JP2022027304A - Swallowing function evaluation/training method and system therefor, using time series data prediction - Google Patents

Swallowing function evaluation/training method and system therefor, using time series data prediction Download PDF

Info

Publication number
JP2022027304A
JP2022027304A JP2020131221A JP2020131221A JP2022027304A JP 2022027304 A JP2022027304 A JP 2022027304A JP 2020131221 A JP2020131221 A JP 2020131221A JP 2020131221 A JP2020131221 A JP 2020131221A JP 2022027304 A JP2022027304 A JP 2022027304A
Authority
JP
Japan
Prior art keywords
swallowing
bolus
organs
prediction
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020131221A
Other languages
Japanese (ja)
Other versions
JP7452855B2 (en
Inventor
誠 佐々木
Makoto Sasaki
宇曦 劉
yu xi Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2020131221A priority Critical patent/JP7452855B2/en
Publication of JP2022027304A publication Critical patent/JP2022027304A/en
Application granted granted Critical
Publication of JP7452855B2 publication Critical patent/JP7452855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Rehabilitation Tools (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

To provide an eating swallowing function evaluation technology that is non-invasive and with a low risk and enables simple prediction of hyoid bone movement even bedside or home medical care.SOLUTION: An eating swallowing function evaluation method includes a VF moving image step, a pre-treatment step, a signal measurement step, a feature amount extraction step, a learning step, a prediction step, and a motion prediction step. In the signal measurement step, synchronization with the videofluoroscopic moving image step is performed. In the learning step, a motion section is determined by fitting a feature amount to a teacher signal and movement of a hyoid bone is learned and predicted on the basis of the teacher signal and the feature amount using an LSTM, a recurrence type neural network architecture for learning long-term time dependence and short-term time dependence. In the prediction step, hyoid bone movement is predicted with respect to a subject's biological signal newly detected after the prediction step, by using the subject's hyoid bone movement learned in the learning step.SELECTED DRAWING: Figure 15

Description

本発明は、摂食嚥下時における前頸部及びその周辺の摂食嚥下動作に関わる生体信号を検出し、検出した生体信号から特徴量を抽出し、口腔、咽頭・喉頭、食道などの嚥下諸器官の運動、ならびに嚥下物(食塊)の運動を予測して摂食嚥下機能を評価・訓練する摂食嚥下機能評価・訓練方法及び摂食嚥下機能評価・訓練システムに関する。 The present invention detects biometric signals related to swallowing movements in and around the anterior neck during swallowing, extracts feature quantities from the detected biometric signals, and swallows the oral cavity, pharynx / larynx, esophagus, etc. The present invention relates to a swallowing function evaluation / training method and a swallowing function evaluation / training system for evaluating / training the swallowing function by predicting the movement of an organ and the movement of a swallowing object (bolus).

脳血管障害や神経筋疾患、加齢による筋力低下などが原因で、嚥下機能が低下すれば、図4に示すように食塊の咽頭残留や喉頭侵入、誤嚥、窒息のリスクが高まる。これには、舌骨・喉頭位の下垂、それに伴う舌骨や喉頭の挙上量や前方移動量の減少、喉頭挙上速度の低下による喉頭挙上の遅れ、嚥下反射惹起の遅延、喉頭閉鎖のタイミングのズレなど、嚥下諸器官の運動機能や感覚機能の低下が起因している。そのため、医療機関では嚥下機能を評価するために、舌、舌骨、喉頭、喉頭蓋、食道入口部などの嚥下に関連する様々な嚥下諸器官の運動ならびに食塊の運動の評価が行われている。 If swallowing function declines due to cerebrovascular accidents, neuromuscular diseases, age-related muscle weakness, etc., the risk of pharyngeal residue, laryngeal invasion, aspiration, and choking of the bolus increases, as shown in FIG. This includes hyoid / laryngeal drooping, accompanying decrease in hyoid and laryngeal elevation and anterior movement, delayed laryngeal elevation due to slowed laryngeal elevation, delayed swallowing reflex, and laryngeal closure. This is due to the deterioration of the motor and sensory functions of the swallowing organs, such as the timing shift of the larynx. Therefore, in order to evaluate swallowing function, medical institutions evaluate the movements of various swallowing organs related to swallowing such as the tongue, hyoid bone, larynx, epiglottis, and esophageal entrance, as well as the movement of the bolus. ..

例えば、嚥下機能の精密検査方法のゴールドスタンダードは、嚥下造影検査(Videofluoroscopic examination of swallowing:VF)である。VFは、図5(a)~(f)に示すように、X線透視下で造影剤入りの食塊を嚥下させ、準備・口腔、咽頭、食道期の嚥下諸器官の運動、ならびに食塊の動きを評価するものである。準備・口腔期では、咀嚼による食塊形成過程・機能や舌運動による咽頭への送り込み、口腔内残留などを評価することができる。咽頭期では、食塊の送り込みに伴う嚥下反射の惹起、ならびに、舌骨や喉頭の挙上、鼻咽腔閉鎖、喉頭蓋の反転に伴う喉頭閉鎖、食道入口部の開大、食塊の咽頭残留や喉頭侵入、誤嚥などを、舌骨、喉頭蓋、食道入口部などの嚥下諸器官の運動と食塊の運動を観察しながら詳細に評価することができる。一方で、このVFには放射線被曝や造影剤の誤嚥などのリスクがあるため、検査回数・時間・頻度、検査場所、検査条件などなどが制限される問題がある。 For example, the gold standard for a detailed examination of swallowing function is the Videofluoroscopic examination of swallowing (VF). As shown in FIGS. 5 (a) to 5 (f), VF swallows a bolus containing a contrast medium under fluoroscopy, and moves the swallowing organs during the preparation / oral cavity, pharynx, and esophagus, as well as the bolus. It evaluates the movement of. In the preparation / oral phase, it is possible to evaluate the process and function of bolus formation by chewing, feeding into the pharynx by tongue movement, and residual in the oral cavity. In the pharyngeal stage, the swallowing reflex is induced by feeding the bolus, and the tongue and larynx are raised, the larynx is closed, the larynx is closed due to the epiglottis reversal, the esophageal entrance is dilated, and the pharynx remains in the bolus. , Pharyngeal invasion, aspiration, etc. can be evaluated in detail while observing the movements of swallowing organs such as the tongue bone, epiglottis, and esophageal entrance and the movements of the bolus. On the other hand, since this VF has risks such as radiation exposure and aspiration of contrast medium, there is a problem that the number, time, frequency of examinations, examination place, examination conditions, etc. are limited.

最近では、ベッドサイドや在宅で嚥下諸器官や食塊の運動を観察する方法として、嚥下内視鏡検査(Videoendoscopic evaluation of swallowing.:VE)も広く用いられている。VEは、被曝のリスクを伴うことなく、食塊の状態や咽頭残留を評価できる利点があるが、鼻腔から内視鏡を挿入するため、粘膜損傷や痛みを伴うリスクがあり、必ずしも自然な嚥下を観察しているとはいえない側面もある。加えて、咽頭期における嚥下の瞬間や準備・口腔、食道期の運動は観察できない問題がある。 Recently, swallowing endoscopy (VE) is also widely used as a method of observing the movements of swallowing organs and bolus at bedside or at home. VE has the advantage of being able to assess the condition of the bolus and pharyngeal residue without the risk of exposure, but because the endoscope is inserted through the nasal cavity, there is a risk of mucosal damage and pain, and swallowing is not always natural. There are some aspects that cannot be said to be observing. In addition, there is a problem that the moment of swallowing in the pharyngeal period, preparation / oral cavity, and movement in the esophageal period cannot be observed.

嚥下諸器官や食塊の運動を数値として定量的に評価する際には、画像処理が用いられ、舌骨はその中でもよく着目される重要な嚥下諸器官の一つである。舌骨は人体の中で唯一、隣り合う骨、もしくは軟骨と関節の形態を呈さない、宙に浮いた状態にある極めて特異な骨である。図1に示すように、舌骨は舌と喉頭の中間に位置し、嚥下運動に関与する多くの筋が付着している。例えば、顎二腹筋、茎突舌骨筋、顎舌骨筋、オトガイ舌骨筋、胸骨舌骨筋、甲状舌骨筋、肩甲舌骨筋、咽頭舌骨筋、中咽頭収縮筋などがある。これらの筋群が協調的に活動することによって咀嚼、嚥下、発声などの巧妙な動作がなされている。 Image processing is used to quantitatively evaluate the movements of swallowing organs and bolus, and the hyoid bone is one of the important swallowing organs that are often noted. The hyoid bone is the only adjacent bone in the human body, or a very peculiar bone floating in the air that does not exhibit the morphology of cartilage and joints. As shown in FIG. 1, the hyoid bone is located between the tongue and the larynx, and many muscles involved in swallowing movement are attached to it. For example, there are jaw hyoid muscle, stylohyoid muscle, jaw hyoid muscle, otogai hyoid muscle, thoracic hyoid muscle, thyroid hyoid muscle, scapulohyoid muscle, pharyngeal hyoid muscle, mesopharynic contractile muscle, etc. .. By the cooperative activity of these muscle groups, clever movements such as mastication, swallowing, and vocalization are performed.

図2に示すように、舌骨は嚥下時におおむね三角形に類似した運動軌跡を描くことが知られている。第一に比較的ゆっくりと挙上運動を始めるが、この際、わずかに後退運動を伴うことが多い(1:挙上後退運動)。第二に舌骨は大きく挙上すると同時に急激に前進する(2:挙上前進運動)。そして最大挙上位置及び最大前進位置に停滞した後に第三の運動、すなわち元の位置へと復元するために後退及び下降運動を行う(3:下降後退運動)。これらの動作に大きく関わってくるのが舌骨上筋群と舌骨下筋群である。図3に示すように、この一連の運動の際に、咽頭筋や舌筋とともに舌骨上筋群が収縮して舌骨が上前方に移動する。そして舌骨に追従する形で舌骨下筋群の収縮により喉頭が挙上し、合わせて輪状咽頭筋の弛緩と収縮が連続的に生じて食塊は食道入口部を通過する。また、舌骨の挙上のタイミングや挙上時間は、食塊が喉頭に侵入するのを防ぐ喉頭閉鎖のタイミングや閉鎖時間と密接に関わっている。 As shown in FIG. 2, it is known that the hyoid bone draws a movement locus that resembles a triangle when swallowing. First, the raising movement is started relatively slowly, but this is often accompanied by a slight backward movement (1: raising and backward movement). Second, the hyoid bone rises sharply and moves forward rapidly (2: lift forward movement). Then, after staying at the maximum raising position and the maximum forward position, a third movement, that is, a backward movement and a downward movement are performed to restore the original position (3: downward backward movement). The suprahyoid muscles and the infrahyoid muscles are largely involved in these movements. As shown in FIG. 3, during this series of exercises, the suprahyoid muscles contract together with the pharyngeal muscles and the hyoid muscles, and the hyoid bones move upward and anteriorly. Then, the larynx is raised by the contraction of the infrahyoid muscle group following the hyoid bone, and the cricopharyngeal muscle is continuously relaxed and contracted, and the bolus passes through the esophageal entrance. In addition, the timing and time of elevation of the hyoid bone are closely related to the timing and time of closing the larynx, which prevents the bolus from invading the larynx.

舌骨上筋群と舌骨下筋群の筋活動に着目した摂食嚥下機能を評価する技術として、特許文献1に開示される摂食嚥下機能評価技術が知られている。特許文献1の摂食嚥下機能評価技術は、摂食嚥下開始から摂食嚥下終了までの生体信号を検出し、検出した生体信号から特徴量を抽出し、機械学習を用いて特徴量から摂食嚥下動作を識別して摂食嚥下機能を評価する摂食嚥下機能評価法である。生体信号として、舌骨上筋群の筋活動による舌骨上筋群生体信号と、舌骨下筋群の筋活動による舌骨下筋群生体信号とを用い、舌骨上筋群生体信号と舌骨下筋群生体信号とから特徴量を抽出する。しかし、特許文献1は、随意嚥下の強さや一回嚥下量の違い、食物や食塊の物性値(硬さ、粘度、温度、液体、個体など)の違いなど、嚥下状態の違いや誤嚥の有無・種類(顕性誤嚥、不顕性誤嚥、嚥下前誤嚥、嚥下中誤嚥、嚥下後誤嚥など)・リスク(喉頭流入など)を判別できる嚥下機能評価法及び嚥下機能評価装置であり、VFやVEで観測可能な嚥下諸器官及び食塊の運動を時系列データとして直接予測しうるものではない。これらを予測できれば、ベッドサイドや在宅で利用可能な、非侵襲かつ簡便な摂食嚥下機能評価ならびに摂食嚥下訓練を実現できる。 As a technique for evaluating the eating and swallowing function focusing on the muscle activity of the suprahyoid muscle group and the infrahyoid muscle group, the feeding and swallowing function evaluation technique disclosed in Patent Document 1 is known. The swallowing function evaluation technique of Patent Document 1 detects a biological signal from the start of swallowing to the end of swallowing, extracts a feature amount from the detected biological signal, and uses machine learning to feed from the feature amount. It is a swallowing function evaluation method that identifies swallowing movements and evaluates swallowing function. As the biological signal, the suprahyoid muscle group biological signal due to the muscle activity of the suprahyoid muscle group and the infrahyoid muscle group biological signal due to the muscle activity of the infrahyoid muscle group are used to obtain the suprahyoid muscle group biological signal. The feature amount is extracted from the biological signal of the infrahyoid muscle group. However, Patent Document 1 describes differences in swallowing conditions and aspiration, such as differences in voluntary swallowing strength and single swallowing volume, and differences in physical properties (hardness, viscosity, temperature, liquid, individual, etc.) of food and bolus. Existence / type (explicit aspiration, invisible aspiration, pre-swallowing aspiration, swallowing aspiration, post-swallowing aspiration, etc.) It is a device and cannot directly predict the movements of swallowing organs and bolus that can be observed by VF or VE as time-series data. If these can be predicted, non-invasive and simple evaluation of swallowing function and swallowing training that can be used at bedside or at home can be realized.

特開2019-208629号公報Japanese Unexamined Patent Publication No. 2019-208629

本発明は、以上の点に鑑み、非侵襲的でリスクの少ない、ベッドサイドや在宅医療でも簡便に嚥下諸器官及び食塊の運動を予測することができる摂食嚥下機能評価・訓練技術を提供することを課題とする。 In view of the above points, the present invention provides a non-invasive, low-risk, swallowing function evaluation / training technique capable of easily predicting the movement of swallowing organs and bolus even in bedside or home medical care. The task is to do.

[1] 被験者が摂食した食塊の動き及び嚥下諸器官の動きを撮影する嚥下撮影工程と、
前記嚥下撮影工程の動画から前記嚥下諸器官及び前記食塊の位置を取得して座標として数値化し、前記嚥下諸器官及び前記食塊の運動の教師信号を作成する前処理工程と、
前記嚥下撮影工程に同期させ、前記被験者の所定の皮膚表面に配置したセンサ部で摂食嚥下時における生体信号を検出する生体信号検出工程と、
解析部で前記生体信号から特徴量を抽出する特徴量抽出工程と、
RNN (Recurrent Neural Network)及び前記RNNから派生したLSTM (Long Short-Term Memory)、GRU (Gated Recurrent Unit)、LSTNet(Long- and Short-term Time-series Network)や、AR(Autoregressive)モデル及び前記ARモデルから派生したARMA(Autoregressive Moving Average)、ARIMA(Autoregressive Integrated Moving Average)、SARIMA(Seasonal AutoRegressive Integrated Moving Average)モデルを含む時系列データの予測手法を用いて前記教師信号及び前記特徴量に基づいて前記嚥下諸器官及び前記食塊の運動を学習して、前記特徴量から少なくとも前記嚥下諸器官と前記食塊の一方の運動を予測しうるモデルを生成する学習工程と、
前記学習工程で生成した予測モデルを用いて、前記特徴量から少なくとも前記嚥下諸器官と前記食塊の一方の運動を予測する予測工程と、
前記予測工程の結果を用いて摂食嚥下機能評価・訓練する評価・訓練工程と、
を備えていることを特徴とする。
[1] A swallowing imaging process in which the subject captures the movement of the bolus and the movements of the swallowing organs that the subject has eaten.
A pretreatment step of acquiring the positions of the swallowing organs and the bolus from the moving image of the swallowing imaging step and quantifying them as coordinates to create a teacher signal for the movement of the swallowing organs and the bolus.
A biological signal detection step of detecting a biological signal during swallowing by a sensor unit arranged on a predetermined skin surface of the subject in synchronization with the swallowing imaging step.
The feature amount extraction step of extracting the feature amount from the biological signal in the analysis unit,
RNN (Recurrent Neural Network) and LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit), LSTNet (Long- and Short-term Time-series Network), AR (Autoregressive) model derived from the RNN and the above. Based on the teacher signal and features using time-series data prediction methods including ARMA (Autoregressive Moving Average), ARIMA (Autoregressive Integrated Moving Average), and SARIMA (Seasonal AutoRegressive Integrated Moving Average) models derived from AR models. A learning step of learning the movements of the swallowing organs and the bolus and generating a model capable of predicting the movement of at least one of the swallowing organs and the bolus from the features.
Using the prediction model generated in the learning step, a prediction step of predicting the movement of at least one of the swallowing organs and the bolus from the feature amount,
Evaluation / training process for evaluating / training eating and swallowing function using the results of the prediction process, and
It is characterized by having.

かかる構成によれば、嚥下撮影工程、前処理工程、嚥下撮影工程と同期させた生体信号検出工程、特徴量抽出工程、学習工程、予測工程及び評価・訓練工程を備えている。嚥下撮影工程において、造影剤を混ぜた、あるいは表面にコーティングした嚥下物が球状であれば、画像処理による食塊の運動の数値化が容易になる。撮影は、嚥下工程の連続的な変化が確認できれば動画または静止画などでも良く、画像の種類は問わない。さらに、学習工程、予測工程において、例えば、時系列データの予測手法としてLSTMを用いる場合は、長期の時間依存性及び短期の時間依存性を学習する回帰型ニューラルネットワークアーキテクチャである長・短期記憶を用いて教師信号及び特徴量に基づいて舌骨をはじめとする嚥下諸器官及び食塊の運動を学習する。LSTMは、深層学習の分野において用いられる回帰型ニューラルネットワークアーキテクチャであり、従来のRNNで訓練する際に、長期の時間依存性では学習できない問題を解決し、長期の時間依存性も短期の時間依存性も学習できる。学習過程で新たな入力、出力が来た時に、新たなパターンに適合するようにし、RNNで発生していた入力重み衝突、出力重み衝突の問題に対処可能とした。このため、被験者は、最初に少なくとも一回の嚥下造形検査(VF検査)又は嚥下内視鏡検査(VE検査)などの検査と同時にセンサ部で生体信号を取ることで、その被験者の嚥下時の少なくとも嚥下諸器官と食塊の一方の運動に関する特徴を学習し、2回目以降からはVF検査などなしで、前記学習工程の後に新たに検出された生体信号の特徴量のみから少なくとも嚥下諸器官と食塊の一方の運動を予測することができる。結果、VF検査時に要するX線透視装置が不要になり、非侵襲的でリスクの少ない、ベッドサイドや在宅医療でも簡便に嚥下諸器官及び食塊の運動を予測する摂食嚥下機能評価・訓練を行うことができる。また、同じ量、同じ物性値を同じように飲み込んだときの嚥下であれば、学習データは1回で適切なデータとなるが、より好適な学習データとするには、量や物性値を変えたときの嚥下について、その条件における嚥下データを学習に加えて学習データとしてもよい。 According to such a configuration, a swallowing imaging step, a pretreatment step, a biological signal detection step synchronized with the swallowing imaging step, a feature amount extraction step, a learning step, a prediction step, and an evaluation / training step are provided. In the swallowing imaging step, if the swallowing material mixed with the contrast medium or coated on the surface is spherical, it becomes easy to quantify the movement of the bolus by image processing. The shooting may be a moving image or a still image as long as a continuous change in the swallowing process can be confirmed, and the type of the image does not matter. Furthermore, in the learning process and prediction process, for example, when LSTM is used as a prediction method for time-series data, long-term and short-term memory, which is a recurrent neural network architecture that learns long-term time dependence and short-term time dependence, is used. It is used to learn the movements of swallowing organs such as the tongue bone and the bolus based on the teacher signal and features. LSTM is a recurrent neural network architecture used in the field of deep learning, which solves problems that cannot be learned with long-term time dependence when training with conventional RNN, and long-term time dependence is also short-term time dependence. You can also learn sex. When new inputs and outputs arrive in the learning process, the new patterns are adapted, and the problems of input weight collisions and output weight collisions that occur in RNNs can be dealt with. For this reason, the subject first takes a biological signal at the sensor unit at the same time as at least one swallowing modeling test (VF test) or swallowing endoscopy (VE test), so that the subject can swallow. At least the characteristics related to the movement of one of the swallowing organs and the bolus are learned, and from the second time onward, at least the swallowing organs are obtained from only the characteristic amount of the biological signal newly detected after the learning process without VF examination. The movement of one of the bolus can be predicted. As a result, the X-ray fluoroscope required for VF examination is no longer required, and non-invasive and low-risk, swallowing function evaluation and training that easily predicts the movement of swallowing organs and bolus even at bedside and home medical care can be performed. It can be carried out. In addition, if swallowing is performed when the same amount and the same physical property value are swallowed in the same way, the learning data becomes appropriate data once, but in order to obtain more suitable learning data, the amount and physical property value are changed. Regarding swallowing at that time, the swallowing data under the condition may be added to the learning as learning data.

[2]好ましくは、前記生体信号検出工程では、舌骨上筋群部分に配置した舌骨上筋群用筋電センサで舌骨上筋群生体信号を検出し、舌骨下筋群部分に配置した舌骨下筋群用筋電センサで舌骨下筋群生体信号を検出し、喉頭部分に配置した喉頭挙動センサで喉頭挙動信号を検出し、
前記特徴量抽出工程では、前記生体信号としての、前記舌骨上筋群生体信号、前記舌骨下筋群生体信号及び前記喉頭挙動信号から特徴量を抽出している。
[2] Preferably, in the biosignal detection step, the suprahyoid muscle group biosignal is detected by the suprahyoid muscle group myoelectric sensor arranged in the suprahyoid muscle group portion, and the suprahyoid muscle group portion is detected. The placed subhyoid muscle group myoelectric sensor detects the biosignal of the subhyoid muscle group, and the placed laryngeal behavior sensor detects the laryngeal behavior signal.
In the feature amount extraction step, the feature amount is extracted from the suprahyoid muscle group biological signal, the infrahyoid muscle group biological signal, and the laryngeal behavior signal as the biological signal.

かかる構成によれば、生体信号検出工程では、舌骨上筋群生体信号、舌骨下筋群生体信号、及び喉頭挙動信号を検出するので、より精度の高い少なくとも嚥下諸器官と食塊の一方の運動の予測ができる。 According to this configuration, in the biological signal detection step, the suprahyoid muscle group biological signal, the infrahyoid muscle group biological signal, and the laryngeal behavior signal are detected, so that at least one of the swallowing organs and the bolus is more accurate. Can predict the movement of.

[3]好ましくは、前記学習工程では、学習データとして前記嚥下諸器官及び前記食塊の座標データを用い、前記学習データを、1つの元データを所定の周期で同一の座標データが含まれないようにシフトして複数に増幅させている。 [3] Preferably, in the learning step, the coordinate data of the swallowing organs and the bolus are used as the learning data, and the learning data does not include the same coordinate data of one original data in a predetermined cycle. It shifts like this and amplifies it to multiple.

かかる構成によれば、学習工程では、1つの元データを所定の周期で同一の座標データが含まれないようにシフトして複数に増幅させているので、最初の1回の学習で予測値と実測値の誤差を軽減させ、より精度の高い少なくとも嚥下諸器官と食塊の一方の運動の予測ができる。 According to such a configuration, in the learning process, one original data is shifted so as not to include the same coordinate data in a predetermined period and amplified into a plurality of pieces, so that the predicted value can be obtained in the first learning. It is possible to reduce the error of the measured value and predict the movement of at least one of the swallowing organs and the bolus with higher accuracy.

[4]好ましくは、前処理工程では、前記嚥下諸器官及び前記食塊の座標データを求めるための座標系とその原点を定め、前記被験者の第5頸椎前縁下端を原点とし、前記被験者の第3頸椎前縁上端を一つの軸上の点とした座標系を設定することで、前記被験者の矢状面または前額面における嚥下諸器官及び食塊の各位置を前記座標系の座標で取得する。 [4] Preferably, in the pretreatment step, the coordinate system for obtaining the coordinate data of the swallowing organs and the bolus and the origin thereof are determined, and the lower end of the anterior margin of the fifth cervical vertebra of the subject is set as the origin, and the subject's By setting a coordinate system with the upper end of the anterior edge of the third cervical vertebra as a point on one axis, the positions of the swallowing organs and the bolus on the sagittal plane or the front face of the subject are acquired in the coordinates of the coordinate system. do.

かかる構成によれば、前処理工程では、被験者の矢状面もしくは前額面における座標系を設定し、嚥下諸器官及び食塊の各位置のXY座標系の座標を取得しているので、被験者の前後・上下など各方向の少なくとも嚥下諸器官と食塊の一方の運動の予測を分かり易くすることができる。 According to this configuration, in the pretreatment step, the coordinate system on the sagittal plane or the front face value of the subject is set, and the coordinates of the XY coordinate system at each position of the swallowing organs and the bolus are acquired. It is possible to easily understand the prediction of the movement of at least one of the swallowing organs and the bolus in each direction such as anterior-posterior and up-down.

[5]好ましくは、被験者が摂食した食塊の動き及び嚥下諸器官の動きを撮影した画像から前記嚥下諸器官及び前記食塊の位置を取得して座標として数値化し、前記嚥下諸器官及び前記食塊の運動の教師信号を作成する前処理部と、
前記被験者の所定の皮膚表面に配置され、前記画像の撮影に同期させて、摂食嚥下時における生体信号を検出するセンサ部と、
前記生体信号から特徴量を抽出するとともに、RNN (Recurrent Neural Network)及び前記RNNから派生したLSTM (Long Short-Term Memory)、GRU (Gated Recurrent Unit)、LSTNet(Long- and Short-term Time-series Network)や、AR(Autoregressive)モデル及び前記ARモデルから派生したARMA(Autoregressive Moving Average)、ARIMA(Autoregressive Integrated Moving Average)、SARIMA(Seasonal AutoRegressive Integrated Moving Average)モデルを含む時系列データの予測手法を用いて前記教師信号及び前記特徴量に基づいて少なくとも嚥下諸器官と食塊の一方の運動を学習して予測し、この予測結果を用いて摂食嚥下機能評価・訓練する解析部と、を備えている。
[5] Preferably, the positions of the swallowing organs and the swallowing organs are acquired from the images obtained by photographing the movements of the bolus and the swallowing organs eaten by the subject and quantified as coordinates, and the swallowing organs and the swallowing organs and the swallowing organs are preferably obtained. A preprocessing unit that creates a teacher signal for the movement of the bolus,
A sensor unit that is placed on a predetermined skin surface of the subject and detects a biological signal during swallowing in synchronization with the acquisition of the image.
In addition to extracting features from the biometric signals, RNN (Recurrent Neural Network) and LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit), and LSTNet (Long- and Short-term Time-series) derived from the RNN. Using time-series data prediction methods including Network), AR (Autoregressive) models, ARMA (Autoregressive Moving Average), ARIMA (Autoregressive Integrated Moving Average), and SARIMA (Seasonal AutoRegressive Integrated Moving Average) models derived from the AR models. It is equipped with an analysis unit that learns and predicts at least the movements of one of the swallowing organs and the bolus based on the teacher signal and the feature quantity, and evaluates and trains the eating and swallowing function using the prediction results. There is.

かかる構成によれば、非侵襲的でリスクの少ない、ベッドサイドや在宅医療でも簡便に少なくとも嚥下諸器官と食塊の一方の運動を予測する摂食嚥下機能評価・訓練を行うことができる時系列データ予測を用いた嚥下機能評価・訓練システムを提供することができる。 According to this configuration, non-invasive, low-risk, time-series that can easily perform swallowing function evaluation / training that predicts the movement of at least one of the swallowing organs and the bolus at bedside or home medical care. It is possible to provide a swallowing function evaluation / training system using data prediction.

非侵襲的でリスクの少ない、ベッドサイドや在宅医療でも簡便に少なくとも嚥下諸器官と食塊の一方の運動を予測する摂食嚥下機能評価・訓練を行うことができる。 Non-invasive, low-risk, bedside and home medical care can easily perform swallowing function evaluation and training that predicts the movement of at least one of the swallowing organs and the bolus.

舌骨上筋群と舌骨下筋群を示す説明図である。It is explanatory drawing which shows the suprahyoid muscle group and the infrahyoid muscle group. 舌骨の運動を示す説明図である。It is explanatory drawing which shows the movement of a hyoid bone. 随意運動及び嚥下反射からなる嚥下の仕組みを示す説明図である。It is explanatory drawing which shows the mechanism of swallowing which consists of a voluntary movement and a swallowing reflex. 誤嚥リスクを示す説明図である。It is explanatory drawing which shows the risk of aspiration. VFで得られる情報を示す説明図である。It is explanatory drawing which shows the information obtained by VF. 本発明に係る時系列データ予測を用いた嚥下機能評価・訓練方法システムの構成図である。It is a block diagram of the swallowing function evaluation / training method system using the time-series data prediction which concerns on this invention. センサ部を示す説明図である。It is explanatory drawing which shows the sensor part. 喉頭挙動センサ及び電極用治具を示す説明図である。It is explanatory drawing which shows the laryngeal behavior sensor and the jig for an electrode. 伸縮率に対応した出力電圧を示す説明図である。It is explanatory drawing which shows the output voltage corresponding to the expansion / contraction ratio. 回路構成を示す説明図である。It is explanatory drawing which shows the circuit structure. Σ-ΔAD変換の概略図及び各AD変換モジュールの並列化と同期化を示す説明図である。It is a schematic diagram of Σ-ΔAD conversion and the explanatory diagram which shows the parallelization and synchronization of each AD conversion module. データ処理・転送回路を示す説明図である。It is explanatory drawing which shows the data processing / transfer circuit. 絶縁構成を示す説明図である。It is explanatory drawing which shows the insulation structure. 同期用マイク及びポータブルマルチミキサーを示す説明図である。It is explanatory drawing which shows the microphone for synchronization and the portable multi-mixer. 時系列データ予測を用いた嚥下機能評価・訓練方法を示すフロー図である。It is a flow chart which shows the swallowing function evaluation / training method using time-series data prediction. フレームシフトの様子を示す説明図である。It is explanatory drawing which shows the state of a frame shift. X線画像での対象物の設定を示す説明図である。It is explanatory drawing which shows the setting of the object in the X-ray image. 舌骨の開始点の距離(X軸及びY軸)を示す説明図である。It is explanatory drawing which shows the distance (X-axis and Y-axis) of the start point of a hyoid bone. VF画像上でのA~Fの時刻における舌骨位置(白丸)を示す説明図である。It is explanatory drawing which shows the hyoid bone position (white circle) at the time of A to F on the VF image. 動画による動作区間決定を示す説明図である。It is explanatory drawing which shows the operation section determination by moving motion. 生体信号による動作区間決定を示す説明図である。It is explanatory drawing which shows the operation section determination by a biological signal. RNNの基本図である。It is a basic diagram of RNN. LSTMブロックの内部構成の簡略図である。It is a simplified diagram of the internal structure of the LSTM block. LSTMブロックの内部構成を示す説明図である。It is explanatory drawing which shows the internal structure of an LSTM block. 忘却ゲート層、入力ゲート層、セルの更新、出力ゲート層を示す説明図である。It is explanatory drawing which shows the oblivion gate layer, the input gate layer, the cell update, and the output gate layer. X線透視装置及び時系列データ予測を用いた嚥下機能評価・訓練システムを示す説明図である。It is explanatory drawing which shows the swallowing function evaluation / training system using an X-ray fluoroscope and time series data prediction. 電極の配置を示す説明図である。It is explanatory drawing which shows the arrangement of an electrode. センサ部及び被験者にセンサ部を装着して透過した状態を示す説明図である。It is explanatory drawing which shows the state which the sensor part was attached to the sensor part and the subject, and the sensor part was permeated. 舌骨運動の数値化を示す説明図である。It is explanatory drawing which shows the quantification of the hyoid bone movement. 学習条件を示す説明図である。It is explanatory drawing which shows the learning condition. 学習データ及びテストデータの作成を示す説明図である。It is explanatory drawing which shows the creation of the training data and the test data. データの増幅を示す説明図である。It is explanatory drawing which shows the amplification of data. データ増幅とRMSEの関係を示す説明図である。It is explanatory drawing which shows the relationship between data amplification and RMSE. 学習の例(図31の条件6に相当する)を示す説明図である。It is explanatory drawing which shows the example of learning (corresponding to the condition 6 of FIG. 31). 嚥下1回目のsEMG信号及び喉頭運動の一例を示す説明図である。It is explanatory drawing which shows an example of the sEMG signal and the laryngeal movement of the first swallowing. 各筋群のsEMG信号、RMS、CCと喉頭運動及び舌骨の動きの時系列データを示す説明図である。It is explanatory drawing which shows the time series data of the sEMG signal, RMS, CC and the laryngeal movement and the movement of the hyoid bone of each muscle group. 一例として学習A-予測Cの結果を示す説明図である。As an example, it is explanatory drawing which shows the result of learning A-prediction C. 一例として学習A-予測Cでの舌骨の軌跡を示す説明図である。As an example, it is explanatory drawing which shows the trajectory of the hyoid bone in learning A-prediction C. X軸における実測値と予測値のRMSEと、Y軸における実測値と予測値のRMSEを示す説明図である。It is explanatory drawing which shows the RMSE of the measured value and the predicted value on the X axis, and RMSE of the measured value and the predicted value on the Y axis. X軸方向における実測値と予測値の相関係数と、Y軸方向における実測値と予測値の相関係数を示す説明図である。It is explanatory drawing which shows the correlation coefficient of the measured value and the predicted value in the X-axis direction, and the correlation coefficient of the measured value and the predicted value in the Y-axis direction. 一例として学習A-予測Cの結果を示す説明図である。As an example, it is explanatory drawing which shows the result of learning A-prediction C. 一例として学習A-予測Cでの食塊の先端の軌跡を示す説明図である。As an example, it is explanatory drawing which shows the locus of the tip of a bolus in learning A-prediction C.

本発明の実施の形態として、舌骨の運動予測を例に、添付図に基づいて以下に説明する。なお、図面は、摂食嚥下機能評価システムの概略構成を概念的(模式的)に示すものとする。 As an embodiment of the present invention, the motion prediction of the hyoid bone will be described below as an example based on the attached figure. The drawings conceptually (schematically) show the schematic configuration of the swallowing function evaluation system.

まず本発明の実施例に係る摂食嚥下機能評価システム10の全体構成を説明する。
図6~図8、図26及び図27に示すように、摂食嚥下機能評価システム10は、摂食嚥下時の生体信号を検出するセンサ部20と、検出した生体信号を増幅してPCに送信する多機能筋電位計測装置30と、生体信号から舌骨をはじめとする少なくとも嚥下諸器官と食塊の一方の運動を予測し、嚥下機能の評価や訓練に用いるための解析部40と、評価・訓練した結果を記録する記録部(不図示)と、評価・訓練した結果を表示する表示部41と、これらに給電するバッテリ(不図示)とを備えている。
First, the overall configuration of the eating and swallowing function evaluation system 10 according to the embodiment of the present invention will be described.
As shown in FIGS. 6 to 8, 26 and 27, the swallowing function evaluation system 10 has a sensor unit 20 that detects a biological signal during swallowing and a PC that amplifies the detected biological signal. A multifunctional myoelectric potential measuring device 30 that transmits, an analysis unit 40 that predicts the movement of at least one of the swallowing organs such as the hyoid bone and the bolus from biological signals, and uses it for evaluation and training of swallowing function. It includes a recording unit (not shown) for recording the evaluation / training results, a display unit 41 for displaying the evaluation / training results, and a battery (not shown) for supplying power to these.

また、摂食嚥下機能評価システム10は、被験者60が摂食した食塊の動き及び嚥下諸器官の動きを透視化して摂食嚥下造影動画を得るX線透視装置50と、摂食嚥下造影動画から嚥下諸器官及び食塊の位置を取得して少なくとも嚥下諸器官と食塊の一方の運動を座標として数値化し、各運動の教師信号を作成する前処理部51とを備えている。なお、X線透視装置50は、被験者60が、最初にVF検査と同時にセンサ部20で生体信号を検知して学習データを得るときにのみ使用される。 Further, the eating and swallowing function evaluation system 10 includes an X-ray fluoroscope 50 that visualizes the movement of the bolus and the movements of various swallowing organs eaten by the subject 60 and obtains a feeding and swallowing contrast video, and a feeding and swallowing contrast video. It is provided with a preprocessing unit 51 that acquires the positions of the swallowing organs and the bolus from the above, quantifies at least the movement of one of the swallowing organs and the bolus as coordinates, and creates a teacher signal for each movement. The X-ray fluoroscope 50 is used only when the subject 60 first detects a biological signal by the sensor unit 20 at the same time as the VF examination and obtains learning data.

次にセンサ部20について説明する。
センサ部20は、舌骨上筋群部分に配置され舌骨上筋群の筋活動による舌骨上筋群生体信号を検出する舌骨上筋群用筋電センサ21と、舌骨下筋群部分に配置され舌骨下筋群の筋活動による舌骨下筋群生体信号を検出する舌骨下筋群用筋電センサ22と、喉頭部分に配置され喉頭の挙上による喉頭挙動信号を検出する喉頭挙動センサ25とを備えている。センサ部20は、被験60者の所定の皮膚表面に配置され、摂食嚥下造影動画の取得に同期させて、摂食嚥下時における生体信号を検出するものである。
Next, the sensor unit 20 will be described.
The sensor unit 20 is a myoelectric sensor 21 for the suprahyoid muscle group, which is arranged in the suprahyoid muscle group portion and detects the biological signal of the suprahyoid muscle group due to the muscle activity of the suprahyoid muscle group, and the infrahyoid muscle group. A myoelectric sensor 22 for the infrahyoid muscles that is placed in the part and detects the biological signal of the infrahyoid muscles due to the muscle activity of the infrahyoid muscles, and a laryngeal behavior signal that is placed in the larynx and detects the larynx behavior signal due to the elevation of the larynx. It is equipped with a laryngeal behavior sensor 25. The sensor unit 20 is arranged on a predetermined skin surface of the subject 60 and detects a biological signal at the time of swallowing in synchronization with the acquisition of a swallowing contrast moving image.

舌骨上筋群用筋電センサ21は、多チャンネルの電極21aが整列したアレイ状電極が用いられている。舌骨下筋群用筋電センサ22は、多チャンネルの電極22aが整列したアレイ状電極が用いられている。 As the myoelectric sensor 21 for the suprahyoid muscle group, an array-shaped electrode in which multi-channel electrodes 21a are aligned is used. As the myoelectric sensor 22 for the infrahyoid muscle group, an array-shaped electrode in which multi-channel electrodes 22a are aligned is used.

多チャンネルの電極21a、22aは多機能筋電位計測装置30に接続して使用する。舌骨上筋群用筋電センサ21は後頭部に干渉しないように、かつ下顎底部奥に存在する茎突舌骨筋部分も計測できるような形状である。舌骨下筋群用筋電センサ22は喉頭隆起の動きに干渉せず計測できるような形状である。 The multi-channel electrodes 21a and 22a are used by being connected to the multi-functional myoelectric potential measuring device 30. The suprahyoid muscle group myoelectric sensor 21 is shaped so as not to interfere with the back of the head and to measure the stylohyoid muscle portion existing in the back of the mandibular floor. The myoelectric sensor 22 for the infrahyoid muscle group has a shape that allows measurement without interfering with the movement of the adam's apple.

基板自体の厚さは0.3mmであり、基板保護のために全体をシリコンで覆い、シリコン上に埋め込んだ銀電極を介して筋肉の表面筋電位信号(surface Electromyography、以下sEMG信号という)を抽出する。 The thickness of the substrate itself is 0.3 mm, and the entire surface is covered with silicon to protect the substrate, and the surface electromyography (hereinafter referred to as sEMG signal) of the muscle is extracted via the silver electrode embedded in the silicon. do.

銀電極は直径2mm、高さ2.5mmであり、舌骨上筋群用の電極21aは縦8mm、横11.5mm間隔で埋め込み、下顎底部全体を覆うように22個配置した。舌骨下筋群用の電極22aは縦8mm、横8mm間隔で埋め込み、頸部前面を覆うように22個配置した.また、GND電極23aとバイポーラ電極の基準電極23bを左右の耳朶に、RLD電極24を第7頸椎棘突起にそれぞれ配置した.計測の際は接触抵抗を抑えるために電極部分にペースト(Elefix、日本光電)を塗布した多チャンネルの電極21a、22aを被験者にとりつける。得られた信号は多機能筋電位計測装置30に送られる。本発明において、周波数帯域は20~4000Hz、ゲインは125倍である。 The silver electrodes had a diameter of 2 mm and a height of 2.5 mm, and electrodes 21a for the suprahyoid muscle group were embedded at intervals of 8 mm in length and 11.5 mm in width, and 22 electrodes were arranged so as to cover the entire mandibular floor. Electrodes 22a for the infrahyoid muscle group were implanted at intervals of 8 mm in length and 8 mm in width, and 22 electrodes were placed so as to cover the anterior surface of the neck. In addition, the GND electrode 23a and the reference electrode 23b of the bipolar electrode were placed in the left and right ear lobes, and the RLD electrode 24 was placed in the 7th cervical spinous process. At the time of measurement, multi-channel electrodes 21a and 22a coated with paste (Elefix, Nihon Kohden) on the electrode portion are attached to the subject in order to suppress contact resistance. The obtained signal is sent to the multifunctional myoelectric potential measuring device 30. In the present invention, the frequency band is 20 to 4000 Hz and the gain is 125 times.

また、本発明では舌骨が挙上する際、それに追従するかたちで喉頭も挙上するため、喉頭隆起の位置変化を記録するために、図8の(a)に示す喉頭挙動センサ(伸縮性ひずみセンサ)25を用いた。本発明で用いたのは喉頭挙動センサC-STRETCH(登録商標)(F51FS01、バンドー化学株式会社)である。本センサは、エラストマーフィルムと保護膜で構成されている誘電容量式のひずみセンサで、電源電圧を入力することで、センサの伸びに応じたアナログ電圧を出力する。センサ伸縮部は長さ50mm、幅5mmである。センサ伸縮部の伸縮レンジは0~100%であり、伸縮の変位に対応する出力電圧は図9に示す値になる。 Further, in the present invention, when the hyoid bone is raised, the larynx is also raised following the raising of the hyoid bone. Therefore, in order to record the change in the position of the Adam's apple, the laryngeal behavior sensor (stretchability) shown in FIG. A strain sensor) 25 was used. The laryngeal behavior sensor C-STRETCH (registered trademark) (F51FS01, Bando Chemical Industries, Ltd.) was used in the present invention. This sensor is a dielectric capacitance type strain sensor composed of an elastomer film and a protective film. By inputting a power supply voltage, it outputs an analog voltage according to the elongation of the sensor. The sensor telescopic portion has a length of 50 mm and a width of 5 mm. The expansion / contraction range of the sensor expansion / contraction portion is 0 to 100%, and the output voltage corresponding to the expansion / contraction displacement is the value shown in FIG.

また、22chフレキシブル電極21a及び22chフレキシブル電極22aの装着の際は、テーピングを施したのちに、図8の(b)に示す舌骨上筋群用筋電センサ用治具27(帽子とバンド)と、図8の(c)に示す舌骨下筋群用筋電センサ用治具28(バンド)で固定した。 Further, when the 22ch flexible electrode 21a and the 22ch flexible electrode 22a are attached, after taping, the jig 27 (hat and band) for the myoelectric sensor for the suprahyoid muscle group shown in FIG. 8 (b). And fixed with the jig 28 (band) for the myoelectric sensor for the infrahyoid muscle group shown in FIG. 8 (c).

次に多機能筋電位計測装置30について説明する。
多機能筋電位計測装置30は、複数の異なるセンサを同時に利用することを前提に設計された、生体活動をモニタリングするための計測装置である。最大64チャンネルのセンサを同時にサンプリングすることが可能である。USB2.0(High Speed)インターフェースを介して、計測データを取り込むためのPCと接続される。任意のアプリケーションソフトウェアから装置を制御することも可能である。DC12(V)のACアダプタまたは外部バッテリ入力電源により作動する。多機能筋電位計測装置の回路構成は、以下に示すように、シグナルコンディショニング部、AD変換部、データ転送部、絶縁部の4つに分けられる。
Next, the multifunctional myoelectric potential measuring device 30 will be described.
The multifunctional myoelectric potential measuring device 30 is a measuring device for monitoring biological activity, which is designed on the premise that a plurality of different sensors are used at the same time. It is possible to sample up to 64 channels of sensors at the same time. It is connected to a PC for capturing measurement data via a USB2.0 (High Speed) interface. It is also possible to control the device from any application software. Operated by DC12 (V) AC adapter or external battery input power supply. As shown below, the circuit configuration of the multifunctional myoelectric potential measuring device is divided into four parts: a signal conditioning unit, an AD conversion unit, a data transfer unit, and an insulating unit.

図10に示すように、シグナルコンディショニング部は、最大で2個の多チャンネル電極と、4個の汎用筋電位センサ、16個の任意のアナログセンサが入力可能である。まず、差動増幅回路にて、耳朶に張り付けられた基準電極から得られる信号と、多チャンネル電極の各電極から得られる信号間の同相ノイズを除去して、信号成分の差のみを増幅する。単極誘導計測とも呼ばれる。 As shown in FIG. 10, the signal conditioning unit can input up to two multi-channel electrodes, four general-purpose myoelectric potential sensors, and 16 arbitrary analog sensors. First, the differential amplifier circuit removes in-phase noise between the signal obtained from the reference electrode attached to the ear canal and the signal obtained from each electrode of the multi-channel electrode, and amplifies only the difference in signal components. Also called unipolar induction measurement.

また、得られた差動信号からDCサーボ回路にて1(Hz)以下の低周波帯域信号を検出して除去する。次に、信号増幅回路PGA(Programmable Gain Amplifier)にて、125か1000倍のいずれかに信号を増幅する。3極のアンチエイリアシングフィルタ回路にて不要な高周波雑音を除去する。これにはAD変換時の帯域折り返しを防止する効果もある。最後にAD変換を駆動するための高速アンプに入力し、出力信号を得る。 Further, a low frequency band signal of 1 (Hz) or less is detected and removed from the obtained differential signal by the DC servo circuit. Next, the signal amplification circuit PGA (Programmable Gain Amplifier) amplifies the signal to either 125 times or 1000 times. Unnecessary high frequency noise is removed by a 3-pole anti-aliasing filter circuit. This also has the effect of preventing band wrapping during AD conversion. Finally, it is input to a high-speed amplifier for driving AD conversion, and an output signal is obtained.

その他、低周波信号を追加で除去するために、デジタルフィルタによる1次ローカットフィルタ処理を施すことも可能である。遮断周波数は、disable、0.01、0.1、1.0、10.0、20.0(Hz)のいずれかである。 In addition, in order to additionally remove the low frequency signal, it is also possible to perform a first-order low-cut filter processing by a digital filter. The cutoff frequency is one of disable, 0.01, 0.1, 1.0, 10.0 and 20.0 (Hz).

汎用筋電位センサの信号処理回路は、多チャンネル電極のそれと殆ど同じ構成であるが、体表面に張り付けられた任意の電極2点から得られる信号を差動増幅する点が異なる。双極誘導計測とも呼ばれる。 The signal processing circuit of the general-purpose myoelectric potential sensor has almost the same configuration as that of the multi-channel electrode, except that the signal obtained from two arbitrary electrodes attached to the body surface is differentially amplified. Also called bipolar induction measurement.

汎用アナログセンサの信号処理回路は、様々なセンサを任意に接続できるように、最大で±15(V)のアナログ信号を入力できる仕様になっている。振幅の大きな信号を入力する場合、多機能筋電位計測装置の計測範囲(±2.5(V))に調整するためにPGAによりゲイン調整を行う。PGAの値は、disable、1/4、1/2、1倍のいずれかである。出力信号は、AD変換を駆動するための高速アンプから得られる。 The signal processing circuit of a general-purpose analog sensor is designed to be able to input an analog signal of up to ± 15 (V) so that various sensors can be connected arbitrarily. When a signal with a large amplitude is input, the gain is adjusted by PGA in order to adjust it to the measurement range (± 2.5 (V)) of the multifunctional myoelectric potential measuring device. The PGA value is one of disable, 1/4, 1/2, and 1x. The output signal is obtained from a high speed amplifier for driving the AD conversion.

図11に示すように、多機能筋電位計測装置30が内蔵するAD変換機能は、Σ-Δ変換方式で、16(bit)の分解能、最大10(kHz)で全チャンネルの同時サンプリングが可能である。Σ-Δ AD変換の概略図を示す。アナログ信号Vinに対して、サンプリング周波数fs(Hz)×nのオーバーサンプリングとΣ-Δ変調を施すことにより、帯域外の高周波帯域に不要なノイズの周波数スペクトルを移行させ、これをデジタルフィルタにより除去する。最後にfs(Hz)にダウンレートすることで、デジタライズされた出力信号を得る。広く用いられる逐次比較AD変換と比べてSN比を高くとることができ、またアンチエイリアシングフィルタを単純化することができる。 As shown in FIG. 11, the AD conversion function built in the multifunctional myoelectric potential measuring device 30 is a Σ-Δ conversion method, capable of simultaneous sampling of all channels with a resolution of 16 (bit) and a maximum of 10 (kHz). be. A schematic diagram of the Σ-Δ AD conversion is shown. By oversampling the sampling frequency fs (Hz) × n and Σ-Δ modulation of the analog signal Vin, the frequency spectrum of unnecessary noise is transferred to the high frequency band outside the band, and this is removed by the digital filter. do. Finally, downrate to fs (Hz) to obtain a digitized output signal. The SN ratio can be taken higher than the widely used successive approximation AD conversion, and the antialiasing filter can be simplified.

多機能筋電位計測装置30のデジタルフィルタは、振幅が平坦で、線形位相の特性を持つ(有効帯域は、サンプリング周波数の1/2)。サンプリング周波数は、1k、1.25k、2k、2.5k、4k、5k、8k、10k(Hz)から選択する。 The digital filter of the multifunctional myoelectric potential measuring device 30 has a flat amplitude and linear phase characteristics (effective band is 1/2 of the sampling frequency). The sampling frequency is selected from 1k, 1.25k, 2k, 2.5k, 4k, 5k, 8k, and 10k (Hz).

また、各チャンネルに対応した(64個の)Σ-Δ AD変換モジュールは、等長配線された同一のクロック源により駆動されるため、各々が同期してAD変換動作を行う。 Further, since the (64) Σ-Δ AD conversion modules corresponding to each channel are driven by the same clock source wired with the same length, each performs the AD conversion operation in synchronization.

図12に示すように、データ転送部では、AD変換によりデジタライズされた計測データはUSB2.0(High Speed)インターフェースを介してPCに取り込まれる。これらの処理はDSP(Digital Signal Processor)に書き込まれたファームウェアによって実現される。サンプリング周波数毎に、各AD変換モジュールから転送される計測データは、DMA(Direct Memory Access)によって、DSP内のメモリに転送される。DSPは、デジタルフィルタなどの追加の信号処理を行い、SDRAMで構成されるFIFO(First In First Out)メモリに計測データを保存する。USB送信バッファが空になると、FIFOメモリから対象の計測データを順次読み込み、PC(USBホスト)に送信する。このようにFIFOメモリを、データ処理とUSB転送処理の間に入れることで、抜けを起こさずに全ての計測データを、PCに転送できるようにした。 As shown in FIG. 12, in the data transfer unit, the measurement data digitized by AD conversion is taken into the PC via the USB 2.0 (High Speed) interface. These processes are realized by the firmware written in the DSP (Digital Signal Processor). The measurement data transferred from each AD conversion module for each sampling frequency is transferred to the memory in the DSP by DMA (Direct Memory Access). The DSP performs additional signal processing such as a digital filter, and stores the measurement data in a FIFO (First In First Out) memory composed of SDRAM. When the USB transmission buffer becomes empty, the target measurement data is sequentially read from the FIFO memory and transmitted to the PC (USB host). By inserting the FIFO memory between the data processing and the USB transfer processing in this way, all the measurement data can be transferred to the PC without causing any omission.

図13に示すように、絶縁部において、多機能筋電位計測装置30は、生体活動をモニタリングするための計測装置であるため、安全性についても考慮する必要がある。電極と生体が接触するアナログ部(既述のシグナルコンディショニング部とAD変換部)と、電源やPCへの接続を可能にするデジタル部(既述のデータ転送部)は、電気的に絶縁する仕様とした。アナログ部の駆動電力は、12(V)入力から絶縁電源回路により生成される。デジタル部とアナログ部のデータ通信は、デジタルアイソレータを介して行われる。 As shown in FIG. 13, since the multifunctional myoelectric potential measuring device 30 is a measuring device for monitoring biological activity in the insulated portion, it is necessary to consider safety as well. The analog part (the above-mentioned signal conditioning part and AD conversion part) where the electrode and the living body come into contact, and the digital part (the above-mentioned data transfer part) that enables connection to the power supply and PC are electrically insulated. And said. The drive power of the analog unit is generated from the 12 (V) input by the isolated power supply circuit. Data communication between the digital unit and the analog unit is performed via a digital isolator.

次にX線透視装置50について説明する。
図26に示すように、本発明で用いたVF検査装置はX線透視装置50(SHIMADZU Corp 、Safire II ZS-100)であり、検査時の電圧の出力状態は79kVp、電流は250mAである。
Next, the X-ray fluoroscope 50 will be described.
As shown in FIG. 26, the VF inspection device used in the present invention is an X-ray fluoroscope 50 (SHIMADZU Corp, Safire II ZS-100), and the voltage output state at the time of inspection is 79 kVp and the current is 250 mA.

次に同期用マイク52及びポータブルマルチミキサー53について説明する。
図14に示すように、同期用マイクは、検査の際、X線透視装置50によって得られた動画と多機能筋電位計測装置30によって得られたsEMG信号を同期させるのを目的に同期用マイク52を使用した。図14の(a)に示す同期用マイク52の本体にはステレオマイクロホン(AT9941、audio-technica(登録商標))を使用し、図14の(b)に示すポータブルマルチミキサー53(AT-PMX5P、audio-technica(登録商標))を同期用マイク52の本体、X線透視装置50、多機能筋電位計測装置30に接続することで同期を図った。
Next, the synchronization microphone 52 and the portable multi-mixer 53 will be described.
As shown in FIG. 14, the synchronization microphone is a synchronization microphone for the purpose of synchronizing the moving image obtained by the X-ray fluoroscope 50 and the sEMG signal obtained by the multifunctional myoelectric potential measuring device 30 at the time of inspection. 52 was used. A stereo microphone (AT9941, audio-technica (registered trademark)) is used for the main body of the synchronization microphone 52 shown in FIG. 14 (a), and the portable multi-mixer 53 (AT-PMX5P, shown in FIG. 14 (b)) is used. Synchronization was achieved by connecting audio-technica (registered trademark) to the main body of the synchronization microphone 52, the X-ray fluoroscope 50, and the multifunctional myoelectric potential measuring device 30.

次に解析部40について説明する。
解析部40(図6及び図26参照)は、生体信号から特徴量を抽出するとともに、ここでは長期の時間依存性及び短期の時間依存性を学習する回帰型ニューラルネットワークアーキテクチャである長・短期記憶(LSTM)を用いて教師信号及び特徴量に基づいて舌骨をはじめとする嚥下諸器官や食塊の運動を学習して予測するものである(詳細は後述する)。
Next, the analysis unit 40 will be described.
The analysis unit 40 (see FIGS. 6 and 26) is a recurrent neural network architecture that extracts features from biological signals and learns long-term time dependence and short-term time dependence, long / short-term memory. (LSTM) is used to learn and predict the movements of the hyoid bone and other swallowing organs and bolus based on teacher signals and features (details will be described later).

次に本発明の実施例に係る摂食嚥下機能評価方法について説明する。
図15に示すように、摂食嚥下機能評価方法は、嚥下撮影工程(VF動画工程)と、前処理工程と、生体信号検出工程(信号計測工程)と、特徴量抽出工程と、学習工程及び予測工程(学習・予測工程)と、予測結果の評価工程(動作予測工程)とを備えている。
Next, the method for evaluating the swallowing function according to the embodiment of the present invention will be described.
As shown in FIG. 15, the eating and swallowing function evaluation methods include a swallowing imaging step (VF moving image step), a pretreatment step, a biological signal detection step (signal measurement step), a feature amount extraction step, a learning step, and a learning step. It has a prediction process (learning / prediction process) and an evaluation process of prediction results (operation prediction process).

嚥下撮影工程(VF動画工程)では、被験者が摂食した食塊の動き及び嚥下関連器官の動きをX線透視下で観察可能な嚥下造影検査により摂食嚥下造影動画を得る。前処理工程では、摂食嚥下造影動画から舌骨をはじめとする嚥下諸器官や食塊の運動の位置を取得して各運動を座標として数値化し、嚥下諸器官や食塊の運動の教師信号を作成する。 In the swallowing imaging step (VF moving image step), a swallowing contrast moving image is obtained by a swallowing contrast examination in which the movement of the bolus and the movement of the swallowing-related organs eaten by the subject can be observed under fluoroscopy. In the pretreatment step, the positions of the movements of the hyoid bone and other swallowing organs and the bolus are obtained from the swallowing contrast video, and each movement is quantified as coordinates, and the teacher signal of the movements of the swallowing organs and the bolus is obtained. To create.

生体信号検出工程(信号計測工程)では、造影動画工程に同期させ、被験者の所定の皮膚表面に配置したセンサ部で摂食嚥下時の生体信号を検出する。特徴量抽出工程では、解析部で生体信号から特徴量を抽出する。 In the biological signal detection step (signal measurement step), the biological signal at the time of swallowing is detected by a sensor unit arranged on a predetermined skin surface of the subject in synchronization with the contrast moving image process. In the feature amount extraction step, the feature amount is extracted from the biological signal in the analysis unit.

学習工程では、長期の時間依存性及び短期の時間依存性を学習する回帰型ニューラルネットワークアーキテクチャであるLSTM(長・短期記憶)を用いて教師信号及び特徴量に基づいて舌骨をはじめとする嚥下諸器官や食塊の運動を学習して特徴量から嚥下諸器官及び食塊の運動を予測しうるモデル(予測モデル)を生成する。予測工程では、学習工程で生成した被験者の運動予測モデルにより、学習工程の後に新たに検出された、あるいは、学習工程で使用していない被験者の生体信号について特徴量から、舌骨をはじめとする嚥下諸器官や食塊の運動を予測する。また、予測工程の結果を用いて摂食嚥下機能評価・訓練する評価・訓練工程を備える。 In the learning process, swallowing including the tongue bone based on teacher signals and features using LSTM (long / short-term memory), which is a recurrent neural network architecture that learns long-term time dependence and short-term time dependence. A model (prediction model) that can predict the movements of swallowing organs and bolus from the features by learning the movements of various organs and bolus is generated. In the prediction process, the hyoid bone and other parts of the biological signal of the subject newly detected after the learning process or not used in the learning process by the motion prediction model of the subject generated in the learning process are used. Predict the movement of swallowing organs and hyoid bones. In addition, an evaluation / training process for evaluating / training the eating / swallowing function using the result of the prediction process is provided.

さらに、生体信号検出工程では、舌骨上筋群部分に配置した舌骨上筋群用筋電センサで舌骨上筋群生体信号を検出し、舌骨下筋群部分に配置した舌骨下筋群用筋電センサで舌骨下筋群生体信号を検出し、喉頭部分に配置した喉頭挙動センサで喉頭挙動信号を検出し、特徴量抽出工程では、生体信号としての、舌骨上筋群生体信号、舌骨下筋群生体信号及び喉頭挙動信号から特徴量を抽出している。 Further, in the biosignal detection step, the suprahyoid muscle group biosignal is detected by the suprahyoid muscle group myoelectric sensor placed in the suprahyoid muscle group part, and the infrahyoid muscle group part is placed in the infrahyoid muscle group part. The infrahyoid muscle group biological signal is detected by the muscle group myoelectric sensor, and the laryngeal behavior signal is detected by the laryngeal behavior sensor placed in the laryngeal part. Feature quantities are extracted from biological signals, infrahyoid muscle group biological signals, and laryngeal behavior signals.

さらに、学習工程では、学習データとして舌骨をはじめとする嚥下諸器官や食塊の運動の座標データを用い、学習データを、1つの元データを所定の周期で同一の座標データが含まれないようにシフトして複数に増幅させている(図32参照)。また、データを増幅する際、1つの元データを所定の周期で同一の座標データが含まれないようにシフトした各点(例えば、図32のデータ1、データ2、データ3)において、各点を含む平均値(移動平均)を用いてもよい。 Further, in the learning process, the coordinate data of the movements of the swallowing organs such as the hyoid bone and the bolus are used as the learning data, and the training data is not included in the same coordinate data in a predetermined cycle with one original data. It is shifted in this way and amplified to a plurality (see FIG. 32). Further, when amplifying the data, each point at each point (for example, data 1, data 2 and data 3 in FIG. 32) in which one original data is shifted so as not to include the same coordinate data in a predetermined period. An average value including (moving average) may be used.

さらに、前処理工程では、被験者の側面視で、被験者の第5頸椎前縁下端を原点とし、被験者の第3頸椎前縁上端をY軸上の点としたXY座標系を設定し、被験者の舌骨の下端を前記舌骨の位置として前記XY座標系の座標を取得している。 Further, in the pretreatment step, an XY coordinate system is set in which the lower end of the anterior margin of the 5th cervical vertebra of the subject is the origin and the upper end of the anterior margin of the 3rd cervical vertebra of the subject is a point on the Y axis in the lateral view of the subject. The coordinates of the XY coordinate system are acquired with the lower end of the hyoid bone as the position of the hyoid bone.

次に摂食嚥下機能評価方法における時系列データによる舌骨の運動予測アルゴリズムについて説明する。時系列データによる舌骨の運動の予測アルゴリズムの概略図は、図15に示す通りである。 Next, a hyoid bone motion prediction algorithm based on time-series data in the eating and swallowing function evaluation method will be described. A schematic diagram of the algorithm for predicting the movement of the hyoid bone based on the time series data is as shown in FIG.

次に信号計測の特徴部抽出部について説明する。
発明者らは、信号計測によって得られた舌骨上筋群22ch、舌骨下筋群22chにおいてバンドパスフィルタ(250-700Hz)をかけることでノイズの除去を行った。その後、舌骨上筋群及び舌骨下筋群の各チャンネルにおいて動作に関連した特徴的な信号成分(特徴量)を抽出する。本研究は舌骨上筋群と舌骨下筋群の各チャンネルのそれぞれのsEMG信号に対して、長さ256サンプル分のフレームを、16サンプルの周期でシフトさせながら特徴量を抽出し作成した。この特徴量には以下のものを用いた。
Next, the feature section extraction section of the signal measurement will be described.
The inventors removed noise by applying a bandpass filter (250-700 Hz) to the suprahyoid muscle group 22ch and the infrahyoid muscle group 22ch obtained by signal measurement. Then, characteristic signal components (features) related to movement are extracted in each channel of the suprahyoid muscle group and the infrahyoid muscle group. In this study, features were extracted and created by shifting frames for 256 samples in length in a cycle of 16 samples for each sEMG signal of each channel of the suprahyoid muscle group and the infrahyoid muscle group. .. The following are used for this feature quantity.

RMS(Root Mean Square)は数式1で表され、EMG信号の振幅に関する特徴が得られる。 RMS (Root Mean Square) is expressed by Equation 1, and features related to the amplitude of the EMG signal can be obtained.

Figure 2022027304000002
Figure 2022027304000002

CC(Cepstrum coefficient)は数式2で表される。周波数領域から抽出する特徴量であり、パワースペクトルの包絡形状と微細構造の分離を行える特徴がある。次数が低いと包絡形状の特徴が、次数が高いと微細構造の特徴が表れる。 CC (Cepstrum coefficient) is expressed by the formula 2. It is a feature quantity extracted from the frequency domain, and has a feature that the envelope shape of the power spectrum and the fine structure can be separated. When the order is low, the characteristic of the envelope shape appears, and when the order is high, the feature of the fine structure appears.

Figure 2022027304000003
Figure 2022027304000003

ここで、nは総サンプル数、sEMGはsEMG信号を表す。 Here, n represents the total number of samples and sEMG represents the sEMG signal.

図16に示すように、RMSの計算には過去nサンプルのEMGを用いる。この際、nサンプル分を一つのフレームとして切り出して計算し、切り出す範囲を一定周期でシフトさせていくフレームシフト方式を用いる。 As shown in FIG. 16, the past n samples of EMG are used for the calculation of RMS. At this time, a frameshift method is used in which n samples are cut out as one frame and calculated, and the cutout range is shifted at regular intervals.

次にVF検査動画の前処理について説明する。
図17に示すように、VF検査によって得られた動画は動画解析ソフトウェアのDIPP‐Motion V(株式会社ディテクト)を用いて30fpsのサンプリング速度で取り込み、舌骨の運動の数値化を行った。座標系は、第3頸椎前縁上端をP1、第5頸椎前縁下端をP2、舌骨体の下端をP3とし、P1とP2を通過する直線をY軸とした。Y軸に垂直かつP2を通る直線をX軸と設定した。画面上のスケール設定においては多チャンネル電極の22個ある純銀棒の1つの直径2mmを基準とした。
Next, the preprocessing of the VF inspection video will be described.
As shown in FIG. 17, the moving image obtained by the VF test was captured at a sampling rate of 30 fps using DIPP-Motion V (Detect Co., Ltd.), a video analysis software, and the movement of the hyoid bone was quantified. In the coordinate system, the upper end of the leading edge of the third cervical spine was P1, the lower end of the leading edge of the fifth cervical spine was P2, the lower end of the hyoid bone was P3, and the straight line passing through P1 and P2 was the Y axis. A straight line perpendicular to the Y axis and passing through P2 was set as the X axis. In the scale setting on the screen, the diameter of one of the 22 sterling silver rods of the multi-channel electrode was 2 mm.

図18に示すように、舌骨体の下端の動きの解析においては安静状態の舌骨体の下端を座標の原点とし、嚥下時におけるX軸及びY軸の移動距離(mm)を算出し、その後移動平均を行い、平滑化を行った。 As shown in FIG. 18, in the analysis of the movement of the lower end of the hyoid bone, the moving distance (mm) of the X-axis and the Y-axis during swallowing is calculated with the lower end of the hyoid bone in a resting state as the origin of the coordinates. After that, moving average was performed and smoothing was performed.

図19に示すように、画像結果から、Aを随意嚥下開始に伴う舌尖の運動開始、Bを舌骨挙上運動開始、Cを嚥下反射開始に伴う急速な舌骨挙上開始、Dを舌骨の最前上方位到達、Eを舌骨の急速下降開始、Fを嚥下終了後の舌骨安静位として決定し、AからFまでの区間を舌骨の運動を予測する区間とした。 As shown in FIG. 19, from the image results, A is the start of movement of the hyoid bone with the start of voluntary swallowing, B is the start of hyoid bone elevation movement, C is the rapid start of hyoid bone elevation with the start of swallowing reflex, and D is the tongue. Reaching the foremost direction of the bone, E was determined as the rapid descent of the hyoid bone, F was determined as the resting position of the hyoid bone after the end of swallowing, and the section from A to F was defined as the section predicting the movement of the hyoid bone.

図20に示すように、動作区間の決定については、教師信号となる舌骨の運動から、開始点を随意嚥下開始に伴う舌尖の運動開始A(図19参照)とし、終了点を嚥下終了後の舌骨安静位Fとした。 As shown in FIG. 20, regarding the determination of the motion section, the start point is the movement start A of the tongue tip accompanying the start of voluntary swallowing (see FIG. 19) from the movement of the hyoid bone which is the teacher signal, and the end point is after the end of swallowing. The hyoid bone resting position F was set.

そして、図21に示すように、舌骨の運動に対して、舌骨上筋群のsEMG信号、舌骨下筋群のsEMG信号、及び喉頭挙動センサ(伸縮ひずみセンサ)による喉頭運動を合わせて、動作区間を決定した。 Then, as shown in FIG. 21, the sEMG signal of the suprahyoid muscle group, the sEMG signal of the infrahyoid muscle group, and the laryngeal movement by the laryngeal behavior sensor (stretching strain sensor) are combined with the movement of the hyoid bone. , The operation section was decided.

次に学習器について説明する。
ここではsEMG信号からの舌骨の運動予測に、時系列データ予測に適しているLSTMを用いた。LSTM(Long short-term memory、長・短期記憶)とは、深層学習の分野において用いられる回帰型ニューラルネットワーク(Recurrent Neural Network :RNN)アーキテクチャであり、従来のRNNで訓練する際に、長期の時間依存性では学習できない問題を解決し、長期の時間依存性も短期の時間依存性も学習できる手法である。
Next, the learner will be described.
Here, LSTM, which is suitable for time-series data prediction, was used to predict the movement of the hyoid bone from the sEMG signal. LSTM (Long short-term memory) is a recurrent neural network (RNN) architecture used in the field of deep learning, and it takes a long time to train with a conventional RNN. It is a method that can solve long-term time dependence and short-term time dependence by solving problems that cannot be learned by dependence.

RNNは、ニューラルネットワークを拡張した深層学習の一つで、時系列データの分野で優れた性能をもつ手法である。現在では機械翻訳や音声認識の分野にてよく使用される。図22に示すように、可変長データをニューラルネットワークで扱うために中間層で得られた値を再び中間層に入力するというネットワーク構造になっている。中間層htは、入力xtを見て、値htを出力する。ループは、情報をネットワークの1ステップから次のステップに渡すことを可能にした。しかし、長期間の予測になればなるほど、予測する値に関連する情報が最初に位置していると、RNNの場合、関連づけて学習することが困難となる。 RNN is one of the deep learning that extends the neural network, and is a method with excellent performance in the field of time series data. Nowadays, it is often used in the fields of machine translation and speech recognition. As shown in FIG. 22, the network structure is such that the values obtained in the intermediate layer are input to the intermediate layer again in order to handle the variable length data in the neural network. The middle layer h t looks at the input x t and outputs the value h t . The loop allowed information to be passed from one step to the next in the network. However, the longer the prediction, the more difficult it is to relate and learn in the case of RNNs, if the information related to the predicted value is located first.

図23に示すように、RNNと異なる部分として、LSTMにはCEC(Constant Error Carousel、記憶セル、セルとも呼ばれる)、入力ゲート、出力ゲート、忘却ゲートがある。CECとは過去のデータを保存するためのユニットで記憶セル、セルとも呼ばれる。これを導入することにより、長周期の規則性を検出することが可能になる。入力ゲート及び出力ゲートでは、学習過程で新たな入力、出力が来た時に、新たなパターンに適合するようにし、RNNで発生していた入力重み衝突、出力重み衝突の問題に対処可能となった。忘却ゲートがないモデルの場合、大きな変化のある入力が来たとしても、相対的にその入力の影響は小さくなってしまい、今までと同様の結果しか出力されなくなってしまう。この問題に対処するために忘却ゲートを導入することで、入力のパターンが大きく変化した際、セルの状態を一気に更新することを可能にした。 As shown in FIG. 23, the LSTM has a CEC (Constant Error Carousel, also called a storage cell, a cell), an input gate, an output gate, and an oblivion gate, which are different from the RNN. CEC is a unit for storing past data and is also called a storage cell or cell. By introducing this, it becomes possible to detect long-period regularity. In the input gate and output gate, when a new input or output arrives in the learning process, it is possible to adapt to the new pattern and deal with the problems of input weight collision and output weight collision that occurred in RNN. .. In the case of a model without a forgetting gate, even if an input with a large change comes, the influence of that input will be relatively small, and only the same result as before will be output. By introducing a forgetting gate to deal with this problem, it is possible to update the cell state at once when the input pattern changes significantly.

図24に示すように、LSTMブロックの内部の詳細は図24の(a)のようになる。図25の(b)のようにそれぞれの線はベクトル全体を、1つのノードの出力から他のノードの入力に運ぶ。小さな円は、ベクトルの加算のような1点の操作を表し、矩形のボックスは、学習されるニューラルネットワークの層である。合流している線は連結を意味し、分岐している線は内容がコピーされ、そのコピーが別の場所に行くことを意味する。 As shown in FIG. 24, the internal details of the LSTM block are as shown in FIG. 24 (a). As shown in FIG. 25 (b), each line carries the entire vector from the output of one node to the input of another node. Small circles represent one-point operations such as vector addition, and rectangular boxes are layers of neural networks to be trained. A merging line means a concatenation, and a diverging line means that the content is copied and the copy goes to another location.

図25は忘却ゲートを示しており、図25の(a)に示すように、LSTMブロック内では、最初のステップで捨てる情報を判定する。この判定は「忘却ゲート層」と呼ばれるシグモイド層によって行われる。入力されたht-1とxtを見て、セル状態Ct-1の中の各数値のために0と1の間の数値を出力します。1は「完全に維持する」を表し、0は「完全に取り除く」を表す。また、その時の式は数式3、ゲート活性化関数であるσの式は数式4に示す。 FIG. 25 shows a forgetting gate, and as shown in FIG. 25 (a), in the LSTM block, the information to be discarded in the first step is determined. This determination is made by a sigmoid layer called the "forgetting gate layer". Look at the input h t-1 and x t and output the number between 0 and 1 for each number in the cell state C t-1 . 1 stands for "completely maintain" and 0 stands for "completely remove". The equation at that time is shown in Equation 3, and the equation of σ, which is a gate activation function, is shown in Equation 4.

Figure 2022027304000004
Figure 2022027304000004

Figure 2022027304000005
Figure 2022027304000005

ここで、Wは入力の重み、bはバイアスを表す。 Where W represents the weight of the input and b represents the bias.

図25の(b)は入力ゲートを示しており、次のステップは、セル状態で保存する新たな状態を判定する。これには2つの部分がある。まず、「入力ゲート層」と呼ばれるシグモイド層は、どの値を更新するか判定する。次に、tanh層は、セル状態に加えられる新たな候補地のベクトルCtを作成する。そして次のステップで状態を更新するために、これら2つを組み合わせる。その時の式を数式5、数式6に表す.ここでtanhは双曲線正接関数を表す。 (B) of FIG. 25 shows an input gate, and the next step is to determine a new state to be saved in the cell state. There are two parts to this. First, the sigmoid layer called the "input gate layer" determines which value to update. The tanh layer then creates a vector C t of new candidate sites to be added to the cell state. Then combine these two to update the state in the next step. The formulas at that time are expressed in formulas 5 and 6. Where tanh represents a hyperbolic tangent function.

Figure 2022027304000006
Figure 2022027304000006

Figure 2022027304000007
Figure 2022027304000007

図25の(c)はセルの更新を示しており、古いセル状態Ct-1から新しいセル状態Ctに更新する。古いセル状態にftを掛け、先ほど忘れると判定されたものを忘れる。そして、it×ベクトルCtを加える。これは、各状態値を更新すると決定した割合でスケーリングされた新たな候補値である。その時の式を数式7に表す. (C) of FIG. 25 shows the cell update, and updates from the old cell state C t-1 to the new cell state C t . Multiply the old cell state by f t and forget what was determined to be forgotten earlier. Then add it x vector C t . This is a new candidate value scaled at the rate determined to update each state value. The formula at that time is expressed in Equation 7.

Figure 2022027304000008
Figure 2022027304000008

図25の(d)は出力ゲートを示しており、最後に、出力するものを判定する必要がある。この出力はセル状態に基づいて行われる。まず、シグモイド層を実行する。この層は、セル状態のどの部分を出力するかを判定し、判定された部分のみを出力するため、セル状態に(値を-1と1の間に圧縮するために)tanhを適用し、それにシグモイド層での出力を掛け合わせる。その時の式を数式8、数式9に表す。 (D) of FIG. 25 shows an output gate, and finally, it is necessary to determine what to output. This output is based on the cell state. First, the sigmoid layer is executed. This layer determines which part of the cell state to output and outputs only the determined part, so tanh is applied to the cell state (to compress the value between -1 and 1). Multiply that by the output of the sigmoid layer. The formulas at that time are expressed in formulas 8 and 9.

Figure 2022027304000009
Figure 2022027304000009

Figure 2022027304000010
Figure 2022027304000010

次にsEMG信号による舌骨の運動予測について説明する。
検査条件として、被検者は、口腔機能に疑いがあり、岩手医科大学附属病院に来院され、VF検査の実施に同意された70代の女性である。なお、本検査は岩手医科大学歯学部倫理審査委員会(第01304号)及び岩手大学研究倫理審査委員会(第201905号)の承認を得て、通常検査の範囲内で実施した。
Next, the motion prediction of the hyoid bone by the sEMG signal will be described.
As a test condition, the subject was a female in her 70s who was suspected of having oral function, visited the Iwate Medical University Hospital, and agreed to perform a VF test. This inspection was carried out within the scope of the normal inspection with the approval of the Iwate Medical University School of Dentistry Ethics Review Board (No. 01304) and the Iwate University Research Ethics Review Board (No. 201905).

計測方法及び計測動作については、図26に示すように、VF検査時には、X線透視装置(SafireII ZS‐100、島津製作所)を用い、頸部側面から椅子座位における舌骨の運動を撮影した。検査食は1%のとろみを付与した98w/w%硫酸バリウム溶液3mlとし、検査者が被検者の舌下部にシリンジにて注入した後、検査者の指示によって嚥下を行った。検査回数は3試行、撮影速度は30fpsとした。また、図27及び図28に示すように、VF検査と同時に、下顎部に舌骨上筋群用22チャンネルフレキシブル電極、頸部に舌骨下筋群用22チャンネルフレキシブル電極、耳朶に耳電極を装着した。舌骨上筋群は図7の(c)の1、2番の電極からオトガイまでの距離が25mmから30mmの間で、電極が顎骨に当たらない位置に装着した。舌骨下筋群は図7の(d)の5、6番の電極が甲状軟骨(喉仏)前方に最も突出している部分に位置するように装着した。 As for the measurement method and measurement operation, as shown in FIG. 26, the movement of the hyoid bone in the chair sitting position was photographed from the side of the neck using an X-ray fluoroscope (SafireII ZS-100, Shimadzu Corporation) at the time of the VF examination. The test food was 3 ml of a 98 w / w% barium sulfate solution having a thickness of 1%, and the tester injected it into the lower part of the tongue of the subject with a syringe, and then swallowed according to the instructions of the tester. The number of inspections was 3 trials, and the shooting speed was 30 fps. Further, as shown in FIGS. 27 and 28, at the same time as the VF examination, a 22-channel flexible electrode for the suprahyoid muscle group was placed in the lower jaw, a 22-channel flexible electrode for the infrahyoid muscle group was placed in the neck, and an ear electrode was placed in the ear canal. I put it on. The suprahyoid muscle group was attached at a position where the distance from the electrodes 1 and 2 in FIG. 7 (c) to the chin was between 25 mm and 30 mm and the electrodes did not touch the jawbone. The infrahyoid muscle group was attached so that the electrodes 5 and 6 in (d) of FIG. 7 were located at the most protruding part in front of the thyroid cartilage (Adam's apple).

喉頭運動の計測には、甲状軟骨部分に喉頭挙動センサ(伸縮ひずみセンサ)を装着し、筋電計測と同じ多機能筋電位計測装置に接続した。なお、sEMG信号の増幅率は125倍sEMG信号及び喉頭挙動センサのサンプリング周波数は2000Hzとした。そして、筋電と喉頭運動の計測システムとVF検査の同期を行うために、多機能筋電位計測装置及びX線透視装置に同期用マイクを接続し、音によるトリガー入力を行った。図29は舌骨の運動の数値化の過程を示したものであり、VF動画に応じて、舌骨のX軸方向(前後方向)の動きと、舌骨のY軸方向(上下方向)の動きをグラフ化している。なお、この計測はVF検査が主目的であり、筋電の計測は付随して行われたものである。 For the measurement of laryngeal movement, a laryngeal behavior sensor (stretch strain sensor) was attached to the thyroid cartilage part and connected to the same multifunctional myoelectric potential measuring device as myoelectric measurement. The amplification factor of the sEMG signal was 125 times, and the sampling frequency of the sEMG signal and the laryngeal behavior sensor was 2000 Hz. Then, in order to synchronize the VF test with the myoelectric and laryngeal movement measurement system, a synchronization microphone was connected to the multifunctional myoelectric potential measuring device and the X-ray fluoroscopy device, and trigger input was performed by sound. FIG. 29 shows the process of quantifying the movement of the hyoid bone. According to the VF video, the movement of the hyoid bone in the X-axis direction (anterior-posterior direction) and the movement of the hyoid bone in the Y-axis direction (vertical direction). The movement is graphed. The main purpose of this measurement is VF examination, and the measurement of myoelectricity is accompanied.

LSTMを用いた舌骨の運動予測については、解析条件としての学習条件は、学習の入力値において、入力に用いる筋群が増えるとどうなるか、また、喉頭運動を加えることで予測精度にどういう影響を与えるかを検証するため図30に示すような6パターンで検証を行った。 Regarding the prediction of hyoid bone movement using LSTM, the learning condition as an analysis condition affects the prediction accuracy by adding the laryngeal movement and what happens when the muscle group used for input increases in the learning input value. In order to verify whether or not the above is given, verification was performed with 6 patterns as shown in FIG.

解析条件としての学習・予測用データセットの作成は、検査回数が3回のためそれぞれをA、B、Cとした。そして図31のように学習及びテストデータを6通り作成した。予測精度の向上を目的に学習データそれぞれにおいてデータの増幅を行った。図32に示すように、本発明では、元データのサンプル数に対して、同一の点を含まないように30サンプルに1つの周期で点をとり、データを30個まで増幅を行った。30個に増幅したデータは、それぞれのデータが元のデータのサンプル数の1/30になっているため、元のデータのサンプル数に合わせるために1次データ内挿を行い、元のデータのサンプル数に合わせた。 The training / prediction data set as an analysis condition was created as A, B, and C because the number of inspections was three. Then, as shown in FIG. 31, six types of learning and test data were created. The data was amplified in each of the training data for the purpose of improving the prediction accuracy. As shown in FIG. 32, in the present invention, points were scored in one cycle of 30 samples so as not to include the same points with respect to the number of samples of the original data, and the data was amplified up to 30 pieces. Since each data of the data amplified to 30 is 1/30 of the number of samples of the original data, the primary data is interpolated to match the number of samples of the original data, and the original data is used. According to the number of samples.

データ増幅の有効性については、本発明でデータを30個まで増幅したが、増幅しない場合との比較を図33に示す。図33はデータ増幅とRMSEの関係を示しており、RMSEでの誤差検証からデータ増幅することによって予測値と実測値の誤差が減っていることが見て取れ、データ増幅の有効性が分かる。 Regarding the effectiveness of data amplification, FIG. 33 shows a comparison with the case where the data is amplified up to 30 in the present invention but not amplified. FIG. 33 shows the relationship between data amplification and RMSE, and it can be seen from the error verification by RMSE that the error between the predicted value and the measured value is reduced by data amplification, and the effectiveness of data amplification can be seen.

図34は学習についての例を示しており、学習の入力値が舌骨上筋群と舌骨下筋群及び喉頭運動とした場合、計265次元が入力の次元数となる。出力値は舌骨の前後方向の運動、上下方向の運動の2次元となる。また、テストデータで予測する際、予測結果には平滑化処理を行っている。 FIG. 34 shows an example of learning, and when the input values of learning are the suprahyoid muscle group, the infrahyoid muscle group, and the laryngeal movement, a total of 265 dimensions is the number of input dimensions. The output value is two-dimensional, that is, the movement of the hyoid bone in the anterior-posterior direction and the movement in the vertical direction. In addition, when making predictions using test data, smoothing processing is performed on the prediction results.

次に評価指標について説明する。
VF動画によって得られた実測値と予測値の結果にどれほどの差があるかを検証するためにRMSE(Root Mean Square Error、平均二乗誤差)及びピアソンの積率相関係数を用いた。RMSE及び相関係数の結果は6通りの学習結果の平均値とする。RMSEは数式10で表され、回帰モデルの最も一般的な性能指標であり、誤差が少ないほど良い精度であるといえる。
Next, the evaluation index will be described.
RMSE (Root Mean Square Error) and Pearson's product moment correlation coefficient were used to verify the difference between the measured and predicted values obtained by the VF video. The result of RMSE and correlation coefficient shall be the average value of 6 kinds of learning results. RMSE is expressed by the formula 10 and is the most common performance index of the regression model, and it can be said that the smaller the error, the better the accuracy.

Figure 2022027304000011
Figure 2022027304000011

ピアソンの積率相関係数(以下、相関係数と呼ぶ)は、数式11で表され、値が大きいほど波形の類似度が高く、予測精度が高いといえる。 Pearson's product-moment correlation coefficient (hereinafter referred to as the correlation coefficient) is expressed by Equation 11, and it can be said that the larger the value, the higher the similarity of the waveforms and the higher the prediction accuracy.

Figure 2022027304000012
Figure 2022027304000012

ここで、yobsは出力の実測値、ypredは出力の予測値を表す。 Here, y obs represents the measured value of the output, and y pred represents the predicted value of the output.

次に結果について説明する。
収集したデータについては、図35に、本発明で得られた嚥下3回分のうち1回分のsEMG信号、喉頭運動を示している。
Next, the result will be described.
Regarding the collected data, FIG. 35 shows the sEMG signal and laryngeal movement for one of the three swallows obtained in the present invention.

また、図36は、各筋群のsEMG信号、RMS、CCと喉頭運動及び舌骨の動きの時系列データを示している。なお、ここで用いられるqrとはケプストラム係数(CC)のquefrencyのことである。 In addition, FIG. 36 shows time-series data of sEMG signals, RMS, CC and laryngeal movement and hyoid bone movement of each muscle group. The qr used here is the quefrency of the cepstrum coefficient (CC).

X軸方向(前後方向)とY軸方向(上下方向)の予測結果については、舌骨のX軸方向及びY軸方向を図17のようにして、舌骨の運動の各方向での実測値及び予測値の6通りのうち1通りの結果は図37のようになる。 Regarding the prediction results in the X-axis direction (anterior-posterior direction) and the Y-axis direction (vertical direction), the measured values in each direction of the movement of the tongue bone are measured in the X-axis direction and the Y-axis direction of the tongue bone as shown in FIG. And one of the six predicted values is as shown in FIG. 37.

図37における結果に対応する、舌骨の運動の矢状面(XY座標面)での軌跡は、図38のようになる。なお、図38では、実測値と予測値を含むように示している。 The locus of the movement of the hyoid bone in the sagittal plane (XY coordinate plane) corresponding to the result in FIG. 37 is as shown in FIG. 38. In addition, in FIG. 38, it is shown that the measured value and the predicted value are included.

次に筋群の組み合わせにおける舌骨の運動予測の精度について説明する。
図39はRMSEの結果を示しており、筋群の組み合わせにおけるX軸方向及びY軸方向の結果である。
Next, the accuracy of the motion prediction of the hyoid bone in the combination of muscle groups will be described.
FIG. 39 shows the results of RMSE, which are the results in the X-axis direction and the Y-axis direction in the combination of muscle groups.

図40は相関係数の結果を示しており、筋群の組み合わせにおけるX軸方向及びY軸方向の結果である。 FIG. 40 shows the results of the correlation coefficient, which are the results in the X-axis direction and the Y-axis direction in the combination of muscle groups.

これらの結果により、舌骨をX軸方向に動かす筋肉はオトガイ舌骨筋をはじめとする舌骨上筋群が強く作用していると考えられる。また、舌骨をY軸方向に動かす筋肉は各筋群のみによって動いているのではなく、両筋群の協調運動によって動作がなされていると考えられる。喉頭は舌骨が嚥下によって上方向へ運動する際、追従する形で舌骨下筋群によって引き上げられるため、伸縮性ひずみセンサによる喉頭運動の情報を加えることでより精度が向上したと考えられる。 From these results, it is considered that the suprahyoid muscles including the geniohyoid muscle act strongly on the muscles that move the hyoid bone in the X-axis direction. In addition, it is considered that the muscles that move the hyoid bone in the Y-axis direction are not moved only by each muscle group, but are moved by the coordinated movement of both muscle groups. Since the larynx is pulled up by the infrahyoid muscles in a follow-up manner when the hyoid bone moves upward by swallowing, it is considered that the accuracy is further improved by adding the information of the laryngeal movement by the elastic strain sensor.

舌骨の矢状面の予測結果において、実測値と同様の三角形状の軌跡を描く予測結果が多くみられた。これにより、嚥下時の舌骨の運動からも正しい予測ができたと考えられる。 In the prediction results of the sagittal plane of the hyoid bone, there were many prediction results that draw a triangular trajectory similar to the measured value. As a result, it is considered that a correct prediction could be made from the movement of the hyoid bone during swallowing.

次に、舌骨の運動ではなく、食塊の運動を推定したもう一つの実施例を示す。教師信号は、VFによって撮影した食塊(1%のとろみを付与した98w/w%硫酸バリウム溶液3ml)の先端の位置変化とし、特徴量を含む学習データなどの学習条件は舌骨の運動推定の場合と同一とした。図41、図42に示す通り、食塊先端が食道入口部を通過する際のXY座標(原点は第五頸椎前縁下端)の実測値と推定値(学習A-予測C)がほぼ一致し、高い精度で食塊の運動を予測できることが確認できる。 Next, another example is shown in which the movement of the bolus rather than the movement of the hyoid bone is estimated. The teacher signal is the position change of the tip of the bolus (98w / w% barium sulfate solution 3ml with 1% thickening) taken by VF, and the learning conditions such as learning data including the feature amount are the motion estimation of the hyoid bone. It was the same as the case of. As shown in FIGS. 41 and 42, the measured value and the estimated value (learning A-prediction C) of the XY coordinates (origin is the lower end of the anterior margin of the fifth cervical vertebra) when the tip of the bolus passes through the esophageal entrance are almost the same. It can be confirmed that the movement of the bolus can be predicted with high accuracy.

以上に述べた摂食嚥下機能評価方法及び摂食嚥下機能評価システムの作用・効果について説明する。
例えば、VF検査以外で、嚥下機能及び舌骨の動きを評価可能なものとしては、超音波診断装置を用いたエコー検査がある。しかし、先行研究では付着性のある粥はエコー画像で検出しやすいが、水やゼリーなどの流動性があるものの嚥下では嚥下反射から誤嚥までの一瞬の動態の観察が困難であり、エコー検査では誤嚥の同定は困難である。また、プローブのあて方によって観測される映像が異なり、再現性の高い観察が難しい。この点、本発明によれば、舌骨だけでなく、喉頭閉鎖のタイミング、食道入口部の開閉など、VFやVEで観察できる少なくとも嚥下諸器官と食塊の一方の運動も同様に予測できるため、放射線被曝などのリスクのない評価法として期待できる。本発明では、1回の嚥下データさえ取得できればX軸方向においてRMSEが1.03、相関係数が0.64、Y軸方向においてRMSEが1.20、相関係数が0.96の精度で、同条件における嚥下運動を予測できることは確認できた。
The actions and effects of the above-mentioned method for evaluating the swallowing function and the system for evaluating the swallowing function will be described.
For example, other than the VF test, there is an echo test using an ultrasonic diagnostic device that can evaluate the swallowing function and the movement of the hyoid bone. However, in previous studies, adherent porridge is easy to detect with echo images, but it is difficult to observe the momentary dynamics from swallowing reflex to aspiration when swallowing, although there is fluidity such as water and jelly, and echography is performed. Then, it is difficult to identify aspiration. In addition, the observed image differs depending on how the probe is applied, making highly reproducible observation difficult. In this regard, according to the present invention, not only the hyoid bone but also the movements of at least one of the swallowing organs and the bolus, which can be observed by VF or VE, such as the timing of closing the larynx and the opening and closing of the esophageal entrance, can be predicted in the same manner. , Can be expected as an evaluation method without risks such as radiation exposure. In the present invention, if only one swallowing data can be acquired, the RMSE is 1.03 in the X-axis direction, the correlation coefficient is 0.64, the RMSE is 1.20 in the Y-axis direction, and the correlation coefficient is 0.96. It was confirmed that swallowing movement can be predicted under the same conditions.

本発明の実施例によれば、造影動画工程(VF動画工程)、前処理工程、VF動画工程と同期させた生体信号検出工程、特徴量抽出工程、学習工程、及び予測工程を備えている。学習工程では、特徴量を教師信号に合わせて動作区間を決定し、長期の時間依存性及び短期の時間依存性を学習する回帰型ニューラルネットワークアーキテクチャであるLSTM(長・短期記憶)を用いて教師信号及び特徴量に基づいて舌骨の運動を学習する。LSTMは、従来のRNNで訓練する際に、長期の時間依存性では学習できない問題を解決し、長期の時間依存性も短期の時間依存性も学習できる。学習過程で新たな入力、出力が来た時に、新たなパターンに適合するようにし、RNNで発生していた入力重み衝突、出力重み衝突の問題に対処可能とした。このため、被験者は、最初に一度だけVF検査と同時にセンサ部で生体信号を取ることで、その被験者の嚥下時の舌骨運動に関する特徴を学習し、2回目以降(予測工程)からはVF検査なしで舌骨の運動を予測することができる。結果、X線透視装置の場所が不要になり、非侵襲的でリスクの少ない、ベッドサイドや在宅医療でも簡易的に舌骨の運動を予測する摂食嚥下機能評価を行うことができる。また、同じ量、同じ物性値を同じように飲み込んだときの嚥下であれば、学習データは1回で適切なデータとなるが、より好適な学習データとするには、量や物性値を変えたときの嚥下ついて、その条件における嚥下データを学習に加えて学習データとしてもよい。 According to the embodiment of the present invention, it includes a contrast moving image process (VF moving image process), a pretreatment process, a biological signal detection process synchronized with the VF moving image process, a feature amount extraction process, a learning process, and a prediction process. In the learning process, a teacher uses LSTM (long / short-term memory), which is a recurrent neural network architecture that learns long-term time dependence and short-term time dependence by determining the operation interval according to the feature quantity and the teacher signal. Learn the movement of the tongue bone based on signals and features. LSTM solves problems that cannot be learned with long-term time dependence when training with conventional RNNs, and can learn both long-term time dependence and short-term time dependence. When new inputs and outputs arrive in the learning process, the new patterns are adapted, and the problems of input weight collisions and output weight collisions that occur in RNNs can be dealt with. For this reason, the subject learns the characteristics of the subject's hyoid bone movement during swallowing by taking a biological signal at the sensor unit at the same time as the VF test only once at the beginning, and the VF test from the second time onward (prediction process). The movement of the hyoid bone can be predicted without it. As a result, the location of the X-ray fluoroscope is not required, and it is possible to easily evaluate the eating and swallowing function that predicts the movement of the hyoid bone even in bedside or home medical care, which is non-invasive and has low risk. In addition, if swallowing is performed when the same amount and the same physical property value are swallowed in the same way, the learning data becomes appropriate data once, but in order to obtain more suitable learning data, the amount and physical property value are changed. Regarding swallowing at that time, the swallowing data under that condition may be added to the learning as learning data.

さらに、被験者は最初に少なくとも1回、X線透視装置のある病院などで被験者の舌骨の運動を学習すれば、次回以降からは場所を選ばずにVF検査なしで舌骨の運動を予測して嚥下機能評価・訓練を行うことができる。また、同じ量、同じ物性値を同じように飲み込んだときの嚥下であれば、学習データは1回で適切なデータとなるが、より好適な学習データとするには、量や物性値を変えたときの嚥下ついて、その条件における嚥下データを学習に加えて学習データとすることで、より好適に推定することができる。 Furthermore, if the subject first learns the movement of the subject's hyoid bone at least once at a hospital equipped with an X-ray fluoroscope, the movement of the hyoid bone can be predicted from the next time onward without any VF test. Can perform swallowing function evaluation and training. In addition, if swallowing is performed when the same amount and the same physical property value are swallowed in the same way, the learning data becomes appropriate data once, but in order to obtain more suitable learning data, the amount and physical property value are changed. It is possible to more preferably estimate the swallowing at that time by adding the swallowing data under the condition to the learning and using it as the learning data.

さらに、生体信号検出工程では、舌骨上筋群生体信号、舌骨下筋群生体信号、及び喉頭挙動信号を検出するので、より精度の高い舌骨の運動の予測ができる。 Further, in the biological signal detection step, the suprahyoid muscle group biological signal, the infrahyoid muscle group biological signal, and the laryngeal behavior signal are detected, so that the movement of the hyoid bone can be predicted with higher accuracy.

さらに、学習工程、予測工程では、1つの元データを所定の周期で同一の座標データが含まれないようにシフトして複数に増幅させているので、最初の1回の学習で予測値と実測値の誤差を軽減させ、より精度の高い舌骨の運動の予測ができる。 Further, in the learning process and the prediction process, one original data is shifted so as not to include the same coordinate data in a predetermined period and amplified into a plurality of pieces, so that the predicted value and the actual measurement are measured in the first learning. It is possible to reduce the error of the value and predict the movement of the hyoid bone with higher accuracy.

さらに、前処理工程では、被験者の側面視におけるXY座標系を設定し、舌骨の下端を舌骨の位置としてXY座標系の座標を取得しているので、被験者の前後・上下の舌骨の運動の予測を分かり易くすることができる。 Furthermore, in the pretreatment step, the XY coordinate system in the lateral view of the subject is set, and the coordinates of the XY coordinate system are acquired with the lower end of the hyoid bone as the position of the hyoid bone. It is possible to make the prediction of movement easy to understand.

尚、実施例では、喉頭挙動センサを伸縮性ひずみセンサとしたが、これに限定されず、喉頭の運動は、圧力センサ、加速度センサ、非接触式センサなどとしても良い。また、実施例では、舌骨上筋群用筋電センサ及び舌骨下筋群筋電センサをアレイ状の電極としたが、等間隔に整列したアレイ状でなくても、複数(少なくとも2チャンネル以上)の電極を備えていればよい。嚥下音を加えても良い。また、上述の説明や図中において、適宜、摂食嚥下を意味する部分でも嚥下と記載する部分を有する。 In the embodiment, the laryngeal behavior sensor is an elastic strain sensor, but the movement of the larynx is not limited to this, and the movement of the larynx may be a pressure sensor, an acceleration sensor, a non-contact sensor, or the like. Further, in the embodiment, the suprahyoid muscle group myoelectric sensor and the infrahyoid muscle group myoelectric sensor are used as array-shaped electrodes, but even if they are not arranged in an array at equal intervals, a plurality of (at least 2 channels) are used. It suffices to have the above-mentioned electrodes. A swallowing sound may be added. Further, in the above description and drawings, a portion meaning swallowing also has a portion described as swallowing, as appropriate.

また、実施例では、時系列データの予測手法として、RNN (Recurrent Neural Network)から派生したLSTM (Long Short-Term Memory)を用いたが、これに限定されず、RNN及びRNNから派生したGRU (Gated Recurrent Unit)、LSTNet(Long- and Short-term Time-series Network)などや、AR(Autoregressive)モデル及び前記ARモデルから派生したARMA(Autoregressive Moving Average)、ARIMA(Autoregressive Integrated Moving Average)、SARIMA(Seasonal AutoRegressive Integrated Moving Average)モデルなどの時系列データの予測手法を用いてもよい。 Further, in the embodiment, LSTM (Long Short-Term Memory) derived from RNN (Recurrent Neural Network) was used as a prediction method of time series data, but the present invention is not limited to this, and RNN and GRU derived from RNN ( Gated Recurrent Unit), LSTNet (Long- and Short-term Time-series Network), AR (Autoregressive) model and ARMA (Autoregressive Moving Average), ARIMA (Autoregressive Integrated Moving Average), SARIMA (SARIMA) derived from the AR model. A prediction method for time series data such as a Seasonal AutoRegressive Integrated Moving Average) model may be used.

また、実施例では、嚥下撮影工程を、X線透視下で観測可能な嚥下造形検査(VF検査)としたが、これに限定されず、内視鏡による嚥下内視鏡検査(VE検査)の観測でもよく、さらには、エコーで舌骨の動きを観測して座標に表してもよい。嚥下撮影工程の撮影による画像は、動画に限定せず、連続的な変化が分かれば静止画でもよく、静止画をコマ送り画像としてもよい。 Further, in the embodiment, the swallowing imaging process is defined as a swallowing modeling test (VF test) that can be observed under fluoroscopy, but is not limited to this, and the swallowing endoscopy (VE test) using an endoscope is used. It may be observed, and further, the movement of the hyoid bone may be observed by echo and expressed in coordinates. The image taken in the swallowing photographing step is not limited to a moving image, and may be a still image as long as continuous changes are known, and the still image may be a frame-by-frame image.

また、予測工程では、摂食嚥下時における生体信号から嚥下諸器官と食塊の運動を予測するものとしたが、これに限定されず、訓練時(食べ物を用いる直接訓練や、食べ物を用いない間接訓練、いわゆるバイオフィードバック訓練時)における生体信号からの嚥下諸器官や食隗の運動予測に用いてもよい。嚥下機能の訓練法である食物を用いた直接訓練や、食物を用いない間接訓練(基礎訓練)における嚥下諸器官の運動の評価やバイオフィードバック訓練への利用など、摂食嚥下機能を訓練する摂食嚥下機能訓練技術に好適である。 In addition, in the prediction process, the movements of swallowing organs and bolus were predicted from biological signals during swallowing, but the prediction is not limited to this, and during training (direct training using food or no food is used). It may be used for predicting the movement of swallowing organs and eclipse from biological signals during indirect training (during so-called biofeedback training). Training for swallowing function such as direct training using food, which is a training method for swallowing function, evaluation of movement of swallowing organs in indirect training without food (basic training), and use for biofeedback training. Suitable for swallowing function training techniques.

即ち、本発明の作用及び効果を奏する限りにおいて、本発明は、実施例に限定されるものではない。 That is, the present invention is not limited to the examples as long as the actions and effects of the present invention are exhibited.

本発明は、摂食嚥下時における生体信号を検出し、検出した生体信号から特徴量を抽出し、少なくとも嚥下諸器官と食塊の一方の運動を予測して摂食嚥下機能を評価する摂食嚥下機能評価技術に好適である。また、嚥下機能の訓練法である食物を用いた直接訓練や、食物を用いない間接訓練(基礎訓練)における嚥下諸器官の運動の評価やバイオフィードバック訓練への利用など、摂食嚥下機能を訓練する摂食嚥下機能訓練技術に好適である。 The present invention detects a biological signal during swallowing, extracts a feature amount from the detected biological signal, predicts at least the movement of one of the swallowing organs and the bolus, and evaluates the swallowing function. Suitable for swallowing function evaluation technology. In addition, training on swallowing functions such as direct training using food, which is a training method for swallowing function, evaluation of movements of swallowing organs in indirect training without food (basic training), and use for biofeedback training. Suitable for swallowing function training techniques.

10…摂食嚥下機能評価システム、20…センサ部、21…舌骨上筋群用筋電センサ、21a…電極、22…舌骨下筋群用筋電センサ、22a…電極、25…喉頭挙動センサ(伸縮性ひずみセンサ)、30…多機能筋電位計測装置、40…解析部、50…X線透視装置、51…前処理部、60…被験者。 10 ... Eating and swallowing function evaluation system, 20 ... Sensor unit, 21 ... Suprahyoid muscle group myoelectric sensor, 21a ... Electrode, 22 ... Infrahyoid muscle group myoelectric sensor, 22a ... Electrode, 25 ... Laryngeal behavior Sensor (stretchable strain sensor), 30 ... multifunctional myoelectric potential measuring device, 40 ... analysis unit, 50 ... X-ray fluoroscope, 51 ... preprocessing unit, 60 ... subject.

Claims (5)

被験者が摂食した食塊の動き及び嚥下諸器官の動きを撮影する嚥下撮影工程と、
前記嚥下撮影工程の動画から前記嚥下諸器官及び前記食塊の位置を取得して座標として数値化し、前記嚥下諸器官及び前記食塊の運動の教師信号を作成する前処理工程と、
前記嚥下撮影工程に同期させ、前記被験者の所定の皮膚表面に配置したセンサ部で摂食嚥下時における生体信号を検出する生体信号検出工程と、
解析部で前記生体信号から特徴量を抽出する特徴量抽出工程と、
時系列データの予測手法を用いて前記教師信号及び前記特徴量に基づいて前記嚥下諸器官及び前記食塊の運動を学習し、前記特徴量から少なくとも前記嚥下諸器官と前記食塊の一方の運動を予測しうるモデルを生成する学習工程と、
前記学習工程で生成した予測モデルを用いて、前記特徴量から少なくとも前記嚥下諸器官と前記食塊の一方の運動を予測する予測工程と、
前記予測工程の結果を用いて摂食嚥下機能評価・訓練する評価・訓練工程と、
を備えていることを特徴とする時系列データ予測を用いた嚥下機能評価・訓練方法。
The swallowing imaging process, which captures the movement of the bolus and the movements of the swallowing organs eaten by the subject,
A pretreatment step of acquiring the positions of the swallowing organs and the bolus from the moving image of the swallowing imaging step and quantifying them as coordinates to create a teacher signal for the movement of the swallowing organs and the bolus.
A biological signal detection step of detecting a biological signal during swallowing by a sensor unit arranged on a predetermined skin surface of the subject in synchronization with the swallowing imaging step.
The feature amount extraction step of extracting the feature amount from the biological signal in the analysis unit,
The movements of the swallowing organs and the bolus are learned based on the teacher signal and the feature amount using the time-series data prediction method, and at least one of the swallowing organs and the bolus is moved from the feature amount. And the learning process to generate a model that can predict
Using the prediction model generated in the learning step, a prediction step of predicting the movement of at least one of the swallowing organs and the bolus from the feature amount,
Evaluation / training process for evaluating / training eating and swallowing function using the results of the prediction process, and
A swallowing function evaluation / training method using time-series data prediction, which is characterized by being equipped with.
請求項1の時系列データ予測を用いた嚥下機能評価・訓練方法であって、
前記生体信号検出工程では、舌骨上筋群部分に配置した舌骨上筋群用筋電センサで舌骨上筋群生体信号を検出し、舌骨下筋群部分に配置した舌骨下筋群用筋電センサで舌骨下筋群生体信号を検出し、喉頭部分に配置した喉頭挙動センサで喉頭挙動信号を検出し、
前記特徴量抽出工程では、前記生体信号としての、前記舌骨上筋群生体信号、前記舌骨下筋群生体信号及び前記喉頭挙動信号から特徴量を抽出していることを特徴とする時系列データ予測を用いた嚥下機能評価・訓練方法。
A swallowing function evaluation / training method using the time-series data prediction of claim 1.
In the biosignal detection step, the suprahyoid muscle group biosignal is detected by the suprahyoid muscle group myoelectric sensor placed in the suprahyoid muscle group portion, and the infrahyoid muscle placed in the suprahyoid muscle group portion. The suprahyoid muscle group biological signal is detected by the group myoelectric sensor, and the laryngeal behavior signal is detected by the laryngeal behavior sensor placed in the laryngeal part.
The feature amount extraction step is characterized in that the feature amount is extracted from the suprahyoid muscle group biological signal, the infrahyoid muscle group biological signal, and the laryngeal behavior signal as the biological signal. Swallowing function evaluation / training method using data prediction.
請求項1又は請求項2記載の時系列データ予測を用いた嚥下機能評価・訓練方法であって、
前記学習工程では、学習データとして前記嚥下諸器官及び前記食塊の座標データを用い、前記学習データを、1つの元データを所定の周期で同一の座標データが含まれないようにシフトして複数に増幅させていることを特徴とする時系列データ予測を用いた嚥下機能評価・訓練方法。
A swallowing function evaluation / training method using the time-series data prediction according to claim 1 or 2.
In the learning step, the coordinate data of the swallowing organs and the bolus are used as the learning data, and one original data is shifted in a predetermined cycle so as not to include the same coordinate data, and a plurality of the learning data are used. A swallowing function evaluation / training method using time-series data prediction, which is characterized by being amplified to.
請求項1~請求項3のいずれか1項記載の時系列データ予測を用いた嚥下機能評価・訓練方法であって、
前処理工程では、前記嚥下諸器官及び前記食塊の座標データを求めるための座標系とその原点を定め、前記被験者の第5頸椎前縁下端を原点とし、前記被験者の第3頸椎前縁上端を一つの軸上の点とした座標系を設定することで、前記被験者の矢状面または前額面における嚥下諸器官及び食塊の各位置を前記座標系の座標で取得することを特徴とする時系列データ予測を用いた嚥下機能評価・訓練方法。
A swallowing function evaluation / training method using the time-series data prediction according to any one of claims 1 to 3.
In the pretreatment step, a coordinate system for obtaining coordinate data of the swallowing organs and the bolus and its origin are determined, the lower end of the anterior margin of the fifth cervical vertebra of the subject is set as the origin, and the upper end of the anterior margin of the third cervical vertebra of the subject. By setting a coordinate system with Swallowing function evaluation / training method using time-series data prediction.
被験者が摂食した食塊の動き及び嚥下諸器官の動きを撮影した画像から前記嚥下諸器官及び前記食塊の位置を取得して座標として数値化し、前記嚥下諸器官及び前記食塊の運動の教師信号を作成する前処理部と、
前記被験者の所定の皮膚表面に配置され、前記画像の撮影に同期させて、摂食嚥下時における生体信号を検出するセンサ部と、
前記生体信号から特徴量を抽出するとともに、時系列データの予測手法を用いて前記教師信号及び前記特徴量に基づいて少なくとも前記嚥下諸器官と前記食塊の一方の運動を学習して予測し、この予測結果を用いて摂食嚥下機能評価・訓練する解析部と、を備えていることを特徴とする時系列データ予測を用いた嚥下機能評価・訓練システム。

The positions of the swallowing organs and the bolus are obtained from the images obtained by photographing the movements of the bolus and the swallowing organs eaten by the subject and quantified as coordinates, and the movements of the swallowing organs and the bolus are obtained. The pre-processing unit that creates the teacher signal and
A sensor unit that is placed on a predetermined skin surface of the subject and detects a biological signal during swallowing in synchronization with the acquisition of the image.
In addition to extracting the feature amount from the biometric signal, the movement of at least one of the swallowing organs and the bolus is learned and predicted based on the teacher signal and the feature amount by using the prediction method of time series data. A swallowing function evaluation / training system using time-series data prediction, which is characterized by having an analysis unit that evaluates / trains the swallowing function using this prediction result.

JP2020131221A 2020-07-31 2020-07-31 Swallowing movement prediction method and system using time-series data prediction Active JP7452855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020131221A JP7452855B2 (en) 2020-07-31 2020-07-31 Swallowing movement prediction method and system using time-series data prediction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020131221A JP7452855B2 (en) 2020-07-31 2020-07-31 Swallowing movement prediction method and system using time-series data prediction

Publications (2)

Publication Number Publication Date
JP2022027304A true JP2022027304A (en) 2022-02-10
JP7452855B2 JP7452855B2 (en) 2024-03-19

Family

ID=80264439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020131221A Active JP7452855B2 (en) 2020-07-31 2020-07-31 Swallowing movement prediction method and system using time-series data prediction

Country Status (1)

Country Link
JP (1) JP7452855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116126151A (en) * 2023-04-14 2023-05-16 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) Method, system, storage medium and equipment for drawing motor cortex region of upper hyoid muscle group

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232065A (en) * 2011-05-09 2012-11-29 Iwate Univ Estimation method of stomatognathic motion state and estimation apparatus of stomatognathic motion state
JP2019208629A (en) * 2018-05-31 2019-12-12 国立大学法人岩手大学 Swallowing function evaluation method and swallowing function evaluation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232065A (en) * 2011-05-09 2012-11-29 Iwate Univ Estimation method of stomatognathic motion state and estimation apparatus of stomatognathic motion state
JP2019208629A (en) * 2018-05-31 2019-12-12 国立大学法人岩手大学 Swallowing function evaluation method and swallowing function evaluation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116126151A (en) * 2023-04-14 2023-05-16 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) Method, system, storage medium and equipment for drawing motor cortex region of upper hyoid muscle group
CN116126151B (en) * 2023-04-14 2023-08-08 广州市第一人民医院(广州消化疾病中心、广州医科大学附属市一人民医院、华南理工大学附属第二医院) Method, system, storage medium and equipment for drawing motor cortex region of upper hyoid muscle group

Also Published As

Publication number Publication date
JP7452855B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
He et al. Wrist and finger gesture recognition with single-element ultrasound signals: A comparison with single-channel surface electromyogram
JP4011071B2 (en) Swallowing sound analysis system
JP2005304890A (en) Method of detecting dysphagia
Khalifa et al. Upper esophageal sphincter opening segmentation with convolutional recurrent neural networks in high resolution cervical auscultation
JP7133200B2 (en) Evaluation method by swallowing function evaluation device and swallowing function evaluation device
US9782118B2 (en) Diagnosis of swallowing disorders using high resolution manometry
Winstone et al. Toward bio-inspired tactile sensing capsule endoscopy for detection of submucosal tumors
Serrurier et al. The tongue in speech and feeding: Comparative articulatory modelling
JP7452855B2 (en) Swallowing movement prediction method and system using time-series data prediction
Li et al. Design and preliminary experimental investigation of a capsule for measuring the small intestine contraction pressure
Sabry et al. Automatic estimation of laryngeal vestibule closure duration using high-resolution cervical auscultation signals
US20160287064A1 (en) An apparatus for endoscopy
Sonmezocak et al. Detection of EMG signals by neural networks using autoregression and wavelet entropy for bruxism diagnosis
Mialland et al. Submental mechanomyography (MMG) to characterize the swallowing signature
Hsu et al. Using swallow sound and surface electromyography to determine the severity of dysphagia in patients with myasthenia gravis
JP3765776B2 (en) Chewing function evaluation system
Tigges et al. Classification of morphologic changes in photoplethysmographic waveforms
JP7428383B2 (en) Swallowing function evaluation method and system using similarity of swallowing pattern images
JP2021142087A (en) Eating/swallowing function evaluation method and eating/swallowing function evaluation system
Schümann et al. Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
Zhang et al. Bioimpedance measurement to evaluate swallowing in a patient with amyotrophic lateral sclerosis
Lee et al. Vowel imaging
CN115551409A (en) Biological inspection device and biological information analysis method
Wibowo et al. Frontalis muscle strength calculation based on 3D image using gray level co-occurrence matrix (GLCM) and confidence interval
Nakamura et al. Relationship between singing experience and laryngeal movement obtained by DeepLabCut

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230306

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240229

R150 Certificate of patent or registration of utility model

Ref document number: 7452855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150