JP2022026096A - Rotary motion mechanism - Google Patents

Rotary motion mechanism Download PDF

Info

Publication number
JP2022026096A
JP2022026096A JP2020129397A JP2020129397A JP2022026096A JP 2022026096 A JP2022026096 A JP 2022026096A JP 2020129397 A JP2020129397 A JP 2020129397A JP 2020129397 A JP2020129397 A JP 2020129397A JP 2022026096 A JP2022026096 A JP 2022026096A
Authority
JP
Japan
Prior art keywords
rotation
swing
shaft
inertial body
rotary motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020129397A
Other languages
Japanese (ja)
Inventor
寛 保坂
Hiroshi Hosaka
萌生 豊島
Moe Toyoshima
泰久 池田
Yasuhisa Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2020129397A priority Critical patent/JP2022026096A/en
Priority to PCT/JP2021/026652 priority patent/WO2022024786A1/en
Publication of JP2022026096A publication Critical patent/JP2022026096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/14Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising conical gears only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/08Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary motion and oscillating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Transmission (AREA)
  • Transmission Devices (AREA)

Abstract

To propose a rotary motion mechanism that inputs vibration occurring in natural environment as external force, and converts the vibration into the rotary motion of an inertia body.SOLUTION: A rotary motion mechanism comprises: an autorotation shaft 2; an inertia body 1 that rotates in conjunction with the rotation of the autorotation shaft 2; a swing shafts 4a, 4b orthogonal to the axis direction of the autorotation shaft 2; a swing frame 3 that rotatably holds the autorotation shaft 2, where the swing frame 3 rotates the swing shafts 4a, 4b by the precession generated in the inertia body 1 in response to external force that tilts the autorotation shaft 2; a power transmission mechanism that accelerates the rotation of the swing shafts 4a, 4b and transmits it to the autorotation shaft, where the power transmission mechanism comprises a bevel gear mechanism that changes the direction of the rotary motion of the swing shafts 4a, 4b to the rotary motion of the autorotation shaft 2; and one-way clutches 6a, 6b that transmit the rotation of the swing shafts 4a, 4b to the power transmission mechanism only when the rotation directions of the swing shafts 4a, 4b coincide with a specific one direction.SELECTED DRAWING: Figure 1

Description

本発明は、自転軸周りに回転する慣性体の自転軸を傾ける外力に応答して慣性体に生じる歳差運動を用いて慣性体の回転を増速させる回転運動機構に関わる。 The present invention relates to a rotational movement mechanism that accelerates the rotation of an inertial body by using a precession generated in the inertial body in response to an external force that tilts the rotation axis of the inertial body that rotates around the rotation axis.

光、熱、振動、及び電波などの様々な形態で自然環境中に存在する微小なエネルギーを採取(ハーベスティング)してこれを電力に変換するエネルギーハーベスティングに関する研究開発が進められている。この種のエネルギーハーベスティングにおいては、熱電効果、圧電効果、及び焦電効果などを応用した技術も含めて様々な工夫が検討されており、現時点では、力学的エネルギーを電力エネルギーに変換する電磁誘導を応用した技術のエネルギー変換効率が高いことが知られている。このような電磁誘導を応用した技術では、例えば、往復運動や揺動運動などを電気エネルギーに変換する機構が考えられるが、回転運動を電気エネルギーに変換する機構のエネルギー変換効率が特に高いことが知られている。このため、自然環境で発生する振動や海流などの力学的なエネルギーをどのようにして効率よく回転運動に変換するのかが重要な課題となる。力学的なエネルギーを回転運動へ変換する回転運動機構の例として、例えば、特許文献1乃至3に示すように、ジャイロ効果を利用する機構が知られている。 Research and development on energy harvesting that collects (harvesting) minute energy existing in the natural environment in various forms such as light, heat, vibration, and radio waves and converts it into electric power is underway. In this kind of energy harvesting, various ideas including technologies applying thermoelectric effect, piezoelectric effect, pyroelectric effect, etc. are being studied, and at present, electromagnetic induction that converts mechanical energy into electric power energy is being studied. It is known that the energy conversion efficiency of the technology applying the above is high. In the technology applying such electromagnetic induction, for example, a mechanism for converting reciprocating motion or rocking motion into electrical energy can be considered, but the energy conversion efficiency of the mechanism for converting rotational motion into electrical energy is particularly high. Are known. Therefore, how to efficiently convert mechanical energy such as vibrations and ocean currents generated in the natural environment into rotational motion becomes an important issue. As an example of a rotary motion mechanism that converts mechanical energy into rotary motion, for example, as shown in Patent Documents 1 to 3, a mechanism that utilizes the gyro effect is known.

米国特許出願公開第3726146号U.S. Patent Application Publication No. 3726146 特開2013-217284号公報Japanese Unexamined Patent Publication No. 2013-217284 特開2019-146477号公報JP-A-2019-146477

特許文献1は、ジャイロ効果による歳差運動をレールとの摩擦によりフライホイールの自転に変換する機構を提案している。この機構は、自転を同一方向に増大させるため、同一方向の歳差回転を必要とし、同一方向のジャイロトルクを発生させる。そのため、慣性体の回転軸をガイドするレール面の運動を円錐状(傾頭)の一定回転又は歳差回転に同期して反転する傾斜振動とする必要がある。このため、自然界のランダムな振動では自転が増速しないという課題を有する。 Patent Document 1 proposes a mechanism for converting precession due to the gyro effect into rotation of a flywheel by friction with a rail. Since this mechanism increases the rotation in the same direction, it requires precession rotation in the same direction and generates gyro torque in the same direction. Therefore, it is necessary to make the motion of the rail surface that guides the rotation axis of the inertial body a tilting vibration that reverses in synchronization with a conical (tilted) constant rotation or precession rotation. Therefore, there is a problem that the rotation does not accelerate due to random vibration in the natural world.

特許文献2は、吊設機構に錘を付け、波浪による重心移動の増加を図って搖動を大きく継続さる機構を提案している。この揺動運動を更に発展させて、平面歯車、差動歯車、爪車を組み合わせて一方向の回転運動を生成することは可能であり、6自由度の運動を利用する発電装置も実用化の準備が進められている。この機構は、単振子の慣性力を回転の駆動力とするため、その大きさは、錘の質量と入力加速度の積の程度である、ジャイロ効果と異なり、錘の自転による慣性力増大を行わないため、ダイナビーなどに比べて、慣性力は著しく小さいという課題を有する。 Patent Document 2 proposes a mechanism in which a weight is attached to a suspension mechanism to increase the movement of the center of gravity due to waves and to greatly continue the sway. It is possible to further develop this oscillating motion to generate one-way rotational motion by combining plane gears, differential gears, and claw wheels, and a power generation device that utilizes motion with six degrees of freedom has also been put into practical use. Preparations are underway. Since this mechanism uses the inertial force of a simple pendulum as the driving force for rotation, its magnitude is the degree of the product of the mass of the weight and the input acceleration. Unlike the gyro effect, the inertial force is increased by the rotation of the weight. Therefore, there is a problem that the inertial force is remarkably small as compared with Dynaby and the like.

特許文献3は、自然界で発生するランダムな振動を入力し、歳差運動を利用して回転の増速を実現する機構を提案している。この機構は、慣性体の回転を増速するためにその回転軸をガイドするレールの直径を大きくとる必要があり、また、その機構とりわけその組立実装が複雑で保守保全性に課題がある。 Patent Document 3 proposes a mechanism that inputs random vibrations generated in the natural world and realizes an increase in rotation speed by utilizing precession. In this mechanism, it is necessary to increase the diameter of the rail that guides the axis of rotation in order to accelerate the rotation of the inertial body, and the mechanism, particularly the assembly and mounting thereof, is complicated and has a problem in maintainability.

そこで、本発明は、上述の課題を解決し、自然環境で発生する振動を外力として入力し、これを慣性体の回転運動に変換する回転運動機構を提案することを課題とする。 Therefore, it is an object of the present invention to solve the above-mentioned problems and to propose a rotational motion mechanism that inputs vibration generated in a natural environment as an external force and converts it into rotational motion of an inertial body.

上述の課題を解決するため、本発明に関わる回転運動機構は、(i)自転軸と、(ii)自転軸の回転に連動して回転する慣性体と、(iii)揺動軸であって、揺動軸の軸芯方向は、自転軸の軸芯方向に直交する、揺動軸と、(iv)自転軸を回転可能に保持する揺動枠であって、自転軸を傾ける外力に応答して慣性体に生じる歳差運動により揺動軸を回転させる揺動枠と、(v)揺動軸の回転を増速して自転軸に伝達する動力伝達機構であって、揺動軸の回転運動を自転軸の回転運動に方向変換する傘歯車機構を備える、動力伝達機構と、(vi)揺動軸の回転方向が特定の一方向に一致するときにのみ揺動軸の回転を動力伝達機構に伝達するワンウェイクラッチを備える。このような構成によれば、慣性体の歳差運動に起因して生じる揺動軸の回転から、ワンウェイクラッチを通じて、慣性体を特定の一方向の回転させる動力を得ることができるため、自然環境で発生する振動エネルギーを効率よく回転運動に変換することができる。 In order to solve the above-mentioned problems, the rotational motion mechanism according to the present invention is (i) a rotating shaft, (ii) an inertial body that rotates in conjunction with the rotation of the rotating shaft, and (iii) a swinging shaft. , The axis direction of the swing axis is a swing frame that is orthogonal to the axis direction of the rotation axis and holds the swing axis and (iv) the rotation axis rotatably, and responds to an external force that tilts the rotation axis. A swing frame that rotates the swing shaft by the aging motion generated in the inertial body, and (v) a power transmission mechanism that accelerates the rotation of the swing shaft and transmits it to the rotation shaft. A power transmission mechanism equipped with a bevel gear mechanism that converts the rotational movement into the rotational movement of the rotation shaft, and (vi) power the rotation of the swing shaft only when the rotation direction of the swing shaft coincides with a specific direction. It is equipped with a one-way clutch that transmits to the transmission mechanism. According to such a configuration, the rotation of the swing shaft caused by the aging motion of the inertial body can be used to obtain the power to rotate the inertial body in a specific direction through the one-way clutch, so that the natural environment can be obtained. The vibration energy generated in the above can be efficiently converted into rotary motion.

動力伝達機構を構成する自転軸の回転速度は、揺動軸の回転速度よりも速いため、エネルギー損失の低減を図る観点から、ワンウェイクラッチを揺動軸に直接取り付けてもよい。 Since the rotation speed of the rotation shaft constituting the power transmission mechanism is faster than the rotation speed of the swing shaft, the one-way clutch may be directly attached to the swing shaft from the viewpoint of reducing energy loss.

本発明に関わる回転運動機構によれば、自然環境で発生する振動を外力として入力し、これを慣性体の回転運動に効率よく変換することができる。 According to the rotational motion mechanism according to the present invention, vibration generated in a natural environment can be input as an external force and efficiently converted into rotational motion of an inertial body.

本発明の第1の実施形態に関わる回転運動機構の構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the rotary motion mechanism which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に関わる回転運動機構の構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the rotary motion mechanism which concerns on the 2nd Embodiment of this invention.

以下、図面を参照しながら本発明の実施形態について説明する。ここで、同一符号は同一の構成要素を示すものとし、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the same reference numerals indicate the same components, and duplicate description will be omitted.

図1は、本発明の第1の実施形態に関わる回転運動機構100の構成の一例を示す説明図である。回転運動機構100は、慣性体1、自転軸2、揺動枠3、揺動軸4a,4b、筐体5、ワンウェイクラッチ6a,6b、平歯車7a,7b,8a,8b、駆動軸9a,9b、及び傘歯車10a,10b,11を備えている。説明の便宜上、自転軸2の軸芯方向に平行な方向をX方向とし、X方向に直交する2方向をY方向及びZ方向とする。また、X方向、Y方向、及びZ方向のそれぞれに平行な軸をX軸、Y軸、及びZ軸と呼ぶ。 FIG. 1 is an explanatory diagram showing an example of the configuration of the rotary motion mechanism 100 according to the first embodiment of the present invention. The rotary motion mechanism 100 includes an inertial body 1, a rotating shaft 2, a swing frame 3, a swing shaft 4a, 4b, a housing 5, a one-way clutch 6a, 6b, spur gears 7a, 7b, 8a, 8b, a drive shaft 9a, 9b and bevel gears 10a, 10b, 11 are provided. For convenience of explanation, the direction parallel to the axis direction of the rotation axis 2 is defined as the X direction, and the two directions orthogonal to the X direction are defined as the Y direction and the Z direction. Further, the axes parallel to each of the X direction, the Y direction, and the Z direction are referred to as the X axis, the Y axis, and the Z axis.

慣性体1は、所定の慣性質量を有する物体であり、例えば、YZ平面に平行な2つの主面と、X方向に厚みを有する円盤状の形状を有してもよい。慣性体1は、自転軸2に接続されており、自転軸2の回転に連動して回転する。 The inertial body 1 is an object having a predetermined inertial mass, and may have, for example, two main surfaces parallel to the YZ plane and a disk-shaped shape having a thickness in the X direction. The inertial body 1 is connected to the rotation axis 2 and rotates in conjunction with the rotation of the rotation axis 2.

揺動軸4a,4bの軸芯方向(Y方向)は、自転軸2の軸芯方向(X方向)に直交するように配置される。同様に、駆動軸9a,9bの軸芯方向(Y方向)は、自転軸2の軸芯方向(X方向)に直交するように配置される。揺動枠3は、自転軸2及び駆動軸9a,9bのそれぞれを回転可能に保持する。揺動軸4a,4bは、揺動枠3に固定されている。筐体5は、揺動軸4a,4bを回転可能に保持するとともに、その内部に揺動枠3を収容し、揺動軸4a,4b周りに揺動枠3を回転可能に保持する。 The axis directions (Y direction) of the swing axes 4a and 4b are arranged so as to be orthogonal to the axis direction (X direction) of the rotation axis 2. Similarly, the axis directions (Y direction) of the drive shafts 9a and 9b are arranged so as to be orthogonal to the axis direction (X direction) of the rotation axis 2. The swing frame 3 rotatably holds each of the rotation shaft 2 and the drive shafts 9a and 9b. The swing shafts 4a and 4b are fixed to the swing frame 3. The housing 5 rotatably holds the oscillating shafts 4a and 4b, accommodates the oscillating frame 3 inside, and rotatably holds the oscillating frame 3 around the oscillating shafts 4a and 4b.

ワンウェイクラッチ6aは、揺動軸4aに取り付けられている。同様に、ワンウェイクラッチ6bは、揺動軸4bに取り付けられている。平歯車7aは、ワンウェイクラッチ6aを軸受けとして、揺動軸4aに取り付けられている。同様に、平歯車7bは、ワンウェイクラッチ6bを軸受けとして、揺動軸4bに取り付けられている。 The one-way clutch 6a is attached to the swing shaft 4a. Similarly, the one-way clutch 6b is attached to the swing shaft 4b. The spur gear 7a is attached to the swing shaft 4a with the one-way clutch 6a as a bearing. Similarly, the spur gear 7b is attached to the swing shaft 4b with the one-way clutch 6b as a bearing.

平歯車8aは、駆動軸9aの一端に取り付けられ、傘歯車10aは、駆動軸9aの他端に取り付けられている。同様に、平歯車8bは、駆動軸9bの一端に取り付けられ、傘歯車10bは、駆動軸9bの他端に取り付けられている。平歯車7a,8aは、互いに噛合するように取り付けられている。同様に、平歯車7b,8bは、互いに噛合するように取り付けられている。 The spur gear 8a is attached to one end of the drive shaft 9a, and the bevel gear 10a is attached to the other end of the drive shaft 9a. Similarly, the spur gear 8b is attached to one end of the drive shaft 9b, and the bevel gear 10b is attached to the other end of the drive shaft 9b. The spur gears 7a and 8a are attached so as to mesh with each other. Similarly, the spur gears 7b and 8b are attached so as to mesh with each other.

慣性体1は、自転軸2の回転に連動して回転するように自転軸2の一部に装着されている。また、自転軸2の一端は、傘歯車11に装着されている。傘歯車10a,10bは、それぞれ、傘歯車11に噛合するように取り付けられている。 The inertial body 1 is attached to a part of the rotation shaft 2 so as to rotate in conjunction with the rotation of the rotation shaft 2. Further, one end of the rotation shaft 2 is attached to the bevel gear 11. The bevel gears 10a and 10b are attached so as to mesh with the bevel gear 11, respectively.

平歯車7a,7bは、ワンウェイクラッチ6a,6bによって、互いに逆方向への回転のみが許容されている。例えば、揺動軸4a,4bがCW向き(時計回り)に回転したときに、ワンウェイクラッチ6aが滑り、ワンウェイクラッチ6bが噛み合ったとすると、平歯車7aは、空転し、平歯車7bは、CW向きに回転する。平歯車7bがCW向きに回転すると、平歯車7bに噛合する平歯車8bは、CCW向き(反時計回り)に回転する。平歯車8bの歯数は、平歯車7bの歯数よりも少ないため、両者の歯数の比率に応じて、平歯車8bの回転速度は、平歯車7bの回転速度よりも速くなる。平歯車8bの回転トルクは、駆動軸9bを通じて傘歯車10bに伝達される。平歯車8bがCCW向きに回転すると、傘歯車10bもCCW向きに回転する。傘歯車10bがCCW向きに回転すると、傘歯車11は、CW向きに回転する。傘歯車11がCW向きに回転すると、慣性体1もCW向きに回転する。 The spur gears 7a and 7b are only allowed to rotate in opposite directions by the one-way clutches 6a and 6b. For example, if the one-way clutch 6a slips and the one-way clutch 6b meshes when the swing shafts 4a and 4b rotate in the CW direction (clockwise), the spur gear 7a slips and the spur gear 7b faces the CW. Rotate to. When the spur gear 7b rotates in the CW direction, the spur gear 8b meshing with the spur gear 7b rotates in the CCW direction (counterclockwise). Since the number of teeth of the spur gear 8b is smaller than the number of teeth of the spur gear 7b, the rotation speed of the spur gear 8b becomes faster than the rotation speed of the spur gear 7b according to the ratio of the number of teeth of both. The rotational torque of the spur gear 8b is transmitted to the bevel gear 10b through the drive shaft 9b. When the spur gear 8b rotates in the CCW direction, the bevel gear 10b also rotates in the CCW direction. When the bevel gear 10b rotates in the CCW direction, the bevel gear 11 rotates in the CW direction. When the bevel gear 11 rotates in the CW direction, the inertial body 1 also rotates in the CW direction.

傘歯車11のCW向きの回転運動は、傘歯車10a、駆動軸9a、及び平歯車8aを通じて、平歯車7aをCCW向きに回転させる。この結果、揺動軸4aの回転方向(CW向き)と、平歯車7aの回転方向(CCW向き)とは、互いに逆向きになるが、ワンウェイクラッチ6aの機能により、揺動軸4aの回転と平歯車7aの回転との間に滑りが生じ、揺動軸4aの回転が妨げられることはない。 The rotational movement of the bevel gear 11 toward CW causes the spur gear 7a to rotate toward CCW through the bevel gear 10a, the drive shaft 9a, and the spur gear 8a. As a result, the rotation direction of the swing shaft 4a (CW direction) and the rotation direction of the spur gear 7a (CCW direction) are opposite to each other, but due to the function of the one-way clutch 6a, the rotation of the swing shaft 4a A slip occurs between the spur gear 7a and the rotation of the spur gear 7a, and the rotation of the swing shaft 4a is not hindered.

一方、揺動軸4a,4bがCCW向きに回転すると、ワンウェイクラッチ6bが滑り、ワンウェイクラッチ6aが噛み合う。これにより、平歯車7bは、空転し、平歯車7aは、CCW向きに回転する。この結果、平歯車8a、傘歯車10a,11は、それぞれCW向きに回転し、慣性体1もCW向きに回転する。なお、揺動軸4bの回転方向(CCW向き)と、平歯車7bの回転方向(CW向き)とは、互いに逆向きになるが、ワンウェイクラッチ6bの機能により、揺動軸4bの回転と平歯車7bの回転との間に滑りが生じ、揺動軸4bの回転が妨げられることはない。 On the other hand, when the swing shafts 4a and 4b rotate in the CCW direction, the one-way clutch 6b slips and the one-way clutch 6a engages. As a result, the spur gear 7b spins idly, and the spur gear 7a rotates in the CCW direction. As a result, the spur gears 8a and the bevel gears 10a and 11 rotate in the CW direction, respectively, and the inertial body 1 also rotates in the CW direction. The rotation direction of the swing shaft 4b (toward CCW) and the rotation direction of the spur gear 7b (toward CW) are opposite to each other, but due to the function of the one-way clutch 6b, the rotation of the swing shaft 4b is flat. A slip occurs between the rotation of the gear 7b and the rotation of the swing shaft 4b is not hindered.

このように、慣性体1がその初期状態において静止している場合に、揺動軸4a,4bを回転させる外力(例えば、自然環境で生じる振動)が加わると、揺動軸4a,4bの回転方向に関わらず、慣性体1は一方向(例えば、CW向き)に回転し始める。なお、揺動軸4a,4bがCW向きに回転したときに、ワンウェイクラッチ6bが滑り、ワンウェイクラッチ6aが噛み合うように設定すると、慣性体1がその初期状態において静止している場合に、揺動軸4a,4bを回転させる外力(例えば、自然環境で生じる振動)が加わると、揺動軸4a,4bの回転方向に関わらず、慣性体1は、一方向(例えば、CCW向き)に回転し始める。 As described above, when the inertial body 1 is stationary in its initial state and an external force (for example, vibration generated in a natural environment) for rotating the swing shafts 4a and 4b is applied, the swing shafts 4a and 4b rotate. Regardless of the direction, the inertial body 1 starts to rotate in one direction (for example, toward CW). When the swing shafts 4a and 4b are rotated in the CW direction, the one-way clutch 6b slips and the one-way clutch 6a is set to mesh with each other. When an external force (for example, vibration generated in a natural environment) that rotates the shafts 4a and 4b is applied, the inertial body 1 rotates in one direction (for example, for CCW) regardless of the rotation direction of the swing shafts 4a and 4b. start.

慣性体1が回転運動している状態の下で、自然環境で生じる振動により、自転軸2を傾ける外力がZ軸周りに作用すると、ジャイロ効果により、慣性体1には、X方向及びZ方向に直交するY軸周りの回転を引き起こすジャイロモーメントが作用する。ジャイロモーメントは、慣性体1の角運動量に比例する。このジャイロモーメントにより、慣性体1は、歳差運動を行う。慣性体1の歳差運動により、揺動枠3のY軸周りの回転が引き起こされる。揺動軸4a,4bは、揺動枠3に固定されているため、慣性体1の歳差運動に起因して、揺動軸4a,4bは、Y軸周りに回転する。自転軸2を傾ける外力がZ軸周りに作用したときの慣性体1の回転方向は、揺動軸4a,4bの回転方向に関わらず、一方向である。 When the external force that tilts the rotation axis 2 acts around the Z axis due to the vibration generated in the natural environment under the state where the inertial body 1 is rotating, the gyro effect causes the inertial body 1 to be in the X direction and the Z direction. A gyro moment that causes rotation around the Y axis perpendicular to is acting. The gyro moment is proportional to the angular momentum of the inertial body 1. Due to this gyro moment, the inertial body 1 precesses. The precession of the inertial body 1 causes the swing frame 3 to rotate about the Y axis. Since the swing shafts 4a and 4b are fixed to the swing frame 3, the swing shafts 4a and 4b rotate around the Y axis due to the precession of the inertial body 1. The rotation direction of the inertial body 1 when an external force for tilting the rotation shaft 2 acts around the Z axis is one direction regardless of the rotation directions of the swing shafts 4a and 4b.

このように、慣性体1が回転運動している状態の下で、自転軸2を傾ける外力がZ軸周りに作用すると、慣性体1は、歳差運動を開始し、揺動軸4a,4bは、揺動回転し始める。この揺動回転により、平歯車7a,7bがそれぞれ一方向に回転し始め、その回転運動は、平歯車8a,8bによって増速される。増速された回転運動は、傘歯車10a,10bを通じて傘歯車11に伝達され、慣性体1の回転運動を増速させる。 In this way, when the external force that tilts the rotation axis 2 acts around the Z axis under the state where the inertial body 1 is rotating, the inertial body 1 starts precession and the swing axes 4a and 4b. Begins to swing and rotate. Due to this oscillating rotation, the spur gears 7a and 7b start to rotate in one direction, respectively, and the rotational motion is accelerated by the spur gears 8a and 8b. The increased rotational motion is transmitted to the bevel gear 11 through the bevel gears 10a and 10b, and the rotational motion of the inertial body 1 is accelerated.

自転軸2を傾けるZ軸周りの外力に応答して、慣性体1が歳差運動をするためには、慣性体1は、その初期状態において、自転軸2周りに回転している必要がある。慣性体1を回転させるには、慣性体1に何等かの外力を加えて、慣性体1を強制的に回転させてもよいし、或いは、揺動枠3と筐体5との間に相対的な回転運動を強制的に加えてもよい。慣性体1の強制的な回転は、歳差運動が始まる前の初期状態においてのみ行えばよい。慣性体1が歳差運動を開始した後は、慣性体1の回転運動は、上述の原理に従って、次第に増幅されるため、慣性体1を強制的に回転させる必要はない。なお、慣性体1がその初期状態において静止している場合に、揺動軸4a,4bを回転させる外力が加わると、揺動軸4a,4bの回転方向に関わらず、慣性体1は、一方向に回転し始める。このため、揺動軸4a,4bを回転させる外力を利用して慣性体1の回転運動を生じさせてもよい。 In order for the inertial body 1 to precess in response to an external force around the Z axis that tilts the rotation axis 2, the inertial body 1 needs to rotate around the rotation axis 2 in its initial state. .. In order to rotate the inertial body 1, some external force may be applied to the inertial body 1 to forcibly rotate the inertial body 1, or the swing frame 3 and the housing 5 are relative to each other. Rotational motion may be forcibly applied. The forced rotation of the inertial body 1 may be performed only in the initial state before the precession movement starts. After the inertial body 1 starts the precession, the rotational movement of the inertial body 1 is gradually amplified according to the above-mentioned principle, so that it is not necessary to forcibly rotate the inertial body 1. When the inertial body 1 is stationary in its initial state and an external force for rotating the swing shafts 4a and 4b is applied, the inertial body 1 becomes one regardless of the rotation direction of the swing shafts 4a and 4b. It starts to rotate in the direction. Therefore, the rotational motion of the inertial body 1 may be generated by utilizing the external force that rotates the swing shafts 4a and 4b.

なお、平歯車7a,7b,8a,8b、駆動軸9a,9b、及び傘歯車10a,10b,11は、揺動軸4a,4bの回転を増速して自転軸2に伝達する動力伝達機構として機能する。ワンウェイクラッチ6bは、揺動軸4a,4bの回転方向が特定の一方向(例えば、CW向き)に一致するときにのみ揺動軸4a,4bの回転を動力伝達機構に伝達する。同様に、ワンウェイクラッチ6aは、揺動軸4a,4bの回転方向が特定の一方向(例えば、CCW向き)に一致するときにのみ揺動軸4a,4bの回転を動力伝達機構に伝達する。 The spur gears 7a, 7b, 8a, 8b, drive shafts 9a, 9b, and bevel gears 10a, 10b, 11 are power transmission mechanisms that accelerate the rotation of the swing shafts 4a, 4b and transmit them to the rotation shaft 2. Functions as. The one-way clutch 6b transmits the rotation of the swing shafts 4a and 4b to the power transmission mechanism only when the rotation directions of the swing shafts 4a and 4b coincide with a specific one direction (for example, the CW direction). Similarly, the one-way clutch 6a transmits the rotation of the swing shafts 4a and 4b to the power transmission mechanism only when the rotation directions of the swing shafts 4a and 4b coincide with a specific one direction (for example, the direction of CCW).

また、傘歯車10a,10b,11は、揺動軸4a,4bの回転運動及びその回転運動に平行な回転運動(例えば、平歯車7a,7b,8a,8b、及び駆動軸9a,9bの回転運動)を自転軸2の回転運動に方向変換する傘歯車機構として機能する。 Further, the bevel gears 10a, 10b, 11 are the rotational movement of the swing shafts 4a, 4b and the rotational movement parallel to the rotational movement (for example, the rotation of the spur gears 7a, 7b, 8a, 8b, and the drive shafts 9a, 9b). It functions as a bevel gear mechanism that changes the direction of the motion) into the rotational motion of the rotation axis 2.

なお、図1に示す例では、動力伝達機構の一例として、平歯車7a,7b,8a,8bの組み合わせが例示されているが、平歯車7a,7b,8a,8bの組み合わせに替えて、多段化された平歯車の組み合わせを用いてもよく、或いは、平歯車7a,7b,8a,8bの組み合わせに替えて、ベルトとプーリーとの組み合わせを用いてもよい。 In the example shown in FIG. 1, the combination of spur gears 7a, 7b, 8a, 8b is exemplified as an example of the power transmission mechanism, but instead of the combination of spur gears 7a, 7b, 8a, 8b, there are multiple stages. A combination of spur gears may be used, or a combination of a belt and a pulley may be used instead of the combination of spur gears 7a, 7b, 8a, 8b.

また、慣性体1の回転運動を増速させる機構として、平歯車7a,7bの歯数と平歯車8a,8bの歯数との比を用いる例を例示したが、傘歯車10a,10bの歯数と傘歯車11の歯数との比を用いて慣性体1の回転運動を増速させてもよく、或いは、傘歯車11と自転軸2との間に歯車機構を設けて慣性体1の回転運動を増速させてもよい。 Further, as an example of using the ratio of the number of teeth of the spur gears 7a and 7b to the number of teeth of the spur gears 8a and 8b as a mechanism for accelerating the rotational movement of the inertial body 1, an example of using the ratio of the number of teeth of the spur gears 8a and 8b is illustrated. The rotational movement of the inertial body 1 may be accelerated by using the ratio between the number and the number of teeth of the bevel gear 11, or a gear mechanism may be provided between the bevel gear 11 and the rotation shaft 2 to provide the inertial body 1. The rotational movement may be accelerated.

また、図1に示す例では、ワンウェイクラッチ6a,6bは、揺動軸4a,4bに直接取り付けられている例が示されているが、ワンウェイクラッチ6a,6bを駆動軸9a,9bに直接取り付けても、図1に示す構成と同様の機能を果たすことができる。なお、「直接取り付ける」とは、伝達機構(例えば、歯車、プーリー、ベルトなど)を介さずに取り付けることを意味する。 Further, in the example shown in FIG. 1, an example in which the one-way clutches 6a and 6b are directly attached to the swing shafts 4a and 4b is shown, but the one-way clutches 6a and 6b are directly attached to the drive shafts 9a and 9b. However, it can perform the same function as the configuration shown in FIG. In addition, "directly mounting" means mounting without using a transmission mechanism (for example, a gear, a pulley, a belt, etc.).

なお、ワンウェイクラッチ6a,6bは、揺動軸4a,4bの回転方向に応じて、滑りと噛み合いを繰り返す。ワンウェイクラッチ6a,6bが滑るときは、僅かに摩擦が発生する。摩擦によるエネルギーの損失は、滑りの速度に比例するため、ワンウェイクラッチ6a,6bは、回転速度が比較的低い回転軸に取り付けるのが望ましい。図1に示す例では、駆動軸9a,9bの回転速度よりも、揺動軸4a,4bの回転速度の方が低いため、エネルギー損失の低減を図る観点からは、ワンウェイクラッチ6a,6bを駆動軸9a,9bに直接取り付けるよりも、ワンウェイクラッチ6a,6bを揺動軸4a,4bに直接取り付ける方が望ましい。 The one-way clutches 6a and 6b repeat sliding and meshing according to the rotation direction of the swing shafts 4a and 4b. When the one-way clutches 6a and 6b slip, a slight friction is generated. Since the energy loss due to friction is proportional to the sliding speed, it is desirable to attach the one-way clutches 6a and 6b to a rotating shaft having a relatively low rotational speed. In the example shown in FIG. 1, since the rotation speeds of the swing shafts 4a and 4b are lower than the rotation speeds of the drive shafts 9a and 9b, the one-way clutches 6a and 6b are driven from the viewpoint of reducing energy loss. It is preferable to directly attach the one-way clutches 6a and 6b to the swing shafts 4a and 4b rather than directly attaching them to the shafts 9a and 9b.

図2は、本発明の第2の実施形態に関わる回転運動機構200の構成の一例を示す説明図である。回転運動機構200は、慣性体1、自転軸2、揺動枠3、筐体5、ワンウェイクラッチ6a,6b、駆動軸9a,9b、及び傘歯車10a,10b,11を備えている。回転運動機構200は、ワンウェイクラッチ6a,6bが駆動軸9a,9bに直接取り付けられている点において、回転運動機構100とは異なる。また、回転運動機構200は、揺動軸4a,4b及び平歯車7a,7b,8a,8bを備えていない点においても、回転運動機構100とは異なる。なお、傘歯車10a,10b,11は、駆動軸9a,9bの回転を増速して自転軸2に伝達する動力伝達機構として機能するとともに、駆動軸9a,9bの回転運動を自転軸2の回転運動に方向変換する傘歯車機構としても機能する。以下の説明においては、実施形態1,2の相違点を中心に説明し、両者の一致点についてはその詳細な説明を省略する。 FIG. 2 is an explanatory diagram showing an example of the configuration of the rotary motion mechanism 200 according to the second embodiment of the present invention. The rotary motion mechanism 200 includes an inertial body 1, a rotating shaft 2, a swing frame 3, a housing 5, one-way clutches 6a, 6b, drive shafts 9a, 9b, and bevel gears 10a, 10b, 11. The rotary motion mechanism 200 differs from the rotary motion mechanism 100 in that the one-way clutches 6a and 6b are directly attached to the drive shafts 9a and 9b. Further, the rotary motion mechanism 200 is different from the rotary motion mechanism 100 in that the swing shafts 4a and 4b and the spur gears 7a, 7b, 8a and 8b are not provided. The bevel gears 10a, 10b, 11 function as a power transmission mechanism that accelerates the rotation of the drive shafts 9a, 9b and transmits the rotation to the rotation shaft 2, and also causes the rotational movement of the drive shafts 9a, 9b to be transmitted to the rotation shaft 2. It also functions as a bevel gear mechanism that changes direction to rotary motion. In the following description, the differences between the first and second embodiments will be mainly described, and the detailed description of the points of agreement between the two will be omitted.

自然環境で生じる振動により、自転軸2を傾ける外力がZ軸周りに作用すると、ジャイロ効果により、慣性体1には、X方向及びZ方向に直交するY軸周りの回転を引き起こすジャイロモーメントが作用する。このジャイロモーメントにより、慣性体1は、歳差運動を行う。駆動軸9a,9bは、慣性体1の歳差運動に起因してY軸周りに回転する。図2の駆動軸9a,9bは、図1の揺動軸4a,4bの機能と同等の機能を有するものであり、図2の駆動軸9a,9bを揺動軸と呼ぶこともできる。 When an external force that tilts the rotation axis 2 acts around the Z axis due to vibration generated in the natural environment, a gyro moment that causes rotation around the Y axis orthogonal to the X direction and the Z direction acts on the inertial body 1 due to the gyro effect. do. Due to this gyro moment, the inertial body 1 precesses. The drive shafts 9a and 9b rotate around the Y axis due to the precession of the inertial body 1. The drive shafts 9a and 9b of FIG. 2 have the same functions as those of the swing shafts 4a and 4b of FIG. 1, and the drive shafts 9a and 9b of FIG. 2 can also be referred to as swing shafts.

慣性体1の回転方向は、ワンウェイクラッチ6a,6bの機能により、一方向に制限されている。慣性体1が歳差運動をせずに、自転軸2の周りに自転のみをしているときに、傘歯車10a,10bが回転する方向を正の回転方向と呼ぶ。傘歯車10a,10bのそれぞれの筐体5に対する回転速度をωa,ωbとし、慣性体1の自転速度をωsとし、慣性体1の歳差運動に起因する駆動軸9a,9bの歳差回転速度をωpとし、傘歯車10a,10bと傘歯車11との減速比をZとすると、下式が成立する。 The rotation direction of the inertial body 1 is limited to one direction by the functions of the one-way clutches 6a and 6b. The direction in which the bevel gears 10a and 10b rotate when the inertial body 1 does not precess and only rotates around the rotation axis 2 is called a positive rotation direction. Let ωa and ωb be the rotational speeds of the bevel gears 10a and 10b with respect to the respective housings 5, and let ωs be the rotation speed of the inertial body 1. Is ωp, and the reduction ratio between the bevel gears 10a and 10b and the bevel gear 11 is Z, the following equation is established.

ωa=ωs/Z+ωp …(1)
ωb=ωs/Z-ωp …(2)
ωa = ωs / Z + ωp ... (1)
ωb = ωs / Z-ωp ... (2)

歳差回転運動が加速し、ωpとωs/Zとが等しくなると、傘歯車10bの回転は、停止する。歳差運動が更に増速されると、駆動軸9bは、ワンウェイクラッチ6bと噛み合う。ワンウェイクラッチ6bは、筐体5に固定されているため、駆動軸9bの回転は、傘歯車10bを通じて傘歯車11に伝達される。これにより、慣性体1の回転運動が増速する。このとき、駆動軸9aは、空転する。 When the precession rotation accelerates and ωp and ωs / Z become equal, the rotation of the bevel gear 10b stops. When the precession is further accelerated, the drive shaft 9b meshes with the one-way clutch 6b. Since the one-way clutch 6b is fixed to the housing 5, the rotation of the drive shaft 9b is transmitted to the bevel gear 11 through the bevel gear 10b. As a result, the rotational movement of the inertial body 1 is accelerated. At this time, the drive shaft 9a idles.

歳差回転運動が反転して加速し、ωpとωs/Zとが等しくなると、傘歯車10aの回転は、停止する。歳差運動が更に増速されると、駆動軸9aは、ワンウェイクラッチ6aと噛み合う。ワンウェイクラッチ6aは、筐体5に固定されているため、駆動軸9aの回転は、傘歯車10aを通じて傘歯車11に伝達される。これにより、慣性体1の回転運動が増速する。このとき、駆動軸9bは、空転する。 When the precession rotation motion is reversed and accelerated, and ωp and ωs / Z become equal, the rotation of the bevel gear 10a is stopped. When the precession is further accelerated, the drive shaft 9a meshes with the one-way clutch 6a. Since the one-way clutch 6a is fixed to the housing 5, the rotation of the drive shaft 9a is transmitted to the bevel gear 11 through the bevel gear 10a. As a result, the rotational movement of the inertial body 1 is accelerated. At this time, the drive shaft 9b idles.

このように、歳差回転運動が大きくなると、歳差回転運動の方向が何れの方向でも、慣性体1の回転は増速される。慣性体1の最高回転速度は、Zωpにより定まる。 As described above, when the precession rotation motion becomes large, the rotation of the inertial body 1 is accelerated regardless of the direction of the precession rotation motion. The maximum rotation speed of the inertial body 1 is determined by Zωp.

なお、傘歯車10a,10b,11は、駆動軸9a,9bの回転を増速して自転軸2に伝達する動力伝達機構として機能する。 The bevel gears 10a, 10b, 11 function as a power transmission mechanism that accelerates the rotation of the drive shafts 9a, 9b and transmits the rotation to the rotation shaft 2.

上述の回転運動機構100,200によれば、自然環境で発生する振動を外力として入力し、これを慣性体1の回転運動に変換及び増速することができる。特に、慣性体1の歳差運動に起因して生じる揺動軸4a,4bの回転(又は駆動軸9a,9bの回転)から、ワンウェイクラッチ6a,6bを通じて、慣性体1を特定の一方向の回転させる動力を得ることができるため、自然環境で発生する振動エネルギーを効率よく回転運動に変換することができる。慣性体1の自転速度が高まると、歳差振動の振幅が増大し、慣性体1の自転がさらに高速化する正帰還系の機構により、慣性体1の自転速度は指数関数的に増大する。これにより、自然環境で発生するごく僅かな振動又は揺動を外力として入力し、これを慣性体1の回転運動に変換及び増速することができる。 According to the above-mentioned rotational motion mechanisms 100 and 200, vibration generated in a natural environment can be input as an external force, and this can be converted into rotational motion of the inertial body 1 and accelerated. In particular, from the rotation of the swing shafts 4a and 4b (or the rotation of the drive shafts 9a and 9b) caused by the aging motion of the inertial body 1, the inertial body 1 is moved in a specific one direction through the one-way clutches 6a and 6b. Since the power to rotate can be obtained, the vibration energy generated in the natural environment can be efficiently converted into rotary motion. When the rotation speed of the inertial body 1 is increased, the amplitude of the aging vibration is increased, and the rotation speed of the inertial body 1 is exponentially increased by the mechanism of the positive feedback system in which the rotation of the inertial body 1 is further accelerated. As a result, it is possible to input a very slight vibration or vibration generated in the natural environment as an external force, and convert and accelerate this into the rotational motion of the inertial body 1.

例えば、慣性体1に磁石を取り付け、揺動枠3にコイルを取り付けることにより、回転運動機構100,200は、慣性体1の回転運動を電気エネルギーに変換する発電機として機能する。回転運動機構100,200は、各種の振動源(例えば、人体、畜産動物、野生動物、竹林、農産地、船上、及び移動車両など)に取り付けてもよい。また、回転運動機構100,200は、電池を不要とする各種のIoT(Internet of Things)デバイスの電力源として活用することもできる。IoTデバイスの例として、例えば、速度計、温湿度計、照度計、流水計、及び塩分濃度計などの各種センサが考えられる。 For example, by attaching a magnet to the inertial body 1 and attaching a coil to the swing frame 3, the rotational motion mechanisms 100 and 200 function as a generator that converts the rotational motion of the inertial body 1 into electrical energy. The rotary motion mechanism 100, 200 may be attached to various vibration sources (for example, human body, livestock animal, wild animal, bamboo grove, agricultural area, ship, mobile vehicle, etc.). Further, the rotary motion mechanisms 100 and 200 can also be used as a power source for various IoT (Internet of Things) devices that do not require batteries. As an example of the IoT device, for example, various sensors such as a speedometer, a thermo-hygrometer, an illuminance meter, a water flow meter, and a salinity meter can be considered.

また、例えば、回転運動機構100,200は、水上や水中などの大きな運動エネルギーで揺動運動を行う水流又は海流などの自然エネルギーを電気エネルギーに変換する用途にも活用できるため、水上又は水中などのバッテリーの保守及び交換が困難な場所で有効に幅広く利用することができる。これは、LPWA(Low Power Wide Area)などの広域無線通信の進展と相俟って有意義である。例えば、沿岸漁業における定置網の観測ブイ(例えば、0.2m3程度のブイ)に回転運動機構100,200を組み込むことにより、海洋の波力により、20W程度の電力を発電し、漁業探知や無線通信機器の電力源として機能することができる。 Further, for example, the rotary motion mechanisms 100 and 200 can also be used for converting natural energy such as a water stream or a sea stream that swings with a large kinetic energy such as on the water or underwater into electric energy. It can be effectively and widely used in places where maintenance and replacement of the battery is difficult. This is significant in combination with the progress of wide area wireless communication such as LPWA (Low Power Wide Area). For example, by incorporating the rotational motion mechanisms 100 and 200 into a fixed net observation buoy (for example, a buoy of about 0.2 m 3 ) in coastal fisheries, the wave power of the ocean generates about 20 W of electric power for fishery detection and radio. It can function as a power source for communication equipment.

また、回転運動機構100,200によれば、自転軸2をガイドする大型のレールを必要としないため、小型化することができる。 Further, according to the rotary motion mechanisms 100 and 200, since a large rail for guiding the rotation axis 2 is not required, the size can be reduced.

なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更又は改良され得るととともに、本発明にはその等価物も含まれる。すなわち、実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。また、実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも、本発明の特徴を含む限り、本発明の範囲に包含される。 It should be noted that the embodiments described above are for facilitating the understanding of the present invention, and are not for limiting the interpretation of the present invention. The present invention can be modified or improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof. That is, a embodiment to which a person skilled in the art has appropriately modified the design is also included in the scope of the present invention as long as it has the features of the present invention. Further, the elements included in the embodiment can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included.

1…慣性体 2…自転軸 3…揺動枠 4a,4b…揺動軸 5…筐体 6a,6b…ワンウェイクラッチ 7a,7b,8a,8b…平歯車 9a,9b…駆動軸 10a,10b,11…傘歯車 100,200…回転運動機構 1 ... Inertial body 2 ... Rotating shaft 3 ... Swing frame 4a, 4b ... Swing shaft 5 ... Housing 6a, 6b ... One-way clutch 7a, 7b, 8a, 8b ... Spur gear 9a, 9b ... Drive shaft 10a, 10b, 11 ... Bevel gear 100, 200 ... Rotational motion mechanism

Claims (2)

自転軸と、
前記自転軸の回転に連動して回転する慣性体と、
揺動軸であって、前記揺動軸の軸芯方向は、前記自転軸の軸芯方向に直交する、揺動軸と、
前記自転軸を回転可能に保持する揺動枠であって、前記自転軸を傾ける外力に応答して前記慣性体に生じる歳差運動により前記揺動軸を回転させる揺動枠と、
前記揺動軸の回転を増速して前記自転軸に伝達する動力伝達機構であって、前記揺動軸の回転運動を前記自転軸の回転運動に方向変換する傘歯車機構を備える、動力伝達機構と、
前記揺動軸の回転方向が特定の一方向に一致するときにのみ前記揺動軸の回転を前記動力伝達機構に伝達するワンウェイクラッチと、
を備える、回転運動機構。
Rotation axis and
An inertial body that rotates in conjunction with the rotation of the rotation axis,
A swing axis, wherein the axis direction of the swing axis is orthogonal to the axis direction of the rotation axis.
A swing frame that rotatably holds the rotation shaft, and a swing frame that rotates the swing shaft by a precession generated in the inertial body in response to an external force that tilts the rotation shaft.
A power transmission mechanism that accelerates the rotation of the swing shaft and transmits it to the rotation shaft, and includes a bevel gear mechanism that converts the rotational movement of the swing shaft into the rotational movement of the rotation shaft. Mechanism and
A one-way clutch that transmits the rotation of the swing shaft to the power transmission mechanism only when the rotation direction of the swing shaft coincides with a specific one direction.
A rotary motion mechanism.
請求項1に記載の回転運動機構であって、
前記ワンウェイクラッチは、前記揺動軸に直接取り付けられている、回転運動機構。
The rotary motion mechanism according to claim 1.
The one-way clutch is a rotary motion mechanism directly attached to the swing shaft.
JP2020129397A 2020-07-30 2020-07-30 Rotary motion mechanism Pending JP2022026096A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020129397A JP2022026096A (en) 2020-07-30 2020-07-30 Rotary motion mechanism
PCT/JP2021/026652 WO2022024786A1 (en) 2020-07-30 2021-07-15 Rotational motion mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020129397A JP2022026096A (en) 2020-07-30 2020-07-30 Rotary motion mechanism

Publications (1)

Publication Number Publication Date
JP2022026096A true JP2022026096A (en) 2022-02-10

Family

ID=80036422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020129397A Pending JP2022026096A (en) 2020-07-30 2020-07-30 Rotary motion mechanism

Country Status (2)

Country Link
JP (1) JP2022026096A (en)
WO (1) WO2022024786A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2944495B2 (en) * 1995-12-28 1999-09-06 ロングウェルジャパン株式会社 Direction fluctuation energy extraction device
JP2002286112A (en) * 2001-03-26 2002-10-03 Yasushi Watabe Device for converting reciprocating motion into constant- direction rotating motion
JP2011190764A (en) * 2010-03-16 2011-09-29 Ntn Corp Gyro wave-activated power generator
JP5517787B2 (en) * 2010-06-30 2014-06-11 三菱重工業株式会社 Control method of gyro wave power generator
KR101868837B1 (en) * 2017-11-24 2018-06-20 주식회사 로고스웨어 Capsule buoy type of wave energy converter
JP2019146477A (en) * 2018-02-22 2019-08-29 国立大学法人 東京大学 Precession rotation mechanism and power generation device
WO2019233295A1 (en) * 2018-06-04 2019-12-12 Yuan Runhui Power generation device

Also Published As

Publication number Publication date
WO2022024786A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US11542910B2 (en) Multiple weight pendulum-based wave energy harvesting apparatus incorporating magnetic repulsion-based piezoelectric power generation mechanism
US8866314B2 (en) Method for operating a power rotary actuator and a power plant for carrying out said method
JPS59103971A (en) Wave energy generator
JP2631233B2 (en) A device that converts reciprocating rotary motion into unidirectional rotary motion and extracts it
US6826449B1 (en) Method for producing natural motions
WO2022024786A1 (en) Rotational motion mechanism
US6640659B1 (en) Continuously variable transmission
US3447398A (en) Energy transfer device
US3439561A (en) Mechanical torque converter
US6571652B2 (en) Gyroscopic torque converter
US6729197B2 (en) Gyroscopic torque converter
JP7333493B2 (en) ONE-WAY POWER CONVERSION DEVICE AND POWER SYSTEM INCLUDING THE DEVICE
US20110041630A1 (en) Propulsion mechanism employing conversion of rotary motion into a unidirectional linear force
JP2019146477A (en) Precession rotation mechanism and power generation device
US20080060460A1 (en) Propulsion device employing conversion of rotary motion into a unidirectional linear force
JP2005002960A (en) Power generation device
Toyoshima et al. Spin Accelerating Mechanism for Gyroscopic Wave Energy Converter
Hosaka et al. High-power Vibration Generator Using Gyroscopic Effect.
RU2084826C1 (en) Gyroscopic centrifugal device
TWM580127U (en) Unidirectional power conversion device provided with rocking rotary shell
Chen et al. Parametric study of a self-reacting point absorber intergrated with a magnetic bistable mechanism and a mechanical motion rectifier
CN107023444B (en) A kind of differential inertia generating set for marine floating type works
JPH0681982B2 (en) Device for converting oscillating motion into rotational motion
RU2531856C2 (en) Automatic inertia transformer
JP2000032737A (en) Energy amplifying system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707