JP2022027050A - buoy - Google Patents

buoy Download PDF

Info

Publication number
JP2022027050A
JP2022027050A JP2020130821A JP2020130821A JP2022027050A JP 2022027050 A JP2022027050 A JP 2022027050A JP 2020130821 A JP2020130821 A JP 2020130821A JP 2020130821 A JP2020130821 A JP 2020130821A JP 2022027050 A JP2022027050 A JP 2022027050A
Authority
JP
Japan
Prior art keywords
buoy
power generation
heat storage
heat
thermoelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020130821A
Other languages
Japanese (ja)
Inventor
仁 伊藤
Hitoshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2020130821A priority Critical patent/JP2022027050A/en
Publication of JP2022027050A publication Critical patent/JP2022027050A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a buoy capable of generating power in various attitudes by having arrangement of thermoelectric elements relaxed.SOLUTION: A buoy including a floating body includes: a closed housing provided with a heat accumulating unit on an inner periphery surface as the floating body; a first heat transmission unit and a second heat transmission unit coming into contact thermally with the heat accumulation unit on an opposite side of the first heat transmission unit respectively exposed outside the closed housing; a plurality of electro-thermal power generation units retained in a sealed housing liquid-tightly as well as carrying out electro-thermal power generation by difference in temperature between the first heat transmission unit and the second heat transmission unit; and an electronic device connected to the plurality of electro-thermal power generation units and having power supplied.SELECTED DRAWING: Figure 2

Description

本発明は、環境発電装置を搭載する水上に浮かぶブイ(浮標)に関する。 The present invention relates to a buoy (buoy) floating on water on which an energy harvesting device is mounted.

従来、この種のブイは、例えば特許文献1で示されるものがあり、浮かべられる水面に対して水平方向に平たい形状のフロートとこれに固定されたチャンバとこの中に搭載される熱電発電素子や充電池とを有し、気温と海水温を熱電発電素子に伝熱する構造を備える。 Conventionally, this type of buoy is, for example, the one shown in Patent Document 1, in which a float having a shape horizontally flat with respect to a floating water surface, a chamber fixed to the float, and a thermoelectric power generation element mounted therein are used. It has a rechargeable battery and has a structure that transfers heat to the thermoelectric power generation element.

特許5978963号公報Japanese Patent No. 5978963

しかしながら、上記従来のブイでは、平たい形状のフロートを用いたブイであるため熱電発電素子の配置が固定されるため、気温が海水温よりも高い状況(あるいはその逆)でしか発電できない問題点や、また、平たい形状のフロートを用いるため浮力と重心と形状により、海面に対して表裏が固定できるブイにしか搭載できない、という問題点があった。一般に、熱電発電素子は高温側電極と低温側電極で構成され、高温側に高温側電極を、低温側に低温側電極を配置することで発電するが、その逆は発電できない。 However, in the above-mentioned conventional buoy, since the buoy uses a flat float, the arrangement of the thermoelectric power generation elements is fixed, so that there is a problem that power can be generated only when the temperature is higher than the seawater temperature (or vice versa). In addition, since a flat float is used, there is a problem that it can be mounted only on a buoy whose front and back can be fixed to the sea surface due to its buoyancy, center of gravity and shape. Generally, a thermoelectric power generation element is composed of a high temperature side electrode and a low temperature side electrode, and power is generated by arranging a high temperature side electrode on the high temperature side and a low temperature side electrode on the low temperature side, but vice versa.

本発明は、以上の従来技術の問題点に鑑みなされたものであり、熱電発電素子の配置が緩和され様々な姿勢で発電できるブイを提供することを目的とする。 The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a buoy capable of generating electricity in various postures by relaxing the arrangement of thermoelectric power generation elements.

本発明のブイは、浮体を含むブイであって、前記浮体として内周面に蓄熱部を備える閉塞筐体と、各々が、前記閉塞筐体から外部に露出する第1伝熱部及び前記第1伝熱部の反対側で前記蓄熱部に熱的に接触する第2伝熱部を有し、前記閉塞筐体に液密的に保持され、且つ前記第1伝熱部及び前記第2伝熱部の間の温度差により熱電発電する、複数の熱電発電ユニットと、前記複数の熱電発電ユニットに接続されて電力が供給される電子装置と、を有することを特徴とする。 The buoy of the present invention is a buoy including a floating body, and the closed housing having a heat storage portion on the inner peripheral surface as the floating body, a first heat transfer portion exposed to the outside from the closed housing, and the first heat transfer portion, respectively. It has a second heat transfer section that is in thermal contact with the heat storage section on the opposite side of the first heat transfer section, is held liquid-tightly in the closed housing, and has the first heat transfer section and the second heat transfer section. It is characterized by having a plurality of thermoelectric power generation units that generate heat electricity by a temperature difference between the heat units, and an electronic device connected to the plurality of thermoelectric power generation units to supply power.

本発明の発電装置によれば、ブイにおける複数の熱電発電ユニットの配置が緩和され様々な姿勢で発電できるブイを提供できる。 According to the power generation device of the present invention, it is possible to provide a buoy capable of generating power in various postures by relaxing the arrangement of a plurality of thermoelectric power generation units in the buoy.

第1の実施例のブイを概念的に示す斜視図である。It is a perspective view which conceptually shows the buoy of 1st Example. 図1の線xxに沿って切断したブイを示す断面図である。It is sectional drawing which shows the buoy cut along the line xx of FIG. 第1の実施例のブイを概念的に示す断面図である。It is sectional drawing which conceptually shows the buoy of 1st Example. 第1の実施例のブイを概念的に示す断面図である。It is sectional drawing which conceptually shows the buoy of 1st Example. 第1の実施例のブイを概念的に示す断面図である。It is sectional drawing which conceptually shows the buoy of 1st Example. 第2の実施例のブイを概念的に示す断面図である。It is sectional drawing which conceptually shows the buoy of 2nd Example.

以下、図面を参照しつつ本発明による実施例の発電装置について説明する。なお、実施例において、実質的に同一の機能及び構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, the power generation device according to the embodiment of the present invention will be described with reference to the drawings. In the examples, components having substantially the same function and configuration are designated by the same reference numerals, so that duplicate description will be omitted.

(第1の実施例)
(構成の説明)
図1は第1の実施例の海上に浮いているブイ1を示す斜視図である。図2は図1の線xxに沿って切断したブイ1を示す断面図である。ブイ1の密閉された内部には、蓄熱部2と複数の熱電発電ユニット3と電子装置4と蓄電デバイス5と、が配置されている。
(First Example)
(Explanation of configuration)
FIG. 1 is a perspective view showing a buoy 1 floating on the sea according to the first embodiment. FIG. 2 is a cross-sectional view showing a buoy 1 cut along the line xx of FIG. Inside the sealed buoy 1, a heat storage unit 2, a plurality of thermoelectric power generation units 3, an electronic device 4, and a power storage device 5 are arranged.

[閉塞筐体]
ブイ1は、浮体として閉塞筐体1a(外郭ともいう)を備える。閉塞筐体1aには、水又は空気の影響を遮断し、外部から内部に熱又は電磁波を透過させるべく、耐水性の樹脂やガラス等の透明壁を使用することができる。また、閉塞筐体1aは、蓄熱部2と透明壁との間を真空にして断熱構造としてもよい。透明壁は、太陽光線や赤外線の透過特性を適切に考慮し、適切な材質のものを用いることが好ましい。
[Closed housing]
The buoy 1 includes a closed housing 1a (also referred to as an outer shell) as a floating body. A transparent wall such as a water-resistant resin or glass can be used for the closed housing 1a in order to block the influence of water or air and allow heat or electromagnetic waves to pass from the outside to the inside. Further, the closed housing 1a may have a heat insulating structure by creating a vacuum between the heat storage portion 2 and the transparent wall. It is preferable to use a transparent wall made of an appropriate material in consideration of the transmission characteristics of sunlight and infrared rays.

本実施例の閉塞筐体1aの内周面に蓄熱部2が設けられている。蓄熱部2はブイ1内部にて、図1のようにブイ1外郭内側を覆った状態で、内部の空洞SP(蓄熱部不在空間)を画定している。なお、蓄熱部2の内側面は、これを被覆する公知の適当な断熱材(図示せず)によって覆われていてもよい。 A heat storage unit 2 is provided on the inner peripheral surface of the closed housing 1a of this embodiment. The heat storage unit 2 defines the internal cavity SP (space where the heat storage unit is absent) inside the buoy 1 in a state of covering the inside of the outer shell of the buoy 1 as shown in FIG. The inner surface of the heat storage unit 2 may be covered with a known suitable heat insulating material (not shown) that covers the heat storage unit 2.

電子装置4と蓄電デバイス5を、ブイ1の蓄熱部2の空洞SP内に配置することもできる。この構成によれば、電子装置4等の温度を、例えば、外部環境の最高温度と最低温度の中間温度付近に保つことができ、それによって、電子装置4等を温度ストレスから保護し、安定的に動作させることができる。 The electronic device 4 and the power storage device 5 can also be arranged in the cavity SP of the heat storage unit 2 of the buoy 1. According to this configuration, the temperature of the electronic device 4 and the like can be kept near, for example, an intermediate temperature between the maximum temperature and the minimum temperature of the external environment, thereby protecting the electronic device 4 and the like from temperature stress and making it stable. Can be operated.

ブイ1の外郭形状は球体、多面体、角柱形又は円柱形などで、波や風などの外乱による回転が許容される形状である。 The outer shape of the buoy 1 is a sphere, a polyhedron, a prismatic shape, a cylindrical shape, or the like, and is a shape that allows rotation due to disturbances such as waves and wind.

[蓄熱部]
蓄熱部2は、外部環境との熱交換(熱吸収及び放熱)がより高い効率で行えるような構成を有していることが好ましい。蓄熱部2は全方位的に電磁波エネルギーを吸収し、昇温できればよい。そのため、蓄熱部2の熱交換面は黒色等の濃い色を有していることが好ましい。なお、蓄熱部2の熱交換面は、熱電発電ユニット3との接触領域を除く蓄熱部2の外側面、すなわち閉塞筐体1aとの対向面である。
[Heat storage unit]
It is preferable that the heat storage unit 2 has a configuration capable of performing heat exchange (heat absorption and heat dissipation) with the external environment with higher efficiency. It suffices if the heat storage unit 2 can absorb electromagnetic wave energy in all directions and raise the temperature. Therefore, it is preferable that the heat exchange surface of the heat storage unit 2 has a dark color such as black. The heat exchange surface of the heat storage unit 2 is an outer surface of the heat storage unit 2 excluding the contact area with the thermoelectric power generation unit 3, that is, a surface facing the closed housing 1a.

蓄熱部2は、高い蓄熱性があることが好ましい。そのため、蓄熱部2は市販されている黒いゴム材のような材料で構成できる。蓄熱部2は黒体に近い特徴を備えていれば、材料は限定しない。 The heat storage unit 2 preferably has a high heat storage property. Therefore, the heat storage unit 2 can be made of a commercially available material such as a black rubber material. The material of the heat storage unit 2 is not limited as long as it has characteristics similar to those of a black body.

変形例としては、蓄熱部2は、固体状の金属又は非金属からなっていてもよく、この場合、蓄熱部2には、その熱交換面が黒色被覆されたアルミニウム塊又はプラスチック塊等を用いることが好ましい。 As a modification, the heat storage unit 2 may be made of a solid metal or a non-metal. In this case, the heat storage unit 2 uses an aluminum block or a plastic block whose heat exchange surface is coated with black. Is preferable.

また、蓄熱部2は、蓄熱部2の熱交換面は黒色被覆され、水等の液体によって満たされた防水性容器からなっていてもよく、この場合、容器の壁の熱電発電ユニット3との接触領域は、熱伝導性を有している。容器を満たす液体は、腐敗しにくく、凍結しにくいものであれば、どのような液体からなっていてもよく、例えば、純水、又は純水に不凍液を混合したもの、又は純水に防腐剤を混合したものを使用することができる。なお、液体にはゲル状のものも含まれる。 Further, the heat storage unit 2 may be made of a waterproof container in which the heat exchange surface of the heat storage unit 2 is coated with black and is filled with a liquid such as water. In this case, the heat storage unit 2 is connected to the thermoelectric power generation unit 3 on the wall of the container. The contact area has thermal conductivity. The liquid that fills the container may be any liquid as long as it does not easily spoil and freeze. For example, pure water, a mixture of pure water and antifreeze, or pure water and a preservative. Can be used as a mixture of. The liquid also includes a gel-like one.

またさらに、蓄熱部2には潜熱蓄熱材を用いてもよい。この場合、蓄熱部2の熱交換面は黒色被覆された防水性容器内に潜熱蓄熱材の相変化(相転移)物質を収容する。潜熱蓄熱材は、酢酸ナトリウム水和物、硫酸ナトリウム水和物又は石油精製品のパラフィン等の、相変化温度での融解熱又は凝固熱を利用するもので、上述の比熱が一定の液体や固体からなる蓄熱部と比べて、より大きな熱容量の蓄熱部2とすることができる。 Furthermore, a latent heat storage material may be used for the heat storage unit 2. In this case, the heat exchange surface of the heat storage unit 2 houses the phase change (phase transition) substance of the latent heat storage material in a waterproof container coated with black. The latent heat storage material utilizes the heat of fusion or solidification at the phase change temperature, such as sodium acetate hydrate, sodium sulfate hydrate, or paraffin of refined petroleum products, and is a liquid or solid having a constant specific heat. The heat storage unit 2 has a larger heat capacity than the heat storage unit including the heat storage unit 2.

また、構造上、例えば、蓄熱部2の全体がブイ1の外郭によって完全に覆われず、防水が確保されていれば蓄熱部2の一部が外部の環境に接していてもよく、さらに、蓄熱部2の全体が閉塞筐体1a(外郭)として外部の環境に接していてもよい。 Further, due to the structure, for example, if the entire heat storage unit 2 is not completely covered by the outer shell of the buoy 1 and waterproofing is ensured, a part of the heat storage unit 2 may be in contact with the external environment. The entire heat storage unit 2 may be in contact with the external environment as a closed housing 1a (outer shell).

[熱電発電ユニット]
複数の熱電発電ユニット3の各々は、熱抵抗の低い高温側伝熱部3a及び低温側伝熱部3bとこれらに挟まれ熱的に接触する熱抵抗の高い熱電発電素子3cとを有する。高温側伝熱部3aと低温側伝熱部3bと熱電発電素子3cの側面周囲には、熱抵抗の高い断熱材(例えば空気層)からなる断熱部3dが設けられている。断熱部3dにより、熱電発電素子3c両端(高温側伝熱部3aと低温側伝熱部3b)の温度差が得られなくなることを防止する。
[Thermoelectric power generation unit]
Each of the plurality of thermoelectric power generation units 3 has a high-temperature side heat transfer unit 3a and a low-temperature side heat transfer unit 3b having low thermal resistance, and a thermoelectric power generation element 3c having high thermal resistance that is sandwiched between them and has high thermal resistance. A heat insulating portion 3d made of a heat insulating material having high thermal resistance (for example, an air layer) is provided around the side surfaces of the high temperature side heat transfer portion 3a, the low temperature side heat transfer portion 3b, and the thermoelectric power generation element 3c. The heat insulating portion 3d prevents the temperature difference between both ends of the thermoelectric power generation element 3c (the high temperature side heat transfer portion 3a and the low temperature side heat transfer portion 3b) from being obtained.

熱電発電素子3cは、熱エネルギーを電気エネルギーに変換し得る任意のものが使用可能であるが、この実施例では、ゼーベック効果を利用した、例えば、KELK製KELGENを用いることができる。熱電発電ユニット3の各々は、閉塞筐体1aに液密的に保持され、ブイ1内部を防水する。 As the thermoelectric power generation element 3c, any one capable of converting thermal energy into electrical energy can be used, but in this embodiment, for example, KELGEN manufactured by KELK, which utilizes the Seebeck effect, can be used. Each of the thermoelectric power generation units 3 is liquid-tightly held in the closed housing 1a to waterproof the inside of the buoy 1.

ブイ1の外郭には複数の熱電発電ユニット3が、それぞれ表裏交互に配置されている。すなわち、複数の熱電発電ユニット3は、表側に高温側伝熱部3aが裏側に低温側伝熱部3bが配向するように、裏側に高温側伝熱部3aが表側に低温側伝熱部3bが配向するように、配置されている。 A plurality of thermoelectric power generation units 3 are arranged alternately on the front and back sides of the outer shell of the buoy 1. That is, in the plurality of thermoelectric power generation units 3, the high temperature side heat transfer unit 3a is oriented on the back side and the low temperature side heat transfer unit 3b is oriented on the back side so that the high temperature side heat transfer unit 3a is oriented on the front side and the low temperature side heat transfer unit 3b is oriented on the back side. Are arranged so that they are oriented.

変形例として、熱電発電ユニット3の外部に露出する低温側伝熱部3bだけの表面に凹凸を形成して、水又は空気との接触面積をできるだけ大きくすることができる。それによって、例えば、蓄熱部2が日射によって空気温度より高温になったときに、空気によって冷却され熱電発電ユニット3を起電させることができる。 As a modification, it is possible to form irregularities on the surface of only the low temperature side heat transfer portion 3b exposed to the outside of the thermoelectric power generation unit 3 to make the contact area with water or air as large as possible. Thereby, for example, when the heat storage unit 2 becomes higher than the air temperature due to solar radiation, it is cooled by the air and the thermoelectric power generation unit 3 can be electromotive.

[電子装置等]
各々の熱電発電ユニット3の熱電発電素子3cは配線6(正電極及び負電極の配線)によってワイヤレスセンサー等の電子装置4に接続される。電子装置4は、例えば、センサー機能とアンテナ機能と制御機能を有する。また、電子装置4は配線6によって蓄電デバイス5に接続される。なお、電子装置4及び蓄電デバイス5は、ブイ内部から配線6によって電力が供給されれば、ブイの中になくてもよい。この場合、電子装置4、蓄電デバイス5及び配線6は、完全に防水対策が施されていることが前提となる。電子装置4としては、例えば、密漁監視システムの中でデータ送信装置や水中音響センサー等が挙げられる。
[Electronic devices, etc.]
The thermoelectric power generation element 3c of each thermoelectric power generation unit 3 is connected to an electronic device 4 such as a wireless sensor by a wiring 6 (wiring of a positive electrode and a negative electrode). The electronic device 4 has, for example, a sensor function, an antenna function, and a control function. Further, the electronic device 4 is connected to the power storage device 5 by the wiring 6. The electronic device 4 and the power storage device 5 do not have to be in the buoy as long as the electric power is supplied from the inside of the buoy by the wiring 6. In this case, it is premised that the electronic device 4, the power storage device 5, and the wiring 6 are completely waterproofed. Examples of the electronic device 4 include a data transmission device, an underwater acoustic sensor, and the like in a poaching monitoring system.

(動作の説明)
例えば、日本各地の一日の最高気温と最低気温の温度差は、平均すると約10℃であることが知られているので、本実施例のブイ1を日本近海上に配置しても、一日の気温差が約10℃であると予想される。
(Explanation of operation)
For example, it is known that the temperature difference between the maximum and minimum daily temperatures in various parts of Japan is about 10 ° C on average, so even if the buoy 1 of this embodiment is placed in the sea near Japan, it will be one. The daily temperature difference is expected to be about 10 ° C.

日本近海での気温を前提とするが、地球上のどの海域においても、昼間は太陽の日射による蓄熱部2の加熱が生じる一方、夜間は放射冷却による蓄熱部2の冷却が生じ、昼夜の繰り返しが気温変化を生じさせる。 Assuming the temperature in the sea near Japan, in any sea area on the earth, the heat storage part 2 is heated by the solar radiation in the daytime, while the heat storage part 2 is cooled by radiative cooling at night, and the day and night are repeated. Causes temperature changes.

よって、本実施例のブイ1においては、海上にて太陽から熱的影響を受け易い蓄熱部2と、一端(高温側伝熱部3a又は低温側伝熱部3b)が外気に熱的に接触し、他端(低温側伝熱部3b又は高温側伝熱部3a)が蓄熱部2に熱的に接触する熱電発電ユニット3とを備え、蓄熱部2の温度を環境の温度変化に従って昇降させるようにし、外部及び蓄熱部2間に自動的に生じた温度差に比例した電圧を熱電発電ユニット3から取り出すことができる。本実施例のブイ1においては、熱電発電ユニット3の高温側伝熱部3aが海水温、低温側伝熱部3bが気温、を受けてもよいし、またその逆の組合せの温度を受けてもよい。 Therefore, in the buoy 1 of the present embodiment, the heat storage unit 2 which is easily affected by heat from the sun at sea and one end (high temperature side heat transfer unit 3a or low temperature side heat transfer unit 3b) are in thermal contact with the outside air. A thermoelectric power generation unit 3 in which the other end (low temperature side heat transfer unit 3b or high temperature side heat transfer unit 3a) is in thermal contact with the heat storage unit 2 is provided, and the temperature of the heat storage unit 2 is raised or lowered according to the temperature change of the environment. Thus, a voltage proportional to the temperature difference automatically generated between the outside and the heat storage unit 2 can be taken out from the thermoelectric power generation unit 3. In the buoy 1 of the present embodiment, the high temperature side heat transfer unit 3a of the thermoelectric power generation unit 3 may receive the seawater temperature, the low temperature side heat transfer unit 3b may receive the air temperature, and vice versa. May be good.

ブイ1の形状は球体又は円筒形などで、波や風などの外乱による回転が許容される。ある熱電発電ユニット3の高温側伝熱部3aは蓄熱部2の温度、低温側伝熱部は海水温の温度、を受けており、また他の熱電発電ユニット3は前述の組合せと逆の組合せで温度を受けている。 The shape of the buoy 1 is a sphere or a cylinder, and rotation due to disturbances such as waves and wind is allowed. The high temperature side heat transfer unit 3a of a certain thermoelectric power generation unit 3 receives the temperature of the heat storage unit 2, the low temperature side heat transfer unit receives the temperature of the seawater temperature, and the other thermoelectric power generation unit 3 has a combination opposite to the above combination. Is receiving the temperature.

図3に昼間のブイ1の発電動作を示す。太陽光を含む電磁波エネルギーがブイ1に到達し、ブイ1外郭を透過した電磁波エネルギーが蓄熱部2に吸収される。すると蓄熱部2が昇温し、蓄熱部2の温度が海水温よりも高くなる。 FIG. 3 shows the power generation operation of the buoy 1 in the daytime. The electromagnetic wave energy including sunlight reaches the buoy 1, and the electromagnetic wave energy transmitted through the outer shell of the buoy 1 is absorbed by the heat storage unit 2. Then, the temperature of the heat storage unit 2 rises, and the temperature of the heat storage unit 2 becomes higher than the seawater temperature.

熱電発電ユニット3のうち、高温側伝熱部3aが蓄熱部2の温度、低温側伝熱部3bが海水温、を受けている熱電発電ユニット3が発電する。発電された電力は配線6によって電子装置4に送電される。電子装置4は送電された電力を電子装置4自身で消費する。電子装置4は余剰な電力、又は主たる機能を動作させる必要がない期間に送電された電力、を配線6によって蓄電デバイス5に蓄電する。電子装置4は動作に不足する電力を蓄電デバイス5から給電してもよい。 Of the thermoelectric power generation units 3, the thermoelectric power generation unit 3 that receives the temperature of the heat storage unit 2 in the high temperature side heat transfer unit 3a and the seawater temperature in the low temperature side heat transfer unit 3b generates power. The generated electric power is transmitted to the electronic device 4 by the wiring 6. The electronic device 4 consumes the transmitted electric power by the electronic device 4 itself. The electronic device 4 stores the surplus electric power or the electric power transmitted during the period when it is not necessary to operate the main function in the electric storage device 5 by the wiring 6. The electronic device 4 may supply electric power insufficient for operation from the power storage device 5.

蓄熱部2の熱交換面の大部分が太陽に向くようにブイ1が水上に位置できるので、季節を通じた日照角度の変化が生じても、蓄熱部2が日射を効率良く受けることができる。 Since the buoy 1 can be located on the water so that most of the heat exchange surface of the heat storage unit 2 faces the sun, the heat storage unit 2 can efficiently receive sunlight even if the sunshine angle changes throughout the season.

図4に夜間のブイ1の発電動作を示す。気温によって、蓄熱部2の温度が下がり、海水温の方が高くなる。図3の昼間の温度状況が反転し、熱電発電ユニット3のうち、高温側伝熱部3aが海水温の温度、低温側伝熱部3bが蓄熱部2の温度、を受けている熱電発電ユニット3が発電する。その他の動作は前述した昼間の発電動作と同じである。このように、夜間の状況で、蓄熱部2の温度が海水温となり、気温の温度の方が高くなる状況でも発電できる。 FIG. 4 shows the power generation operation of the buoy 1 at night. Depending on the air temperature, the temperature of the heat storage unit 2 decreases, and the seawater temperature becomes higher. The daytime temperature condition of FIG. 3 is reversed, and among the thermoelectric power generation units 3, the high temperature side heat transfer unit 3a receives the seawater temperature, and the low temperature side heat transfer unit 3b receives the temperature of the heat storage unit 2. 3 generates electricity. Other operations are the same as the daytime power generation operation described above. In this way, power can be generated even in a situation where the temperature of the heat storage unit 2 becomes the seawater temperature and the temperature of the air temperature becomes higher in the nighttime situation.

図5にブイ1が外乱により回転した場合の発電動作を示す。ブイ1が回転しても、ブイ1の外郭に表裏交互に配置された複数の熱電発電ユニット3のうち、いずれかの熱電発電ユニット3が発電可能な温度状況となり、熱電発電を継続する。 FIG. 5 shows a power generation operation when the buoy 1 rotates due to a disturbance. Even if the buoy 1 rotates, one of the plurality of thermoelectric power generation units 3 arranged alternately on the front and back of the buoy 1 becomes a temperature condition capable of generating power, and the thermoelectric power generation is continued.

ブイ1の外郭形状は球体、多面体、角柱形又は円柱形などで、波や風などの外乱による回転が許容されるが、しかし、ブイ1の形状は必ずしも回転する形状に限定しない。回転しない形状においても、熱電発電ユニット3を表裏交互に配置することで昼夜間の発電が可能であるからである。 The outer shape of the buoy 1 is a sphere, a polyhedron, a prismatic shape, a cylindrical shape, or the like, and rotation due to disturbance such as waves or wind is allowed, but the shape of the buoy 1 is not necessarily limited to a rotating shape. This is because even in a shape that does not rotate, it is possible to generate power during the day and night by arranging the thermoelectric power generation units 3 alternately on the front and back sides.

また、複数の熱電発電ユニット3は、必ずしも、表裏交互で配置しなくてもよい。 Further, the plurality of thermoelectric power generation units 3 do not necessarily have to be arranged alternately on the front and back sides.

(効果の説明)
以上のように、第1の実施例によれば、複数の熱電発電ユニット3を表裏交互に配置することにより、昼夜問わず発電可能という効果が得られる。特に、昼間はブイ1内部の蓄熱部2が太陽光を含む電磁波エネルギーを吸収し、昇温することで効率的に熱電発電可能という効果が得られる。
(Explanation of effect)
As described above, according to the first embodiment, by arranging the plurality of thermoelectric power generation units 3 alternately on the front and back sides, it is possible to obtain the effect that power generation is possible day and night. In particular, in the daytime, the heat storage unit 2 inside the buoy 1 absorbs electromagnetic wave energy including sunlight and raises the temperature, so that an effect that thermoelectric power generation can be efficiently obtained can be obtained.

複数の熱電発電ユニット3を均一でまばら(一様に分布して)に、ブイ1の外郭に配置することで、海面に対し垂直面内でブイ1が回転しても発電可能という効果が得られる。 By arranging a plurality of thermoelectric power generation units 3 uniformly and sparsely (evenly distributed) on the outer shell of the buoy 1, the effect that power can be generated even if the buoy 1 rotates in a plane perpendicular to the sea surface is obtained. Be done.

そして、本実施例によるブイ1をワイヤレスセンサー等の電子装置の電源として使用した場合には、商用電源から電子装置への電力供給配線や電池の交換作業が不要な独立電源が得られ、これらの電子装置を必要な水上に自由に設置することができる。 When the buoy 1 according to the present embodiment is used as a power source for an electronic device such as a wireless sensor, an independent power source that does not require power supply wiring from a commercial power source to the electronic device or battery replacement work can be obtained. The electronic device can be freely installed on the required water.

また、本実施例のブイ1を、直射日光を受け得る水面上に設置するとともに、蓄熱部2を、日射を受けやすく、しかも夜間には放射冷却されやすいような構造とすることによって、蓄熱部2の最高温度及び最低温度の差をより大きくすれば、発電電力をさらに増大させることができる。 Further, the buoy 1 of this embodiment is installed on a water surface that can receive direct sunlight, and the heat storage unit 2 has a structure that is easily exposed to sunlight and is easily radiatively cooled at night. If the difference between the maximum temperature and the minimum temperature of 2 is made larger, the generated power can be further increased.

(第2の実施例)
図6は、第2の実施例のブイ1を概念的に示す断面図である。本実施例は、第1の実施例の蓄熱部2内部の空洞SP(蓄熱部不在空間)に代えて、ブイ1内部を電子装置4と蓄電デバイス5の周りすべてを充填材料で充填した以外、第1の実施例と同一である。
(Second Example)
FIG. 6 is a cross-sectional view conceptually showing the buoy 1 of the second embodiment. In this embodiment, instead of the cavity SP (space where the heat storage unit is absent) inside the heat storage unit 2 of the first embodiment, the inside of the buoy 1 is filled with a filling material all around the electronic device 4 and the power storage device 5. It is the same as the first embodiment.

図6のように、蓄熱部2はブイ1内部を完全に充填され形成されてもよく、蓄熱部2が全方位的に電磁波エネルギーを吸収し、昇温できればよい。 As shown in FIG. 6, the heat storage unit 2 may be formed by completely filling the inside of the buoy 1, and it is sufficient that the heat storage unit 2 absorbs electromagnetic wave energy in all directions and can raise the temperature.

本実施例においても、熱電発電するための熱電発電ユニット3が複数個使用され、各熱電発電ユニット3が表裏交互に配置されていることで、蓄熱部2と海水の温度差の向きによらず(反転しても)、あるいは蓄熱部2と気温の温度差の向きによらず(反転しても)、第1の実施例と同様に熱電発電することができる。 Also in this embodiment, a plurality of thermoelectric power generation units 3 for thermoelectric power generation are used, and the thermoelectric power generation units 3 are arranged alternately on the front and back sides, so that the temperature difference between the heat storage unit 2 and the seawater does not matter. Thermoelectric power generation can be performed in the same manner as in the first embodiment (even if it is inverted) or regardless of the direction of the temperature difference between the heat storage unit 2 and the temperature (even if it is inverted).

1 ブイ
2 蓄熱部
3 熱電発電ユニット
3a 高温側伝熱部
3b 低温側伝熱部
3c 熱電発電素子
4 電子装置
5 蓄電デバイス
6 配線
1 buoy 2 heat storage unit 3 thermoelectric power generation unit 3a high temperature side heat transfer unit 3b low temperature side heat transfer unit 3c thermoelectric power generation element 4 electronic device 5 power storage device 6 wiring

Claims (8)

浮体を含むブイであって、
前記浮体として内周面に蓄熱部を備える閉塞筐体と、
各々が、前記閉塞筐体から外部に露出する第1伝熱部及び前記第1伝熱部の反対側で前記蓄熱部に熱的に接触する第2伝熱部を有し、前記閉塞筐体に液密的に保持され、且つ前記第1伝熱部及び前記第2伝熱部の間の温度差により熱電発電する、複数の熱電発電ユニットと、
前記複数の熱電発電ユニットに接続されて電力が供給される電子装置と、
を有することを特徴とするブイ。
A buoy that includes a floating body
A closed housing having a heat storage portion on the inner peripheral surface as the floating body,
Each has a first heat transfer section exposed to the outside from the closed housing and a second heat transfer section that is in thermal contact with the heat storage section on the opposite side of the first heat transfer section. A plurality of thermoelectric power generation units that are held liquid-tightly and generate thermoelectric power by the temperature difference between the first heat transfer unit and the second heat transfer unit.
An electronic device connected to the plurality of thermoelectric power generation units to supply electric power, and
A buoy characterized by having.
前記閉塞筐体は外部から前記蓄熱部に熱又は電磁波を透過させる
ことを特徴とする請求項1に記載のブイ。
The buoy according to claim 1, wherein the closed housing transmits heat or electromagnetic waves from the outside to the heat storage portion.
前記複数の熱電発電ユニットの各々は前記閉塞筐体との間に断熱部を備える
ことを特徴とする請求項1又は2に記載のブイ。
The buoy according to claim 1 or 2, wherein each of the plurality of thermoelectric power generation units is provided with a heat insulating portion between the closed housing and the thermoelectric power generation unit.
前記複数の熱電発電ユニットは前記蓄熱部の上に一様に分布して配置されている
ことを特徴とする請求項1乃至3のいずれか一項に記載のブイ。
The buoy according to any one of claims 1 to 3, wherein the plurality of thermoelectric power generation units are uniformly distributed and arranged on the heat storage unit.
前記蓄熱部に囲まれ且つ前記蓄熱部が存在しない蓄熱部不在空間を有する
ことを特徴とする請求項1乃至4のいずれか一項に記載のブイ。
The buoy according to any one of claims 1 to 4, wherein the buoy is surrounded by the heat storage unit and has a space in which the heat storage unit is absent.
前記蓄熱部不在空間に前記電子装置が配置されている
ことを特徴とする請求項5に記載のブイ。
The buoy according to claim 5, wherein the electronic device is arranged in the space where the heat storage unit is absent.
前記複数の熱電発電ユニットは、それらの前記第1伝熱部及び前記第2伝熱部が前記蓄熱部に沿って表裏交互になるように配置されている
ことを特徴とする請求項1乃至6のいずれか一項に記載のブイ。
Claims 1 to 6 of the plurality of thermoelectric power generation units, wherein the first heat transfer section and the second heat transfer section are arranged so as to alternate on the front and back along the heat storage section. The buoy described in any one of the items.
前記閉塞筐体は球体、多面体、角柱形又は円柱形の形状を有する
ことを特徴とする請求項1乃至7のいずれか一項に記載のブイ。
The buoy according to any one of claims 1 to 7, wherein the closed housing has a spherical shape, a polyhedron, a prismatic shape, or a cylindrical shape.
JP2020130821A 2020-07-31 2020-07-31 buoy Pending JP2022027050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020130821A JP2022027050A (en) 2020-07-31 2020-07-31 buoy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020130821A JP2022027050A (en) 2020-07-31 2020-07-31 buoy

Publications (1)

Publication Number Publication Date
JP2022027050A true JP2022027050A (en) 2022-02-10

Family

ID=80264432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020130821A Pending JP2022027050A (en) 2020-07-31 2020-07-31 buoy

Country Status (1)

Country Link
JP (1) JP2022027050A (en)

Similar Documents

Publication Publication Date Title
US20200235274A1 (en) Thermoelectric generator
US9839160B2 (en) Water-based computing system
GB2493092A (en) Electricity generation apparatus having a thermal store and thermoelectric heat exchanger
KR101771148B1 (en) Solar heat collector type thermoelectric generator module and system comprising the same
JP2012033812A (en) Solar cell module
WO2017115980A1 (en) Power generation apparatus using wave force and temperature difference
CN113315416A (en) All-weather continuous power generation device capable of being assembled in module mode
CN113757779A (en) Thermal insulation sleeve for heat insulation of heating pipeline
JP2022027050A (en) buoy
CN106134070B (en) A kind of power generator including secondary cell
KR101616796B1 (en) Solar cell with cooling device
JP5664219B2 (en) Power generator
CN110676405A (en) New energy battery module with waterproof buffer function
CN115765526A (en) All-weather temperature difference power generation device based on spectrum adjustment and preparation method thereof
JP2002136160A (en) Thermoelectric generator
CN214069829U (en) Temperature difference power generation device
CN113890416A (en) Environment temperature difference power generation device
KR101637950B1 (en) Solar heat collector type thermoelecric generation apparatus
CN210042696U (en) Water conservancy and hydropower equipment freeze-proof device
US4512332A (en) Stable density stratification solar pond
CN220036847U (en) Power generation system based on temperature difference
CN112436582B (en) Chain type composite self-energy supply device and marine organism sensing system
US20220348293A1 (en) Solar power generators
CN210425596U (en) Solar photovoltaic photo-thermal heat collection device and cogeneration system
CN116357536A (en) Power generation system based on temperature difference

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219