JP2022029225A - Resin film for conductive element wire and method for manufacturing the same, and flat rectangular electric wire - Google Patents

Resin film for conductive element wire and method for manufacturing the same, and flat rectangular electric wire Download PDF

Info

Publication number
JP2022029225A
JP2022029225A JP2020132460A JP2020132460A JP2022029225A JP 2022029225 A JP2022029225 A JP 2022029225A JP 2020132460 A JP2020132460 A JP 2020132460A JP 2020132460 A JP2020132460 A JP 2020132460A JP 2022029225 A JP2022029225 A JP 2022029225A
Authority
JP
Japan
Prior art keywords
resin film
resin
conductive wire
conductive
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020132460A
Other languages
Japanese (ja)
Inventor
貴司 権田
Takashi Gonda
昭紘 小泉
Akihiro Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2020132460A priority Critical patent/JP2022029225A/en
Publication of JP2022029225A publication Critical patent/JP2022029225A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Insulating Bodies (AREA)

Abstract

To provide a resin film for a conductive element wire which prevents interlayer peeling and can improve heat resistance and electric characteristics and a method for manufacturing the same, and a flat rectangular electric wire.SOLUTION: A flat rectangular electric wire 1 for large current includes a plurality of conductive element wires 2 having approximately rectangular cross sections, an insulating layer 3 interposed between the plurality of conductive element wires 2, and a resin film 4 for a conductive element wire that covers the plurality of conductive element wires 2 and the insulating layer 3 and is fused thereto, and is used as components of a hybrid vehicle (HV), an electric vehicle (EV) and the like, in which the resin film 4 for the conductive element wire is molded of a molding material containing 100 pts.mass of a polyarylene ether ketone resin and 1 pts.mass or more and 100 pts.mass or less of an adhesive fluorine resin. The conductive element wires 2, the insulating layer 3 and the resin film 4 for the conductive element wire are bonded to each other to be integrated with each other accompanied by melting of the resin film 4 for the conductive element wire, and accordingly an adhesive layer for bonding the conductive element wires 2 and the resin film 4 for the conductive element wire can be omitted.SELECTED DRAWING: Figure 1

Description

本発明は、電気・電子機器等に使用される導電素線用樹脂フィルム及びその製造方法並びに平角電線に関するものである。 The present invention relates to a resin film for a conductive wire used in electric / electronic devices, a method for manufacturing the same, and a flat wire.

従来、交流モータ、高周波電気機器のコイル、ハイブリッド自動車(HV)、電気自動車(EV)用モータ、高速鉄道車両用モータ等には、高周波用の平角電線が使用されている。この種の平角電線は、図示しないが、外周に絶縁用のエナメル皮膜や酸化膜が形成された断面方形の平角金属体の積層により形成されている。また、エナメル皮膜を用いない平角電線として、接着用の熱硬化性樹脂膜や酸化膜が外周に形成された断面矩形の平角金属体を積層したタイプも知られている。 Conventionally, flat-angle electric wires for high frequencies have been used in AC motors, coils of high-frequency electric devices, hybrid vehicles (HVs), motors for electric vehicles (EVs), motors for high-speed railway vehicles, and the like. Although not shown, this type of flat electric wire is formed by laminating a flat metal body having a square cross section in which an enamel film or an oxide film for insulation is formed on the outer periphery thereof. Further, as a flat electric wire that does not use an enamel film, a type in which a thermosetting resin film for adhesion or a flat metal body having a rectangular cross section formed on the outer periphery is laminated is also known.

例えば、導体線間に絶縁性の熱硬化性樹脂の接着層を有する集合導体の平角電線が知られている(特許文献1参照)。また、外周に酸化皮膜を形成した平角金属導体を積層し、その積層導体部を絶縁層で被覆した平角電線も知られている(特許文献2参照)。しかしながら、これらの平角電線は、モータの組み立て時における溶接工程でエナメル皮膜がススとなって残存するので、強固な溶接を期待することができない。エナメル皮膜を用いないタイプの場合には、良好な溶接が期待できるものの、曲げ加工時における平角金属導体間の密着性に問題が生じる。 For example, a flat wire of an aggregate conductor having an adhesive layer of an insulating thermosetting resin between conductor wires is known (see Patent Document 1). Further, there is also known a flat-angle electric wire in which a flat-angle metal conductor having an oxide film formed on the outer periphery thereof is laminated and the laminated conductor portion is coated with an insulating layer (see Patent Document 2). However, since the enamel film remains as soot in the welding process at the time of assembling the motor, these flat electric wires cannot be expected to be firmly welded. In the case of the type that does not use an enamel film, good welding can be expected, but there is a problem in the adhesion between the flat metal conductors during bending.

係る点に鑑み、従来においては、断面矩形の導電素線が層間絶縁層を挟んで複数本積層配置された集合導体と、層間絶縁層を含む集合導体を被覆する外層絶縁層とを備え、これら集合導体と外層絶縁層との間に、厚さ3μm以上10μm以下の熱可塑性樹脂製の接着層を有する平角電線が開発され、提案されている(特許文献3、4参照)。 In view of this point, conventionally, a plurality of conductive strands having a rectangular cross section are laminated and arranged with an interlayer insulating layer interposed therebetween, and an outer layer insulating layer covering the collective conductor including the interlayer insulating layer is provided. A flat wire having an adhesive layer made of a thermoplastic resin having a thickness of 3 μm or more and 10 μm or less between the collective conductor and the outer layer insulating layer has been developed and proposed (see Patent Documents 3 and 4).

特開2008‐186724号公報Japanese Unexamined Patent Publication No. 2008-186724 特開2009‐245666号公報Japanese Unexamined Patent Publication No. 2009-245666 WO2015/033821号公報WO2015 / 033821 Gazette 特開2017‐098030号公報Japanese Unexamined Patent Publication No. 2017-08030

従来における平角電線は、以上のように構成され、集合導体と外層絶縁層との間に、熱可塑性樹脂製の接着層が介在されるが、単なる接着層の介在では、接着層の劣化に伴い、集合導体、外層絶縁層、及び接着層の間に層間剥離が生じ、耐熱性や電気特性(電気絶縁性)等に大きな問題が生じることとなる。また、特許文献3、4の場合には、絶縁層が押出被覆で形成されるので、ピンホールが発生しやすく、このピンホールが発生すると、発生部分の絶縁性が低下するという問題が生じる。 The conventional flat wire is configured as described above, and an adhesive layer made of a thermoplastic resin is interposed between the collective conductor and the outer layer insulating layer. However, if the adhesive layer is simply interposed, the adhesive layer deteriorates. , Delamination occurs between the collective conductor, the outer layer insulating layer, and the adhesive layer, which causes a big problem in heat resistance, electrical characteristics (electrical insulating property), and the like. Further, in the case of Patent Documents 3 and 4, since the insulating layer is formed by the extrusion coating, pinholes are likely to occur, and when the pinholes are generated, there arises a problem that the insulating property of the generated portion is lowered.

本発明は上記に鑑みなされたもので、層間剥離を防いで耐熱性や電気特性等の向上を図ることのできる導電素線用樹脂フィルム及びその製造方法並びに平角電線を提供することを目的としている。 The present invention has been made in view of the above, and an object of the present invention is to provide a resin film for a conductive wire, a method for manufacturing the same, and a flat wire, which can prevent delamination and improve heat resistance, electrical characteristics, and the like. ..

本発明者等は、上記課題を解決すべく、鋭意研究した結果、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂との組み合わせに着目し、本発明を完成させた。すなわち、本発明においては上記課題を解決するため、断面略矩形の導電素線に被覆されるものであり、
ポリアリーレンエーテルケトン樹脂100質量部と、接着性フッ素樹脂1質量部以上100質量部以下とを含有した成形材料により成形されることを特徴としている。
As a result of diligent research to solve the above problems, the present inventors have focused on the combination of the polyarylene ether ketone resin and the adhesive fluororesin, and completed the present invention. That is, in the present invention, in order to solve the above problem, it is covered with a conductive wire having a substantially rectangular cross section.
It is characterized in that it is molded by a molding material containing 100 parts by mass of a polyarylene ether ketone resin and 1 part by mass or more and 100 parts by mass or less of an adhesive fluororesin.

なお、導電素線が複数であり、この複数の導電素線の間に絶縁層が介在されており、これら複数の導電素線と絶縁層とに導電素線用樹脂フィルムが被覆して融着されるようにすることができる。
また、複数の導電素線と絶縁層とに導電素線用樹脂フィルムがスパイラル巻きして融着されるようにすることができる。
また、導電素線用樹脂フィルムの相対結晶化度が80%未満であることが好ましい。
In addition, there are a plurality of conductive strands, and an insulating layer is interposed between the plurality of conductive strands, and the plurality of conductive strands and the insulating layer are coated with a resin film for the conductive strands and fused. Can be done.
Further, the resin film for the conductive wire can be spirally wound around the plurality of conductive wires and the insulating layer so as to be fused.
Further, it is preferable that the relative crystallinity of the resin film for the conductive wire is less than 80%.

また、導電素線用樹脂フィルムのJIS K 7127に準拠して測定された23℃における引張破断時伸びが50%以上であり、JIS K 7127に準拠して測定された23℃における引張弾性率が100N/mm以上3000N/mm以下であることが好ましい。
また、導電素線用樹脂フィルムの空洞共振器摂動法により測定された1GHzにおける比誘電率が3.0以下であると良い。
Further, the elongation at tensile break at 23 ° C. measured according to JIS K 7127 of the resin film for conductive wire is 50% or more, and the tensile elastic modulus at 23 ° C. measured according to JIS K 7127 is It is preferably 100 N / mm 2 or more and 3000 N / mm 2 or less.
Further, it is preferable that the relative permittivity at 1 GHz measured by the cavity resonator perturbation method of the resin film for the conductive wire is 3.0 or less.

また、導電素線用樹脂フィルムの貯蔵弾性率(E’)が、〔ポリアリーレンエーテルケトン樹脂のガラス転移点(Tg)-10℃〕以上〔ポリアリーレンエーテルケトン樹脂のガラス転移点(Tg)+50℃〕以下の温度範囲中で一旦1×10Pa以下に低下する凹部になる部分を有すると良い。
また、導電素線用樹脂フィルムの厚さが1μm以上100μm以下であると良い。
Further, the storage elastic modulus (E') of the resin film for conductive wire is [glass transition point (Tg) -10 ° C of polyarylene ether ketone resin] or more [glass transition point (Tg) +50 of polyarylene ether ketone resin. ℃] It is preferable to have a portion that becomes a recess that once drops to 1 × 10 8 Pa or less in the temperature range of 1 × 10 8 Pa or less.
Further, the thickness of the resin film for the conductive wire is preferably 1 μm or more and 100 μm or less.

また、本発明においては上記課題を解決するため、請求項1ないし6のいずれかに記載した導電素線用樹脂フィルムの製造方法であり、
ポリアリーレンエーテルケトン樹脂100質量部と、接着性フッ素樹脂1質量部以上100質量部以下とを含有した成形材料を溶融混練し、この成形材料を成形機のダイスにより導電素線用樹脂フィルムに押出成形し、押出成形した導電素線用樹脂フィルムを冷却ロールに接触させて冷却することを特徴としている。
また、本発明においては上記課題を解決するため、請求項1ないし6のいずれかに記載した導電素線用樹脂フィルムを有する平角電線であることを特徴としている。
Further, in the present invention, in order to solve the above problems, the method for producing a resin film for a conductive wire according to any one of claims 1 to 6 is used.
A molding material containing 100 parts by mass of a polyarylene ether ketone resin and 1 part by mass or more and 100 parts by mass or less of an adhesive fluororesin is melt-kneaded, and this molding material is extruded into a resin film for a conductive wire by a die of a molding machine. It is characterized in that a resin film for a conductive wire that has been molded and extruded is brought into contact with a cooling roll to be cooled.
Further, in order to solve the above problems, the present invention is characterized in that it is a flat electric wire having the resin film for the conductive wire according to any one of claims 1 to 6.

ここで、特許請求の範囲における断面略矩形には、断面矩形と、おおよそ断面矩形と認められる形のいずれもが含まれる。また、導電素線は、単数でも良いが、複数の場合、2本、3本、4本、5本、6本、7本等、特に問うものではない。この導電素線は、複数の場合、断面略矩形であれば、同じ大きさや形状、厚さでも良いし、異なる大きさや形状、厚さでも良い。 Here, the substantially rectangular cross-section within the scope of the claims includes both a rectangular cross-section and a shape substantially recognized as a rectangular cross-section. Further, the number of conductive strands may be one, but in the case of a plurality of conductors, there is no particular question such as two, three, four, five, six, seven or the like. In the case of a plurality of conductive strands, the conductive strands may have the same size, shape, and thickness, or may have different sizes, shapes, and thicknesses, as long as they have a substantially rectangular cross section.

ポリアリーレンエーテルケトン樹脂は、複数種あるが、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルエーテルケトンケトン樹脂、及びポリエーテルケトンエーテルケトンケトン樹脂の少なくともいずれかであることが好ましい。また、絶縁層は、単数でも良いが、複数でも良い。 There are a plurality of types of polyarylene ether ketone resins, but they are at least one of a polyether ketone resin, a polyether ether ketone resin, a polyether ketone ketone resin, a polyether ether ketone ketone resin, and a polyether ketone ether ketone ketone resin. Is preferable. Further, the insulating layer may be a single layer or a plurality of insulating layers.

本発明によれば、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルムの溶融により、導電素線とこれを被覆する導電素線用樹脂フィルムとが接着するので、これら導電素線と導電素線用樹脂フィルムとを接着する接着層を省略することができる。 According to the present invention, the conductive wire and the resin film for conductive wire covering the conductive wire are adhered to each other by melting the resin film for conductive wire containing the polyarylene ether ketone resin and the adhesive fluororesin. The adhesive layer for adhering the conductive wire and the resin film for the conductive wire can be omitted.

本発明によれば、導電素線用樹脂フィルムを、ポリアリーレンエーテルケトン樹脂100質量部と、接着性フッ素樹脂1質量部以上100質量部以下とを含有した成形材料により成形するので、層間剥離を防いで耐熱性や電気特性等の向上を図ることができるという効果がある。 According to the present invention, the resin film for a conductive wire is molded by a molding material containing 100 parts by mass of a polyarylene ether ketone resin and 1 part by mass or more and 100 parts by mass or less of an adhesive fluororesin, so that delamination can be performed. It has the effect of preventing heat resistance and improving electrical characteristics.

請求項2記載の発明によれば、導電素線が単数ではなく、複数なので、例えばモータ等に組み込まれても、高周波における損失量の低減を図ることができる。また、絶縁層により、電位差を有する複数の導電素線が接触するのを防止し、複数の導電素線間で部分放電が生じるおそれを排除することができる。 According to the second aspect of the present invention, since the number of conductive strands is not a single number but a plurality of conductive strands, it is possible to reduce the amount of loss at high frequencies even if the conductive strands are incorporated in a motor or the like, for example. Further, the insulating layer can prevent a plurality of conductive wires having a potential difference from coming into contact with each other, and can eliminate the possibility of partial discharge occurring between the plurality of conductive wires.

請求項3記載の発明によれば、導電素線に導電素線用樹脂フィルムをスパイラル巻きするので、絶縁破壊電圧や機械的強度を向上させることができる。また、隙間のないスパイラル巻きにより、ピンホールの発生を防いで絶縁性を向上させることができる。
請求項4記載の発明によれば、導電素線用樹脂フィルムの相対結晶化度が80%未満なので、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルムを軟化させ、融着性を向上させることが可能となる。
According to the third aspect of the present invention, since the resin film for the conductive wire is spirally wound around the conductive wire, the dielectric breakdown voltage and the mechanical strength can be improved. In addition, the spiral winding without gaps can prevent the occurrence of pinholes and improve the insulating property.
According to the invention of claim 4, since the relative crystallinity of the resin film for conductive wire is less than 80%, the resin film for conductive wire containing the polyarylene ether ketone resin and the adhesive fluororesin is softened. , It is possible to improve the fusion property.

請求項5記載の発明によれば、導電素線用樹脂フィルムのJIS K 7127に準拠して測定された23℃における引張破断時伸びが50%以上なので、導電素線用樹脂フィルムに適切な靭性を付与し、導電素線に対する被覆時に破断や割れ等の生じるおそれを排除することが可能になる。また、導電素線用樹脂フィルムのJIS K 7127に準拠して測定された23℃における引張弾性率が100N/mm以上3000N/mm以下の範囲なので、導電素線用樹脂フィルムに適切な剛性を付与することが可能になる。 According to the invention according to claim 5, since the elongation at tensile break at 23 ° C. measured according to JIS K 7127 of the resin film for conductive wire is 50% or more, the toughness is suitable for the resin film for conductive wire. It is possible to eliminate the possibility of breakage or cracking when coating the conductive wire. In addition, the tensile elastic modulus at 23 ° C. measured in accordance with JIS K 7127 of the resin film for conductive wire is in the range of 100 N / mm 2 or more and 3000 N / mm 2 or less, so that the rigidity is appropriate for the resin film for conductive wire. Can be granted.

請求項6記載の発明によれば、導電素線用樹脂フィルムの空洞共振器摂動法により測定された1GHzにおける比誘電率が3.0以下なので、導電素線用樹脂フィルムの絶縁性の確保が期待できる。 According to the invention of claim 6, since the relative permittivity at 1 GHz measured by the cavity resonator perturbation method of the resin film for conductive wire is 3.0 or less, the insulation property of the resin film for conductive wire can be ensured. You can expect it.

請求項7記載の発明によれば、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルムのハンドリング性を向上させたり、製造設備の簡略化を図ることが可能となる。
請求項8記載の発明によれば、平角電線の採用により、占積率、表皮効果、放熱性、省スペース化の向上が期待できる。
According to the invention according to claim 7, it is possible to improve the handleability of the resin film for conductive strands containing the polyarylene ether ketone resin and the adhesive fluororesin, and to simplify the manufacturing equipment. ..
According to the invention of claim 8, the adoption of the flat wire can be expected to improve the space factor, the skin effect, the heat dissipation, and the space saving.

本発明に係る導電素線用樹脂フィルム及び平角電線の実施形態を模式的に示す斜視説明図である。It is a perspective explanatory drawing schematically showing the embodiment of the resin film for a conductive wire and the flat wire which concerns on this invention. 本発明に係る導電素線用樹脂フィルム及び平角電線の実施形態を模式的に示す断面説明図である。It is sectional drawing which shows schematically the embodiment of the resin film for a conductive wire and the flat wire which concerns on this invention. 本発明に係る導電素線用樹脂フィルムの製造方法の実施形態における製造装置を模式的に示す全体説明図である。It is an overall explanatory view which shows typically the manufacturing apparatus in embodiment of the manufacturing method of the resin film for a conductive wire which concerns on this invention. 本発明に係る導電素線用樹脂フィルムの実施形態における相対結晶化度が34.6%のポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルムの貯蔵弾性率(E’)を模式的に示すグラフである。The storage elastic modulus (E) of the resin film for conductive wire containing the polyarylene ether ketone resin having a relative crystallinity of 34.6% and the adhesive fluororesin in the embodiment of the resin film for conductive wire according to the present invention. ') Is a graph schematically showing. 本発明に係る導電素線用樹脂フィルムの実施形態における相対結晶化度が100%のポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルムの貯蔵弾性率(E’)を模式的に示すグラフである。Storage elastic modulus (E') of the resin film for conductive wire containing the polyarylene ether ketone resin having a relative crystallinity of 100% and the adhesive fluororesin in the embodiment of the resin film for conductive wire according to the present invention. It is a graph which shows schematically. 本発明に係る導電素線用樹脂フィルム及び平角電線の第2の実施形態を模式的に示す断面説明図である。It is sectional drawing which shows typically the 2nd Embodiment of the resin film for conductive wire and the flat wire, which concerns on this invention.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における平角電線1は、図1や図2に示すように、相対向する複数の導電素線2と、この複数の導電素線2の間に介在される絶縁層3と、これら複数の導電素線2と絶縁層3とに被覆して融着される絶縁樹脂部材である導電素線用樹脂フィルム4とを備え、ハイブリッド自動車(HV)や電気自動車(EV)等の部品として利用される大電流用の電線であり、導電素線用樹脂フィルム4を、少なくともポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した成形材料Mにより成形するようにしている。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the flat wire 1 in the present embodiment includes a plurality of conducting wires 2 facing each other and a plurality of the conductive wires 2. The insulating layer 3 interposed between the conductive wires 2 and the resin film 4 for the conductive wires, which is an insulating resin member coated and fused to the plurality of conductive wires 2 and the insulating layer 3. It is an electric wire for high current used as a part of a hybrid vehicle (HV), an electric vehicle (EV), etc., and a resin film 4 for a conductive wire is provided with at least a polyarylene ether ketone resin and an adhesive fluororesin. It is made to be molded by the contained molding material M.

複数の導電素線2は、それぞれ同じ大きさの平面略帯形に形成され、図2の上下方向に一対積層されて相互に隣接しており、各導電素線2が断面積の大きい断面長方形の矩形に形成されて表皮効果を向上させたり、電気抵抗の低下に資するよう機能する。複数の導電素線2が一対なのは、モータやトランスに平角電線1が組み込まれた場合、積層数が一対(2層)であれば、高周波における損失量の低減が充分期待できるからである。 The plurality of conductive strands 2 are each formed in a substantially strip shape of the same size, are laminated in pairs in the vertical direction of FIG. 2, and are adjacent to each other. It is formed into a rectangular shape and functions to improve the skin effect and contribute to the reduction of electrical resistance. The reason why the plurality of conductive strands 2 are paired is that when the flat wire 1 is incorporated in a motor or a transformer, if the number of laminated wires is a pair (two layers), a sufficient reduction in the amount of loss at high frequencies can be expected.

導電素線2の材質としては、特に限定されるものではないが、例えば酸素含有量が30ppm以下の低酸素銅、又は無酸素銅の屈曲可能な導体が好ましい。これは、導電素線2の酸素含有量が少なければ、導電素線2を溶接するために熱で溶融させた場合、溶接部分に、含有酸素に起因するボイドが発生するのを防止することができるからである。また、溶接部分の電気抵抗が悪化することを防止し、しかも、溶接部分の強度の維持が期待できるからである。 The material of the conductive wire 2 is not particularly limited, but for example, a flexible conductor made of low-oxygen copper or oxygen-free copper having an oxygen content of 30 ppm or less is preferable. This is because if the oxygen content of the conductive wire 2 is low, it is possible to prevent the generation of voids due to the oxygen contained in the welded portion when the conductive wire 2 is melted by heat for welding. Because it can be done. Further, it is possible to prevent the electric resistance of the welded portion from deteriorating and to maintain the strength of the welded portion.

絶縁層3は、一対の導電素線2の対向面の間に挟持され、電位差を有する一対の導電素線2同士が接触するのを防止し、一対の導電素線2間で部分放電が生じて絶縁破壊を招くのを有効に防止する。この絶縁層3としては、融点が250℃以上350℃以下である熱可塑性樹脂、具体的には、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂やポリブチレンテレフタレート樹脂等のポリエステル樹脂、ポリアミド66樹脂、ポリアミド6T樹脂やポリアミド9T樹脂等のポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂等があげられる。 The insulating layer 3 is sandwiched between the facing surfaces of the pair of conductive strands 2 to prevent the pair of conductive strands 2 having a potential difference from coming into contact with each other, and a partial discharge occurs between the pair of conductive strands 2. Effectively prevents insulation breakdown. The insulating layer 3 includes a thermoplastic resin having a melting point of 250 ° C. or higher and 350 ° C. or lower, specifically, a polyethylene terephthalate resin, a polyester resin such as polyethylene naphthalate resin or polybutylene terephthalate resin, a polyamide 66 resin, or a polyamide 6T. Examples thereof include a polyamide resin such as a resin and a polyamide 9T resin, a polyphenylene sulfide resin, and a polyimide resin.

熱可塑性樹脂の融点が250℃以上350℃以下なのは、この範囲から外れると、絶縁層3の電気特性の低下を招くからである。このような絶縁層3は、絶縁層3用の熱可塑性樹脂を含有する樹脂ワニスを導電素線2上に塗布、焼付することにより断面板形に形成される。 The reason why the melting point of the thermoplastic resin is 250 ° C. or higher and 350 ° C. or lower is that if it is out of this range, the electrical characteristics of the insulating layer 3 are deteriorated. Such an insulating layer 3 is formed into a cross-sectional plate shape by applying and baking a resin varnish containing a thermoplastic resin for the insulating layer 3 on the conductive wire 2.

導電素線用樹脂フィルム4は、少なくともポリアリーレンエーテルケトン樹脂100質量部と、接着性フッ素樹脂1質量部以上100質量部以下とを含有した成形材料Mにより長い帯形に成形され、一対の導電素線2と絶縁層3の周面長手方向に巻装被覆して融着される。この導電素線用樹脂フィルム4は、一対の導電素線2と絶縁層3の周面長手方向に単に平巻きされても良いが、隙間なく斜めにスパイラル巻き(トラバース巻き)されることが好ましい。 The resin film 4 for a conductive wire is formed into a long strip by a molding material M containing at least 100 parts by mass of a polyarylene ether ketone resin and 1 part by mass or more and 100 parts by mass or less of an adhesive fluororesin, and is formed into a pair of conductive wires. The strands 2 and the insulating layer 3 are wound and coated in the longitudinal direction of the peripheral surface and fused. The resin film 4 for conductive wires may be simply wound flat in the longitudinal direction of the peripheral surface of the pair of conductive wires 2 and the insulating layer 3, but is preferably spirally wound (traverse wound) diagonally without a gap. ..

これは、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を含有した成形材料Mが筒形に押出成形されて複数の導電素線2と絶縁層3とを被包するよりも、隙間のないスパイラル巻きにより、ピンホールの発生の問題を解消して絶縁性を向上させることができるからである。特に、電界が集中する導電素線2の隅部の絶縁性の向上が期待できるからである。加えて、トランスに平角電線1が利用される場合、スパイラル巻きにより、良好な電圧の変換が期待できるからである。 This is a spiral winding without gaps, rather than a molding material M containing a polyarylene ether ketone resin and an adhesive fluororesin being extruded into a tubular shape and covering a plurality of conductive strands 2 and an insulating layer 3. This is because the problem of pinhole generation can be solved and the insulating property can be improved. In particular, it is expected that the insulating property at the corner of the conductive wire 2 where the electric field is concentrated can be improved. In addition, when the flat wire 1 is used for the transformer, good voltage conversion can be expected by spiral winding.

成形材料Mに含有されるポリアリーレンエーテルケトン樹脂は、アリーレン基、エーテル基、及びカルボニル基からなる結晶性の樹脂であり、例えば特許5709878号公報や特許第5847522号公報、あるいは文献〔株式会社旭リサーチセンター:先端用途で成長するスーパーエンプラ・PEEK(上)〕等に記載された樹脂があげられ、耐熱老化特性、電気特性(電気絶縁性)、耐寒性、機械的特性、耐薬品性、耐溶剤性等の向上が期待できる。 The polyarylene ether ketone resin contained in the molding material M is a crystalline resin composed of an arylene group, an ether group, and a carbonyl group. Research Center: Resins listed in Super Engineering Plastics / PEEK (above), which grow in advanced applications, include heat-resistant aging properties, electrical properties (electrical insulation), cold resistance, mechanical properties, chemical resistance, and chemical resistance. Improvement of solvent properties can be expected.

ポリアリーレンエーテルケトン樹脂の具体例としては、例えば化学式(1)で表される化学構造式を有するポリエーテルエーテルケトン(PEEK)樹脂、化学式(2)で表される化学構造を有するポリエーテルケトン(PEK)樹脂、化学式(3)で表される化学構造を有するポリエーテルケトンケトン(PEKK)樹脂、化学式(4)の化学構造を有するポリエーテルエーテルケトンケトン(PEEKK)樹脂、あるいは化学式(5)の化学構造を有するポリエーテルケトンエーテルケトンケトン(PEKEKK)樹脂等があげられる。 Specific examples of the polyarylene ether ketone resin include a polyether ether ketone (PEEK) resin having a chemical structural formula represented by the chemical formula (1) and a polyether ketone having a chemical structure represented by the chemical formula (2) (2). PEK) resin, polyether ketone ketone (PEKK) resin having a chemical structure represented by the chemical formula (3), polyether ether ketone ketone (PEEKK) resin having the chemical structure of the chemical formula (4), or the chemical formula (5). Examples thereof include polyether ketones having a chemical structure and ether ketone ketone (PEKEKK) resins.

Figure 2022029225000002
Figure 2022029225000002

Figure 2022029225000003
Figure 2022029225000003

Figure 2022029225000004
Figure 2022029225000004

Figure 2022029225000005
Figure 2022029225000005

Figure 2022029225000006
Figure 2022029225000006

これらポリアリーレンエーテルケトン樹脂の中では、易入手性、コスト、及び導電素線用樹脂フィルム4の成形性の観点から、ポリエーテルエーテルケトン樹脂とポリエーテルケトンケトン樹脂とが好ましい。ポリエーテルエーテルケトン樹脂の製品例としては、ビクトレック社製の製品名:Victrex Powderシリーズ、Victrex Granulesシリーズ、ダイセル・エボニック社製の製品名:ベスタキープシリーズ、ソルベイスペシャルティポリマーズ社製の製品名:キータスパイア PEEKシリーズがあげられる。また、ポリエーテルケトンケトン樹脂の製品例としては、アルケマ社製の製品名:KEPSTANシリーズが該当する。 Among these polyetheretherketone resins, the polyetheretherketone resin and the polyetherketoneketone resin are preferable from the viewpoints of easy availability, cost, and moldability of the resin film 4 for conductive strands. Examples of polyetheretherketone resin products include Victrex Powder series, Victrex Granules series, Daicel Evonik product name: Vestakeep series, and Solvay Specialty Polymers product name: Qiita Spire. The PEEK series can be mentioned. Further, as a product example of the polyetherketoneketone resin, the product name: KEPSTAN series manufactured by Arkema Co., Ltd. corresponds.

ポリアリーレンエーテルケトン樹脂の融点は、270℃以上420℃以下、好ましくは300℃以400℃以下、より好ましくは330℃以上370℃以下、さらに好ましくは340℃以上360℃以下の範囲内である。ポリアリーレンエーテルケトン樹脂の融点が270℃以上420℃以下の範囲なのは、融点が270℃未満の場合には、耐熱性試験において絶縁性が低下するおそれがあり、逆に融点が420℃を越える場合には、ポリアリーレンエーテルケトン樹脂が溶融時に完全に溶融せずに残存し、融着性の低下を招くおそれがあるからである。このポリアリーレンエーテルケトン樹脂の融点は、示差走査熱量計により測定することが可能である。 The melting point of the polyarylene ether ketone resin is 270 ° C. or higher and 420 ° C. or lower, preferably 300 ° C. or higher and 400 ° C. or lower, more preferably 330 ° C. or higher and 370 ° C. or lower, and further preferably 340 ° C. or higher and 360 ° C. or lower. The melting point of the polyarylene ether ketone resin is in the range of 270 ° C or higher and 420 ° C or lower. This is because the polyarylene ether ketone resin remains without being completely melted at the time of melting, which may lead to a decrease in fusion property. The melting point of this polyarylene ether ketone resin can be measured by a differential scanning calorimeter.

ポリアリーレンエーテルケトン樹脂は、1種単独でも良いし、2種以上を混合して使用しても良い。また、ポリアリーレンエーテルケトン樹脂は、化学式(1)~(5)で表される化学構造を2つ以上有する共重合体でも良い。また、ポリアリーレンエーテルケトン樹脂は、通常、粉状、顆粒状、ペレット状等の成形加工に適した形態で使用される。ポリアリーレンエーテルケトン樹脂の製造方法としては、特に限定されるものではないが、例えば文献〔株式会社旭リサーチセンター:先端用途で成長するスーパーエンプラ・PEEK(上)〕に記載された製法があげられる。 The polyarylene ether ketone resin may be used alone or in combination of two or more. Further, the polyarylene ether ketone resin may be a copolymer having two or more chemical structures represented by the chemical formulas (1) to (5). Further, the polyarylene ether ketone resin is usually used in a form suitable for molding such as powder, granule, and pellet. The method for producing the polyarylene ether ketone resin is not particularly limited, and examples thereof include the production method described in the literature [Asahi Research Center Co., Ltd .: Super engineering plastic PEEK (above) that grows in advanced applications]. ..

成形材料Mに含有される接着性フッ素樹脂は、テトラフルオロエチレン(以下、TFEという)、及び/又はクロロトリフルオロエチレン(以下、CTFEという)に基づく繰り返し単位(a)、ジカルボン酸無水物基を有し、かつ環内に重合性不飽和基を有する環状炭化水素モノマーに基づく繰り返し単位(b)、及びその他のモノマー(但し、繰り返し単位(a)、(b)と重複する場合には、そのモノマーを除く)に基づく繰り返し単位(c)を含有する。 The adhesive fluororesin contained in the molding material M contains a repeating unit (a) based on tetrafluoroethylene (hereinafter referred to as TFE) and / or chlorotrifluoroethylene (hereinafter referred to as CTFE) and a dicarboxylic acid anhydride group. A repeating unit (b) based on a cyclic hydrocarbon monomer having a polymerizable unsaturated group in the ring, and other monomers (provided that they overlap with the repeating units (a) and (b), if they overlap with each other). Contains a repeating unit (c) based on (excluding monomers).

係る接着性フッ素樹脂において、繰り返し単位(a)、繰り返し単位(b)、及び繰り返し単位(c)の合計モル量に対し、繰り返し単位(a)が50~99.89モル%、繰り返し単位(b)が0.01~5モル%であり、繰り返し単位(c)が0.1~49.99モル%である。好ましくは繰り返し単位(a)が50~99.47モル%、繰り返し単位(b)が0.03~3モル%であり、繰り返し単位(c)が0.5~49.97モル%、より好ましくは繰り返し単位(a)が50~98.95モル%、繰り返し単位(b)が0.05~2モル%であり、繰り返し単位(c)が1~49.95モル%が良い。 In the adhesive fluororesin, the repeating unit (a) is 50 to 99.89 mol% and the repeating unit (b) is 50 to 99.89 mol% with respect to the total molar amount of the repeating unit (a), the repeating unit (b), and the repeating unit (c). ) Is 0.01 to 5 mol%, and the repeating unit (c) is 0.1 to 49.99 mol%. The repeating unit (a) is preferably 50 to 99.47 mol%, the repeating unit (b) is 0.03 to 3 mol%, and the repeating unit (c) is 0.5 to 49.97 mol%, more preferably. The repeating unit (a) is 50 to 98.95 mol%, the repeating unit (b) is 0.05 to 2 mol%, and the repeating unit (c) is 1 to 49.95 mol%.

これは、繰り返し単位(a)、繰り返し単位(b)、及び繰り返し単位(c)のモル%が係る範囲にあれば、接着性フッ素樹脂の耐熱性や耐薬品性が向上するという理由に基づく。また、繰り返し単位(b)のモル%が係る範囲にあれば、接着性フッ素樹脂の接着性が向上するという理由に基づく。さらに、繰り返し単位単位(c)のモル%が係る範囲にあれば、接着性フッ素樹脂の成形性や耐ストレスクラック性等の機械物性が向上するという理由に基づく。 This is based on the reason that the heat resistance and chemical resistance of the adhesive fluororesin are improved if the molar% of the repeating unit (a), the repeating unit (b), and the repeating unit (c) is in the relevant range. Further, it is based on the reason that the adhesiveness of the adhesive fluororesin is improved if the molar% of the repeating unit (b) is within the relevant range. Further, it is based on the reason that if the molar% of the repeating unit unit (c) is within the relevant range, the mechanical properties such as the moldability and the stress crack resistance of the adhesive fluororesin are improved.

上記「ジカルボン酸無水物基を有し、かつ環内に重合性不飽和基を有する環状炭化水素モノマー」(以下、単に環状炭化水素モノマーと略称する)は、1つ以上の5員環、又は6員環からなる環状炭化水素であって、しかも、ジカルボン酸無水物基と環内重合性不飽和基を有する重合性化合物をいう。 The above-mentioned "cyclic hydrocarbon monomer having a dicarboxylic acid anhydride group and having a polymerizable unsaturated group in the ring" (hereinafter, simply abbreviated as cyclic hydrocarbon monomer) is a one or more 5-membered ring or a ring. A cyclic hydrocarbon consisting of a 6-membered ring, and a polymerizable compound having a dicarboxylic acid anhydride group and an in-ring polymerizable unsaturated group.

環状炭化水素としては、1つ以上の有橋多環炭化水素を有する環状炭化水素が好ましい。すなわち、有橋多環炭化水素からなる環状炭化水素、有橋多環炭化水素の2以上が縮合した環状炭化水素、又は有橋多環炭化水素と他の環状炭化水素が縮合した環状炭化水素であることが好ましい。また、この環状炭化水素モノマーは、環内重合性不飽和基、すなわち炭化水素環を構成する炭素原子間に存在する重合性不飽和基を1つ以上有する。この環状炭化水素モノマーはさらにジカルボン酸無水物基(-CO-O-CO-)を有し、ジカルボン酸無水物基は炭化水素環を構成する2つの炭素原子に結合していても良く、環外の2つの炭素原子に結合していても良い。 As the cyclic hydrocarbon, a cyclic hydrocarbon having one or more bridged polycyclic hydrocarbons is preferable. That is, a cyclic hydrocarbon composed of Aribashi polycyclic hydrocarbons, a cyclic hydrocarbon obtained by condensing two or more of Aribashi polycyclic hydrocarbons, or a cyclic hydrocarbon obtained by condensing Aribashi polycyclic hydrocarbons with other cyclic hydrocarbons. It is preferable to have. Further, the cyclic hydrocarbon monomer has one or more polymerizable unsaturated groups in the ring, that is, one or more polymerizable unsaturated groups existing between the carbon atoms constituting the hydrocarbon ring. This cyclic hydrocarbon monomer further has a dicarboxylic acid anhydride group (-CO-O-CO-), and the dicarboxylic acid anhydride group may be bonded to two carbon atoms constituting the hydrocarbon ring, and the ring may be bonded. It may be bonded to two outer carbon atoms.

好ましくは、ジカルボン酸無水物基は、上記環状炭化水素の環を構成する炭素原子であって、かつ隣接する2つの炭素原子に結合する。さらに、環状炭化水素の環を構成する炭素原子には、水素原子の代わりに、ハロゲン原子、アルキル基、ハロゲン化アルキル基、その他の置換基が結合していても良い。具体例としては、以下の式(6)~(13)で表されるものがあげられる。ここで、式(7)、(10)~(13)におけるRは、炭素原子数1~6の低級アルキル基、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択されるハロゲン原子、上記低級アルキル基中の水素原子がハロゲン原子で置換されたハロゲン化アルキル基を示す。 Preferably, the dicarboxylic acid anhydride group is a carbon atom constituting the ring of the cyclic hydrocarbon and is bonded to two adjacent carbon atoms. Further, a halogen atom, an alkyl group, an alkyl halide group, or another substituent may be bonded to the carbon atom constituting the ring of the cyclic hydrocarbon instead of the hydrogen atom. Specific examples include those represented by the following equations (6) to (13). Here, R in the formulas (7) and (10) to (13) is a halogen atom selected from a lower alkyl group having 1 to 6 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and the above lower grade. An alkyl halide group in which a hydrogen atom in an alkyl group is replaced with a halogen atom is shown.

Figure 2022029225000007
Figure 2022029225000007

Figure 2022029225000008
Figure 2022029225000008

Figure 2022029225000009
Figure 2022029225000009

Figure 2022029225000010
Figure 2022029225000010

Figure 2022029225000011
Figure 2022029225000011

Figure 2022029225000012
Figure 2022029225000012

Figure 2022029225000013
Figure 2022029225000013

Figure 2022029225000014
Figure 2022029225000014

上記環状炭化水素モノマーとしては、好ましくは式(6)で表される、5-ノルボルネン-2,3-ジカルボン酸無水物(以下、NAHという)、式(8)、(9)で表される酸無水物である環状炭化水素モノマー、式(7)、及び式(10)~(13)において、置換基Rがメチル基である環状炭化水素モノマーがあげられる。より好ましくはNAHが良い。 The cyclic hydrocarbon monomer is preferably represented by the formula (6), 5-norbornene-2,3-dicarboxylic acid anhydride (hereinafter referred to as NAH), the formulas (8) and (9). Examples thereof include a cyclic hydrocarbon monomer which is an acid anhydride, and a cyclic hydrocarbon monomer whose substituent R is a methyl group in the formulas (7) and (10) to (13). More preferably, NAH is good.

その他のモノマーとしては、フッ化ビニル、フッ化ビニリデン(以下、VdFという)、CTFE(但し、繰り返し単位(a)として使用される場合を除く)、トリフルオロエチレン、ヘキサフルオロプロピレン(以下、HFPという)、CF=CFORf 1 (ここで、Rf 1 は炭素数1~10で炭素原子間に酸素原子を含んでも良いペルフルオロアルキル基)、CF=CFORf 2 SO (Rf 2 は炭素数1~10で炭素原子間に酸素原子を含んでも良いペルフルオロアルキレン基、Xはハロゲン原子又は水酸基)、CF=CFORf 2 CO(ここで、Rf 2 は上記と同じ、X は水素原子又は炭素数1~3のアルキル基)、CF=CF(CFOCF=CF (ここで、pは1又は2)、CH=CX(CF(ここで、X及びXは、互いに独立に水素原子、又はフッ素原子、qは2~10の整数)、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)、エチレン、プロピレン、イソブテン等の炭素数2~4のオレフィン、酢酸ビニル等のビニルエステル、エチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル等があげられる。その他のモノマーは、1種単独で用いても良く、2種以上を併用しても良い。 Examples of other monomers include vinyl fluoride, vinylidene fluoride (hereinafter referred to as VdF), CTFE (excluding the case where it is used as a repeating unit (a)), trifluoroethylene, and hexafluoropropylene (hereinafter referred to as HFP). ), CF 2 = CFOR f 1 (where R f 1 is a perfluoroalkyl group having 1 to 10 carbon atoms and may contain oxygen atoms between carbon atoms), CF 2 = CFOR f 2 SO 2 X 1 (R f) . 2 is a perfluoroalkylene group having 1 to 10 carbon atoms and may contain an oxygen atom between carbon atoms, X 1 is a halogen atom or a hydroxyl group), CF 2 = CFOR f 2 CO 2 X 2 (where R f 2 is the above. Same as, X 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms), CF 2 = CF (CF 2 ) p OCF = CF 2 (where p is 1 or 2), CH 2 = CX 3 (CF) 2 ) q X 4 (where X 3 and X 4 are hydrogen atoms or fluorine atoms independently of each other, q is an integer of 2 to 10), perfluoro (2-methylene-4-methyl-1,3-dioxolan). ), An olefin having 2 to 4 carbon atoms such as ethylene, propylene and isobutene, a vinyl ester such as vinyl acetate, a vinyl ether such as ethyl vinyl ether and a cyclohexyl vinyl ether, and the like. The other monomers may be used alone or in combination of two or more.

CF =CFORf 1 の具体例としては、例えばCF=CFOCF CF 、CF=CFOCFCFCF、CF =CFOCF CF CF CF、CF =CFO(CFF等があげられる。好ましくは、CF=CFOCFCF CF である。また、CH =CX(CFの具体例としては、例えばCH=CH(CFF、CH =CH(CF F、CH =CH(CF F、CH =C F(CF H、CH=CF(CF H等があげられる。好ましくは、CH=CH(CF F又はCH =CH(CF Fである。 Specific examples of CF 2 = CFOR f 1 include, for example, CF 2 = CFO CF 2 CF 3 , CF 2 = CFO CF 2 CF 2 CF 3 , CF 2 = CFO CF 2 CF 2 CF 2 CF 3 , CF 2 = CFO (CF 2 ). ) 8 F etc. can be mentioned. Preferably, CF 2 = CFOCF 2 CF 2 CF 3 . Specific examples of CH 2 = CX 3 (CF 2 ) q X 4 include CH 2 = CH (CF 2 ) 2 F, CH 2 = CH (CF 2 ) 3 F, and CH 2 = CH (CF 2 ). ) 4 F, CH 2 = CF (CF 2 ) 3 H, CH 2 = CF (CF 2 ) 4 H and the like. Preferably, CH 2 = CH (CF 2 ) 4 F or CH 2 = CH (CF 2 ) 2 F.

その他のモノマーとしては、好ましくはVdF、HFP、CTFE(但し、繰り返し単位(a)として使用される場合を除く)、CF=CFORf 1 、CH =CX(CF、エチレン、プロピレン及び酢酸ビニルからなる群から選ばれる1種以上であり、より好ましくは、HFP、CTFE(但し、繰り返し単位(a)として使用される場合を除く)、CF=CFORf 1 、エチレン及びCH =CX (CFからなる群から選ばれる1種以上である。最も好ましくは、HFP又はCF =CFORf 1 である。また、CF =CFORf 1 としては、Rf 1 が炭素数1~6のペルフルオロアルキル基が好ましく、炭素数2~4のペルフルオロアルキル基がより好ましく、ペルフルオロプロピル基が最適である。 Other monomers are preferably VdF, HFP, CTFE (except when used as a repeating unit (a)), CF 2 = CFOR f 1 , CH 2 = CX 3 (CF 2 ) q X 4 , One or more selected from the group consisting of ethylene, propylene and vinyl acetate, more preferably HFP, CTFE (except when used as the repeating unit (a)), CF 2 = CFOR f 1 , ethylene. And CH 2 = one or more selected from the group consisting of CX 3 (CF 2 ) q X 4 . Most preferably, HFP or CF 2 = CFOR f 1 . Further, as CF 2 = CFOR f 1 , a perfluoroalkyl group having R f 1 having 1 to 6 carbon atoms is preferable, a perfluoroalkyl group having 2 to 4 carbon atoms is more preferable, and a perfluoropropyl group is most suitable.

接着性フッ素樹脂の具体例としては、例えば、TFE/CF =CFOCF CFCF /NAH共重合体、TFE/HFP/NAH共重合体、TFE/CF =CFOCF CFCF /HFP/NAH共重合体、TFE/VdF/NAH共重合体、TFE/CH=CH(CF F/NAH/エチレン共重合体、TFE/CH=CH(CFF/NAH/エチレン共重合体、CTFE/CH=CH(CF F/NAH/エチレン共重合体、CTFE/CH=CH(CF F/NAH/エチレン共重合体、CTFE/CH=CH(CF F/NAH/エチレン共重合体等があげられる。 Specific examples of the adhesive fluororesin include, for example, TFE / CF 2 = CFOCF 2 CF 2 CF 3 / NAH copolymer, TFE / HFP / NAH copolymer, TFE / CF 2 = CFOCF 2 CF 2 CF 3 /. HFP / NAH copolymer, TFE / VdF / NAH copolymer, TFE / CH 2 = CH (CF 2 ) 4 F / NAH / ethylene copolymer, TFE / CH 2 = CH (CF 2 ) 2 F / NAH / Ethylene copolymer, CTFE / CH 2 = CH (CF 2 ) 4 F / NAH / ethylene copolymer, CTFE / CH 2 = CH (CF 2 ) 2 F / NAH / ethylene copolymer, CTFE / CH 2 = CH (CF 2 ) 2 F / NAH / ethylene copolymer and the like can be mentioned.

接着性フッ素樹脂の融点は、150℃以上330℃以下が好ましく、200℃以上320℃以下がより好ましい。この融点については、繰り返し単位(a)、繰り返し単位(b)、及び繰り返し単位(c)の含有割合を上記範囲内で適宜選定して調整することができる。 The melting point of the adhesive fluororesin is preferably 150 ° C. or higher and 330 ° C. or lower, and more preferably 200 ° C. or higher and 320 ° C. or lower. The melting point can be adjusted by appropriately selecting the content ratios of the repeating unit (a), the repeating unit (b), and the repeating unit (c) within the above range.

接着性フッ素樹脂の高分子末端基としては、エステル基、カーボネート基、水酸基、カルボキシル基、カルボニルフルオリド基、酸無水物残基等の接着性官能基を有すると、接着性フッ素樹脂以外のポリアリーレンエーテルケトン樹脂結晶性の熱可塑性ポリイミド樹脂との接着性に優れるので好ましい。また、接着性官能基を有する高分子末端基は、接着性フッ素樹脂の製造時に、ラジカル重合開始剤、連鎖移動剤等を適宜選定することにより、導入することができる。 As the polymer terminal group of the adhesive fluororesin, if it has an adhesive functional group such as an ester group, a carbonate group, a hydroxyl group, a carboxyl group, a carbonylfluoride group, or an acid anhydride residue, it is a poly other than the adhesive fluororesin. The arylene ether ketone resin is preferable because it has excellent adhesion to a crystalline thermoplastic polyimide resin. Further, the polymer terminal group having an adhesive functional group can be introduced by appropriately selecting a radical polymerization initiator, a chain transfer agent, or the like at the time of producing the adhesive fluororesin.

接着性フッ素樹脂の製造方法は、特に限定されるものではないが、ラジカル重合開始剤を用いるラジカル重合法が用いられる。この重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体、及び必要に応じて適当な有機溶剤を使用する懸濁重合、水性媒体、及び乳化剤を使用する乳化重合があげられるが、特に溶液重合が望ましい。 The method for producing the adhesive fluororesin is not particularly limited, but a radical polymerization method using a radical polymerization initiator is used. The polymerization method includes bulk polymerization, solution polymerization using an organic solvent such as fluorinated hydrocarbon, chlorinated hydrocarbon, fluorinated hydrocarbon, alcohol, and hydrocarbon, an aqueous medium, and an appropriate organic solvent if necessary. Suspension polymerization using, an aqueous medium, and emulsion polymerization using an emulsifier can be mentioned, but solution polymerization is particularly preferable.

接着性フッ素樹脂は特に限定されるものではないが、好ましくは特許第4424246号公報、特許第5263269号公報、特許第5365939号公報記載、あるいは特開2019-43134号公報記載の接着性フッ素樹脂があげられる。この接着性フッ素樹脂の製品例としては、LH-8000〔AGC社製:製品名〕、AH-5000〔AGC社製:製品名〕、AH-2000〔AGC社製:製品名〕EA-2000等〔AGC社製:製品名〕があげられる。これら接着性フッ素樹脂の中では、耐熱性に優れるEA-2000が好適である。 The adhesive fluororesin is not particularly limited, but preferably the adhesive fluororesin described in Japanese Patent No. 4424246, Japanese Patent No. 5263269, Japanese Patent No. 5365939, or Japanese Patent Application Laid-Open No. 2019-43134. can give. Examples of products of this adhesive fluororesin include LH-8000 [AGC: product name], AH-5000 [AGC: product name], AH-2000 [AGC: product name] EA-2000, etc. [AGC: Product name] can be mentioned. Among these adhesive fluororesins, EA-2000, which has excellent heat resistance, is suitable.

接着性フッ素樹脂の添加量は、ポリアリーレンエーテルケトン樹脂100質量部に対して1質量部以上100質量部以下、好ましく10質量部以下90質量部以下、より好ましくは15質量部以上80質量部以下、さらに好ましく20質量部以上60質量部以下が良い。これは、接着性フッ素樹脂の添加量が1質量部未満の場合には、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルム4の比誘電率の低下が期待できないからである。逆に、添加量が100質量部を越える場合には、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂との分散性が低下し、導電素線用樹脂フィルム4の引張破断時伸びが劣るため、導電素線2に導電素線用樹脂フィルム4を巻く際のハンドリング性が低下するからである。 The amount of the adhesive fluororesin added is 1 part by mass or more and 100 parts by mass or less, preferably 10 parts by mass or less and 90 parts by mass or less, and more preferably 15 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the polyarylene ether ketone resin. More preferably, it is 20 parts by mass or more and 60 parts by mass or less. This is because when the amount of the adhesive fluororesin added is less than 1 part by mass, the relative permittivity of the resin film 4 for conductive wire containing the polyarylene ether ketone resin and the adhesive fluororesin cannot be expected to decrease. Because. On the contrary, when the addition amount exceeds 100 parts by mass, the dispersibility between the polyarylene ether ketone resin and the adhesive fluororesin is lowered, and the elongation at break of the conductive wire resin film 4 is inferior. This is because the handleability when winding the resin film 4 for conductive wire around the wire 2 is deteriorated.

以上から、成形材料Mの接着性フッ素樹脂の添加量が1質量部以上100質量部以下の範囲内であれば、絶縁性やハンドリング性に優れる導電素線用樹脂フィルム4を得ることができる。 From the above, if the amount of the adhesive fluororesin added to the molding material M is within the range of 1 part by mass or more and 100 parts by mass or less, the resin film 4 for conductive wire having excellent insulation and handleability can be obtained.

成形材料Mには、上記樹脂の他、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂等のポリイミド樹脂、ポリアミド4T(PA4T)樹脂、ポリアミド6T(PA6T)樹脂、変性ポリアミド6T(PA6T)樹脂、ポリアミド9T(PA9T)樹脂、ポリアミド10T(PA10T)樹脂、ポリアミド11T(PA11T)樹脂、ポリアミド6(PA6)樹脂、ポリアミド66(PA66)樹脂、ポリアミド46(PA46)樹脂等のポリアミド樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンナフタレート(PEN)樹脂等のポリエステル樹脂、ポリサルホン(PSU)樹脂、ポリエーテルサルホン(PES)樹脂、ポリフェニルサルホン(PPSU)樹脂等のポリサルホン樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンスルフィドケトン樹脂、ポリフェニレンスルフィドスルホン樹脂、ポリフェニレンスルフィドケトンスルホン樹脂等のポリアリーレンサルファイド樹脂、液晶ポリマー(LCP)、ポリカーボネート(PC)樹脂、ポリアリレート(PAR)樹脂等が必要に応じ、添加される。 In addition to the above resins, the molding material M includes polyimide resins such as polyimide (PI) resin, polyamideimide (PAI) resin, polyetherimide (PEI) resin, polyamide 4T (PA4T) resin, and polyamide 6T (PA6T) resin. Modified polyamide 6T (PA6T) resin, polyamide 9T (PA9T) resin, polyamide 10T (PA10T) resin, polyamide 11T (PA11T) resin, polyamide 6 (PA6) resin, polyamide 66 (PA66) resin, polyamide 46 (PA46) resin, etc. Polyamide resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyester resin such as polyethylene naphthalate (PEN) resin, polysulfone (PSU) resin, polyether sulfone (PES) resin, polyphenyl sulfone. Polysulfone resin such as (PPSU) resin, polyphenylene sulfide (PPS) resin, polyphenylene sulfide ketone resin, polyphenylene sulfide sulfone resin, polyarylene sulfide resin such as polyphenylene sulfide ketone sulfone resin, liquid crystal polymer (LCP), polycarbonate (PC) resin, Polyallylate (PAR) resin and the like are added as needed.

上記において、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルム4を製造する場合には、例えばポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを室温(0℃以上50℃以下)下で撹拌混合し、所定時間溶融混練して成形材料Mを調製した後、この成形材料Mにより帯形の導電素線用樹脂フィルム4を連続的に成形する。 In the above, when the resin film 4 for a conductive wire containing a polyarylene ether ketone resin and an adhesive fluororesin is produced, for example, the polyarylene ether ketone resin and the adhesive fluororesin are kept at room temperature (0 ° C. or higher and 50 ° C. or higher). After stirring and mixing under (° C. or lower) and melting and kneading for a predetermined time to prepare a molding material M, the strip-shaped resin film 4 for a conductive wire is continuously molded by the molding material M.

成形材料Mの調製方法としては、(1)ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを室温下で撹拌混合させた後に溶融混練し、成形材料Mを調製する方法、(2)ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを撹拌混合することなく、溶融したポリアリーレンエーテルケトン樹脂に接着フッ素樹脂を添加し、これらを溶融混練して成形材料Mを調製する方法があげられる。 As a method for preparing the molding material M, (1) a polyarylene ether ketone resin and an adhesive fluororesin are stirred and mixed at room temperature and then melt-kneaded to prepare a molding material M, and (2) a polyarylene ether. Examples thereof include a method in which an adhesive fluororesin is added to a molten polyarylene ether ketone resin without stirring and mixing the ketone resin and the adhesive fluororesin, and these are melt-kneaded to prepare a molding material M.

これら(1)、(2)の方法は、いずれをも採用することができるが、先ず、(1)の方法について説明すると、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを撹拌混合する場合には、タンブラーミキサー、ヘンシルミキサー、V型混合機、ナウターミキサー、リボンブレンダ―、あるいは万能撹拌ミキサー等が使用される。 Both of these methods (1) and (2) can be adopted, but first, the method (1) will be described when the polyarylene ether ketone resin and the adhesive fluororesin are stirred and mixed. A tumbler mixer, a hensyl mixer, a V-type mixer, a Nauter mixer, a ribbon blender, a universal stirring mixer, or the like is used.

ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とは、上記方法による撹拌混合物をミキシングロール、加圧ニーダー、バンバリーミキサー、プラネタリーミキサー、二軸押出成形機、三軸押出成形機、四軸押出成形機、八軸押出成形機等の多軸押出成形機等で溶融混練分散されることにより、成形材料Mに調製される。この成形材料Mを調製する場合、溶融混練機による溶融混練時の温度は、270℃以上400℃以下、好ましくは300℃以上380℃以下が良い。これは、溶融混練機10の溶融混練時の温度が400℃を越える場合には、接着性フッ素樹脂が激しく分解して好ましくないからである。 Polyarylene ether ketone resin and adhesive fluororesin are mixed by mixing rolls, pressure kneaders, Banbury mixers, planetary mixers, twin-screw extruders, triaxial extruders, and four-screw extruders. , It is prepared as a molding material M by being melt-kneaded and dispersed by a multi-screw extruder such as an octa-screw extruder. When the molding material M is prepared, the temperature at the time of melt-kneading by the melt-kneader is preferably 270 ° C. or higher and 400 ° C. or lower, preferably 300 ° C. or higher and 380 ° C. or lower. This is because when the temperature of the melt-kneading machine 10 at the time of melt-kneading exceeds 400 ° C., the adhesive fluororesin is violently decomposed, which is not preferable.

次に、(2)の方法について説明すると、この方法の場合には、ポリアリーレンエーテルケトン樹脂をミキシングロール、加圧ニーダー、バンバリーミキサー、プラネタリーミキサー、二軸押出成形機、三軸押出成形機、四軸押出成形機、八軸押出成形機等の多軸押出成形機等で溶融し、溶融させたポリアリーレンエーテルケトン樹脂に接着性フッ素樹脂を添加して溶融混練分散させることにより、成形材料Mを調製する。この成形材料Mを調製する場合、溶融混練機による溶融混練時の温度は、270℃以上400℃以下、好ましくは300℃以上380℃以下が良い。これは、溶融押出成形機10の温度が400℃を越えると、接着性フッ素樹脂が上記同様、激しく分解するからである。 Next, the method (2) will be described. In the case of this method, the polyarylene ether ketone resin is mixed with a mixing roll, a pressure kneader, a Banbury mixer, a planetary mixer, a twin-screw extruder, and a triaxial extruder. , A molding material by adding an adhesive fluororesin to a polyarylene ether ketone resin that has been melted by a multi-screw extruder such as a four-screw extruder or an eight-screw extruder and then melt-kneaded and dispersed. Prepare M. When the molding material M is prepared, the temperature at the time of melt-kneading by the melt-kneader is preferably 270 ° C. or higher and 400 ° C. or lower, preferably 300 ° C. or higher and 380 ° C. or lower. This is because when the temperature of the melt extrusion molding machine 10 exceeds 400 ° C., the adhesive fluororesin decomposes violently as described above.

成形材料Mは、通常、塊状、ストランド状、シート状、棒状に押出された後、粉砕機あるいは裁断機で粉状、顆粒状、ペレット状等の成形加工に適した形態にして使用される。この成形材料Mからなる導電素線用樹脂フィルム4は、溶融押出成形法、カレンダー成形法、あるいはキャスティング法等の公知の製造法により製造することができる。但し、ハンドリング性や設備の簡略化の観点からすると、溶融押出成形法により連続的に押出成形するのが最適である。 The molding material M is usually extruded into a lump, a strand, a sheet, or a rod, and then used in a form suitable for molding such as a powder, a granule, or a pellet by a crusher or a cutting machine. The resin film 4 for conductive strands made of the molding material M can be manufactured by a known manufacturing method such as a melt extrusion molding method, a calender molding method, or a casting method. However, from the viewpoint of handleability and simplification of equipment, continuous extrusion molding by a melt extrusion molding method is optimal.

ここで溶融押出成形法とは、単軸押出成形機や二軸押出成形機等からなる溶融押出成形機10を使用し、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を含有した成形材料Mを溶融押出成形機10先端部のTダイス13より帯形の導電素線用樹脂フィルム4に連続的に押出成形して製造する方法である。 Here, the melt extrusion method uses a melt extrusion molding machine 10 including a single-screw extrusion molding machine, a twin-screw extrusion molding machine, and the like to melt a molding material M containing a polyarylene ether ketone resin and an adhesive fluororesin. This is a method of continuously extruding a strip-shaped resin film 4 for a conductive wire from a T-die 13 at the tip of an extrusion molding machine 10.

溶融押出成形機10は、図3に示すように、例えば単軸押出成形機や二軸押出成形機等からなり、投入された成形材料Mを溶融混練するように機能する。この溶融押出成形機10の上部後方には、成形材料M用の原料投入口11が設置され、この原料投入口11には、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、窒素ガス、二酸化炭素ガス等の不活性ガスを必要に応じて供給する不活性ガス供給管12が接続されており、この不活性ガス供給管12による不活性ガスの流入により、成形材料Mの酸化劣化や酸素架橋が有効に防止される。 As shown in FIG. 3, the melt extrusion molding machine 10 comprises, for example, a single-screw extruder, a twin-screw extruder, or the like, and functions to melt-knead the charged molding material M. A raw material input port 11 for the molding material M is installed behind the upper part of the melt extrusion molding machine 10, and the raw material input port 11 has helium gas, neon gas, argon gas, krypton gas, nitrogen gas, and carbon dioxide gas. An inert gas supply pipe 12 for supplying an inert gas such as the above is connected, and the inflow of the inert gas through the inert gas supply pipe 12 is effective for oxidative deterioration and oxygen cross-linking of the molding material M. Is prevented.

単軸押出成形機や二軸押出成形機等の溶融押出成形機10としては、ベント口を有している溶融押出成形機の使用が好ましい。これは、ベント口を使用して減圧下で溶融混練することにより、成形材料M中に含まれている水分や昇華した有機物を十分に脱気しやすくなるからである。また、成形材料Mの溶融混練前の含水率の調整が不要となるからである。 As the melt extruder 10 such as a single-screw extruder or a twin-screw extruder, it is preferable to use a melt extruder having a vent port. This is because by melting and kneading under reduced pressure using the vent port, it becomes easy to sufficiently degas the water contained in the molding material M and the sublimated organic matter. Further, it is not necessary to adjust the water content of the molding material M before melting and kneading.

溶融押出成形機10の溶融混練時の温度は、成形材料Mを溶融可能な温度で、成形材料Mが分解しない温度であれば、特に制限されるものでないが、成形材料Mの融点以上熱分解温度未満の範囲が良い。具体的には270℃以上400℃以下、好ましくは300℃以上380℃以下に調整される。これは、270℃未満の場合には、ポリアリーレンエーテルケトン樹脂含有の成形材料Mを溶融押出成形することができず、逆に400℃を越える場合には、接着性フッ素樹脂が激しく分解するおそれがあるという理由に基づく。 The temperature at the time of melt kneading of the melt extrusion molding machine 10 is not particularly limited as long as it is a temperature at which the molding material M can be melted and the molding material M does not decompose, but it is thermally decomposed at a temperature equal to or higher than the melting point of the molding material M. The range below the temperature is good. Specifically, the temperature is adjusted to 270 ° C. or higher and 400 ° C. or lower, preferably 300 ° C. or higher and 380 ° C. or lower. This is because if the temperature is lower than 270 ° C, the molding material M containing the polyarylene ether ketone resin cannot be melt-extruded, and if the temperature exceeds 400 ° C, the adhesive fluororesin may be severely decomposed. Based on the reason that there is.

溶融押出成形機10で溶融混練された成形材料Mは、図3に示すように、溶融押出成形機10の先端部のTダイス13により帯形の導電素線用樹脂フィルム4に連続して押出成形され、この連続した導電素線用樹脂フィルム4が下方の一対の圧着ロール17と冷却ロール18との間に挟んで冷却された後、巻取機20に巻き取られることで製造される。 As shown in FIG. 3, the molding material M melt-kneaded by the melt extrusion molding machine 10 is continuously extruded into a band-shaped resin film 4 for conductive strands by a T die 13 at the tip of the melt extrusion molding machine 10. It is manufactured by being molded, and the continuous resin film 4 for conductive wires is sandwiched between a pair of lower pressure-bonding rolls 17 and a cooling roll 18 to be cooled, and then wound up by a winder 20.

Tダイス13は、溶融押出成形機10の先端部に連結管14を介して装着され、帯形の絶縁樹脂部材である導電素線用樹脂フィルム4を連続的に下方に押し出すよう機能する。このTダイス13の押出時の温度は、成形材料2の融点以上熱分解温度未満の範囲である。具体的には、270℃以上400℃以下、好ましくは330℃以上380℃以下に調整させる。これは、270℃未満の場合には、ポリアリーレンエーテルケトン樹脂含有の成形材料Mを溶融押出成形することができず、逆に400℃を越える場合には、接着性フッ素樹脂が激しく分解するおそれがあるという理由に基づく。 The T-die 13 is attached to the tip of the melt extrusion molding machine 10 via a connecting pipe 14 and functions to continuously push down the resin film 4 for conductive strands, which is a strip-shaped insulating resin member. The temperature at the time of extrusion of the T-die 13 is in the range of the melting point of the molding material 2 or more and less than the thermal decomposition temperature. Specifically, the temperature is adjusted to 270 ° C. or higher and 400 ° C. or lower, preferably 330 ° C. or higher and 380 ° C. or lower. This is because if the temperature is lower than 270 ° C, the molding material M containing the polyarylene ether ketone resin cannot be melt-extruded, and if the temperature exceeds 400 ° C, the adhesive fluororesin may be severely decomposed. Based on the reason that there is.

Tダイス13の上流の連結管14には、ギアポンプ15とフィルタ16とがそれぞれ装着されることが好ましい。ギアポンプ15は、溶融押出成形機10により溶融混練された成形材料Mを一定の流量で、かつ高精度にTダイス13にフィルタ16を介して移送する。また、フィルタ16は、溶融状態の成形材料Mのゲルや異物等を分離し、溶融状態の成形材料MをTダイス13に移送する。 It is preferable that the gear pump 15 and the filter 16 are mounted on the connecting pipe 14 upstream of the T-die 13. The gear pump 15 transfers the molding material M melt-kneaded by the melt extrusion molding machine 10 to the T-die 13 at a constant flow rate and with high accuracy via the filter 16. Further, the filter 16 separates gels, foreign substances, and the like of the molten molding material M, and transfers the molten molding material M to the T die 13.

一対の圧着ロール17は、Tダイス13の下方に回転可能に軸支されて冷却ロール18を摺動可能に狭持し、下流側の圧着ロール17のさらに下流には、導電素線用樹脂フィルム4を巻き取る巻取機20の巻取管21が回転可能に支持されており、下流側の圧着ロール17と巻取機20の巻取管21との間には、導電素線用樹脂フィルム4の側部にスリットを形成するスリット刃22が昇降可能に配置されるとともに、このスリット刃22と巻取機20の巻取管21との間には、導電素線用樹脂フィルム4にテンションを作用させて円滑に巻き取るための回転可能なテンションロール19が必要数軸支される。 The pair of crimping rolls 17 are rotatably supported below the T-die 13 to slidably hold the cooling roll 18, and further downstream of the crimping roll 17 on the downstream side is a resin film for conductive strands. The take-up pipe 21 of the take-up machine 20 for taking up 4 is rotatably supported, and a resin film for a conductive wire is rotatably supported between the crimp roll 17 on the downstream side and the take-up pipe 21 of the take-up machine 20. A slit blade 22 that forms a slit on the side of 4 is arranged so as to be able to move up and down, and a tension is applied to the resin film 4 for conductive wire between the slit blade 22 and the take-up pipe 21 of the take-up machine 20. A necessary number of rotatable tension rolls 19 are supported for smooth winding.

各圧着ロール17の周面には、導電素線用樹脂フィルム4と冷却ロール18との密着性を向上させる観点から、少なくとも天然ゴム、イソプレンゴム、ブタジエンゴム、シリコーンゴム、フッ素ゴム等のゴム層が必要に応じて被覆形成され、このゴム層には、シリカやアルミナ等の無機化合物が選択的に添加される。これらの中では、耐熱性に優れるシリコーンゴムやフッ素ゴムの採用が好ましい。 A rubber layer of at least natural rubber, isoprene rubber, butadiene rubber, silicone rubber, fluororubber, etc. is provided on the peripheral surface of each crimping roll 17 from the viewpoint of improving the adhesion between the resin film 4 for conductive wire and the cooling roll 18. Is formed as necessary, and an inorganic compound such as silica or alumina is selectively added to the rubber layer. Among these, it is preferable to use silicone rubber or fluororubber, which has excellent heat resistance.

圧着ロール17として、表面が金属の金属弾性ロールが必要に応じて使用され、この金属弾性ロールが使用される場合には、表面が平滑性に優れる導電素線用樹脂フィルム4の成形が可能となる。金属弾性ロールの製品例としては、例えば金属スリーブロール、エアーロール〔ディムコ社製:製品名〕、UFロール〔日立造船社製:製品名〕が該当する。 As the crimping roll 17, a metal elastic roll having a metal surface is used as needed, and when this metal elastic roll is used, it is possible to form a resin film 4 for a conductive wire having an excellent surface smoothness. Become. Examples of product examples of metal elastic rolls include metal sleeve rolls, air rolls [manufactured by Dimco: product name], and UF rolls [manufactured by Hitachi Zosen Corporation: product name].

このような圧着ロール17は、50℃以上200℃以下、好ましくは80℃以上180℃以下、より好ましくは100℃以上160℃以下、さらに好ましくは120℃以上1600℃以下の温度に調整され、導電素線用樹脂フィルム4に摺接してこれを冷却ロール18に圧接する。圧着ロール17の温度が係る範囲なのは、圧着ロール17の温度が200℃を越える場合には、導電素線用樹脂フィルム4の相対結晶化度が80%を越えてしまうおそれがあるからである。逆に、圧着ロール17の温度が50℃未満の場合には、圧着ロール17の結露を招くからである。圧着ロール17の温度調整法や冷却方法としては、空気、水、オイル等による方法、あるいは電気ヒータや誘電加熱等があげられる。 Such a crimping roll 17 is adjusted to a temperature of 50 ° C. or higher and 200 ° C. or lower, preferably 80 ° C. or higher and 180 ° C. or lower, more preferably 100 ° C. or higher and 160 ° C. or lower, and further preferably 120 ° C. or higher and 1600 ° C. or lower, and is conductive. It is in sliding contact with the resin film 4 for wires and is pressed against the cooling roll 18. The temperature of the crimping roll 17 is within the range because when the temperature of the crimping roll 17 exceeds 200 ° C., the relative crystallinity of the resin film 4 for the conductive wire may exceed 80%. On the contrary, when the temperature of the crimping roll 17 is less than 50 ° C., dew condensation occurs on the crimping roll 17. Examples of the temperature adjusting method and the cooling method of the crimping roll 17 include a method using air, water, oil and the like, an electric heater, dielectric heating and the like.

冷却ロール18は、例えば圧着ロール17よりも拡径の金属ロールからなり、Tダイス13の下方に回転可能に軸支されて押し出された導電素線用樹脂フィルム4を圧着ロール17との間に狭持し、圧着ロール17と共に導電素線用樹脂フィルム4を冷却しながらその厚さを所定の範囲内に制御する。この冷却ロール18は、圧着ロール17と同様、50℃以上200℃以下、好ましくは80℃以上180℃以下、より好ましくは100℃以上160℃以下、さらに好ましくは120℃以上160℃以下の温度に調整され、導電素線用樹脂フィルム4に摺接する。 The cooling roll 18 is made of, for example, a metal roll having a diameter larger than that of the crimping roll 17, and a resin film 4 for a conductive wire that is rotatably supported and extruded below the T die 13 is placed between the crimping roll 17 and the resin film 4. The thickness of the resin film 4 for conductive wire is controlled within a predetermined range while being held narrowly and cooled together with the crimping roll 17. Like the crimping roll 17, the cooling roll 18 has a temperature of 50 ° C. or higher and 200 ° C. or lower, preferably 80 ° C. or higher and 180 ° C. or lower, more preferably 100 ° C. or higher and 160 ° C. or lower, and further preferably 120 ° C. or higher and 160 ° C. or lower. It is adjusted and slides into contact with the resin film 4 for conductive wires.

冷却ロール18が50℃以上200℃以下の温度に調整されるのは、冷却ロール18の温度が200℃を越える場合には、導電素線用樹脂フィルム4の相対結晶化度が80%を越えてしまうおそれがあるからである。これに対し、冷却ロール18の温度が50℃未満の場合には、冷却ロール18の結露を招き、好ましくないからである。冷却ロール18の温度調整法や冷却方法は、空気、水、オイル等の熱媒体による方法、あるいは電気ヒータや誘導加熱等があげられる。 The reason why the cooling roll 18 is adjusted to a temperature of 50 ° C. or higher and 200 ° C. or lower is that when the temperature of the cooling roll 18 exceeds 200 ° C., the relative crystallinity of the resin film 4 for the conductive wire exceeds 80%. This is because there is a risk that it will end up. On the other hand, if the temperature of the cooling roll 18 is less than 50 ° C., dew condensation is caused on the cooling roll 18, which is not preferable. Examples of the temperature adjusting method and the cooling method of the cooling roll 18 include a method using a heat medium such as air, water, and oil, an electric heater, induction heating, and the like.

上記構成において、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を含有した導電素線用樹脂フィルム4をより具体的、かつ実際に製造する場合には図3に示すように、先ず、溶融押出成形機10の原料投入口11に、成形材料Mを同図に矢印で示す不活性ガスを供給しながら投入し、溶融押出成形機10により成形材料Mのポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを溶融混練し、Tダイス13から導電素線用樹脂フィルム4を連続的に帯形に押し出す。 In the above configuration, when the resin film 4 for conductive strands containing the polyarylene ether ketone resin and the adhesive fluororesin is more specifically and actually manufactured, as shown in FIG. 3, first, a melt extrusion molding machine is used. The molding material M is charged into the raw material charging port 11 of 10 while supplying the inert gas indicated by the arrow in the figure, and the polyarylene ether ketone resin and the adhesive fluororesin of the molding material M are charged by the melt extrusion molding machine 10. After melt-kneading, the resin film 4 for conductive strands is continuously extruded from the T-die 13 into a strip shape.

成形材料Mの溶融押出前における含水率は、2000ppm以下、好ましくは1000ppm以下、より好ましくは100ppm以上500ppm以下に調整される。これは、含水率が2000ppmを越える場合には、成形材料MがTダイス13から押し出された直後に発泡するおそれがあるからである。 The water content of the molding material M before melt extrusion is adjusted to 2000 ppm or less, preferably 1000 ppm or less, and more preferably 100 ppm or more and 500 ppm or less. This is because when the water content exceeds 2000 ppm, the molding material M may foam immediately after being extruded from the T die 13.

導電素線用樹脂フィルム4を押し出したら、一対の圧着ロール17、冷却ロール18、テンションロール22、巻取機19の巻取管20に順次巻架し、導電素線用樹脂フィルム4を冷却ロール18により冷却した後、導電素線用樹脂フィルム4の両側部をスリット刃21でそれぞれカットするとともに、巻取機19の巻取管20に順次巻き取れば、導電素線用樹脂フィルム4を製造することができる。この導電素線用樹脂フィルム4の製造の際、導電素線用樹脂フィルム4表面には、本発明の効果を失わない範囲で微細な凹凸を形成し、導電素線用樹脂フィルム4表面の摩擦係数を低下させることができる。 After extruding the resin film 4 for the conductive wire, the resin film 4 for the conductive wire is wound around the pair of crimping rolls 17, the cooling roll 18, the tension roll 22, and the take-up pipe 20 of the winder 19 in order, and the resin film 4 for the conductive wire is cooled. After cooling with 18, the resin film 4 for conductive wire is manufactured by cutting both sides of the resin film 4 for conductive wire with the slit blades 21 and sequentially winding the resin film 4 on the take-up tube 20 of the winder 19. can do. When the resin film 4 for conductive wire is manufactured, fine irregularities are formed on the surface of the resin film 4 for conductive wire within a range that does not lose the effect of the present invention, and the surface of the resin film 4 for conductive wire is rubbed. The coefficient can be lowered.

導電素線用樹脂フィルム4の厚さは、モータ等の作動中の絶縁破壊を防止したり、薄型化に資する観点から、1μm以上100μm以下、好ましくは2μm以上75μm以下、より好ましくは3μm以上50μm以下が良い。これは、導電素線用樹脂フィルム4の厚さが1μm以上100μm以下の範囲であれば、薄型化により、導電素線2の占有率の低下を防止し、モータの性能低下を防ぐことが可能となるからである。 The thickness of the resin film 4 for the conductive wire is 1 μm or more and 100 μm or less, preferably 2 μm or more and 75 μm or less, and more preferably 3 μm or more and 50 μm from the viewpoint of preventing dielectric breakdown during operation of the motor or the like and contributing to thinning. The following is good. This is because if the thickness of the resin film 4 for the conductive wire is in the range of 1 μm or more and 100 μm or less, it is possible to prevent a decrease in the occupancy rate of the conductive wire 2 and prevent a decrease in the performance of the motor by reducing the thickness. Because it becomes.

導電素線用樹脂フィルム4には結晶化が生じるが、この導電素線用樹脂フィルム4の結晶化は、相対結晶化度により表すことができる。この導電素線用樹脂フィルム4の相対結晶化度は、示差走査熱量計を用いて10℃/分の昇温速度で測定した熱分析結果に基づき、以下の式により算出される。
相対結晶化度(%)={1-(ΔHc/ΔHm)}×100
ΔHc:導電素線用樹脂フィルムの再結晶化ピークの熱量(J/g)
ΔHm:導電素線用樹脂フィルムの結晶融解ピークの熱量(J/g)
Crystallization occurs in the resin film 4 for conductive wires, and the crystallization of the resin film 4 for conductive wires can be represented by the relative crystallization degree. The relative crystallinity of the resin film 4 for conductive strands is calculated by the following formula based on the thermal analysis results measured at a heating rate of 10 ° C./min using a differential scanning calorimeter.
Relative crystallinity (%) = {1- (ΔHc / ΔHm)} × 100
ΔHc: Calorific value (J / g) of recrystallization peak of resin film for conductive wire
ΔHm: Calorific value (J / g) of crystal melting peak of resin film for conductive wire

導電素線用樹脂フィルム4の相対結晶化度は、80%未満、好ましくは70%以下、より好ましくは50%以下、さらに好ましくは30%前後が良い。これは、導電素線用樹脂フィルム4の相対結晶化度が80%を越える場合には、導電素線用樹脂フィルム4が軟化しないので、熱融着性が低下するという理由に基づく。導電素線用樹脂フィルム4の相対結晶化度の下限は、特には限定されないが、5%以上が良い。 The relative crystallinity of the resin film 4 for the conductive wire is less than 80%, preferably 70% or less, more preferably 50% or less, still more preferably around 30%. This is based on the reason that when the relative crystallinity of the resin film 4 for conductive wire exceeds 80%, the resin film 4 for conductive wire does not soften, so that the heat fusion property is lowered. The lower limit of the relative crystallinity of the resin film 4 for the conductive wire is not particularly limited, but is preferably 5% or more.

導電素線用樹脂フィルム4の機械的特性は、23℃における引張破断時伸び、及び引張弾性率で評価することができる。導電素線用樹脂フィルム4の引張破断時伸びは、JIS K 6251やJIS K 7127に準拠した測定法で50%以上、好ましくは100%以上、より好ましくは150%以上、さらに好ましくは200%以上が良い。この引張破断時伸びの上限値は、特に制約されるものではないが、500%以下が良い。これは、破断時伸びが50%未満の場合、導電素線用樹脂フィルム4が充分な靭性を有していないので、導電素線用樹脂フィルム4を平角電線1に巻き加工中に破断や割れ等のトラブルが生じてしまうおそれがあり、巻き加工が困難になるからである。 The mechanical properties of the resin film 4 for a conductive wire can be evaluated by the elongation at tensile break at 23 ° C. and the tensile elastic modulus. The elongation at break of the resin film 4 for conductive wire is 50% or more, preferably 100% or more, more preferably 150% or more, still more preferably 200% or more by a measurement method based on JIS K 6251 or JIS K 7127. Is good. The upper limit of the elongation at tensile break is not particularly limited, but is preferably 500% or less. This is because when the elongation at break is less than 50%, the resin film 4 for conductive wire does not have sufficient toughness, so that the resin film 4 for conductive wire is broken or cracked during winding around the flat wire 1. This is because there is a possibility that troubles such as the above may occur, and the winding process becomes difficult.

導電素線用樹脂フィルム4の23℃における引張弾性率は、JIS K 6251やJIS K 7127(試験片タイプ1B)に準拠した測定法で100N/mm以上3000N/mm以下、好ましくは300N/mm以上2750N/mm以下、より好ましくは1500N/mm以上2500N/mm以下、さらに好ましくは500N/mm以上2000N/mm以下の範囲が最適である。 The tensile modulus of the resin film 4 for conductive wire at 23 ° C. is 100 N / mm 2 or more and 3000 N / mm 2 or less, preferably 300 N / mm, according to a measurement method based on JIS K 6251 or JIS K 7127 (test piece type 1B). The optimum range is mm 2 or more and 2750 N / mm 2 or less, more preferably 1500 N / mm 2 or more and 2500 N / mm 2 or less, and further preferably 500 N / mm 2 or more and 2000 N / mm 2 or less.

これは、導電素線用樹脂フィルム4の引張弾性率が100N/mm未満の場合には、導電素線用樹脂フィルム4の剛性が劣るため、導電素線2に導電素線用樹脂フィルム4を巻き加工中にハンドリング性が低下したり、導電素線2を曲げ加工したときに導電素線用樹脂フィルム4の積層状態のずれが大きくなるからである。また、3000N/mmを越える場合には、曲げ加工時に剛性が高すぎるため、導電素線用樹脂フィルム4が導電素線2から剥離してしまうからである。 This is because when the tensile elastic modulus of the conductive wire resin film 4 is less than 100 N / mm 2 , the rigidity of the conductive wire resin film 4 is inferior, so that the conductive wire 2 is combined with the conductive wire resin film 4. This is because the handleability is deteriorated during the winding process, and when the conductive wire 2 is bent, the difference in the laminated state of the resin film 4 for the conductive wire becomes large. Further, when it exceeds 3000 N / mm 2 , the rigidity is too high at the time of bending, and the resin film 4 for the conductive wire is peeled off from the conductive wire 2.

導電素線用樹脂フィルム4の1GHzにおける比誘電率は、空洞共振器摂動法により測定した場合、3.0以下、好ましくは2.9以下、より好ましくは2.8以下、さらに好ましくは2.7以下である。これは、導電素線用樹脂フィルム3の比誘電率が3.0を越える場合には、絶縁性の低下を招くからである。この比誘電率の下限は、特に限定されるものではないが、実用上1.1以上である。 The relative permittivity of the resin film 4 for conductive wire at 1 GHz is 3.0 or less, preferably 2.9 or less, more preferably 2.8 or less, still more preferably 2. It is 7 or less. This is because when the relative permittivity of the resin film 3 for conductive wires exceeds 3.0, the insulating property is deteriorated. The lower limit of the relative permittivity is not particularly limited, but is 1.1 or more in practice.

導電素線用樹脂フィルム4の貯蔵弾性率(E’)は、重要であり、貯蔵弾性率(E’)が〔ポリアリーレンエーテルケトン樹脂のガラス転移点(Tg)-10℃〕以上〔ポリアリーレンエーテルケトン樹脂のガラス転移点(Tg)+50℃〕以下の温度範囲中で一旦1.0×10Pa以下に低下する凹部になる部分を有する導電素線用樹脂フィルムである必要がある(図4参照)。これは、例えば係る温度範囲中の一旦1.0×10Pa以下に低下する凹部になる部分を有しない場合(図5参照)には、導電素線用樹脂フィルム4が軟化し、融着しなくなるという理由に基づく。 The storage elastic modulus (E') of the resin film 4 for conductive strands is important, and the storage elastic modulus (E') is at least [glass transition point (Tg) -10 ° C. of polyarylene ether ketone resin] [polyarylene. It is necessary to use a resin film for a conductive wire having a recessed portion that once drops to 1.0 × 108 Pa or less in a temperature range of [glass transition point (Tg) + 50 ° C.] or less of the ether ketone resin (Fig.). 4). This is because, for example, when the resin film 4 for conductive wire is softened and fused when it does not have a recessed portion that once drops to 1.0 × 108 Pa or less in the temperature range (see FIG. 5). Based on the reason that it will not be done.

なお、図4と図5は、押出方向の貯蔵弾性率を示すが、幅方向(押出方向の直角方向)の貯蔵弾性率も略同様である。 Although FIGS. 4 and 5 show the storage elastic modulus in the extrusion direction, the storage elastic modulus in the width direction (direction perpendicular to the extrusion direction) is also substantially the same.

導電素線用フィルム4の絶縁破壊電圧は、絶縁性を確保するため、0.5kV以上が好適である。具体的には、0.5kV以上、好ましくは1.0kV以上、より好ましくは2kV以上、さらに好ましくは4kV以下である。この絶縁破壊電圧の上限は、特に限定されるものではないが、実用上15kV以下である。 The dielectric breakdown voltage of the conductive wire film 4 is preferably 0.5 kV or more in order to secure the insulating property. Specifically, it is 0.5 kV or more, preferably 1.0 kV or more, more preferably 2 kV or more, and further preferably 4 kV or less. The upper limit of the dielectric breakdown voltage is not particularly limited, but is practically 15 kV or less.

導電素線用樹脂フィルム4は冷却ロール18に密着して冷却されるが、導電素線用樹脂フィルム4と冷却ロール18との密着時間は、特に限定されるものではないものの、導電素線用樹脂フィルム4を瞬時に冷却する観点からすると、0.1秒以上120秒以下、好ましくは0.5秒以上40秒以下、より好ましくは1秒以上30秒以下が最適である。 The resin film 4 for conductive wires is brought into close contact with the cooling roll 18 and cooled. Although the contact time between the resin film 4 for conductive wires and the cooling roll 18 is not particularly limited, the resin film 4 for conductive wires is used for conductive wires. From the viewpoint of instantaneously cooling the resin film 4, 0.1 seconds or more and 120 seconds or less, preferably 0.5 seconds or more and 40 seconds or less, and more preferably 1 second or more and 30 seconds or less are optimal.

次に、導電素線用樹脂フィルム4を用いて平角電線1を製造する場合には、先ず、一対の導電素線2を用意し、この一対の導電素線2のうち、一の導電素線2上に絶縁層3用の熱可塑性樹脂含有の樹脂ワニスを塗布して焼付することにより絶縁層3を形成し、その後、一対の導電素線2を重ねて積層してその間に絶縁層3を挟持させる。 Next, when manufacturing a flat wire 1 using the resin film 4 for conductive wires, first, a pair of conductive wires 2 are prepared, and one of the pair of conductive wires 2 is made of conductive wires. A resin varnish containing a thermoplastic resin for the insulating layer 3 is applied onto the insulating layer 3 and baked to form the insulating layer 3, and then a pair of conductive strands 2 are laminated and laminated, and the insulating layer 3 is provided between them. Hold it.

こうして一対の導電素線2の間に絶縁層3を挟持させたら、これらの周面長手方向に細長い導電素線用樹脂フィルム4をスパイラル巻きしてピンホールの発生を未然に防止するようにし、完全にスパイラル巻きした導電素線用樹脂フィルム4を加熱して熱融着すれば良い。すると、導電素線用樹脂フィルム4が溶融して接着するので、一対の導電素線2、絶縁層3、及び導電素線用樹脂フィルム4が一体化した及び平角電線1を製造することができる。電素線用樹脂フィルム4の加熱方法としては、特に限定されるものではないが、例えば空気、水、過熱蒸気、オイル等の熱媒体による方法、あるいは電気ヒータや誘電加熱等の方法が該当する。 After the insulating layer 3 is sandwiched between the pair of conductive wires 2 in this way, the resin film 4 for conductive wires elongated in the longitudinal direction of the peripheral surface is spirally wound to prevent the occurrence of pinholes. The completely spirally wound resin film 4 for the conductive wire may be heated and heat-sealed. Then, since the resin film 4 for conductive wires melts and adheres, the pair of conductive wires 2, the insulating layer 3, and the resin film 4 for conductive wires 4 are integrated, and a flat wire 1 can be manufactured. .. The heating method of the resin film 4 for an electric wire is not particularly limited, but for example, a method using a heat medium such as air, water, superheated steam, or oil, or a method such as an electric heater or dielectric heating is applicable. ..

製造された平角電線1は、例えばハイブリッド自動車、電気自動車、高速鉄道車両用のモータ、トランス、発電機、リアクトル等の部品として使用され、占有率や放熱性を向上させながら大電流を通電する。 The manufactured flat-angle electric wire 1 is used as a component of, for example, a motor, a transformer, a generator, a reactor, etc. for a hybrid vehicle, an electric vehicle, and a high-speed railway vehicle, and energizes a large current while improving the occupancy rate and heat dissipation.

上記構成によれば、導電素線用樹脂フィルム4の溶融に伴い、一対の導電素線2、絶縁層3、及び導電素線用樹脂フィルム4が接着して一体化するので、導電素線2とこれを被覆する導電素線用樹脂フィルム4とを接着する接着層を確実に省略することができる。したがって、導電素線2と接着層の間に層間剥離が生じるのを防止し、耐熱性や電気特性(電気絶縁性)等の向上を図ることができる。また、接着層の省略により、平角電線1の製造時に発生する揮発性有機化合物を大幅に低減することができ、この低減に伴い、環境に配慮しながら製造コストの削減を図ることができる。また、接着層の省略により、熱伝導率を向上させたり、平角電線1の薄型化を実現してモータの性能向上を図ることができる。 According to the above configuration, as the conductive wire resin film 4 melts, the pair of conductive wires 2, the insulating layer 3, and the conductive wire resin film 4 adhere to each other and are integrated with each other. And the adhesive layer for adhering the conductive wire resin film 4 that covers the film 4 can be reliably omitted. Therefore, it is possible to prevent delamination from occurring between the conductive wire 2 and the adhesive layer, and improve heat resistance, electrical characteristics (electrical insulation), and the like. Further, by omitting the adhesive layer, the volatile organic compounds generated during the production of the flat wire 1 can be significantly reduced, and along with this reduction, the production cost can be reduced while considering the environment. Further, by omitting the adhesive layer, the thermal conductivity can be improved and the flat wire 1 can be made thinner to improve the performance of the motor.

また、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルム4の採用により、優れた耐熱性、耐寒性、絶縁性、耐薬品性、耐溶剤性、耐放射線性、耐加水分解性、低吸水性、リサイクル性、寸法安定性、機械的強度等を得ることが可能となる。さらに、接着性フッ素樹脂の添加により、引張弾性率や比誘電率の低下が期待できる。 Further, by adopting the resin film 4 for conductive strands containing the polyarylene ether ketone resin and the adhesive fluororesin, excellent heat resistance, cold resistance, insulation resistance, chemical resistance, solvent resistance, and radiation resistance are achieved. It is possible to obtain hydrolysis resistance, low water absorption, recyclability, dimensional stability, mechanical strength and the like. Further, the addition of the adhesive fluororesin can be expected to reduce the tensile elastic modulus and the relative permittivity.

次に、図6は本発明の第2の実施形態を示すもので、この場合には、一対の導電素線2と絶縁層3の周面長手方向に、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルム4を1層ではなく、多層にスパイラル巻きするようにしている。 Next, FIG. 6 shows a second embodiment of the present invention. In this case, the polyarylene ether ketone resin and the adhesive fluororesin are shown in the longitudinal direction of the peripheral surface of the pair of conductive strands 2 and the insulating layer 3. The resin film 4 for a conductive wire containing a resin is spirally wound in multiple layers instead of one layer.

導電素線用樹脂フィルム4は、2層以上の多層(例えば、2層、3層、4層、5層等)に重ねてスパイラル巻きされれば良いが、作業性や実用性を考慮すると、3層に重ねてスパイラル巻きされるのが最適である。多層にスパイラル巻きされた導電素線用樹脂フィルム4の総厚は、2μm以上200μm以下、好ましくは3μm以上150μm以下、より好ましくは5μm以上100μm以下が最適である。その他の部分については、上記実施形態と同様であるので説明を省略する。 The resin film 4 for conductive wires may be spirally wound by stacking two or more layers (for example, two layers, three layers, four layers, five layers, etc.), but in consideration of workability and practicality, the resin film 4 may be spirally wound. It is best to spirally wind it in three layers. The total thickness of the resin film 4 for conductive wires spirally wound in multiple layers is optimally 2 μm or more and 200 μm or less, preferably 3 μm or more and 150 μm or less, and more preferably 5 μm or more and 100 μm or less. Since other parts are the same as those in the above embodiment, the description thereof will be omitted.

本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、導電素線用樹脂フィルム4を多層巻きにしてその総厚を厚くするので、導電素線用樹脂フィルム4の電気特性、すなわち、絶縁破壊電圧をさらに向上させることができるのは明らかである。特に、電界の集中に伴い、高い絶縁性が要求される導電素線2の隅部の絶縁破壊電圧を著しく向上させることができる。 In this embodiment as well, the same action and effect as those in the above embodiment can be expected, and since the resin film 4 for conductive wire is wound in multiple layers to increase the total thickness, the electrical characteristics of the resin film 4 for conductive wire can be improved. That is, it is clear that the dielectric breakdown voltage can be further improved. In particular, with the concentration of the electric field, it is possible to remarkably improve the dielectric breakdown voltage at the corner of the conductive wire 2 which requires high insulation.

なお、上記実施形態では一対の導電素線2と絶縁層3とにポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とを含有した導電素線用樹脂フィルム4を融着したが、何らこれに限定されるものではない。例えば、導電素線2を1本として絶縁層3を省略し、導電素線2の周面に導電素線用樹脂フィルム4をスパイラル巻きして融着し、接着層や接着剤を省略しても良い。また、導電素線2の周面に複数本の導電素線用樹脂フィルム4をスパイラル巻きして融着しても良い。また、導電素線用樹脂フィルム4には、本発明の特性を損なわない範囲において、ポリアリーレンエーテルケトン樹脂や接着性フッ素樹脂の他、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、滑剤、難燃剤、帯電防止剤、耐熱向上剤、無機化合物、有機化合物等を選択的に添加しても良い。 In the above embodiment, the resin film 4 for conductive wires containing the polyarylene ether ketone resin and the adhesive fluororesin is fused to the pair of conductive wires 2 and the insulating layer 3, but the present invention is limited to this. It's not something. For example, the insulating layer 3 is omitted with the conductive wire 2 as one, the resin film 4 for the conductive wire is spirally wound around the peripheral surface of the conductive wire 2 and fused, and the adhesive layer and the adhesive are omitted. Is also good. Further, a plurality of conductive wire resin films 4 may be spirally wound around the peripheral surface of the conductive wire 2 and fused. Further, the resin film 4 for conductive wires includes a polyarylene ether ketone resin, an adhesive fluororesin, an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, and the like, as long as the characteristics of the present invention are not impaired. A lubricant, a flame retardant, an antistatic agent, a heat resistance improver, an inorganic compound, an organic compound and the like may be selectively added.

また、上記実施形態の導電素線用樹脂フィルム4を製造する場合、1種単独のポリアリーレンエーテルケトン樹脂を使用しても良いが、2種以上のポリアリーレンエーテルケトン樹脂を使用することもできる。また、導電素線用樹脂フィルム4には、必要に応じてコロナ処理、プラズマ処理、酸処理、火炎処理、イトロ処理、コーティング処理等の表面処理を施すことができる。さらに、フィルタ16の開口形状は、円形、楕円形、矩形、多角形等を特に問うものではない。 Further, in the case of producing the resin film 4 for conductive strands of the above embodiment, one kind of polyarylene ether ketone resin may be used alone, but two or more kinds of polyarylene ether ketone resins may also be used. .. Further, the resin film 4 for the conductive wire can be subjected to surface treatment such as corona treatment, plasma treatment, acid treatment, flame treatment, itro treatment, and coating treatment, if necessary. Further, the opening shape of the filter 16 is not particularly limited to a circular shape, an elliptical shape, a rectangular shape, a polygonal shape, or the like.

以下、本発明に係る導電素線用樹脂フィルム及びその製造方法の実施例を比較例と共に説明する。
〔実施例1〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とにより成形材料を調製した。ポリアリーレンエーテルケトン樹脂としては、市販されているポリエーテルエーテルケトン樹脂〔ソルベイスペシャルティポリマーズ社製、製品名:KETASPIRE KT-851 NL SP(以下、「KT-851 NL SP」と略す)を100質量部用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。また、接着性フッ素樹脂としては、市販されている接着性フッ素樹脂EA-2000〔AGC社製:製品名、(以下、「EA-2000」と略す。〕を5質量部用意した。
Hereinafter, examples of the resin film for conductive wires and the method for producing the same according to the present invention will be described together with comparative examples.
[Example 1]
First, a molding material was prepared from a polyarylene ether ketone resin and an adhesive fluororesin. As the polyarylene ether ketone resin, 100 parts by mass of a commercially available polyetheretherketone resin [manufactured by Solvay Specialty Polymers, product name: KETAPIRE KT-851 NL SP (hereinafter abbreviated as "KT-851 NL SP")). The prepared polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. As the adhesive fluororesin, 5 parts by mass of a commercially available adhesive fluororesin EA-2000 [manufactured by AGC: product name, hereinafter abbreviated as "EA-2000"] was prepared.

これらポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を用意したら、2種類の樹脂を混合機に投入して攪拌混合することにより、攪拌混合物を調製し、この撹拌混合物を同方向回転二軸押出機等で溶融混練してストランド状に押し出し、この押出成形物を空冷固化した後、ペレット状にカッティングして成形材料を調製した。同方向回転二軸押出機は、φ42mm、L/D=38タイプを用いた。また、撹拌混合物は、シリンダー温度370℃、ダイス温度370℃の条件下で溶融混練し、成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、366℃であった。 After preparing these polyarylene ether ketone resins and adhesive fluororesin, a stirring mixture is prepared by putting two kinds of resins into a mixer and stirring and mixing, and the stirring mixture is used in a co-rotating twin-screw extruder or the like. The extruded product was melt-kneaded and extruded into strands, air-cooled and solidified, and then cut into pellets to prepare a molding material. As the co-rotating twin-screw extruder, a φ42 mm, L / D = 38 type was used. The stirring mixture was melt-kneaded under the conditions of a cylinder temperature of 370 ° C. and a die temperature of 370 ° C. to prepare a molding material. The temperature at the time of melt-kneading was determined to be the temperature of the molded material in the molten state immediately after being extruded from the die, and was measured to be 366 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して12時間以上乾燥させ、乾燥した成形材料の含水率が300ppm以下であるのを確認後、乾燥した成形材料を幅900mmのTダイス付きの単軸押出成形機に投入して溶融混練し、この溶融混練した成形材料をTダイスから連続的に押し出して導電素線用樹脂フィルムを帯形に押出成形した。この際、成形材料の含水率については、微量水分測定装置〔三菱化学社製 製品名CA-100型〕を用い、カールフィッシャー滴定法により測定した。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 12 hours or more. After confirming that the water content of the dried molding material was 300 ppm or less, the dried molding material was placed in a T-die having a width of 900 mm. The melt-kneaded molding material was continuously extruded from the T-die to extrude the resin film for conductive strands into a strip shape. At this time, the water content of the molding material was measured by the Karl Fischer titration method using a trace moisture measuring device [product name CA-100 type manufactured by Mitsubishi Chemical Corporation].

単軸押出成形機は、φ40mm、スクリュー:フルフライトスクリュー(L/D=32、圧縮比:2.5)のタイプとした。この単軸押出成形機のシリンダー温度は250~390℃、Tダイスの温度390℃、単軸押出成形機とTダイスとを連結する連結管とギアポンプとフィルタの温度はそれぞれ390℃に調整した。また、溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、393℃であった。また、単軸押出成形機に成形材料を投入する際、不活性ガス供給管により窒素ガス18L/minを供給した。 The single-screw extruder was of the type having a diameter of 40 mm and a screw: full flight screw (L / D = 32, compression ratio: 2.5). The cylinder temperature of this single-screw extruder was adjusted to 250 to 390 ° C., the temperature of the T-die was adjusted to 390 ° C., and the temperature of the connecting pipe connecting the single-screw extruder and the T-die was adjusted to 390 ° C., respectively. Further, regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 393 ° C. Further, when the molding material was charged into the single-screw extruder, nitrogen gas 18 L / min was supplied through the inert gas supply pipe.

導電素線用樹脂フィルムを押出成形したら、この導電素線用樹脂フィルムを、シリコーンゴム製の一対の圧着ロール、周面に凹凸を備えた150℃の冷却ロールである金属ロール、及びこれらの下流に位置する巻取機の6インチの巻取管に順次巻架し、圧着ロールと金属ロールとに挟持させ、巻取機の巻取管に順次巻き取ることにより、長さ100m、幅650mmの導電素線用樹脂フィルムを製造した。 After the resin film for the conductive wire is extruded, the resin film for the conductive wire is used as a pair of crimping rolls made of silicone rubber, a metal roll which is a cooling roll at 150 ° C. with irregularities on the peripheral surface, and downstream thereof. The length is 100 m and the width is 650 mm by sequentially winding on the 6-inch take-up tube of the take-up machine located in, sandwiching it between the crimping roll and the metal roll, and sequentially winding it on the take-up tube of the take-up machine. A resin film for conductive wire was manufactured.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的特性、絶縁特性を評価し、その結果を表1にまとめた。導電素線用樹脂フィルムは、機械的特性を引張破断時伸びと引張弾性率、絶縁特性を周波数1GHzにおける比誘電率により評価した。 After producing the resin film for the conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulating properties of the resin film for the conductive wire were evaluated, and the results are summarized in Table 1. The mechanical properties of the resin film for conductive strands were evaluated by the elongation at tensile break and the tensile elastic modulus, and the insulating properties were evaluated by the relative permittivity at a frequency of 1 GHz.

・導電素線用樹脂フィルムの厚さ
導電素線用樹脂フィルムのフィルム厚は、マイクロメータ〔ミツトヨ社製 製品名:クーラントプルーフマイクロメータ 符号MDC-25PJ〕を使用して測定した。測定に際しては、導電素線用樹脂フィルムの幅方向(押出方向の直角方向)の任意の10箇所を測定し、その平均値をフィルム厚とした。
-Thickness of resin film for conductive wire The film thickness of the resin film for conductive wire was measured using a micrometer [Product name manufactured by Mitutoyo Co., Ltd .: Coolant proof micrometer, code MDC-25PJ]. At the time of measurement, arbitrary 10 points in the width direction (direction perpendicular to the extrusion direction) of the resin film for conductive wire were measured, and the average value thereof was taken as the film thickness.

・導電素線用樹脂フィルムの相対結晶化度
導電素線用樹脂フィルムの相対結晶化度については、導電素線用樹脂フィルムから測定試料約8mgを秤量し、示差走査熱量計〔エスアイアイ・ナノテクノロジーズ社製 製品名:EXSTAR7000シリーズ X-DSC7000〕を使用して昇温速度10℃/分、測定温度範囲20℃から380℃の条件で測定した。このときに得られる結晶融解ピークの熱量(J/g)、再結晶化ピークの熱量(J/g)から以下の式を用いて算出した。
-Relative crystallinity of the resin film for conductive wire For the relative crystallinity of the resin film for conductive wire, weigh about 8 mg of the measurement sample from the resin film for conductive wire and measure it with a differential scanning calorimeter [SI Nano. Products manufactured by Technologies, Inc .: EXSTAR7000 series X-DSC7000] were used for measurement under the conditions of a temperature rise rate of 10 ° C./min and a measurement temperature range of 20 ° C. to 380 ° C. It was calculated from the calorific value of the crystal melting peak (J / g) and the calorific value of the recrystallization peak (J / g) obtained at this time using the following formula.

相対結晶化度(%)={1-(ΔHc/ΔHm)}×100
ここで、ΔHcは導電素線用樹脂フィルムの10℃/分の昇温条件下での再結晶化ピークの熱量(J/g)を表し、ΔHmは導電素線用樹脂フィルムの10℃/分の昇温条件下での結晶融解ピークの熱量(J/g)を表す。
Relative crystallinity (%) = {1- (ΔHc / ΔHm)} × 100
Here, ΔHc represents the calorific value (J / g) of the recrystallization peak of the resin film for conductive wire under a heating condition of 10 ° C./min, and ΔHm is 10 ° C./min of the resin film for conductive wire. It represents the calorific value (J / g) of the crystal melting peak under the temperature rising condition of.

・導電素線用樹脂フィルムの機械的特性
導電素線用樹脂フィルムの機械的特性は、引張破断時伸びと引張弾性率とにより評価した。引張破断時伸びと引張弾性率は、JIS K 7127(試験片タイプ1B)に準拠し、引張速度50mm/分、温度23℃の条件で測定した。引張弾性率は、導電素線用フィルムの押出方向と幅方向(押出方向の直角方向)について測定した。
-Mechanical properties of the resin film for conductive wires The mechanical properties of the resin film for conductive wires were evaluated by the elongation at tensile break and the tensile elastic modulus. The elongation at break and the tensile elastic modulus were measured in accordance with JIS K 7127 (test piece type 1B) under the conditions of a tensile speed of 50 mm / min and a temperature of 23 ° C. The tensile elastic modulus was measured in the extrusion direction and the width direction (direction perpendicular to the extrusion direction) of the film for conductive strands.

・導電素線用樹脂フィルムの比誘電率〔周波数:1GHz〕
導電素線用樹脂フィルムの周波数:1GHzにおける比誘電率は、ベクトル・ネットワーク・アナライザー〔アンリツ社製 MS46122B+040+002〕を用い、空洞共振器摂動法により測定した。1GHzにおける誘電特性の測定は、空洞共振器を空洞共振器1GHz〔キーコム社製 型式;1GHz近辺用〕に変更した以外は、ASTMD2520に準拠して実施した。誘電特性の測定は、温度:23℃±1℃、湿度50%RH±5%RH環境下で実施した。
-Relative permittivity of resin film for conductive wire [Frequency: 1 GHz]
The relative permittivity of the resin film for conductive wire at a frequency of 1 GHz was measured by a cavity resonator perturbation method using a vector network analyzer [MS46122B + 040 + 002 manufactured by Anritsu Corporation]. The measurement of the dielectric property at 1 GHz was carried out in accordance with ASTMD2520, except that the cavity resonator was changed to the cavity resonator 1 GHz [Keecom model; for near 1 GHz]. The measurement of the dielectric property was carried out in an environment of temperature: 23 ° C. ± 1 ° C. and humidity of 50% RH ± 5% RH.

〔実施例2〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とにより成形材料を調製した。実施例1では、市販されているポリエーテルエーテルケトン樹脂としてKT-851 NL SPを使用したが、実施例2では市販されているポリエーテルエーテルケトン樹脂としてダイセル・エボニックス社製の製品名:ベスタキープ-J ZV7403(以下、「ZV7403」と略す)に変更した。成形材料は、ポリエーテルエーテルケトン樹脂を100質量部用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。また、接着性フッ素樹脂としては、実施例1で使用した接着性フッ素樹脂EA-2000を15質量部用意した。
[Example 2]
First, a molding material was prepared from a polyarylene ether ketone resin and an adhesive fluororesin. In Example 1, KT-851 NL SP was used as the commercially available polyetheretherketone resin, but in Example 2, the product name manufactured by Daicel Evonix was used as the commercially available polyetheretherketone resin: Vestakeep-. It was changed to J ZV7403 (hereinafter abbreviated as "ZV7403"). As a molding material, 100 parts by mass of a polyetheretherketone resin was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. As the adhesive fluororesin, 15 parts by mass of the adhesive fluororesin EA-2000 used in Example 1 was prepared.

これらポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を用意したら、実施例1と同様の方法により成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、367℃であった。 After preparing these polyarylene ether ketone resins and the adhesive fluororesin, a molding material was prepared by the same method as in Example 1. The temperature at the time of melt-kneading was determined to measure the temperature of the molded material in the molten state immediately after being extruded from the die, and was measured to be 376 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して12時間以上乾燥させ、実施例1と同様の方法により乾燥させた成形材料の含水率を測定し、乾燥した成形材料の含水率が300ppm以下であるのを確認後、実施例1と同様の方法で導電素線用樹脂フィルムを製造した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、393℃であった。冷却ロールの温度に関しては、160℃に変更した。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 12 hours or more, the moisture content of the molding material dried by the same method as in Example 1 was measured, and the moisture content of the dried molding material was measured. After confirming that the water content was 300 ppm or less, a resin film for a conductive wire was produced by the same method as in Example 1. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 393 ° C. The temperature of the cooling roll was changed to 160 ° C.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表1にまとめた。 After manufacturing the resin film for conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of this resin film for conductive wire were evaluated according to the method of Example 1, and the results are summarized in Table 1. rice field.

〔実施例3〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とにより成形材料を調製した。実施例1では、市販されているポリエーテルエーテルケトン樹脂としてKT-851 NL SPを使用したが、実施例3では市販されているポリエーテルエーテルケトン樹脂としてビクトレックス社製の製品名:Victrex Granules 381G(以下、「381G」と略す)に変更した。成形材料は、ポリエーテルエーテルケトン樹脂を100質量部用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。また、接着性フッ素樹脂としては、実施例1で使用した接着性フッ素樹脂EA-2000を30質量部用意した。
[Example 3]
First, a molding material was prepared from a polyarylene ether ketone resin and an adhesive fluororesin. In Example 1, KT-851 NL SP was used as the commercially available polyetheretherketone resin, but in Example 3, the product name: Victrex Granules 381G manufactured by Victrex was used as the commercially available polyetheretherketone resin. (Hereinafter, abbreviated as "381G"). As a molding material, 100 parts by mass of a polyetheretherketone resin was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. As the adhesive fluororesin, 30 parts by mass of the adhesive fluororesin EA-2000 used in Example 1 was prepared.

これらポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を用意したら、実施例1と同様の方法により成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、365℃であった。 After preparing these polyarylene ether ketone resins and the adhesive fluororesin, a molding material was prepared by the same method as in Example 1. The temperature at the time of melt-kneading was determined to be the temperature of the molded material in the molten state immediately after being extruded from the die, and the measured temperature was 365 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して12時間以上乾燥させ、実施例1と同様の方法により乾燥させた成形材料の含水率を測定し、乾燥した成形材料の含水率が300ppm以下であるのを確認後、実施例1と同様の方法で導電素線用樹脂フィルムを製造した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、393℃であった。冷却ロールの温度に関しては、実施例1と同様とした。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 12 hours or more, the moisture content of the molding material dried by the same method as in Example 1 was measured, and the moisture content of the dried molding material was measured. After confirming that the water content was 300 ppm or less, a resin film for a conductive wire was produced by the same method as in Example 1. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 393 ° C. The temperature of the cooling roll was the same as in Example 1.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表1にまとめた。 After manufacturing the resin film for conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of this resin film for conductive wire were evaluated according to the method of Example 1, and the results are summarized in Table 1. rice field.

〔実施例4〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とで成形材料を調製した。実施例1では、市販されているポリエーテルエーテルケトン樹脂としてKT-851 NL SPを使用したが、本実施例4では市販されているポリエーテルエーテルケトン樹脂としてビクトレックス社製の製品名:Victrex Granules 450G(以下、「450G」と略す)に変更した。成形材料は、ポリエーテルエーテルケトン樹脂100質量部用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。また、接着性フッ素樹脂として、実施例1で使用した接着性フッ素樹脂EA-2000を50質量部用意した。
[Example 4]
First, a molding material was prepared with a polyarylene ether ketone resin and an adhesive fluororesin. In Example 1, KT-851 NL SP was used as the commercially available polyetheretherketone resin, but in this Example 4, the product name: Victrex Granules manufactured by Victrex was used as the commercially available polyetheretherketone resin. It was changed to 450G (hereinafter abbreviated as "450G"). As the molding material, 100 parts by mass of the polyetheretherketone resin was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. Further, as the adhesive fluororesin, 50 parts by mass of the adhesive fluororesin EA-2000 used in Example 1 was prepared.

これらを用意したら、実施例1と同様の方法により成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、365℃であった。 After preparing these, a molding material was prepared by the same method as in Example 1. The temperature at the time of melt-kneading was determined to be the temperature of the molded material in the molten state immediately after being extruded from the die, and the measured temperature was 365 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して12時間以上乾燥させ、実施例1と同様の方法により乾燥させた成形材料の含水率を測定し、乾燥した成形材料の含水率が300ppm以下であるのを確認後、実施例1と同様の方法で導電素線用樹脂フィルムを製造した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、390℃であった。冷却ロールの温度に関しては、実施例1と同様とした。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 12 hours or more, the moisture content of the molding material dried by the same method as in Example 1 was measured, and the moisture content of the dried molding material was measured. After confirming that the water content was 300 ppm or less, a resin film for a conductive wire was produced by the same method as in Example 1. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 390 ° C. The temperature of the cooling roll was the same as in Example 1.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表1に記載した。 After producing the resin film for the conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of the resin film for the conductive wire were evaluated according to the method of Example 1, and the results are shown in Table 1. did.

Figure 2022029225000015
Figure 2022029225000015

〔実施例5〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とで成形材料を調製した。本実施例5では、市販されているポリエーテルエーテルケトン樹脂として実施例1で使用したポリエーテルエーテルケトン樹脂を使用した。成形材料は、ポリエーテルエーテルケトン樹脂100質量部用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上乾燥させた。また、接着性フッ素樹脂として、実施例1で使用した接着性フッ素樹脂EA-2000を85質量部用意した。
[Example 5]
First, a molding material was prepared with a polyarylene ether ketone resin and an adhesive fluororesin. In Example 5, the polyetheretherketone resin used in Example 1 was used as a commercially available polyetheretherketone resin. As the molding material, 100 parts by mass of the polyetheretherketone resin was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours or more. Further, as the adhesive fluororesin, 85 parts by mass of the adhesive fluororesin EA-2000 used in Example 1 was prepared.

これらを用意したら、実施例1と同様の方法により成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、365℃であった。 After preparing these, a molding material was prepared by the same method as in Example 1. The temperature at the time of melt-kneading was determined to be the temperature of the molded material in the molten state immediately after being extruded from the die, and the measured temperature was 365 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して12時間以上乾燥させ、実施例1と同様の方法により乾燥させた成形材料の含水率を測定し、乾燥した成形材料の含水率が300ppm以下であるのを確認後、実施例1と同様の方法で導電素線用樹脂フィルムを製造した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、391℃であった。冷却ロールの温度は、実施例1と同様とした。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 12 hours or more, the moisture content of the molding material dried by the same method as in Example 1 was measured, and the moisture content of the dried molding material was measured. After confirming that the water content was 300 ppm or less, a resin film for a conductive wire was produced by the same method as in Example 1. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 391 ° C. The temperature of the cooling roll was the same as in Example 1.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表2に記載した。 After manufacturing the resin film for conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of this resin film for conductive wire were evaluated according to the method of Example 1, and the results are shown in Table 2. did.

〔実施例6〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂とで成形材料を調製した。ポリアリーレンエーテルケトンとしては、市販のポリエーテルケトンケトン樹脂〔アルケマ社製 製品名:KEPSTAN 7003(以下、「KEPSTAN 7003」〕を使用した。成形材料は、ポリエーテルケトンケトン樹脂100樹脂部用意し、このポリエーテルケトンケトン樹脂を160℃に加熱した除湿乾燥機で12時間以上させた。また、接着性フッ素樹脂として、市販されている接着性フッ素樹脂EA-2000〔AGC社製:製品名、(以下、「EA-2000」と略す。〕を15質量部用いた。
[Example 6]
First, a molding material was prepared with a polyarylene ether ketone resin and an adhesive fluororesin. As the polyarylene ether ketone, a commercially available polyetherketoneketone resin [product name manufactured by Arkema: KEPSTAN 7003 (hereinafter, “KEPSTAN 7003”]] was used. As a molding material, 100 resin parts of the polyetherketoneketone resin were prepared. This polyetherketoneketone resin was allowed to dry for 12 hours or more in a dehumidifying / drying machine heated to 160 ° C. Further, as an adhesive fluororesin, an adhesive fluororesin EA-2000 [manufactured by AGC: product name, (AGC), which is commercially available. Hereinafter, it is abbreviated as “EA-2000”] by 15 parts by mass.

これらを用意したら、2種類の樹脂を混合機に投入して攪拌混合することにより、攪拌混合物を調製し、この撹拌混合物を同方向回転二軸押出機等で溶融混練してストランド状に押し出し、この押出成形物を空冷固化した後、ペレット状にカッティングして成形材料を調製した。同方向回転二軸押出機は、φ42mm、L/D=38タイプを用いた。また、撹拌混合物は、シリンダー温度360℃、ダイス温度360℃の条件下で溶融混練し、成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、361℃であった。 After preparing these, a stirring mixture is prepared by putting two kinds of resins into a mixer and stirring and mixing, and the stirring mixture is melt-kneaded by a co-rotating twin-screw extruder or the like and extruded into a strand shape. This extruded product was air-cooled and solidified, and then cut into pellets to prepare a molding material. As the co-rotating twin-screw extruder, a φ42 mm, L / D = 38 type was used. The stirring mixture was melt-kneaded under the conditions of a cylinder temperature of 360 ° C. and a die temperature of 360 ° C. to prepare a molding material. The temperature at the time of melt-kneading was determined to be the temperature of the molded material in the molten state immediately after being extruded from the die, and the measured temperature was 361 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して12時間以上乾燥させ、乾燥した成形材料の含水率が300ppm以下であるのを確認後、乾燥した成形材料を幅150mmのTダイス付きの単軸押出成形機に投入して溶融混練し、この溶融混練した成形材料をTダイスから連続的に押し出して導電素線用樹脂フィルムを帯形に押出成形した。この際、成形材料の含水率は、微量水分測定装置〔三菱化学社製 製品名CA-100型〕を用い、カールフィッシャー滴定法により測定した。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 12 hours or more. After confirming that the water content of the dried molding material was 300 ppm or less, the dried molding material was placed in a T-die having a width of 150 mm. The melt-kneaded molding material was continuously extruded from the T-die to extrude the resin film for conductive strands into a strip shape. At this time, the water content of the molding material was measured by the Karl Fischer titration method using a trace water content measuring device [product name CA-100 type manufactured by Mitsubishi Chemical Corporation].

単軸押出成形機は、φ40mm、スクリュー:フルフライトスクリュー(L/D=32、圧縮比:2.5)のタイプとした。また、単軸押出成形機のシリンダー温度は360℃~380℃、Tダイスの温度380℃、単軸押出成形機とTダイスとを連結する連結管の温度はそれぞれ380℃に調整した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、377℃であった。 The single-screw extruder was of the type having a diameter of 40 mm and a screw: full flight screw (L / D = 32, compression ratio: 2.5). The cylinder temperature of the single-screw extruder was adjusted to 360 ° C to 380 ° C, the temperature of the T-die was adjusted to 380 ° C, and the temperature of the connecting pipe connecting the single-screw extruder and the T-die was adjusted to 380 ° C. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 377 ° C.

導電素線用樹脂フィルムを押出成形したら、この導電素線用樹脂フィルムを、シリコーンゴム製の一対の圧着ロール、周面に凹凸を備えた140℃の冷却ロールである金属ロール、及びこれらの下流に位置する巻取機の6インチの巻取管に順次巻架し、圧着ロールと金属ロールとに挟持させ、巻取機の巻取管に順次巻き取ることにより、長さ100m、幅650mmの導電素線用樹脂フィルムを製造した。 After the resin film for the conductive wire is extruded, the resin film for the conductive wire is used as a pair of crimping rolls made of silicone rubber, a metal roll which is a cooling roll at 140 ° C. with irregularities on the peripheral surface, and downstream thereof. The length is 100 m and the width is 650 mm by sequentially winding on the 6-inch take-up tube of the take-up machine located in, sandwiching it between the crimping roll and the metal roll, and sequentially winding it on the take-up tube of the take-up machine. A resin film for conductive wire was manufactured.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表2に記載した。 After manufacturing the resin film for conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of this resin film for conductive wire were evaluated according to the method of Example 1, and the results are shown in Table 2. did.

Figure 2022029225000016
Figure 2022029225000016

〔比較例1〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂により成形材料を調製した。ポリアリーレンエーテルケトン樹脂として実施例1と同様のポリエーテルエーテルケトン樹脂を使用した。成形材料は、ポリエーテルエーテルケトン樹脂を100質量部用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間乾燥させた。また、接着性フッ素樹脂としては、実施例1で使用した接着性フッ素樹脂EA-2000を1質量部未満の0.5質量部用意した。
[Comparative Example 1]
First, a molding material was prepared from a polyarylene ether ketone resin and an adhesive fluororesin. The same polyetheretherketone resin as in Example 1 was used as the polyarylene ether ketone resin. As a molding material, 100 parts by mass of a polyetheretherketone resin was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours. As the adhesive fluororesin, 0.5 parts by mass of the adhesive fluororesin EA-2000 used in Example 1 was prepared, which is less than 1 part by mass.

これらポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を用意したら、実施例1と同様の方法により成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、369℃であった。 After preparing these polyarylene ether ketone resins and the adhesive fluororesin, a molding material was prepared by the same method as in Example 1. The temperature at the time of melt-kneading was determined to measure the temperature of the molded material in the molten state immediately after being extruded from the die, and the measured temperature was 369 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して24時間乾燥させ、実施例1と同様の方法により乾燥させた成形材料の含水率を測定し、乾燥した成形材料の含水率が300ppm以下であることを確認後、実施例1と同様の方法で導電素線用樹脂フィルムを製造した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、391℃であった。冷却ロールの温度は、実施例1と同様に設定した。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 24 hours, and the moisture content of the molding material dried by the same method as in Example 1 was measured, and the moisture content of the dried molding material was measured. After confirming that the content was 300 ppm or less, a resin film for conductive wire was produced by the same method as in Example 1. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 391 ° C. The temperature of the cooling roll was set in the same manner as in Example 1.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表3にまとめた。 After manufacturing the resin film for conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of this resin film for conductive wire were evaluated according to the method of Example 1, and the results are summarized in Table 3. rice field.

〔比較例2〕
先ず、ポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂により成形材料を調製した。ポリアリーレンエーテルケトン樹脂として実施例1と同様のポリエーテルエーテルケトン樹脂を使用した。成形材料は、ポリエーテルエーテルケトン樹脂を100質量部用意し、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間乾燥させた。また、接着性フッ素樹脂としては、実施例1で使用した接着性フッ素樹脂EA-2000を、100質量部を越える150質量部用意した。
[Comparative Example 2]
First, a molding material was prepared from a polyarylene ether ketone resin and an adhesive fluororesin. The same polyetheretherketone resin as in Example 1 was used as the polyarylene ether ketone resin. As a molding material, 100 parts by mass of a polyetheretherketone resin was prepared, and the polyetheretherketone resin was dried in a dehumidifying dryer heated to 160 ° C. for 12 hours. As the adhesive fluororesin, 150 parts by mass of the adhesive fluororesin EA-2000 used in Example 1 was prepared, which exceeds 100 parts by mass.

これらポリアリーレンエーテルケトン樹脂と接着性フッ素樹脂を用意したら、実施例1と同様の方法により成形材料を調製した。溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、366℃であった。 After preparing these polyarylene ether ketone resins and the adhesive fluororesin, a molding material was prepared by the same method as in Example 1. The temperature at the time of melt-kneading was determined to be the temperature of the molded material in the molten state immediately after being extruded from the die, and was measured to be 366 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して24時間乾燥させ、実施例1と同様の方法により乾燥させた成形材料の含水率を測定し、乾燥した成形材料の含水率が300ppm以下であることを確認後、実施例1と同様の方法で導電素線用樹脂フィルムを製造した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、390℃であった。冷却ロールの温度は、実施例1と同様に設定した。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 24 hours, and the moisture content of the molding material dried by the same method as in Example 1 was measured, and the moisture content of the dried molding material was measured. After confirming that the content was 300 ppm or less, a resin film for conductive wire was produced by the same method as in Example 1. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 390 ° C. The temperature of the cooling roll was set in the same manner as in Example 1.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表3にまとめた。 After manufacturing the resin film for conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of this resin film for conductive wire were evaluated according to the method of Example 1, and the results are summarized in Table 3. rice field.

〔比較例3〕
先ず、ポリアリーレンエーテルケトン樹脂と、接着性を有しないフッ素樹脂である四フッ化エチレン・パーフルオロアルコキシエチレン共重合体(以下、「PFA樹脂」と略する)とにより成形材料を調製した。ポリアリーレンエーテルケトン樹脂として実施例1と同様のKT-851NL SPを使用した。成形材料は、ポリエーテルエーテルケトン樹脂を100質量部用い、このポリエーテルエーテルケトン樹脂を160℃に加熱した除湿乾燥機で12時間乾燥させた。また、PFA樹脂としては、市販されているネオフロンAP-210〔ダイキン工業社製:製品名、(以下、「AP-201」と略す)〕を15質量部用いた。
[Comparative Example 3]
First, a molding material was prepared with a polyarylene ether ketone resin and a fluororesin tetrafluoride / perfluoroalkoxyethylene copolymer (hereinafter abbreviated as “PFA resin”) which is a fluororesin having no adhesiveness. The same KT-851NL SP as in Example 1 was used as the polyarylene ether ketone resin. As the molding material, 100 parts by mass of the polyetheretherketone resin was used, and the polyetheretherketone resin was dried for 12 hours in a dehumidifying dryer heated to 160 ° C. As the PFA resin, 15 parts by mass of commercially available NEOFLON AP-210 [manufactured by Daikin Industries, Ltd .: product name, (hereinafter abbreviated as "AP-201")] was used.

これらを用意したら、実施例1と同様の方法により成形材料を調製した。同方向回転二軸押出機のシリンダー温度は380℃、ダイス温度は380℃に変更した。また、溶融混練時の温度は、ダイスから押し出した直後の溶融状態の成形材料の温度を測定することとし、測定したところ、377℃であった。 After preparing these, a molding material was prepared by the same method as in Example 1. The cylinder temperature of the co-rotating twin-screw extruder was changed to 380 ° C, and the die temperature was changed to 380 ° C. Further, the temperature at the time of melt-kneading was determined to measure the temperature of the molded material in the molten state immediately after being extruded from the die, and the measured temperature was 377 ° C.

次いで、成形材料を160℃に加熱した除湿乾燥機に投入して24時間乾燥させ、実施例1と同様の方法により乾燥させた成形材料の含水率を測定した後、乾燥した成形材料の含水率が300ppm以下であることを確認し、実施例1と同様の方法で導電素線用樹脂フィルムを製造した。溶融した成形材料の温度については、Tダイス入口の樹脂温度を測定することとし、測定したところ、389℃であった。冷却ロールの温度に関しては、実施例1と同様にした。 Next, the molding material was put into a dehumidifying dryer heated to 160 ° C. and dried for 24 hours, the moisture content of the molding material dried by the same method as in Example 1 was measured, and then the moisture content of the dried molding material was measured. Was confirmed to be 300 ppm or less, and a resin film for conductive wire was produced by the same method as in Example 1. Regarding the temperature of the molten molding material, it was decided to measure the resin temperature at the inlet of the T die, and the measured temperature was 389 ° C. The temperature of the cooling roll was the same as in Example 1.

導電素線用樹脂フィルムを製造したら、この導電素線用樹脂フィルムのフィルム厚、相対結晶化度、機械的性質、絶縁特性を実施例1の方法にしたがい評価し、その結果を表3に記載した。 After manufacturing the resin film for conductive wire, the film thickness, relative crystallinity, mechanical properties, and insulation characteristics of this resin film for conductive wire were evaluated according to the method of Example 1, and the results are shown in Table 3. did.

Figure 2022029225000017
Figure 2022029225000017

〔評 価〕
各実施例の導電素線用樹脂フィルムは、比較例の導電素線用樹脂フィルムと比較すると、引張破断時伸びが86%以上なので、充分な耐久性が得られると推測される。また、引張弾性率が850N/mm以上2260N/mm以下の範囲なので、導電素線との密着性に優れると推測される。さらに、比誘電率が2.35以上2.89以下なので、良好な絶縁性が得られると推測される。
〔evaluation〕
Since the resin film for conductive wire of each example has an elongation at tensile break of 86% or more as compared with the resin film for conductive wire of the comparative example, it is presumed that sufficient durability can be obtained. Further, since the tensile elastic modulus is in the range of 850 N / mm 2 or more and 2260 N / mm 2 or less, it is presumed that the adhesion to the conductive wire is excellent. Further, since the relative permittivity is 2.35 or more and 2.89 or less, it is presumed that good insulating properties can be obtained.

これに対し、比較例1の導電素線用樹脂フィルムは、接着性フッ素樹脂の添加量が0.5質量部なので、比誘電率が3.13と高い値を示した。したがって、導電素線用樹脂フィルムの絶縁性に疑義が生じた。
比較例2の導電素線用樹脂フィルムは、接着性フッ素樹脂を150質量部添加したので、引張破断時伸びが50%未満となり、靭性に疑義が生じた。したがって、導電素線に導電素線用樹脂フィルムを巻装する際、破断を招くおそれが生じた。
On the other hand, the resin film for conductive wire of Comparative Example 1 showed a high relative permittivity of 3.13 because the amount of the adhesive fluororesin added was 0.5 parts by mass. Therefore, doubts have arisen about the insulating property of the resin film for conductive wires.
Since 150 parts by mass of the adhesive fluororesin was added to the resin film for the conductive wire of Comparative Example 2, the elongation at tensile break was less than 50%, and the toughness was questioned. Therefore, when the resin film for the conductive wire is wound around the conductive wire, there is a risk of causing breakage.

比較例3の導電素線用樹脂フィルムは、接着性を有しないフッ素樹脂であるPFA樹脂を添加したので、引張弾性率が3000N/mmを越えてしまい、平角電線の曲げ加工時に剥離してしまうおそれが生じた。さらに、比誘電率も3.0を越えてしまい、導電素線用樹脂フィルムの絶縁性にも疑義が生じた。 Since the resin film for conductive wire of Comparative Example 3 was added with PFA resin, which is a fluororesin having no adhesiveness, the tensile elastic modulus exceeded 3000 N / mm 2 , and the film was peeled off during bending of a flat wire. There was a risk that it would end up. Furthermore, the relative permittivity also exceeded 3.0, raising doubts about the insulating properties of the resin film for conductive wires.

以上の結果から、接着性フッ素樹脂を1質量部以上100質量部以下添加して成形したポリアリーレンケトン樹脂フィルムは、適度な引張弾性率と比誘電性が期待できるので、導電素線用樹脂フィルムとして使用する場合、優れた絶縁性や巻き加工性が得られると推測される。 From the above results, the polyarylene ketone resin film formed by adding 1 part by mass or more and 100 parts by mass or less of the adhesive fluororesin can be expected to have an appropriate tensile elastic modulus and specific dielectric property. It is presumed that excellent insulation and winding workability can be obtained when used as a resin.

本発明に係る導電素線用樹脂フィルム及びその製造方法並びに平角電線は、各種の電気・電子機器、電線、ケーブルの製造分野等で使用される。 The resin film for a conductive wire, a method for manufacturing the same, and a flat wire according to the present invention are used in various fields of manufacturing electric / electronic devices, electric wires, cables, and the like.

1 平角電線
2 導電素線
3 絶縁層
4 導電素線用樹脂フィルム
10 溶融押出成形機(成形機)
13 Tダイス(ダイス)
17 圧着ロール
18 冷却ロール
20 巻取機
M 成形材料
1 Flat wire 2 Conductive wire 3 Insulation layer 4 Resin film for conductive wire 10 Melt extrusion molding machine (molding machine)
13 T dice (dice)
17 Crimping roll 18 Cooling roll 20 Winder M Molding material

Claims (8)

断面略矩形の導電素線に被覆される導電素線用樹脂フィルムであり、ポリアリーレンエーテルケトン樹脂100質量部と、接着性フッ素樹脂1質量部以上100質量部以下とを含有した成形材料により成形されることを特徴とする導電素線用樹脂フィルム。 It is a resin film for conductive wire coated with a conductive wire having a substantially rectangular cross section, and is molded by a molding material containing 100 parts by mass of a polyarylene ether ketone resin and 1 part by mass or more and 100 parts by mass or less of an adhesive fluororesin. A resin film for conductive strands, which is characterized by being made. 導電素線が複数であり、この複数の導電素線の間に絶縁層が介在されており、これら複数の導電素線と絶縁層とに被覆して融着される請求項1記載の導電素線用樹脂フィルム。 The conductive element according to claim 1, wherein there are a plurality of conductive strands, an insulating layer is interposed between the plurality of conductive strands, and the plurality of conductive strands and the insulating layer are coated and fused. Resin film for wires. 複数の導電素線と絶縁層とにスパイラル巻きして融着される請求項2記載の導電素線用樹脂フィルム。 The resin film for a conductive wire according to claim 2, wherein the resin film is spirally wound around a plurality of conductive wires and an insulating layer and fused. 相対結晶化度が80%未満である請求項1、2、又は3記載の導電素線用樹脂フィルム。 The resin film for a conductive wire according to claim 1, 2 or 3, wherein the relative crystallinity is less than 80%. JIS K 7127に準拠して測定された23℃における引張破断時伸びが50%以上であり、JIS K 7127に準拠して測定された23℃における引張弾性率が100N/mm以上3000N/mm以下である請求項1ないし4のいずれかに記載の導電素線用樹脂フィルム。 The elongation at tensile fracture at 23 ° C. measured according to JIS K 7127 is 50% or more, and the tensile modulus at 23 ° C. measured according to JIS K 7127 is 100 N / mm 2 or more and 3000 N / mm 2 The resin film for a conductive wire according to any one of claims 1 to 4 below. 空洞共振器摂動法により測定された1GHzにおける比誘電率が3.0以下である請求項1ないし5のいずれかに記載の導電素線用樹脂フィルム。 The resin film for a conductive wire according to any one of claims 1 to 5, wherein the relative permittivity at 1 GHz measured by the cavity resonator perturbation method is 3.0 or less. 請求項1ないし6のいずれかに記載した導電素線用樹脂フィルムの製造方法であり、ポリアリーレンエーテルケトン樹脂100質量部と、接着性フッ素樹脂1質量部以上100質量部以下とを含有した成形材料を溶融混練し、この成形材料を成形機のダイスにより導電素線用樹脂フィルムに押出成形し、押出成形した導電素線用樹脂フィルムを冷却ロールに接触させて冷却することを特徴とする導電素線用樹脂フィルムの製造方法。 The method for producing a resin film for a conductive wire according to any one of claims 1 to 6, wherein 100 parts by mass of a polyarylene ether ketone resin and 1 part by mass or more and 100 parts by mass or less of an adhesive fluororesin are contained. The material is melt-kneaded, the molding material is extruded into a resin film for conductive wire by using a die of a molding machine, and the extruded resin film for conductive wire is brought into contact with a cooling roll to be cooled. A method for manufacturing a resin film for strands. 請求項1ないし6のいずれかに記載した導電素線用樹脂フィルムを有することを特徴とする平角電線。 A flat electric wire having the resin film for a conductive wire according to any one of claims 1 to 6.
JP2020132460A 2020-08-04 2020-08-04 Resin film for conductive element wire and method for manufacturing the same, and flat rectangular electric wire Pending JP2022029225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020132460A JP2022029225A (en) 2020-08-04 2020-08-04 Resin film for conductive element wire and method for manufacturing the same, and flat rectangular electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020132460A JP2022029225A (en) 2020-08-04 2020-08-04 Resin film for conductive element wire and method for manufacturing the same, and flat rectangular electric wire

Publications (1)

Publication Number Publication Date
JP2022029225A true JP2022029225A (en) 2022-02-17

Family

ID=80271549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020132460A Pending JP2022029225A (en) 2020-08-04 2020-08-04 Resin film for conductive element wire and method for manufacturing the same, and flat rectangular electric wire

Country Status (1)

Country Link
JP (1) JP2022029225A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224249A (en) * 2013-04-25 2014-12-04 旭硝子株式会社 Fluorine-containing copolymer composition, method for producing the same and molded body
JP2020098717A (en) * 2018-12-18 2020-06-25 信越ポリマー株式会社 Resin film for conductive element wire and method for manufacturing the same, and rectangular electric wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224249A (en) * 2013-04-25 2014-12-04 旭硝子株式会社 Fluorine-containing copolymer composition, method for producing the same and molded body
JP2020098717A (en) * 2018-12-18 2020-06-25 信越ポリマー株式会社 Resin film for conductive element wire and method for manufacturing the same, and rectangular electric wire

Similar Documents

Publication Publication Date Title
JP6219480B2 (en) Enamel resin insulation laminate and insulated wire and electrical / electronic equipment using the same
EP2843669B1 (en) Invertor-surge resistant insulated wire
US10991478B2 (en) Insulated wire
US9424961B2 (en) Insulated wire, and electric/electronic equipments, motor and transformer using the same
CN107004466B (en) Insulated wire, coil, electric/electronic device, and method for manufacturing insulated wire
CN107004465B (en) Insulated wire, coil, electric/electronic device, and method for manufacturing insulated wire
WO2016103804A1 (en) Insulated electrical wire having excellent resistance to bending process, coil and electronic/electric equipment using same
JP5241470B2 (en) Capacitor film manufacturing method and capacitor film
JP6730930B2 (en) Insulated wire and rotating machinery
KR20140107412A (en) Insulated wire
US11708491B2 (en) Polymeric insulating films
JP2010123389A (en) Insulated wire
JP6015846B2 (en) Electrical insulation parts
WO2018016498A1 (en) Insulated electric wire, coil, and electric/electronic instrument
JP2022029225A (en) Resin film for conductive element wire and method for manufacturing the same, and flat rectangular electric wire
JP2010123390A (en) Insulated wire and method of manufacturing the same
JP6604104B2 (en) Insulated wire and manufacturing method thereof
JP2020098717A (en) Resin film for conductive element wire and method for manufacturing the same, and rectangular electric wire
US20230245796A1 (en) Insulated conductor for use in a winding, winding derived therefrom and corresponding manufacturing methods
JP7466465B2 (en) Insulating material for rotating electrical machines and rotating electrical machines
TWI819380B (en) Insulated wires and resin compositions
WO2024009910A1 (en) Rectangular wire, coil, and thermal shrinkage tube
JP2024046330A (en) Insulated wire, coil, electrical/electronic device, and method for manufacturing electrical/electronic device
JP2023069857A (en) Insulating resin sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128