device (not shown) such as a monitor.

判定装置22は、所定の判定プログラムにより、例えば波形測定ユニット10で測定された波形データにおいて、心拍及び呼吸の時間変動を測定し、RSA(呼吸性洞性不整脈)成分としてのRSA値とともに、心拍数(心拍間隔)や心拍振幅、呼吸長や呼吸振幅を生理指標として求め、これらの時間変動を用いて運転者の心身状態、特に、緊張状態、あるいは、非緊張状態を総合的に判定することができる。なお、心拍間隔は心拍数の逆数として得られる。また、これら生理指標のうち心拍振幅及び呼吸振幅については、測定方法や振幅を数値化する方法を含めて規格化しておく。例えば、これらの振幅は1呼吸あたりについて1つの値を求めることとし、運転者が最も平常状態に近い心身状態である場合の振幅を1として、これに対する相対値として各振幅を表すなどとし得る。 The determination device 22 measures the heartbeat and the time variation of respiration in the waveform data measured by, for example, the waveform measurement unit 10 by a predetermined determination program, and together with the RSA value as an RSA (respiratory sinus arrhythmia) component, the heartbeat. The number (heart rate interval), heart rate amplitude, breathing length and breathing amplitude are obtained as physiological indexes, and the mental and physical condition of the driver, especially the tensioned state or the non-tensioned state, is comprehensively determined by using these time fluctuations. Can be done. The heart rate interval is obtained as the reciprocal of the heart rate. In addition, among these physiological indicators, the heartbeat amplitude and the respiratory amplitude are standardized including the measurement method and the method of quantifying the amplitude. For example, one value may be obtained for each of these amplitudes per breath, and the amplitude when the driver is in the mental and physical state closest to the normal state may be set to 1, and each amplitude may be expressed as a relative value to the amplitude.

ここでRSA値の相対的な大きさや変化は副交感神経系の活動状態を示すとされており、緊張状態を強くするとRSA値を相対的に低くする傾向がある。そこで、RSA値の基準値となる基準RSA値を定めておき、基準RSA値から測定されたRSA値が低下したときに緊張状態であると判定することもできる。しかし、このようなRSA値のみを指標とした判定では、高い精度で緊張状態を判定することは難しい。 Here, the relative magnitude and change of the RSA value are said to indicate the active state of the parasympathetic nervous system, and the RSA value tends to be relatively lowered when the tension state is increased. Therefore, it is also possible to determine a reference RSA value which is a reference value of the RSA value, and determine that the state of tension is reached when the RSA value measured from the reference RSA value decreases. However, it is difficult to determine the tension state with high accuracy by the determination using only the RSA value as an index.

そこで、本実施例においては、緊張状態について以下のように判定する。上記のようにRSA値は緊張状態で低下する傾向がある。よって、RSA値を基準RSA値よりも低くする場合には、運転者の心身状態を緊張状態としている蓋然性が高くなる。そこで、基準RSA値よりもRSA値を低下させたときに、呼吸成分である呼吸長及び/又は呼吸振幅によって緊張状態の相対的な強弱を判定する。緊張状態を強くすると、呼吸長及び呼吸振幅はどちらも小さくなる傾向にある。よって、呼吸長及び呼吸振幅について、予め決定しておいた基準呼吸長及び基準呼吸振幅よりも小さいときに基準となる緊張状態(基準RSA値に対応すべき緊張状態)よりも強い緊張状態である可能性が高く、その基準呼吸長及び基準呼吸振幅からの変動幅に基づき緊張状態の強弱を判定するのである。つまり、心拍に関する値であるRSA値を契機として呼吸に関する値である呼吸長や呼吸振幅で判定を行う。 Therefore, in this embodiment, the tension state is determined as follows. As mentioned above, the RSA value tends to decrease in a tense state. Therefore, when the RSA value is lower than the reference RSA value, it is highly probable that the driver's mental and physical condition is in a tense state. Therefore, when the RSA value is lowered from the reference RSA value, the relative strength of the tension state is determined by the respiratory length and / or the respiratory amplitude, which are respiratory components. When the tension is increased, both the respiratory length and the respiratory amplitude tend to decrease. Therefore, when the breathing length and the breathing amplitude are smaller than the predetermined reference breathing length and the reference breathing amplitude, the tension state is stronger than the reference tension state (tension state that should correspond to the reference RSA value). It is highly probable that the strength of the tension state is determined based on the reference breath length and the fluctuation range from the reference breath amplitude. That is, the determination is made based on the breathing length and the breathing amplitude, which are the values related to respiration, triggered by the RSA value, which is the value related to heartbeat.

ここで、基準RSA値、基準呼吸長、基準呼吸振幅は、いずれも緊張を与える課題を含む模擬運転区間において心拍及び呼吸の時間変動を測定して、運転者毎に定めておく。つまり、緊張に対する心拍や呼吸の変動は運転者によって異なり、運転者個人の基準値を定めることで緊張状態の判定の精度を担保するのである。 Here, the reference RSA value, the reference respiration length, and the reference respiration amplitude are all determined for each driver by measuring the time variation of the heartbeat and respiration in the simulated driving section including the task of giving tension. In other words, fluctuations in heartbeat and respiration with respect to tension differ depending on the driver, and the accuracy of determining the tension state is ensured by setting a reference value for each driver.

また、緊張状態の判定において、呼吸長や呼吸振幅の他に、心拍数、心拍振幅やRSA値を加えてもよい。例えば、心拍数についても基準心拍数を決定しておいて、基準心拍数からの心拍数の変動幅を判別して判定に組合せるのである。また、基準心拍振幅からの心拍振幅の変動幅、基準RSA値からのRSA値の変動幅についても同様に判定に組み合わせても良い。これらによって、判定精度の向上が望める。 Further, in the determination of the tension state, the heart rate, the heart rate amplitude, and the RSA value may be added in addition to the breathing length and the breathing amplitude. For example, the reference heart rate is also determined for the heart rate, and the fluctuation range of the heart rate from the reference heart rate is determined and combined with the determination. Further, the fluctuation range of the heartbeat amplitude from the reference heartbeat amplitude and the fluctuation range of the RSA value from the reference RSA value may be similarly combined with the determination. With these, improvement of judgment accuracy can be expected.

なお、基準値(基準RSA値、基準呼吸長、基準呼吸振幅、基準心拍数、基準心拍振幅)の定め方についてはどのような緊張状態を判定したいかによって異なる。例えば、比較的強い緊張状態のみを判定したい場合には基準値を小さく(心拍数については大きく)設定してもよい。また、模擬運転区間の特定の課題に対応した値を基準値とすることでその特定の課題についての緊張状態と相対的に比較した緊張状態の強弱を判定することが可能となる。 The method of determining the reference value (reference RSA value, reference breath length, reference breath amplitude, reference heart rate, reference heart rate amplitude) differs depending on what kind of tension state is desired to be determined. For example, if it is desired to determine only a relatively strong tension state, the reference value may be set small (large for the heart rate). Further, by using the value corresponding to a specific task in the simulated driving section as a reference value, it is possible to determine the strength of the tension state relatively compared with the tension state for the specific task.

更に、緊張状態又は非緊張状態における、RSA値、呼吸長、呼吸振幅、心拍数、心拍振幅の各生理指標の組み合わせとの相関性は、運転者毎に異なる傾向が確認される。かかる傾向は、上記した模擬運転区間での結果から導かれ得て、相関性の強い、つまり、変化の再現傾向に基づいて、生理指標を選択してその組み合わせを決定し、これにより車両運転中の運転者の心身状態の判定をしてもよい。これによれば、より明確な状態判定が可能となるため、緊張状態だけでなく、非緊張状態における判定も同様に可能となる。 Further, it is confirmed that the correlation with the combination of the RSA value, the respiratory length, the respiratory amplitude, the heart rate, and the heart rate amplitude in the tense state or the non-tension state tends to be different for each driver. This tendency can be derived from the results in the simulated driving section described above, and the physiological index is selected and the combination is determined based on the strong correlation, that is, the tendency to reproduce the change, whereby the vehicle is being driven. The physical and mental condition of the driver may be determined. According to this, since it is possible to determine the state more clearly, it is possible to perform the determination not only in the tense state but also in the non-tensioned state.

次に、判定システム1を用いて実際に運転者の心身状態を判定した例について説明する。 Next, an example in which the mental and physical condition of the driver is actually determined using the determination system 1 will be described.

ここでは、鉄道車両運転中の運転者の心身状態、特に緊張状態を判定した。そのために、上記した判定システム1を用いて、緊張を与える課題(緊張課題)を含む模擬運転区間で車両運転中の運転者について心拍及び呼吸を測定しその時間変動を求めた。 Here, the mental and physical condition of the driver while driving the railroad vehicle, particularly the tension state, was determined. Therefore, using the determination system 1 described above, the heartbeat and respiration of the driver who is driving the vehicle in the simulated driving section including the task of giving tension (tension task) are measured, and the time variation thereof is obtained.

模擬運転区間では、運転者の運転作業中における心拍及び呼吸を測定するために、運転シミュレータを用いた模擬運転を実施した。具体的には、大型TVモニタとワンハンドル型コントローラなどで構成した簡易鉄道運転シミュレータを用いた。模擬運転では、運転者が休憩を挟みながら走行課題を所定回数だけ繰り返し行った。走行課題として、所要時間約10分の4駅間の運転区間を設定した。走行課題には、走行している車両を所定の位置に停車させる運転動作などの緊張を与える課題が含まれた。なお、模擬運転に集中させるため、時刻表に従って規定の制限速度で運転を行うよう運転者に指示した。ここでは、一人の運転者が繰り返し行った模擬運転についての測定結果について説明する。 In the simulated driving section, simulated driving using a driving simulator was carried out in order to measure the heartbeat and respiration of the driver during the driving work. Specifically, a simple railroad operation simulator composed of a large TV monitor and a one-handle type controller was used. In the simulated driving, the driver repeatedly performed the driving task a predetermined number of times with a break. As a driving task, we set a driving section between stations with a required time of about 4/10. The driving task included a task of giving tension such as a driving motion of stopping a running vehicle at a predetermined position. In addition, in order to concentrate on simulated driving, the driver was instructed to drive at the specified speed limit according to the timetable. Here, the measurement results of the simulated driving repeatedly performed by one driver will be described.

図2に示すように、まず、測定された波形データについて、同一時間軸に心拍変動波形HRV及び呼吸波形BWを並べた。心拍変動波形HRVは、呼吸波形BWのうち呼吸開始点Sによって区切られる呼吸区間Tに対応する時間範囲ごとに切り出された。このとき、心拍変動波形HRVと呼吸区間Tとの間に同期性があった。そして、各々の呼吸区間Tにおける心拍変動波形HRVの振幅をRSA値とした。つまり、1呼吸に対応する心拍からRSA値を求めた。なお、RSA値については、各呼吸開始点Sに時間的に対応する心拍変動波形HRV上の点を結ぶ線分データを定義し、この線分データを心拍変動波形HRVから差し引く変換処理をした上で求めることが好ましい。かかる変換処理によって、交感神経と副交感神経の両方の影響を受ける血圧変動系の成分を除去できる。 As shown in FIG. 2, first, for the measured waveform data, the heart rate variability waveform HRV and the respiratory waveform BW were arranged on the same time axis. The heart rate variability waveform HRV was cut out for each time range corresponding to the respiratory section T separated by the respiratory start point S in the respiratory waveform BW. At this time, there was synchronization between the heart rate variability waveform HRV and the respiratory section T. Then, the amplitude of the heart rate variability waveform HRV in each breathing section T was used as the RSA value. That is, the RSA value was obtained from the heartbeat corresponding to one breath. For the RSA value, line segment data connecting points on the heart rate variability waveform HRV corresponding to each breathing start point S in time is defined, and this line segment data is subjected to conversion processing by subtracting it from the heart rate variability waveform HRV. It is preferable to obtain at. By such a conversion process, components of the blood pressure fluctuation system affected by both the sympathetic nerve and the parasympathetic nerve can be removed.

例えば、ここでは、上記した模擬運転区間を通して得られたRSA値、心拍数、呼吸長、呼吸振幅の算術平均をそれぞれの基準値とし、呼吸振幅以外のそれぞれについてはかかる平均値からの標準偏差を求めた。基準値は、それぞれ基準RSA値、基準心拍数、基準呼吸長、基準呼吸振幅と呼ぶこととした。また、模擬運転区間の中から、停止操作中(駅での停車の直前20秒の地点)の位置及び緊張しにくい駅停車中のそれぞれ位置に対応したRSA値、心拍数、呼吸長、呼吸振幅を抜き出し、これらを比較対象として以下のように基準値と比較して得点を定めた。 For example, here, the arithmetic mean of the RSA value, heart rate, respiratory length, and respiratory amplitude obtained through the simulated driving section described above is used as the respective reference value, and the standard deviation from the average value is used for each other than the respiratory amplitude. I asked. The reference values were referred to as a reference RSA value, a reference heart rate, a reference breathing length, and a reference breathing amplitude, respectively. In addition, from the simulated driving section, the RSA value, heart rate, breathing length, and breathing amplitude corresponding to the position during the stop operation (the point 20 seconds immediately before the stop at the station) and the position during the stop at the station where tension is less likely to occur. Was extracted, and these were compared with the standard values as shown below to determine the score.

すなわち、図3に示すように、基準RSA値に対してRSA値が標準偏差以上に大きいときに+1点、標準偏差の2倍以上大きいときに+2点、標準偏差以上に小さいときに-1点、標準偏差の2倍以上小さいときに-2点として得点を設定し、0点以外の結果を停止操作中及び駅停車中のそれぞれについて出現率で示した。つまり、基準RSA値からの変動幅について、標準偏差やその2倍の値に対するRSA値の大小を判別して得点を付けた。その結果、緊張し易い停止操作中はRSA値が小さくなる傾向にあることが判った。しかし、緊張しにくい駅停車中であってもRSA値が小さくなることも多く、RSA値のみで緊張状態を判定することは難しいことが判った。 That is, as shown in FIG. 3, +1 point when the RSA value is larger than the standard deviation with respect to the standard RSA value, +2 points when the RSA value is more than twice the standard deviation, and -1 point when the RSA value is smaller than the standard deviation. , The score was set as -2 points when it was more than twice the standard deviation, and the results other than 0 points were shown by the appearance rate for each of the stop operation and the station stop. That is, with respect to the fluctuation range from the reference RSA value, the magnitude of the RSA value with respect to the standard deviation or twice the standard deviation was discriminated and a score was given. As a result, it was found that the RSA value tends to decrease during the stop operation, which tends to cause tension. However, it was found that it is difficult to judge the tension state only by the RSA value because the RSA value is often small even when the train is stopped at the station where it is difficult to get nervous.

また、図4(a)に示すように、基準心拍数に対して心拍数が標準偏差以上に大きいときに+1点、標準偏差の2倍以上大きいときに+2点、標準偏差以上に小さいときに-1点、標準偏差の2倍以上小さいときに-2点として得点を設定し、0点以外の結果を停止操作中及び駅停車中のそれぞれについて出現率で示した。心拍数については、緊張し易い停止操作中に大きくなる傾向であった。 Further, as shown in FIG. 4A, +1 point when the heart rate is larger than the standard deviation with respect to the standard heart rate, +2 points when the heart rate is more than twice the standard deviation, and when it is smaller than the standard deviation. A score was set as -1 point and -2 points when it was more than twice the standard deviation, and the results other than 0 points were shown by the appearance rate for each of the stop operation and the station stop. The heart rate tended to increase during the stop operation, which tends to be tense.

図4(b)に示すように、基準呼吸長に対して呼吸長が標準偏差以上に大きいときに+1点、標準偏差の2倍以上大きいときに+2点、標準偏差以上に小さいときに-1点、標準偏差の2倍以上小さいときに-2点として得点を設定し、0点以外の結果を停止操作中及び駅停車中のそれぞれについて出現率で示した。呼吸長については、緊張し易い停止操作中に小さくなる傾向であった。 As shown in FIG. 4 (b), +1 point when the breathing length is larger than the standard deviation with respect to the standard breathing length, +2 points when the breathing length is more than twice the standard deviation, and -1 when the breathing length is smaller than the standard deviation. A score was set as -2 points when the points and standard deviations were twice or more smaller than the standard deviation, and the results other than 0 points were shown by the appearance rate for each of the stop operation and the station stop. Breathing length tended to decrease during the stop operation, which tends to be tense.

図4(c)に示すように、基準呼吸振幅に対して呼吸振幅が2倍以上となった場合に+1点、基準値の半分以下になった場合に-1点として得点を設定し、0点以外の結果を停止操作中及び駅停車中のそれぞれについて出現率で示した。呼吸振幅については、緊張し易い停止操作中に小さくなる傾向であった。 As shown in FIG. 4 (c), a score is set as +1 point when the respiratory amplitude is more than twice the reference respiratory amplitude and -1 point when the respiratory amplitude is less than half of the reference value, and 0. The results other than the points are shown by the appearance rate for each of the stop operation and the station stop. The respiratory amplitude tended to decrease during the stop operation, which tends to be tense.

しかし、心拍数、呼吸長、呼吸振幅のいずれについても、単独で緊張状態を判定するには上記したRSA値による判定よりもさらに難しいことが判った。 However, it was found that it is more difficult to determine the tension state alone in terms of heart rate, respiratory length, and respiratory amplitude than the above-mentioned determination by the RSA value.

そこで、RSA、心拍数、呼吸長、呼吸振幅のそれぞれの得点を緊張状態で生じやすい方を正とするように得点の符号を変換して、つまりRSA値、呼吸長、呼吸振幅の得点に-1を乗じて、それぞれの得点を合計し、総合判定とした。 Therefore, the code of the score is changed so that the score of RSA, heart rate, respiratory length, and respiratory amplitude is positive so that the one that tends to occur in a tense state is positive, that is, the score of RSA value, respiratory length, and respiratory amplitude is converted to-. Multiply by 1 and add up the scores to make a comprehensive judgment.

図5に示すように、総合判定では、得点「3」の判定では、ほぼ停止操作中のものとなり、運転者の心身状態は相対的に強い緊張状態であると考えられた。一方、得点を負にする判定では停止操作中のものがほとんどなく、相対的に弱い緊張状態である可能性が非常に高いと考えらえた。 As shown in FIG. 5, in the comprehensive judgment, in the judgment of the score "3", the stop operation was almost in progress, and it was considered that the mental and physical condition of the driver was a relatively strong tense state. On the other hand, in the judgment that the score is negative, there is almost no one during the stop operation, and it is considered that there is a very high possibility that the tension is relatively weak.

以上のように、測定される運転者の心拍及び呼吸の両データから該運転者の心身状態について、緊張状態の相対的な強弱を判定することができる。特に、基準RSA値と標準偏差を用いるなど、基準値とこれに対する所定値の隔たりによって判定を行うため、心拍変動波形及び呼吸波形において相対的な数値変化のみで判定が可能である。つまり、測定値の絶対値としての精度は要求されない。そのため、RSA値の詳細な算出方法については特に限定されず、模擬運転から運転者の心身状態の判定までを通して1つに定められていればよい。また、心拍と呼吸の両データから運転者の心身状態を判定することに意味があり、RSA値による判定の契機に呼吸長又は呼吸振幅のうちの一方の判別を組合せるだけでも少なくともRSA値のみによる判定よりも精度よく心身状態を判定し得る。また、呼吸長、呼吸振幅の両者を組合せた判定とすることが好ましく、さらには、上記したように心拍数やRSA値、そして、心拍振幅を組み合わせた判定とすることもできる。 As described above, it is possible to determine the relative strength of the tension state of the driver's mental and physical condition from both the measured driver's heartbeat and respiration data. In particular, since the determination is made based on the difference between the reference value and the predetermined value, such as using the reference RSA value and the standard deviation, the determination can be made only by the relative numerical change in the heart rate variability waveform and the respiratory waveform. That is, the accuracy of the measured value as an absolute value is not required. Therefore, the detailed calculation method of the RSA value is not particularly limited, and one may be defined from the simulated driving to the determination of the physical and mental condition of the driver. In addition, it is meaningful to judge the physical and mental condition of the driver from both heartbeat and respiration data, and even if the judgment based on the RSA value is combined with the judgment of one of the respiratory length and the respiratory amplitude, at least the RSA value is used. It is possible to judge the mental and physical condition more accurately than the judgment by. Further, it is preferable to make a determination in which both the respiratory length and the respiratory amplitude are combined, and further, the determination can be made by combining the heart rate, the RSA value, and the heartbeat amplitude as described above.

また、上記したように、測定値に絶対値としての精度を必要としないため、呼吸波形の取得については運転者の胸囲又は腹囲の変化を検出するだけの簡便な測定方法とすることができ、ウエアラブルセンサを測定に使用することができた。 Further, as described above, since the measured value does not require accuracy as an absolute value, the acquisition of the respiratory waveform can be a simple measurement method that only detects the change in the chest circumference or abdominal circumference of the driver. A wearable sensor could be used for measurement.

また、上記した例では、模擬運転区間の中から停止操作中及び駅停車中のRSA値、心拍数、心拍振幅、呼吸長、呼吸振幅を抜き出して判定を行ったが、模擬運転区間で得られた基準値及び標準偏差を用いることで実運行区間においても同様に運転者の心拍及び呼吸の時間変動を測定して運転者の心身状態を判定することもできる。つまり、基準RSA値、基準呼吸長、基準呼吸振幅とそれぞれの標準偏差、さらに基準心拍数、基準心拍振幅、を模擬運転において算出して、記憶装置23に記憶させておくことで、以降の実運行区間などの他の運転区間においては、特定位置においてリアルタイムで運転者の心身状態を判定可能である。特定位置とは運転者の心身状態を判定しようとする位置であり、心拍及び呼吸の時間変動を測定した時間軸上の位置であるが、運転区間内の空間上の位置と時間軸とを対応させて空間上の位置とすることもできる。特に、鉄道であれば、運行区間上の車両の走行予定が定められており、例えば、駅や踏切などの特定区間の直前においても運転者の心身状態を判定することができ、場合によってアラームを発したりすることも可能となる。なお、上記したように、これらの基準値や標準偏差は運転者の個人差を含むため、運転者毎に定めて用いられる。 Further, in the above example, the RSA value, heart rate, heart rate amplitude, respiratory length, and respiratory amplitude during the stop operation and the station stop were extracted from the simulated driving section and determined, but the determination was made in the simulated driving section. By using the reference value and standard deviation, it is possible to determine the physical and mental condition of the driver by measuring the time variation of the driver's heartbeat and breathing in the actual operation section as well. That is, the reference RSA value, the reference breathing length, the reference breathing amplitude and their respective standard deviations, and the reference heart rate and the reference heartbeat amplitude are calculated in the simulated operation and stored in the storage device 23. In other driving sections such as the operating section, the mental and physical condition of the driver can be determined in real time at a specific position. The specific position is a position for determining the mental and physical condition of the driver, which is a position on the time axis in which the time fluctuation of heartbeat and respiration is measured, but the position in the space in the driving section corresponds to the time axis. It can also be set as a position in space. In particular, in the case of railways, the travel schedule of vehicles on the operating section is set, and for example, the mental and physical condition of the driver can be determined even immediately before a specific section such as a station or railroad crossing, and an alarm may be issued in some cases. It is also possible to emit. As described above, since these reference values and standard deviations include individual differences of the driver, they are determined and used for each driver.

上記した例では、基準RSA値、基準心拍数、基準心拍振幅、基準呼吸長、基準呼吸振幅について、模擬運転区間を通した算術平均として決定したが、その他によって決定してもよい。例えば、基準RSA値を模擬運転区間で取得された値の最大値に決定すると、基準RSA値はほぼ完全なリラックス状態と仮定できる。そして、基準RSA値からのRSA値の低下した変動幅で緊張状態を段階的に点数化してこれに上記と同様に呼吸長などの基準値からの変動幅の判別を組合せることで運転者の心身状態を判定することができる。 In the above example, the reference RSA value, the reference heart rate, the reference heart rate amplitude, the reference breathing length, and the reference breathing amplitude are determined as the arithmetic mean through the simulated driving section, but may be determined by others. For example, if the reference RSA value is determined to be the maximum value of the value acquired in the simulated driving section, the reference RSA value can be assumed to be in an almost completely relaxed state. Then, the tension state is gradually scored according to the fluctuation range in which the RSA value is lowered from the reference RSA value, and this is combined with the discrimination of the fluctuation range from the reference value such as the respiratory length in the same manner as described above. It is possible to judge the mental and physical condition.

さらに、基準RSA値からのRSA値の変動幅を組み合わせて心身状態の判定を行う場合において、かかる変動幅を補正する方法もある。まず、1呼吸に対応する呼吸波形及び心拍変動波形のそれぞれを1呼吸間呼吸波形及び1呼吸間心拍変動波形とする。このとき、1呼吸間呼吸波形と1呼吸間心拍変動波形とを比較して、これらの相関が高いほど1に近く相関が低いほど0に近くなる補正係数を定める。このような補正係数は、例えば、1呼吸間呼吸波形と1呼吸間心拍変動波形との間の相関係数や位相差を用いて算出し得る。相関係数を用いる場合であれば、相関係数の絶対値を補正係数とし得る。位相差を用いる場合であれば、(π-位相差)/πの絶対値を補正係数とし得る。これら2つの積算値を補正係数としてもよい。その上で、基準RSA値からの変動幅にかかる補正係数を乗じて補正し、上記と同様に判定を行う。1呼吸間呼吸波形と1呼吸間心拍変動波形との相関が高いほどRSA値としての信頼度が高くなる傾向にあるため、このような補正をすることでRSA値の信頼度を反映し、精度よく運転者の心身状態の判定をすることができる。 Further, there is also a method of correcting such a fluctuation range in the case of determining the mental and physical condition by combining the fluctuation range of the RSA value from the reference RSA value. First, the breathing waveform and the heart rate variability waveform corresponding to one breath are defined as one breathing breathing waveform and one breathing heart rate variability waveform, respectively. At this time, the one-breathing breathing waveform and the one-breathing heart rate variability waveform are compared, and a correction coefficient is determined in which the higher the correlation is, the closer it is to 1, and the lower the correlation is, the closer it is to 0. Such a correction coefficient can be calculated using, for example, a correlation coefficient or a phase difference between the one-breathing breathing waveform and the one-breathing heart rate variability waveform. When the correlation coefficient is used, the absolute value of the correlation coefficient can be used as the correction coefficient. When phase difference is used, the absolute value of (π-phase difference) / π can be used as the correction coefficient. These two integrated values may be used as a correction coefficient. Then, the correction is performed by multiplying the correction coefficient related to the fluctuation range from the reference RSA value, and the determination is made in the same manner as above. The higher the correlation between the 1-breathing breathing waveform and the 1-breathing heart rate variability waveform, the higher the reliability as the RSA value tends to be. Therefore, by making such a correction, the reliability of the RSA value is reflected and the accuracy is increased. It is possible to judge the physical and mental condition of the driver well.

また、上記した実施例では、ある時点における緊張状態を当該時点での心拍及び呼吸の時間変動によって判定したが、時間的な前後関係に基づいて心身状態を判定することもできる。例えば、RSA値が非常に高い(例えば基準RSA値の4倍以上の)状態から、次の呼吸区間T(図2参照)で基準RSA値からの変動幅(隔たり)が標準偏差よりも大きく下回った場合に極度の緊張状態か心理的に動揺していると判定できる。また、規則的な呼吸をしているときは運転操作を行うために好ましい適度な緊張状態であるか、又は、覚醒低下状態である可能性が高い。そこで、呼吸長の基準呼吸長からの隔たりが、4回連続する呼吸区間Tのいずれにおいても10%以下であった場合に規則的な呼吸とみなし、さらに心拍数が基準心拍数よりも大きい値で一定していたり増加していたりした場合に適度な緊張と判定し、基準心拍数よりも小さい値で一定していたり減少していたりした場合にこれより弱い緊張状態(又は覚醒低下状態)と判定できる。また、呼吸振幅が基準呼吸振幅の2倍を超える場合や、呼吸長が基準呼吸長の標準偏差の2倍以上大きい場合などの大呼吸をした場合、その時間的な前後で心身状態の切替えがあったと判定することなどもできる。 Further, in the above-described embodiment, the tension state at a certain time point is determined by the time variation of the heartbeat and the respiration at the time point, but the mental and physical state can also be determined based on the temporal context. For example, from a state where the RSA value is very high (for example, 4 times or more the reference RSA value), the fluctuation range (distance) from the reference RSA value is much less than the standard deviation in the next breathing interval T (see FIG. 2). In that case, it can be determined that the patient is in an extremely tense state or is psychologically upset. In addition, when breathing regularly, there is a high possibility that the patient is in a moderately tense state, which is preferable for performing a driving operation, or is in a state of decreased arousal. Therefore, if the distance from the reference breathing length of the breathing length is 10% or less in any of the four consecutive breathing sections T, it is regarded as regular breathing, and the heart rate is larger than the reference heart rate. If it is constant or increased, it is judged to be moderate tension, and if it is constant or decreased at a value smaller than the reference heart rate, it is considered to be a weaker tension state (or arousal decrease state). It can be judged. In addition, when a large breath is taken, such as when the breathing amplitude exceeds twice the standard breathing amplitude or when the breathing length is more than twice the standard deviation of the standard breathing length, the mental and physical states are switched before and after that time. It can also be determined that there was.

ここで、RSA値、呼吸長、心拍数、の3つの生理指標にさらに呼吸長変化率及び心拍数変化率を加えた5つの生理指標において、測定される運転者個人ごとに緊張課題に対する変化の再現傾向に差がある一方、呼吸長については運転者個人によらず、緊張課題に対する変化が一定することがわかった。そこで、呼吸長と、これに組み合わせる他の生理指標であって、運転者個人ごとに異なる緊張課題に対する変化の再現傾向の高い生理指標を用いて緊張状態を判定することで、より精度の高い判定が可能となる。 Here, in the five physiological indexes obtained by adding the respiratory length change rate and the heart rate change rate to the three physiological indexes of the RSA value, the respiratory length, and the heart rate, the change for the tension task for each individual driver to be measured is changed. While there was a difference in the reproduction tendency, it was found that the change in the respiratory length for the tension task was constant regardless of the individual driver. Therefore, by determining the tension state using the breathing length and other physiological indexes combined with it, which have a high tendency to reproduce changes to the tension task that differs for each driver, a more accurate determination is made. Is possible.

つまり、判定システム1は、制御ユニット20において、運転者毎に、緊張課題に対応する呼吸長変化率、心拍数(心拍間隔)、心拍数変化率(心拍間隔変化率)RSA値の変化の再現傾向、つまり繰り返し同じ変化を示す生理指標の1つ以上を呼吸長とともに特定生理指標として選択し記憶させておく。かかる選択は、変化幅をあらかじめ設定して自動的にフィルタリングを行うようにしても良いし、他の公知の方法を用いてもよい。そして、運転者毎の基準となる基準RSA値及び基準呼吸長とともに、特定生理指標についての各基準値を上記したと同様に決定しておく。その上で、緊張状態の判定において、上記同様に、呼吸長を含む特定生理指標についての対応する基準値からの変動幅を組み合わせて判定するのである。 That is, the determination system 1 reproduces the changes in the respiratory length change rate, the heart rate (heart rate interval), and the heart rate change rate (heart rate interval change rate) RSA values corresponding to the tension task for each driver in the control unit 20. A tendency, that is, one or more of the physiological indexes showing the same change repeatedly, is selected and stored as a specific physiological index together with the respiratory length. For such selection, the change width may be set in advance and filtering may be performed automatically, or other known methods may be used. Then, along with the reference RSA value and the reference respiration length as the reference for each driver, each reference value for the specific physiological index is determined in the same manner as described above. Then, in the determination of the tension state, the fluctuation range from the corresponding reference value for the specific physiological index including the respiratory length is combined and determined in the same manner as described above.

図6(a)には、複数の緊張課題及び非緊張課題を含む模擬運転において、緊張課題に対する各生理指標での非緊張傾向及び緊張傾向の出現率の一例を示した。各生理指標の棒グラフの左側は非緊張状態の傾向と判断される、つまり、緊張課題であるにもかかわらず非緊張状態と判定される誤りを示した出現率、棒グラフの右側は緊張状態傾向と判断される、つまり、正解を示した出現率である。 FIG. 6A shows an example of the appearance rate of the non-tension tendency and the tension tendency in each physiological index for the tension task in the simulated driving including a plurality of tension tasks and the non-tension tasks. The left side of the bar graph of each physiological index is judged to be a tendency of non-tension state, that is, the appearance rate showing an error of being judged to be non-tension state despite being a tension task, and the right side of the bar graph is the tendency of tension state. It is the appearance rate that is judged, that is, the correct answer is shown.

なお、心拍間隔変化率及び呼吸長変化率については次のように算出し、評価した。詳細には、予め、運転者が最も平常状態に近い心身状態であると推定されるときに算出された心拍間隔を「1」として定めておく。そして、1呼吸毎に連続して4回算出した心拍間隔のうち1回目を除く2~4回目の心拍間隔の前回との差分(2回目の場合は1回目との差分)が、全て「0.25」以下の場合に心拍間隔が安定しており規則的であると評価し、これを心身状態の判定に用いる。つまり、基準心拍間隔変化率を「0.25」以下と定め、4回連続した心拍間隔の1呼吸あたりの変化率をそれぞれ評価するのである。呼吸長変化率も心拍間隔変化率と同様に算出し、評価できる。 The heart rate interval change rate and the respiratory length change rate were calculated and evaluated as follows. In detail, the heartbeat interval calculated in advance when the driver is estimated to be in the mental and physical state closest to the normal state is defined as "1". Then, among the heartbeat intervals calculated four times in succession for each breath, the difference from the previous time of the second to fourth heartbeat intervals excluding the first one (in the case of the second time, the difference from the first time) is all "0". When it is 0.25 ”or less, it is evaluated that the heartbeat interval is stable and regular, and this is used to judge the mental and physical condition. That is, the reference heart rate interval change rate is set to "0.25" or less, and the change rate per breath of the four consecutive heart rate intervals is evaluated. The rate of change in respiratory length can be calculated and evaluated in the same manner as the rate of change in heart rate interval.

これによると、呼吸長とともに、心拍間隔において正解を示す傾向にある。このため、上記したように、呼吸長の基準呼吸長に対する変動幅と、呼吸長変化率の基準呼吸長変化率に対する変動幅と、を組み合わせた総合判定B(図6(b)参照)と比較して、呼吸長の基準呼吸長に対する変動幅と、心拍間隔の基準心拍間隔に対する変動幅と、を組み合わせた総合判定A(図6(b)参照)の方が緊張状態傾向を正しく示すのである。 According to this, it tends to show the correct answer in the heart rate interval as well as the breathing length. Therefore, as described above, it is compared with the comprehensive judgment B (see FIG. 6 (b)) in which the fluctuation range of the respiratory length with respect to the reference respiratory length and the fluctuation range of the respiratory length change rate with respect to the standard respiratory length change rate are combined. Therefore, the comprehensive judgment A (see FIG. 6B), which combines the fluctuation range of the breathing length with respect to the reference breathing length and the fluctuation range of the heartbeat interval with respect to the reference heartbeat interval, more correctly shows the tendency of the tension state. ..

なお、非緊張状態の判定は困難であったが、上記同様、運転者個人ごとに異なる非緊張課題(例えば、駅停車中)に対する変化の再現傾向の高い第2の特定生理指標についても呼吸長を含んで選択し、これらを用いてその緊張状態の判定ができるようになる。 Although it was difficult to determine the non-tension state, as in the above, the breathing length was also obtained for the second specific physiological index, which has a high tendency to reproduce changes to the non-tension task (for example, while the train is stopped) that differs for each driver. Can be used to determine the tension state.

以上、本発明による代表的な実施例について述べたが、本発明は必ずしもこれに限定されるものではなく、適宜、当業者によって変更され得る。すなわち、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although the typical examples according to the present invention have been described above, the present invention is not necessarily limited to this, and can be appropriately modified by those skilled in the art. That is, a person skilled in the art will be able to find various alternative examples and modifications without departing from the attached claims.

1 判定システム
10 波形測定ユニット
11 心拍測定センサ
12 呼吸測定センサ
20 制御ユニット
21 制御装置
22 判定装置
23 記憶装置
1 Judgment system 10 Waveform measurement unit 11 Heart rate measurement sensor 12 Respiration measurement sensor 20 Control unit 21 Control device 22 Judgment device 23 Storage device

Claims (14)

鉄道車両運転中の運転者において測定される心拍及び呼吸の時間変動を用いてこの対応から心拍の呼吸性洞性不整脈(RSA)成分としてのRSA値を算出し心身状態を判定する方法であって、
緊張課題を含む模擬運転区間で前記時間変動を測定し、呼吸長及び/又は呼吸振幅、RSA値を含む生理指標について、前記運転者毎の基準となる基準RSA値とともに、基準呼吸長及び/又は基準呼吸振幅を含む各基準値を決定しておき、
実運行区間で前記時間変動を測定しながら、心身状態判定のための特定位置において、RSA値が前記基準RSA値よりも低い場合に、前記生理指標の前記各基準値からの変動幅から前記運転者の緊張状態を判定することを特徴とする車両運転中の運転者の心身状態判定方法。
It is a method to determine the mental and physical condition by calculating the RSA value as a respiratory sinus arrhythmia (RSA) component of the heartbeat from this correspondence using the heartbeat and the time variation of breathing measured by the driver while driving a railroad vehicle. ,
The time variation is measured in the simulated driving section including the tension task, and the reference respiratory length and / or the reference respiratory length and / or the physiological index including the respiratory length and / or the respiratory amplitude and the RSA value are measured together with the reference RSA value which is the reference for each driver. Determine each reference value including the reference breathing amplitude,
While measuring the time variation in the actual operation section, when the RSA value is lower than the reference RSA value at a specific position for determining the mental and physical condition, the operation is performed from the fluctuation range of the physiological index from each reference value. A method for determining a driver's mental and physical condition while driving a vehicle, which comprises determining a person's tension state.
前記基準RSA値とともに、前記基準呼吸長及び/又は前記基準呼吸振幅に合わせて基準心拍数を決定しておき、
緊張状態の判定において、心拍数の前記基準心拍数からの変動幅及び/又はRSA値の前記基準RSA値からの変動幅を更に組合せて判定することを特徴とする請求項1記載の車両運転中の運転者の心身状態判定方法。
Along with the reference RSA value, the reference heart rate is determined according to the reference breathing length and / or the reference breathing amplitude.
The vehicle driving according to claim 1, wherein in the determination of the tension state, the fluctuation range of the heart rate from the reference heart rate and / or the fluctuation range of the RSA value from the reference RSA value is further combined and determined. How to determine the physical and mental condition of the driver.
前記基準値は、対応する前記生理指標の前記模擬運転区間を通しての算術平均として決定されることを特徴とする請求項1又は2に記載の車両運転中の運転者の心身状態判定方法。 The method for determining the mental and physical condition of a driver while driving a vehicle according to claim 1 or 2, wherein the reference value is determined as an arithmetic mean of the corresponding physiological index through the simulated driving section. 前記緊張状態の判定において、前記模擬運転区間を通しての前記生理指標の標準偏差に対する前記変動幅の大小の判別を含むことを特徴とする請求項3記載の車両運転中の運転者の心身状態判定方法。 The method for determining the mental and physical condition of a driver during vehicle driving according to claim 3, wherein the determination of the tension state includes determination of the magnitude of the fluctuation range with respect to the standard deviation of the physiological index through the simulated driving section. .. 前記RSA値は、前記呼吸の1呼吸に対応する前記心拍から算出することを特徴とする請求項1乃至4のうちの1つに記載の車両運転中の運転者の心身状態判定方法。 The method for determining a mental and physical condition of a driver while driving a vehicle according to one of claims 1 to 4, wherein the RSA value is calculated from the heartbeat corresponding to one breath of the breath. 心拍数、心拍数変化率、及び、呼吸長変化率をさらに含む前記生理指標から、前記呼吸長とともに前記運転者毎に1つ以上を選択して特定生理指標とし、前記特定生理指標について前記模擬運転区間での測定から各基準値を決定しておき、
緊張状態の判定において、前記特定生理指標についての対応する前記基準値に対する変動幅に基づいて判定を行うことを特徴とする請求項1記載の車両運転中の運転者の心身状態判定方法。
From the physiological index further including the heart rate, the rate of change in heart rate, and the rate of change in respiratory length, one or more is selected for each driver together with the respiratory length as a specific physiological index, and the simulated physiological index is used as the specific physiological index. Determine each reference value from the measurement in the driving section,
The method for determining a mental and physical condition of a driver while driving a vehicle according to claim 1, wherein the determination of the tension state is performed based on the fluctuation range with respect to the corresponding reference value for the specific physiological index.
前記模擬運転区間は非緊張課題を含み、前記非緊張課題に対応する前記生理指標から、前記呼吸長とともに前記運転者毎に1つ以上を選択して第2の特定生理指標とし、前記第2の特定生理指標について前記模擬運転区間での測定から各基準値を決定しておき、
RSA値が前記基準RSA値よりも高い場合に、前記第2の特定生理指標についての対応する前記基準値に対する変動幅に基づいて前記判定を行うことを特徴とする請求項6記載の車両運転中の運転者の心身状態判定方法。
The simulated driving section includes a non-tension task, and one or more is selected for each driver together with the breathing length from the physiological index corresponding to the non-tension task to be used as a second specific physiological index. For the specific physiological index of, each reference value is determined from the measurement in the simulated driving section.
The vehicle is being operated according to claim 6, wherein when the RSA value is higher than the reference RSA value, the determination is made based on the fluctuation range with respect to the corresponding reference value for the second specific physiological index. How to determine the physical and mental condition of the driver.
呼吸波形及び心拍変動波形の1呼吸にそれぞれ対応する1呼吸間呼吸波形及び1呼吸間心拍変動波形を比較して定めた補正係数を乗じることで前記基準RSA値からの変動幅を補正することを特徴とする請求項2記載の車両運転中の運転者の心身状態判定方法。 It is possible to correct the fluctuation range from the reference RSA value by multiplying the correction coefficient determined by comparing the 1-respiratory breathing waveform and the 1-respiratory heart rate variability waveform corresponding to 1 breath of the respiratory waveform and the heart rate variability waveform, respectively. The method for determining the physical and mental condition of a driver while driving a vehicle according to claim 2. 前記模擬運転区間は運転シミュレータによって与えられるものであることを特徴とする請求項1乃至8のうちの1つに記載の車両運転中の運転者の心身状態判定方法。 The method for determining a mental and physical condition of a driver while driving a vehicle according to one of claims 1 to 8, wherein the simulated driving section is given by a driving simulator. 前記呼吸の時間変動は前記運転者の胸囲又は腹囲を測定して取得されることを特徴とする請求項1乃至9のうちの1つに記載の車両運転中の運転者の心身状態判定方法。 The method for determining a physical and mental condition of a driver while driving a vehicle according to any one of claims 1 to 9, wherein the time variation of breathing is obtained by measuring the chest circumference or abdominal circumference of the driver. 鉄道車両運転中の運転者において測定される心拍及び呼吸の時間変動を用いてこの対応から心拍の呼吸性洞性不整脈(RSA)成分としてのRSA値を算出し心身状態を判定するシステムであって、
前記時間変動を測定するセンサを含む測定ユニットと、
前記測定ユニットで測定された前記時間変動から、呼吸長及び/又は呼吸振幅、RSA値を含む生理指標を算出する制御ユニットと、を含み、
前記制御ユニットは、
前記測定ユニットによって緊張課題を含む模擬運転区間で測定された前記時間変動から、前記生理指標について、前記運転者毎の基準となる、基準RSA値とともに、基準呼吸長及び/又は基準呼吸振幅を含む各基準値を決定するとともに、
前記測定ユニットによって実運行区間で前記時間変動を測定しながら、心身状態判定のための特定位置において、RSA値が前記基準RSA値よりも低い場合に、前記生理指標の前記各基準値からの変動幅から前記運転者の緊張状態を判定することを特徴とする車両運転中の運転者の心身状態判定システム。
It is a system that calculates the RSA value as a respiratory sinus arrhythmia (RSA) component of the heartbeat from this correspondence using the heartbeat and the time fluctuation of breathing measured by the driver while driving a railroad vehicle, and judges the mental and physical condition. ,
A measurement unit including a sensor for measuring the time fluctuation, and a measurement unit.
It includes a control unit that calculates a physiological index including a respiratory length and / or a respiratory amplitude and an RSA value from the time variation measured by the measuring unit.
The control unit is
From the time variation measured by the measuring unit in the simulated driving section including the tension task, the physiological index includes the reference breathing length and / or the reference breathing amplitude together with the reference RSA value which is the reference for each driver. While determining each reference value,
While measuring the time variation in the actual operation section by the measuring unit, when the RSA value is lower than the reference RSA value at a specific position for determining the mental and physical condition, the variation of the physiological index from each reference value. A driver's mental and physical condition determination system during vehicle driving, wherein the driver's tension state is determined from the width.
前記基準RSA値とともに、前記基準呼吸長及び/又は前記基準呼吸振幅に合わせて基準心拍数を決定しておき、
前記緊張状態の判定において、心拍数の前記基準心拍数からの変動幅及び/又はRSA値の前記基準RSA値からの変動幅を更に組合せて判定することを特徴とする請求項11記載の車両運転中の運転者の心身状態判定システム。
Along with the reference RSA value, the reference heart rate is determined according to the reference breathing length and / or the reference breathing amplitude.
The vehicle operation according to claim 11, wherein in the determination of the tension state, the fluctuation range of the heart rate from the reference heart rate and / or the fluctuation range of the RSA value from the reference RSA value is further combined and determined. A system for determining the physical and mental condition of the driver inside.
前記制御ユニットは、
心拍数、心拍数変化率、及び、呼吸長変化率をさらに含む前記生理指標から、前記運転者毎に1つ以上を選択して特定生理指標として記憶させ、前記特定生理指標について前記模擬運転区間での測定から各基準値を決定するとともに、
緊張状態の判定において、前記特定生理指標についての対応する前記基準値からの変動幅に基づいて判定を行うことを特徴とする請求項11記載の車両運転中の運転者の心身状態判定システム。
The control unit is
From the physiological index further including the heart rate, the rate of change in heart rate, and the rate of change in respiratory length, one or more is selected for each driver and stored as a specific physiological index, and the simulated driving section is used for the specific physiological index. While determining each reference value from the measurement in
The mental and physical condition determination system for a driver while driving a vehicle according to claim 11, wherein in the determination of the tension state, the determination is made based on the fluctuation range from the corresponding reference value for the specific physiological index.
前記制御ユニットは、
前記測定ユニットによって非緊張課題を更に含む前記模擬運転区間で測定された前記時間変動に基づき、前記非緊張課題に対応する前記生理指標から、前記呼吸長とともに前記運転者毎に1つ以上を選択して第2の特定生理指標として記憶させ、前記第2の特定生理指標についての各基準値を決定するとともに、
心身状態判定のための特定位置において、RSA値が前記基準RSA値よりも高い場合に、前記第2の特定生理指標についての対応する前記基準値からの変動幅に基づいて前記判定を行うことを特徴とする請求項13記載の車両運転中の運転者の心身状態判定システム。
The control unit is
Based on the time variation measured by the measuring unit in the simulated driving section further including the non-tension task, one or more is selected for each driver together with the breath length from the physiological index corresponding to the non-tension task. Then, it is stored as a second specific physiological index, and each reference value for the second specific physiological index is determined, and at the same time.
When the RSA value is higher than the reference RSA value at a specific position for determining the mental and physical condition, the determination is made based on the fluctuation range from the corresponding reference value for the second specific physiological index. The mental and physical condition determination system of a driver while driving a vehicle according to claim 13.
JP2021108097A 2020-08-04 2021-06-29 Method of determining operator's mental and physical condition, and system for the same Pending JP2022029421A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132250 2020-08-04
JP2020132250 2020-08-04

Publications (1)

Publication Number Publication Date
JP2022029421A true JP2022029421A (en) 2022-02-17

Family

ID=80271490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021108097A Pending JP2022029421A (en) 2020-08-04 2021-06-29 Method of determining operator's mental and physical condition, and system for the same

Country Status (1)

Country Link
JP (1) JP2022029421A (en)

Similar Documents

Publication Publication Date Title
US7470231B2 (en) Fatigue degree measurement device, fatigue detection device and computer program to be used therein
KR100738074B1 (en) Apparatus and method for managing health
Mulder Measurement and analysis methods of heart rate and respiration for use in applied environments
US4896675A (en) Apparatus for monitoring degree of mental tension
US8979761B2 (en) Sleepiness assessment apparatus
EP1273265B1 (en) Monitoring a condition of a patient under anaesthesia or sedation
WO2014091916A1 (en) Device for determining biological state during driving, and computer program
AU2011213041B2 (en) System and method for diagnosing sleep apnea based on results of multiple approaches to sleep apnea identification
JP2013006011A (en) Apparatus and method for obtaining biometric information of driver
JP2014100227A (en) Concentration degree estimation apparatus, concentration degree estimation method, driving assistance apparatus, and driving assistance method
JP2013233256A (en) Method and apparatus for evaluating psychological symptom and onset risk of psychiatric disorder using heart rate fluctuation index
JPH0349686Y2 (en)
Takahashi et al. Development of a feedback stimulation for drowsy driver using heartbeat rhythms
JPH10146321A (en) Driver monitoring device
JP4844523B2 (en) Mental training system
JP2022029421A (en) Method of determining operator's mental and physical condition, and system for the same
JPH10137228A (en) Mental stress judging device
WO2014132722A1 (en) Living-body state estimation device, computer program, and recording medium
JP4255598B2 (en) Mental burden evaluation method, vehicle performance evaluation method, tire performance evaluation method and mental burden evaluation apparatus using the same
JP2020130745A (en) Mind and body management system
YUDA et al. Smart shirt respiratory monitoring to detect car driver drowsiness
Davidich et al. Change of car drivers stress index during different periods of the day in urban traffic conditions
Telser et al. Temporally resolved fluctuation analysis of sleep ECG
NAKAGAWA et al. Basic Study on Assessment of the Driver's Condition Based on Physiological Indices
JP2020103495A (en) Method of monitoring autonomic nerve activity and system thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240405