JP2022025949A - バイナリー発電装置 - Google Patents

バイナリー発電装置 Download PDF

Info

Publication number
JP2022025949A
JP2022025949A JP2020129159A JP2020129159A JP2022025949A JP 2022025949 A JP2022025949 A JP 2022025949A JP 2020129159 A JP2020129159 A JP 2020129159A JP 2020129159 A JP2020129159 A JP 2020129159A JP 2022025949 A JP2022025949 A JP 2022025949A
Authority
JP
Japan
Prior art keywords
temperature
cooling fluid
working medium
heat source
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020129159A
Other languages
English (en)
Inventor
泰平 川口
Taihei Kawaguchi
和雄 高橋
Kazuo Takahashi
亮 藤澤
Akira Fujisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020129159A priority Critical patent/JP2022025949A/ja
Publication of JP2022025949A publication Critical patent/JP2022025949A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】蒸発器に流入する熱源流体の温度の過剰な温度上昇を抑制する。【解決手段】バイナリー発電装置1は、熱源流路20を流れる熱源流体によって作動媒体を加熱して作動媒体を蒸発させる蒸発器10と、膨張機14と、凝縮器16と、作動媒体ポンプ8と、作動媒体循環流路18と、第2冷却流体が流れる第2冷却流体流路30と、蒸発器10に向けて熱源流路20を流れる熱源流体を、第2冷却流体流路30を流れる第2冷却流体によって冷却する熱交換器32と、熱源流体の温度を検出する温度検出器36と、第2冷却流体の流量を増減可能な流体ポンプ34と、温度検出器36によって検出された熱源流体の温度が予め設定された温度よりも高い場合に、第2冷却流体の流量を増加するように流体ポンプ34を制御する流量制御部40aと、を備える。【選択図】図1

Description

本発明は、バイナリー発電装置に関する。
従来、特許文献1に開示されているように、熱源流体によって作動媒体を蒸発させてガス状の作動体媒体とし、このガス状の作動媒体を用いて発電を行うバイナリー発電装置が知られている。特許文献1に開示されたバイナリー発電装置には、熱源流体が流れる熱媒体ラインと、作動媒体が循環する作動媒体ラインと、熱媒体ライン及び作動媒体ラインに接続される蒸発器と、が設けられ、蒸発器において、熱源流体によって作動媒体を蒸発させる。さらに、特許文献1に開示されたバイナリー発電装置では、熱媒体ラインに温水タンクが接続されていて、温水タンク内の液量は液量調整機構によって調整される。液量調整機構は、バイナリー発電装置が停止すると、温水タンク内の液量を増加させる。これにより、停止時において、蒸発器に流入する熱源流体の温度上昇を抑制することができる。
特開2019-7353号公報
特許文献1に開示されたバイナリー発電装置では、バイナリー発電装置の停止時に蒸発器に流入する熱源流体の温度上昇を抑制できるが、バイナリー発電装置の運転中における熱源流体の温度上昇に対する対策は講じられていない。一方、バイナリー発電装置に用いられる熱源流体は、温度が一定であるものもあれば、温度が変動するものもある。したがって、特許文献1に開示された技術を、例えば温度が変動するような熱源流体を用いるバイナリー発電装置に適用した場合には、蒸発器での過剰な温度上昇が生じることを抑制することはできない。このため、作動媒体等の過剰な温度上昇による劣化、蒸発器の破損が生ずる虞がある。
そこで、本発明は、前記従来技術を鑑みてなされたものであり、その目的とするところは、温度が変動するような熱源流体を用いるバイナリー発電装置においても、蒸発器に流入する熱源流体の温度の過剰な温度上昇を抑制することにある。
前記の目的を達成するため、本発明に係るバイナリー発電装置は、熱源流路を流れる熱源流体によって作動媒体を加熱することによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した作動媒体の膨張によって駆動される膨張機と、前記膨張機に接続された発電機と、前記膨張機から流出した前記作動媒体を冷却流体で冷却することによって当該作動媒体を凝縮させる凝縮器と、前記凝縮器から流出した前記作動媒体を前記蒸発器へ送る作動媒体ポンプと、前記蒸発器、前記膨張機、前記凝縮器及び前記作動媒体ポンプをこの順に接続している作動媒体循環流路と、第2冷却流体が流れる第2冷却流体流路と、前記蒸発器に向けて前記熱源流路を流れる前記熱源流体を、前記第2冷却流体流路を流れる第2冷却流体によって冷却する熱交換器と、前記熱源流路における前記熱交換器と前記蒸発器との間の部分を流れる前記熱源流体の温度を検出する温度検出器と、前記第2冷却流体の流量を増減可能な流量調整機構と、前記温度検出器によって検出された前記熱源流体の温度が予め設定された温度よりも高い場合に、前記第2冷却流体の流量を増加するように前記流量調整機構を制御する流量制御部と、を備えている。
本発明では、温度検出器が、熱源流路における熱交換器と蒸発器との間の部分を流れる熱源流体の温度を検出する。そして、温度検出器によって検出された熱源流体の温度が予め設定された温度よりも高い場合には、流量制御部が流量調整機構を制御する。これにより、第2冷却流体の流量が増加するため、熱源流路における蒸発器の上流側に位置する熱交換器において、第2冷却流体による熱源流体の冷却能力が増大する。したがって、蒸発器に流入する熱源流体の過剰な温度上昇を抑制することができるため、作動媒体等の劣化や蒸発器の破損等を防止することができる。
なお、温度検出器による熱源流体の検出温度の閾値は、例えば、熱源流体と熱交換した作動媒体が劣化しないような温度、熱源流体と作動媒体とを熱交換させる蒸発器が損傷しないような温度、或いは、作動媒体循環流路を流れる作動媒体に潤滑油が含まれる場合において潤滑油が劣化しないような温度に設定される。
前記制御部は、前記温度検出器によって検出された前記熱源流体の温度が前記予め設定された温度以下の場合に、前記第2冷却流体の流量を減少するよう、前記第2冷却流体の流れを止めるように、又は前記第2冷却流体の流量を維持するように、前記流量調整機構を制御してもよい。
この態様では、蒸発器に流入する前の熱源流体の温度が設定温度以下の場合において、熱交換器に導入される第2冷却流体の流量が減少するとき又は第2冷却流体の流れを止めるときには、熱交換器における第2冷却流体による熱源流体の冷却能力が低減する。このため、必要以上に熱源流体が冷却されることを防止できる。一方、蒸発器に流入する前の熱源流体の温度が設定温度以下の場合において、熱交換器に導入される第2冷却流体の流量を維持する制御を行う構成であれば、制御の簡素化を図ることができる。
本発明に係るバイナリー発電装置は、熱源流路を流れる熱源流体によって作動媒体を加熱することによって前記作動媒体を蒸発させる蒸発器と、前記蒸発器で蒸発した作動媒体の膨張によって駆動される膨張機と、前記膨張機に接続された発電機と、前記膨張機から流出した前記作動媒体を冷却流体で冷却することによって当該作動媒体を凝縮させる凝縮器と、前記凝縮器から流出した前記作動媒体を前記蒸発器へ送る作動媒体ポンプと、前記蒸発器、前記膨張機、前記凝縮器及び前記作動媒体ポンプをこの順に接続している作動媒体循環流路と、第2冷却流体が流れることを許容する第2冷却流体流路と、前記蒸発器に向けて前記熱源流路を流れる前記熱源流体を、前記第2冷却流体流路を流れる第2冷却流体によって冷却する熱交換器と、前記熱交換器に向けて前記熱源流路を流れる前記熱源流体の温度を検出する上流側温度検出器と、前記熱源流路における前記熱交換器と前記蒸発器との間の部分を流れる前記熱源流体の温度を検出する温度検出器と、前記第2冷却流体の流量を増減可能な流量調整機構と、前記上流側温度検出器によって検出された前記熱源流体の温度が予め設定された温度以下の場合に、前記熱交換器への前記第2冷却流体の供給が停止されるように前記流量調整機構を制御し、且つ、前記上流側温度検出器によって検出された前記熱源流体の温度が前記予め設定された温度よりも高い場合に、前記熱交換器への前記第2冷却流体の供給を行うように前記流量調整機構を制御し、且つ、前記温度検出器によって検出された前記熱源流体の温度が予め設定された温度よりも高い場合に、前記第2冷却流体の流量を増加するように前記流量調整機構を制御する流量制御部と、を備えている。
本発明では、上流側温度検出器が、熱交換器に向けて熱源流路を流れる熱源流体の温度を検出し、温度検出器が、熱源流路における熱交換器と蒸発器との間の部分を流れる熱源流体の温度を検出する。そして、上流側温度検出器によって検出された熱源流体の温度が予め設定された温度以下の場合には、流量調整機構が制御部によって制御されて、熱交換器への第2冷却流体の供給が停止される。このため、熱交換器に導入される熱源流体の温度が、蒸発器において作動媒体の過剰な温度上昇を起こさないような温度にあるときには、熱交換器において熱源流体が第2冷却流体によって冷却されることを防止することができる。したがって、熱源流体が必要以上に冷却されてしまうことを抑制することができる。
一方、温度検出器によって検出された熱源流体の温度が予め設定された温度よりも高い場合には、流量制御部が流量調整機構を制御する。これにより、第2冷却流体の流量が増加するため、熱源流路における蒸発器の上流側に位置する熱交換器において、第2冷却流体による熱源流体の冷却能力が増大する。したがって、蒸発器に流入する熱源流体の過剰な温度上昇を抑制することができるため、作動媒体等の劣化や蒸発器の破損等を防止することができる。
なお、温度検出器による熱源流体の検出温度の閾値は、例えば、熱源流体と熱交換した作動媒体が劣化しないような温度、熱源流体と作動媒体とを熱交換させる蒸発器が損傷しないような温度、或いは、作動媒体循環流路を流れる作動媒体に潤滑油が含まれる場合において潤滑油が劣化しないような温度に設定されている。また、上流側温度検出器による熱源流体の検出温度の閾値は、温度検出器による熱源流体の検出温度の閾値と同じ温度でも良く、より高い温度でもよい。
前記流量制御部は、前記温度検出器によって検出された前記熱源流体の温度が前記予め設定された温度以下の場合に、前記第2冷却流体の流量を減少するよう、前記第2冷却流体の流れを止めるように、又は前記第2冷却流体の流量を維持するように、前記流量調整機構を制御してもよい。
この態様では、蒸発器に流入する前の熱源流体の温度が設定温度以下の場合において、熱交換器に導入される第2冷却流体の流量が減少するとき又は第2冷却流体の流れを止めるときには、熱交換器における第2冷却流体による熱源流体の冷却能力が低減する。このため、必要以上に熱源流体が冷却されることを防止できる。一方、蒸発器に流入する前の熱源流体の温度が設定温度以下の場合において、熱交換器に導入される第2冷却流体の流量を維持する制御を行う構成であれば、制御の簡素化を図ることができる。
前記第2冷却流体流路は、前記第2冷却流体を循環させるように閉ループ状に形成されていてもよい。この場合、前記バイナリー発電装置は、前記作動媒体循環流路における前記蒸発器の下流側で且つ前記膨張機の上流側において、前記熱交換器で加熱された前記第2冷却流体によって前記作動媒体を加熱する熱回収器と、前記熱回収器をバイパスするように前記第2冷却流体流路に接続されたバイパス路と、前記第2冷却流体が前記熱回収器を流れることを許容する第1状態と、前記第2冷却流体が前記熱回収器を迂回して前記バイパス路を流れることを許容する第2状態のいずれかに切換可能な切換機構と、前記作動媒体循環流路において前記熱回収器に向かって流れる前記作動媒体の温度を検出する第1回収温度検出器と、前記第2冷却流体流路において前記熱回収器に向かって流れる前記第2冷却流体の温度を検出する第2回収温度検出器と、前記切換機構が前記第1状態に設定されている状態で、前記第2回収温度検出器によって検出された前記第2冷却流体の温度が、前記第1回収温度検出器によって検出された前記作動媒体の温度よりも低くなると、前記切換機構を前記第2状態に切り換える切換制御部と、をさらに備えていてもよい。
この態様では、切換機構が第1状態に設定されているときには、第2冷却流体が熱回収器を流れて、熱回収器において作動媒体が第2冷却流体によって加熱される。すなわち、熱源流体から第2冷却流体が受け取った熱を作動媒体に伝える。したがって、熱源流体の熱を作動媒体に伝えて発電機による熱回収に利用することができ、発電出力の低下を抑制することができる。
さらに、切換制御部は、第2回収温度検出器によって検出された第2冷却流体の温度が、第1回収温度検出器によって検出された作動媒体の温度よりも低くなると、切換機構を第2状態に切り換える。これにより、第2冷却流体が熱回収器を迂回してバイパス路と流れる。したがって、この場合には第2冷却流体は熱回収器に流入しないため、熱回収器において作動媒体が第2冷却流体によって冷却されるという事態を回避することができる。
前記切換機構は、前記作動媒体ポンプの停止している場合に、前記第2状態に維持してもよい。
この態様では、作動媒体ポンプが停止しているときに、切換機構が、第2冷却流体が熱回収器を迂回する第2状態に維持される。このため、作動媒体が流れない熱回収器に第2冷却流体が導入されることを回避することができる。
前記熱交換器では、前記熱源流体及び前記作動媒体が同じ方向に流れてもよい。この態様では、熱交換器出口側での第2冷却流体の温度が、熱交換器出口側での熱源流体の温度よりも必ず低くなる。このため、第2冷却流体の流量調整等が複雑化することを抑制することができる。
以上説明したように、本発明によれば、温度が変動するような熱源流体を用いたとしても、バイナリー発電装置において、蒸発器に流入する熱源流体の温度の過剰な温度上昇を抑制することができる。
第1実施形態に係るバイナリー発電装置の概略構成を示す図である。 熱除去ユニットの制御動作を説明するための図である。 第1実施形態の変形例に係るバイナリー発電装置の概略構成を示す図である。 第2実施形態に係るバイナリー発電装置の概略構成を示す図である。 熱除去ユニットの制御動作及び切換機構の制御動作を説明するための図である。
以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
(第1実施形態)
図1に示すように、第1実施形態に係るバイナリー発電装置1は、熱源流体の熱を電力として回収する装置であり、ランキンサイクルを利用した発電ユニット3を備えている。熱源流体の温度が変動することを想定し、バイナリー発電装置1には、熱源流体の熱の一部を取り除くための熱除去ユニット5も設けられている。バイナリー発電装置1は、エンジン排熱、エンジンに供給される過給空気の熱、工場排熱、ボイラー排熱等の、例えば200℃以上の熱を電力に変換するのに利用されてもよい。エンジン排ガス、過給空気等の温度はエンジン負荷等に応じて変化するが、バイナリー発電装置1は、温度が変動しない熱源流体の熱を回収する装置として構成されてもよい。
発電ユニット3は、作動媒体ポンプ8と、蒸発器10と、膨張機14と、凝縮器16とを備えている。作動媒体ポンプ8、蒸発器10、膨張機14及び凝縮器16はこの順で、作動媒体が循環する作動媒体循環流路18に接続されている。本実施形態によるバイナリー発電装置1では、作動媒体が作動媒体循環流路18を通じて作動媒体ポンプ8、蒸発器10、膨張機14及び凝縮器16を順に流れるという循環回路が構成されている。作動媒体としては、水よりも沸点の低い冷媒が用いられる。
作動媒体ポンプ8は、作動媒体循環流路18における凝縮器16の下流側(蒸発器10と凝縮器16との間)に位置しており、作動媒体を加圧するように構成されている。作動媒体ポンプ8は、凝縮器16で凝縮された液状の作動媒体を所定の圧力まで加圧して蒸発器10に送り出す。作動媒体ポンプ8として、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ等が用いられる。
蒸発器10は、作動媒体循環流路18における作動媒体ポンプ8の下流側(作動媒体ポンプ8と膨張機14との間)に位置している。蒸発器10は、熱源流体が流れる熱源流路20に接続されている。蒸発器10は、熱源流路20を流れる熱源流体と、作動媒体ポンプ8で加圧された液状の作動媒体とを熱交換させて、作動媒体の少なくとも一部を蒸発させるように構成されている。なお、熱源流路20は、その上流端がエンジン等の熱源流体の供給源20aに接続されている。
膨張機14は、作動媒体循環流路18における蒸発器10の下流側(蒸発器10と凝縮器16との間)に位置している。膨張機14は、図略のロータがケーシング内に配置された構造であり、ケーシング内に導入された作動媒体が膨張することによりロータが回転するように構成されている。詳しくは、膨張機14では、蒸発器10で得られる蒸発圧力から凝縮器16で得られる凝縮圧力までガス状の作動媒体が膨張する過程でロータが駆動される。膨張機14のロータには発電機22が接続されおり、発電機22は、膨張機14においてガス状の作動媒体が膨張することにより駆動する。これにより発電が行われる。
凝縮器16は、作動媒体循環流路18における膨張機14の下流側(膨張機14と作動媒体ポンプ8との間)に位置している。凝縮器16は、膨張機14から排出されたガス状の作動媒体を凝縮させて液状の作動媒体とするものである。凝縮器16は、ガス状の作動媒体と冷却水等の冷却流体とを熱交換させる。冷却流体は、冷却通路24を通して供給される。凝縮器16において作動媒体は、冷却流体と熱交換することにより凝縮する。
熱除去ユニット5は、第2冷却流体が流れる第2冷却流体流路30と、第2冷却流体流路30に接続された熱交換器32と、を備えている。第2冷却流体は、例えば冷却水によって構成されている。
第2冷却流体流路30は、一端部が水源に接続される一方で、他端部が開放されている。このため、第2冷却流体流路30を流れた第2冷却流体は外部に排出される。
第2冷却流体流路30には、第2冷却流体の流量を増減可能な流量調整機構の一例である流体ポンプ34が設けられている。流体ポンプ34は、回転数を調整可能な構成であり、流体ポンプ34の回転数が調整されると第2冷却流体流路30を流れる第2冷却流体の流量が変わる。
熱交換器32は、熱源流路20にも接続されている。熱交換器32は、熱源流路20における蒸発器10よりも上流側の部位に接続されている。したがって、熱交換器32は、蒸発器10に流入する前の熱源流体と第2冷却流体とを熱交換させる。
バイナリー発電装置1は、温度検出器36と上流側温度検出器38と制御器40とをさらに備えている。
温度検出器36は、熱源流路20における熱交換器32と蒸発器10の間の部分を流れる熱源流体の温度を検出する。すなわち、温度検出器36は、蒸発器10に流入するときの熱源流体の温度を検出する。温度検出器36は、検出した温度を示す信号を出力する。
上流側温度検出器38は、熱源流路20における熱交換器32よりも上流側の部位において、熱源流体の温度を検出する。すなわち、上流側温度検出器38は、熱交換器32に向けて熱源流路20を流れる熱源流体の温度を検出する。上流側温度検出器38は、検出した温度を示す信号を出力する。
温度検出器36及び上流側温度検出器38から出力された信号は、制御器40に入力される。制御器40は、記憶されたプログラムに従って動作することにより、所定の機能を発揮する。この機能には、流量制御部40aが含まれている。流量制御部40aは、受信した信号が示す検出温度に基づいて、流体ポンプ34を制御するように構成されている。
ここで、バイナリー発電装置1の運転動作について説明する。まずは、発電ユニット3の運転動作について説明する。
発電ユニット3では、作動媒体ポンプ8が作動すると、液状の作動媒体が作動媒体ポンプ8から吐出され、この液状の作動媒体は作動媒体循環流路18を通じて蒸発器10に流入する。蒸発器10において、液状の作動媒体は、熱源流体によって加熱されて蒸発し、ガス状の作動媒体となる。ガス状の作動媒体は膨張機14に導入されてロータ部を駆動する。これにより、ガス状の作動媒体は、膨張するとともに温度が低下する。一方で、ロータが駆動することにより発電機22において発電が行われるため、熱源流体の熱を電力として回収することができる。
膨張機14において低温低圧となったガス状の作動媒体は凝縮器16に流入する。凝縮器16において、作動媒体は、冷却流体によって冷却されて凝縮し、液状の作動媒体となる。液状の作動媒体は、凝縮器16から流出した後、作動媒体ポンプ8に吸い込まれる。作動媒体循環流路18ではこのような作動媒体の循環が行われる。
発電ユニット3の作動中及び停止中、蒸発器10に流入する熱源流体の温度が監視されている。そして、流量制御部40aは、その監視結果に基づいて、熱除去ユニット5の制御を行う。以下、図2を参照しつつ、熱除去ユニット5の制御動作について具体的に説明する。
まず、制御器40は、作動媒体ポンプ8が運転中かどうかの確認を行う(ステップST1)。制御器40が作動媒体ポンプ8が作動していると判断した場合には、ステップST2に移行する。
ステップST2において、上流側温度検出器38の検出温度T0と予め設定された温度(設定温度)Tsとの比較が行われる。この設定温度Tsは、発電ユニット3が安全に運転される温度として設定された温度であって、例えば、作動媒体や潤滑油の劣化が生じない温度、図略のシール材の耐熱温度等が採用され得る。
上流側温度検出器38の検出温度T0が設定温度Ts以下の場合には、流体ポンプ34が停止される(ステップST3)。すなわち、供給源20aから供給される熱源流体の温度(検出温度T0)が設定温度Ts以下であれば、熱源流体を冷却する必要がないため、第2冷却流体を熱交換器32に流さないようにしている。
一方、上流側温度検出器38の検出温度T0が設定温度Tsよりも高い場合(ステップST2においてYES)には、温度検出器36の検出温度T1と設定温度Tsとの比較も行う(ステップST4)。温度検出器36の検出温度T1が設定温度Tsよりも高い場合、すなわち、蒸発器10に流入する熱源流体の温度が設定温度Tsよりも高い場合には、流体ポンプ34の回転数を所定回転数だけ上げる(ステップST5)。これにより、熱交換器32に流入する第2冷却流体の流量が増大するため、熱交換器32から流出する熱源流体の温度が低下する。その後、再度、ステップST4に戻り、温度検出器36の検出温度T1と設定温度Tsとの比較を行う。この結果、検出温度T1が設定温度Tsよりも高ければ流体ポンプ34の回転数を更に所定回転数だけ上げる。
ステップST4における温度検出器36の検出温度T1と設定温度Tsとの比較の結果、検出温度T1が設定温度Ts以下になれば、流体ポンプ34の回転数を所定回転数だけ下げる(ステップST6)。作動媒体ポンプ8の運転中、ステップST4~ST6が繰り返されることにより、蒸発器10に流入する熱源流体の温度が設定温度Tsに安定する。このため、作動媒体、潤滑油、シール材の耐熱温度以上での運転が抑制される。
作動媒体ポンプ8が停止している場合(ステップST1においてNO)、すなわち発電が行われていない場合には、ステップST7に移行し、温度検出器36の検出温度T1と設定温度Tsとの比較を行う。すなわち、作動媒体ポンプ8が停止している場合においても蒸発器10に熱源流体が流入することがあるため、作動媒体ポンプ8の停止中にも検出温度T1と設定温度Tsとの比較を行う。その結果、検出温度T1が設定温度Tsよりも高い場合(蒸発器10に流入する熱源流体の温度が設定温度Tsよりも高い場合)には、流体ポンプ34の回転数を所定回転数だけ上げる(ステップST8)。これにより、熱交換器32から流出する熱源流体の温度が低下し、蒸発器10に流入するときの熱源流体の温度を低下させることができる。
一方、検出温度T1が設定温度Ts以下になれば、流体ポンプ34の回転数を維持する(ステップST9)。なお、このとき流体ポンプ34の回転数を下げるようにしてもよい。また、場合より、流体ポンプ34を停止するようにしてもよい。
以上説明したように、本実施形態では、温度検出器36によって検出された熱源流体の温度T1が設定温度Tsよりも高い場合には、流量制御部40aが流体ポンプ34(流量調整機構)を制御する。これにより、第2冷却流体の流量が増加するため、熱源流路20における蒸発器10の上流側に位置する熱交換器32において、第2冷却流体による熱源流体の冷却能力が増大する。したがって、蒸発器10に流入する熱源流体の過剰な温度上昇を抑制することができるため、作動媒体等の劣化や蒸発器の破損等を防止することができる。
また本実施形態では、温度検出器36によって検出された熱源流体の温度T1が設定温度Ts以下の場合に、流体ポンプ34の回転数を調整して第2冷却流体の流量を減少させるか、流体ポンプ34の回転数を維持する。作動媒体ポンプ8の運転中においては第2冷却流体の流量を減少させるため、熱交換器32における第2冷却流体による熱源流体の冷却能力が低減する。このため、必要以上に熱源流体が冷却されることを防止できる。一方、作動媒体ポンプ8の停止中においては、熱交換器32に導入される第2冷却流体の流量を維持する制御を行うため、制御の簡素化を図ることができる。
また本実施形態では、上流側温度検出器38によって検出された熱源流体の温度が設定温度Ts以下の場合に、流体ポンプ34が流量制御部40aによって制御されて、熱交換器32への第2冷却流体の供給が停止される。このため、熱交換器32に導入される熱源流体の温度が、蒸発器10において作動媒体の過剰な温度上昇を起こさないような温度にあるときには、熱源流体が第2冷却流体によって冷却されることを防止することができる。したがって、熱源流体が必要以上に冷却されてしまうことを抑制することができる。
なお、第1実施形態では、上流側温度検出器38が設けられているが、上流側温度検出器38を省略してもよい。この場合、ステップST2における判断ステップが省略されるため、流体ポンプ34が常時作動することとなる。
第1実施形態では、第2冷却流体の流量を増減可能な流量調整機構が、流体ポンプ34によって構成されているが、この構成に限られない。例えば図3に示すように、流量調整機構は、流量調整弁42と流体ポンプ34とによって構成されてもよい。この場合、流量調整弁42も制御器40からの指令を受信する。そして、ステップST5及びST8において、流量調整弁42の開度を所定開度だけ大きくするとともに、流体ポンプ34の回転数を所定回転数だけ上げる。また、ステップST6においては、流量調整弁42の開度を所定開度だけ小さくするとともに、流体ポンプ34の回転数を所定回転数だけ下げる。
流量調整機構は、流量調整弁42と戻し流路(図示省略)とによって構成されてもよい。戻し流路は、流量調整弁42の開度調整に応じて開度が調整される弁が設けられていて、流体ポンプ34から吐出された第2冷却流体の一部を流体ポンプ34の吸入側に戻す流量を調整する。この場合、流体ポンプ34は、定回転数タイプのポンプによって構成される。
(第2実施形態)
図4は、第2実施形態に係るバイナリー発電装置1を示している。尚、ここでは第1実施形態と同じ構成要素には同じ符号を付し、その詳細な説明を省略する。
第2実施形態では、第2冷却流体流路30が閉ループ状に構成されている。そして、熱除去ユニット5は、第2冷却流体の熱を全て捨てるのでは無く、作動媒体によって回収できるように構成されている。第2実施形態では、第2冷却流体が第2冷却流体流路30を循環する構成となっているため、第2冷却流体は、加圧熱水、油等、高温の熱源流体によって加熱されたときでも液相状態を維持できる液状の流体によって構成されている。
第2冷却流体流路30には、熱を作動媒体に回収するための熱回収器46と、余分な熱を捨てるための第2熱交換器48と、が設けられている。
熱回収器46は、第2冷却流体流路30及び作動媒体循環流路18に接続され、第2冷却流体流路30を流れる第2冷却流体と作動媒体循環流路18を流れる作動媒体とを熱交換させる。熱回収器46は、第2冷却流体流路30において第2冷却流体の流れ方向における熱交換器32よりも下流側に配置されるとともに、作動媒体循環流路18においては、蒸発器10と膨張機14との間に配置されている。
第2熱交換器48は、第2冷却流体流路30において第2冷却流体の流れ方向における熱回収器46よりも下流側に配置されている。第2熱交換器48は、第2冷却流体流路30を流れる第2冷却流体と、冷却水流路50を流れる冷却水とを熱交換させる。冷却水流路50にはポンプ52が設けられており、ポンプ52の作動によって冷却水流路50に冷却水が流れる。冷却水が冷却水流路50に流れることにより、第2熱交換器48において、冷却水は、第2冷却流体流路30を流れる第2冷却流体から熱を奪う。
第2冷却流体流路30には、熱回収器46をバイパスするようにバイパス路55が接続されている。また、第2冷却流体流路30には、第2冷却流体の流れを切り換え可能な切換機構57が設けられている。
切換機構57は、第2冷却流体流路30においてバイパス路55に分岐する分岐部30aと熱回収器46との間に配置された第1バルブ57aと、バイパス路55に配置された第2バルブ57bと、を備えている。なお、切換機構57はこの構成に限られるものではなく、分岐部30aに配置された三方弁(図示省略)によって構成されていてもよい。
切換機構57は、熱回収器46を有効にする第1状態と、熱回収器46を無効にする第2状態との状態の何れかに切り換える。切換機構57が第1状態に切り換えられると、熱交換器32から流出した第2冷却流体は、熱回収器46を流れる。この状態では、熱交換器32において第2冷却流体が熱源流体から受け取った熱が、熱回収器46において作動媒体に伝えられる。つまり、第2冷却流体に伝えられた熱が作動媒体によって利用されることになる。一方、切換機構57が第2状態に切り換えられると、熱交換器32から流出した第2冷却流体は、バイパス路55を流れ、熱回収器46を迂回する。
熱交換器32は、並向流式に構成されている。すなわち、熱交換器32は、熱源流体の入口と第2冷却流体の入口とが同じ側となり、かつ熱源流体の出口及び第2冷却流体の出口はその反対側になるように、熱源流路20及び第2冷却流体流路30が接続されている。このため、熱交換器32では、熱源流体及び作動媒体が同じ方向に向かって流れる。したがって、熱交換器32から流出する第2冷却流体の温度は、熱交換器32から流出する熱源流体の温度よりも必ず低くなる。なお、熱交換器32は、並向流式に構成されているものに限られず、対向流式に構成されていてもよい。
作動媒体循環流路18には、第1回収温度検出器61が設けられ、第2冷却流体流路30には、第2回収温度検出器62が設けられている。第1回収温度検出器61は、作動媒体循環流路18における蒸発器10と熱回収器46との間に配置されており、熱回収器46に向かって流れる作動媒体の温度を検出する。第1回収温度検出器61は、検出した温度を示す信号を出力する。
第2回収温度検出器62は、第2冷却流体流路30における熱交換器32と分岐部30aとの間に配置されており、熱回収器46に向かって流れる第2冷却流体の温度を検出する。第2回収温度検出器62は、検出した温度を示す信号を出力する。
制御器40の機能には、切換機構57を制御する切換制御部40bが含まれている。切換制御部40bは、作動媒体ポンプ8の作動時における初期状態として切換機構57を第1状態に設定する。また切換制御部40bは、第2回収温度検出器62によって検出された第2冷却流体の温度が、第1回収温度検出器61によって検出された作動媒体の温度よりも低くなると、切換機構57を第2状態に切り換える。また、切換制御部40bは、作動媒体ポンプ8の停止時には、切換機構57を第2状態に設定する。
ここで、第2実施形態に係るバイナリー発電装置1における、熱除去ユニット5の制御動作及び切換機構57の制御動作について、図5を参照しつつ説明する。
制御器40が、作動媒体ポンプ8の運転が開始されたと判断した場合には(ステップST1)、切換制御部40bは、切換機構57を初期状態に設定する。すなわち、切換機構57は、熱回収器46が有効となる第1状態に設定される。これにより、第1バルブ57aが開き、第2バルブ57bが閉じる(ステップST12)。このときには、流体ポンプ34が作動しているため、第2冷却流体は、熱交換器32、熱回収器46及び第2熱交換器48をこの順に流れるように第2冷却流体流路30を循環する。したがって、熱交換器32において熱源流体によって加熱された第2冷却流体は、熱回収器46に流入し、作動媒体循環流路18を流れる作動媒体と熱交換する。これにより、熱回収器46において、第2冷却流体の熱が作動媒体に回収される。熱回収器46を通過した第2冷却流体は、第2熱交換器48に流入し、冷却水流路50を流れる冷却水と熱交換する。これにより、第2冷却流体は冷却水によって冷却される。つまり、余分な熱が冷却水に捨てられる。冷却水によって冷却された第2冷却流体は熱交換器32に戻り、この循環が繰り返される。
第2冷却流体が第2冷却流体流路30を循環している間、第1実施形態と同様に、蒸発器10に流入する熱源流体の温度が監視されている。そして、第1実施形態と同様に、ステップST2~ST6が実行される。そして、蒸発器10に流入する熱源流体の温度(温度検出器36の検出温度T1)が設定温度Tsよりも高く、流体ポンプ34の回転数が上げられたときには(ステップST5)、熱交換器32から流出した第2冷却流体の温度が低下する。このため、制御器40は、作動媒体循環流路18に設けられた第1回収温度検出器61の検出温度Trと、第2冷却流体流路30に設けられた第2回収温度検出器62の検出温度T2との比較を行う(ステップST13)。第1回収温度検出器61の検出温度Trが第2回収温度検出器62の検出温度T2よりも高ければ、ステップST4に戻るため、切換機構57は第1状態に維持され、その上で、流体ポンプ34の回転数制御が行われる(ステップST5、ST6)。
一方、検出温度Trが検出温度T2以下になると、切換制御部40bは切換機構57を第2状態に切り換える。つまり、第1バルブ57aが閉じるとともに第2バルブ57bが開く(ステップST14)。第1回収温度検出器61の検出温度Trが第2回収温度検出器62の検出温度T2以下になっている場合には、熱回収器46において、第2冷却流体が作動媒体を加熱することはできないため、熱回収器46を無効にしている。この場合、熱交換器32で加熱された第2冷却流体は、熱回収器46を通過すことなく、第2熱交換器48に流入する。第2熱交換器48において第2冷却流体は冷却水に冷却され、熱交換器32に戻る。つまり、熱源流体から受けた熱は、冷却水に放出される。
この状態で第2冷却流体が第2冷却流体流路30を循環している間も、検出温度Tr、T2の監視が行われている。そして、検出温度T2が検出温度Trよりも所定温度ΔTだけ高い状態になると(ステップST15)、切換制御部40bは切換機構57を第1状態に戻す(ステップST16)。これにより、熱回収器46が再び有効な状態となり、作動媒体による熱回収が行われることとなる。
作動媒体ポンプ8が停止している場合には(ステップST1においてNO)、切換制御部40bは、切換機構57を第2状態に維持する(ステップST20)。このため、発電を行わないときには、第2冷却流体は熱回収器46に流入しない。この状態で、第1実施形態と同様に、蒸発器10に流入する熱源流体の温度が監視されて、流体ポンプ34が制御される(ステップST7~ST9)。
以上説明したように、第2実施形態では、切換機構57が第1状態に設定されているときには、第2冷却流体が熱回収器46を流れて、熱回収器46において作動媒体が第2冷却流体によって加熱される。すなわち、熱源流体から第2冷却流体が受け取った熱が作動媒体に伝えられる。したがって、熱源流体の熱を捨てるのではなく、作動媒体に伝えて発電機22による熱回収に利用することができ、発電出力の低下を抑制することができる。
さらに、切換制御部40bは、第2回収温度検出器62によって検出された第2冷却流体の温度T2が、第1回収温度検出器61によって検出された作動媒体の温度Trよりも低くなると、切換機構57を第2状態に切り換える。これにより、第2冷却流体が熱回収器46を迂回してバイパス路55と流れる。したがって、第2冷却流体は熱回収器46に流入しないため、熱回収器46において作動媒体が第2冷却流体によって冷却されるという事態を回避することができる。
また本実施形態では、作動媒体ポンプ8が停止しているときに、切換機構57が、第2冷却流体が熱回収器46を迂回する第2状態に維持される。このため、作動媒体が流れない熱回収器46に第2冷却流体が流入することを回避することができる。
また本実施形態では、熱交換器32が並向流式に構成されているため、熱交換器32出口側での第2冷却流体の温度が、熱交換器32出口側での熱源流体の温度よりも必ず低くなる。このため、第2冷却流体等の流量調整が複雑化することを抑制することができる。
その理由について説明する。熱交換器32が対向流式に構成されている場合、すなわち、熱交換器32にて熱源流体及び第2冷却流体が互いに向き合う方向に流れるよう構成されている場合には、蒸発器10に流入する熱源流体の温度の監視に加えて、熱交換器46の近傍の第2冷却流体流路30を流れる第2冷却流体が高温環境下にあるか否かを監視する必要が生じる。すなわち、熱交換器32が対向流式に構成されている場合、熱交換器46に入る第2冷却流体の温度を制御する必要が生じ、その温度の制御のために第2冷却流体流路30を流れる第2冷却流体や冷却水流路50を流れる冷却水の流量調整の必要が生じる。これが流量調整の複雑化に繋がる。本実施形態では、熱交換器32が並向流式に構成されているため、上述のような第2冷却流体流路30を流れる第2冷却流体や冷却水流路50を流れる冷却水の流量調整の必要が無く、流量調整の複雑化を抑制できる。
なお、本実施形態では、検出温度T2が検出温度Trよりも所定温度ΔTだけ高い状態になると(ステップST15)、切換機構57を第1状態に切り換えるが、これに限られない。例えば、熱源流体の温度T0が所定温度だけ高くなると第1状態に切り換えてもよい。
また本実施形態では、作動媒体ポンプ8が停止しているときに、切換機構57が第2状態に維持されるが、これに限られず、切換機構57が第1状態に切り換えられてもよい。
その他の構成、作用及び効果はその説明を省略するが、前記第1実施形態の説明を第2実施形態に援用することができる。
今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。
1 :バイナリー発電装置
8 :作動媒体ポンプ
10 :蒸発器
14 :膨張機
16 :凝縮器
18 :作動媒体循環流路
20 :熱源流路
22 :発電機
30 :第2冷却流体流路
32 :熱交換器
34 :流体ポンプ
36 :温度検出器
38 :上流側温度検出器
40a :流量制御部
40b :切換制御部
46 :熱回収器
55 :バイパス路
57 :切換機構
61 :第1回収温度検出器
62 :第2回収温度検出器

Claims (7)

  1. 熱源流路を流れる熱源流体によって作動媒体を加熱することによって前記作動媒体を蒸発させる蒸発器と、
    前記蒸発器で蒸発した作動媒体の膨張によって駆動される膨張機と、
    前記膨張機に接続された発電機と、
    前記膨張機から流出した前記作動媒体を冷却流体で冷却することによって当該作動媒体を凝縮させる凝縮器と、
    前記凝縮器から流出した前記作動媒体を前記蒸発器へ送る作動媒体ポンプと、
    前記蒸発器、前記膨張機、前記凝縮器及び前記作動媒体ポンプをこの順に接続している作動媒体循環流路と、
    第2冷却流体が流れる第2冷却流体流路と、
    前記蒸発器に向けて前記熱源流路を流れる前記熱源流体を、前記第2冷却流体流路を流れる第2冷却流体によって冷却する熱交換器と、
    前記熱源流路における前記熱交換器と前記蒸発器との間の部分を流れる前記熱源流体の温度を検出する温度検出器と、
    前記第2冷却流体の流量を増減可能な流量調整機構と、
    前記温度検出器によって検出された前記熱源流体の温度が予め設定された温度よりも高い場合に、前記第2冷却流体の流量を増加するように前記流量調整機構を制御する流量制御部と、
    を備えているバイナリー発電装置。
  2. 請求項1に記載のバイナリー発電装置において、
    前記流量制御部は、前記温度検出器によって検出された前記熱源流体の温度が前記予め設定された温度以下の場合に、前記第2冷却流体の流量を減少するよう、前記第2冷却流体の流れを止めるように、又は前記第2冷却流体の流量を維持するように、前記流量調整機構を制御するバイナリー発電装置。
  3. 熱源流路を流れる熱源流体によって作動媒体を加熱することによって前記作動媒体を蒸発させる蒸発器と、
    前記蒸発器で蒸発した作動媒体の膨張によって駆動される膨張機と、
    前記膨張機に接続された発電機と、
    前記膨張機から流出した前記作動媒体を冷却流体で冷却することによって当該作動媒体を凝縮させる凝縮器と、
    前記凝縮器から流出した前記作動媒体を前記蒸発器へ送る作動媒体ポンプと、
    前記蒸発器、前記膨張機、前記凝縮器及び前記作動媒体ポンプをこの順に接続している作動媒体循環流路と、
    第2冷却流体が流れることを許容する第2冷却流体流路と、
    前記蒸発器に向けて前記熱源流路を流れる前記熱源流体を、前記第2冷却流体流路を流れる第2冷却流体によって冷却する熱交換器と、
    前記熱交換器に向けて前記熱源流路を流れる前記熱源流体の温度を検出する上流側温度検出器と、
    前記熱源流路における前記熱交換器と前記蒸発器との間の部分を流れる前記熱源流体の温度を検出する温度検出器と、
    前記第2冷却流体の流量を増減可能な流量調整機構と、
    前記上流側温度検出器によって検出された前記熱源流体の温度が予め設定された温度以下の場合に、前記熱交換器への前記第2冷却流体の供給が停止されるように前記流量調整機構を制御し、且つ、前記上流側温度検出器によって検出された前記熱源流体の温度が前記予め設定された温度よりも高い場合に、前記熱交換器への前記第2冷却流体の供給を行うように前記流量調整機構を制御し、且つ、前記温度検出器によって検出された前記熱源流体の温度が予め設定された温度よりも高い場合に、前記第2冷却流体の流量を増加するように前記流量調整機構を制御する流量制御部と、
    を備えているバイナリー発電装置。
  4. 請求項3に記載のバイナリー発電装置において、
    前記制御部は、前記温度検出器によって検出された前記熱源流体の温度が前記予め設定された温度以下の場合に、前記第2冷却流体の流量を減少するよう、前記第2冷却流体の流れを止めるように、又は前記第2冷却流体の流量を維持するように、前記流量調整機構を制御するバイナリー発電装置。
  5. 請求項3又は4に記載のバイナリー発電装置において、
    前記第2冷却流体流路は、前記第2冷却流体を循環させるように閉ループ状に形成され、
    前記作動媒体循環流路における前記蒸発器の下流側で且つ前記膨張機の上流側において、前記熱交換器で加熱された前記第2冷却流体によって前記作動媒体を加熱する熱回収器と、
    前記熱回収器をバイパスするように前記第2冷却流体流路に接続されたバイパス路と、
    前記第2冷却流体が前記熱回収器を流れることを許容する第1状態と、前記第2冷却流体が前記熱回収器を迂回して前記バイパス路を流れることを許容する第2状態のいずれかに切換可能な切換機構と、
    前記作動媒体循環流路において前記熱回収器に向かって流れる前記作動媒体の温度を検出する第1回収温度検出器と、
    前記第2冷却流体流路において前記熱回収器に向かって流れる前記第2冷却流体の温度を検出する第2回収温度検出器と、
    前記切換機構が前記第1状態に設定されている状態で、前記第2回収温度検出器によって検出された前記第2冷却流体の温度が、前記第1回収温度検出器によって検出された前記作動媒体の温度よりも低くなると、前記切換機構を前記第2状態に切り換える切換制御部と、をさらに備えているバイナリー発電装置。
  6. 請求項5に記載のバイナリー発電装置において、
    前記切換機構は、前記作動媒体ポンプの停止している場合に、前記第2状態に維持するバイナリー発電装置。
  7. 請求項1から6の何れか1項に記載のバイナリー発電装置において、
    前記熱交換器では、前記熱源流体及び前記作動媒体が同じ方向に流れるバイナリー発電装置。
JP2020129159A 2020-07-30 2020-07-30 バイナリー発電装置 Pending JP2022025949A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020129159A JP2022025949A (ja) 2020-07-30 2020-07-30 バイナリー発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020129159A JP2022025949A (ja) 2020-07-30 2020-07-30 バイナリー発電装置

Publications (1)

Publication Number Publication Date
JP2022025949A true JP2022025949A (ja) 2022-02-10

Family

ID=80264848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020129159A Pending JP2022025949A (ja) 2020-07-30 2020-07-30 バイナリー発電装置

Country Status (1)

Country Link
JP (1) JP2022025949A (ja)

Similar Documents

Publication Publication Date Title
JP7009227B2 (ja) 熱エネルギー回収装置
JP5338730B2 (ja) 廃熱回生システム
JP6670123B2 (ja) 排熱回収装置及びバイナリ発電装置
JP5163620B2 (ja) 廃熱回生システム
JP5338731B2 (ja) 廃熱回生システム
KR102015689B1 (ko) 열 에너지 회수 장치 및 제어 방법
JP5008441B2 (ja) 内燃機関の廃熱利用装置
JP2008231980A (ja) 内燃機関の廃熱利用装置
JP5460663B2 (ja) 発電装置
KR20140143705A (ko) 배열 회수 장치 및 배열 회수 장치의 운전 제어 방법
KR101790915B1 (ko) 발전 장치
JP2013011259A (ja) ランキンサイクル
JP7057323B2 (ja) 熱サイクルシステム
JP2013113192A (ja) 廃熱回生システム
JP2022025949A (ja) バイナリー発電装置
JP6495608B2 (ja) 廃熱回収装置
JP2004353517A (ja) 発電装置
JP6831318B2 (ja) 熱エネルギー回収システム
KR102018710B1 (ko) 열에너지 회수 장치
JP2019007379A (ja) 熱エネルギー回収システム及びそれを搭載する船舶
JP6616235B2 (ja) 排熱回収システム
US10851678B2 (en) Thermal energy recovery device and startup operation method for the same
JP2022110438A (ja) 発電装置及び発電装置の制御方法
JP2021127758A (ja) ランキンサイクル装置及びその運転方法
KR20200132700A (ko) 열회수 장치 및 열회수 장치의 작동 매체의 수집 방법